MCS-51单片机的引脚和输入输出端口
51单片机引脚功能
51单片机引脚功能51单片机是一种基于MCS-51架构的8位单片机。
它有40个引脚,其中包括I/O引脚、电源引脚和时钟引脚等。
每个引脚都具有不同的功能和用途,下面是一些常见的51单片机引脚功能介绍:1. VCC:为51单片机供电的正电源引脚,一般连接到3.3V或5V电源。
2. GND:为51单片机供电的地引脚,负电源引脚。
3. RESET:复位引脚,当复位引脚电平为低电平时,可以重启或者复位51单片机。
4. EA/VPP:外部访问使能/编程电压引脚。
当电平为低电平时,可以通过外部器件对单片机进行编程,当电平为高电平时,用于外部扩展存储器的使能。
5. P0.0~P0.7:第0口每个引脚的功能可以根据需要进行定义,可以作为输入或输出引脚使用。
6. P1.0~P1.7:第1口I/O引脚,与第0口相似,具有输入和输出功能。
7. P2.0~P2.7:第2口I/O引脚,与第0口和第1口相似,具有输入和输出功能。
8. P3.0~P3.7:第3口I/O引脚,与第0口、第1口和第2口相似,具有输入和输出功能。
9. RST/AP:复位端口/辅助功能端口。
这个引脚可以用作复位单片机的辅助功能,也可以用于电源监控。
10. XTAL1:外部晶振输入引脚,一般通过晶振提供单片机的时钟信号。
11. XTAL2:外部晶振输出引脚。
12. PSEN:程序存储器使能引脚,用于选择程序存储器或外部存储器之间的切换。
13. ALE/PROG:地址锁存器使能/编程引脚。
当电平为高电平时,用作地址锁存器使能引脚;当电平为低电平时,用作一个外部编程信号。
14. RXD:串口接收数据引脚,用于串行通信。
15. TXD:串口发送数据引脚,用于串行通信。
16. INT0:外部中断0引脚,可以通过设置中断使能来检测外部的中断事件。
17. INT1:外部中断1引脚,与INT0引脚类似,用于检测外部的中断事件。
18. T0:定时器0的计数引脚,可以通过程序来对其进行读写操作。
MCS-51单片机的内部结构及引脚
2021/2/4
1
10
谢谢
2021/2/4
1
11
谢谢!
1
5
结构特点:
MCS-51系列单片机为哈佛结构(而非普林斯顿结构) 1)内ROM:4KB 2)内RAM:128B 3)外ROM:64KB 4)外RAM:64KB 5)I / O线: 32根(4埠,每埠8根) 6)定时/计数器:2个16位可编程定时/计数器 7)串行口:全双工,2 根 8)寄存器区:工作寄存器区、在内128B RAM中,分4个区, 9)中断源:5源中断,2级优先 10)堆栈:最深128B 11)布尔处理机:位处理机,某位单独处理 12)指令系统:五大类,111条
MCS-51单片机的内部结 构及引脚
一、单片机硬件结构
内部结构 引脚功能 内存的配置 CPU时序 I / O接口
2021/2/4
1
2
二、 概述
Intel MCS-51 系列单片机三个版本:8031、8051、 8751(8位机)
Intel MCS-96系列机:8096 (16位机) 除此之外,Motorla公司、Zilog公司、Mcrochip相 继推出产品, 各系列产品内部功能、单元组成、指令系统不尽相 同。 Intel公司单片机问世早,系列齐全,兼容性强,所 以得到广泛使用。
作系统总线、扩展外存、I / O接口芯片
2021/2/4
1
4
5、串行输入/输出口(2条) 串行通信、扩展I / O接口芯片
6、定时/计数器(16位、加1计数) 计满溢出、中断标志置位、向CPU提出中断请求,与 CPU之间独立工作
7、时钟电路 内振、外振。 8、中断系统 五源中断、2级优先。
2021/2/4
2021/2/4
3.1MCS-51单片机的并行IO口
一、并行I/O口的功能结构
2、接口功能 (2)通用I/O接口
(四)P0口
此时“控制”信号为“0”,多路开关 MUX向下,输出驱动器处于开漏状态,故需 外接上拉电阻,这种情况下,电路结构与P1 相同,所以也是一个准双向口,当要作为输 入时,必须先向口锁存器写“1”。
一、并行I/O口的功能结构
(四)P0口
这是由接口的特殊结构所决定的。每一个 口都包含一个锁存器,一个输出驱动器和两 个(P3口为3个)输入缓冲器。各口的结构也 P 3 有些差异,下面分别介绍。
一、并行I/O口的功能结构
1、接口结构
(一)P1口
P1口一位的结构如下图所示:
图2.15
一、并行I/O口的功能结构
1、接口结构
(一)P1口
接口结构中锁存器起输出锁存作用, 8位锁存器组成特殊功能寄存器P1,场 效应管和上拉电阻组成输出驱动器,以 增大负载能力,三态门1和三态门2分别 用于控制输入引脚和锁存器的状态。
作为I/O口应用的一个实例,下面介绍 8031单片机的最小应用系统如下图所示
二、产生接口控制信号的指令
(四)P0口
8051指令系统中能与接口打交道的指令 大体可分两类 1.一般的输入/输出指令 2.“读-修改-写”指 令
二、产生接口控制信号的指令
1.一般的输入输出指令
(四)P0口
输入指令执行时,内部产生“读引脚”信号, 直接从口线读入,亦称“读引脚”指令。 下面是属于这种指令的各种实例:
二、产生接口控制信号的指令
(四)P0口 2.“读-修改-写”指令 INC P2 接口锁存器加1 DEC P1 接口锁存器内容减1 DJNZ P3,LOOP 减1后不为零则跳转 还有三条虽不明显,但也属此列: MOV P1.1,C CLR P1.1 SETB P1.1 将进位位送接口的某位 清接口的某一位 接口的某一位置位
MCS-51单片机引脚功能介绍
要特别注意准双向口与双向三态口的差别。当3个准双向I/O口作输入口
使用时,要向该口先写1,另外准双向I/O口无高阻的浮空状态。
1.电源引脚
(1)Vcc(40脚):+5V电源;
(2)Vss(20脚):接地。
2.时钟引脚
(1)XTAL1(19脚):如果采用外接晶体振荡器时,此引脚应接地。
(2)XTAL2(18脚):接外部晶体的另一端。
2.2.2控制引脚
提供控制信号,有的引脚还具有复用功能。
(1) RST/VPD(9脚):复位与备用电源。
2.2.3 I/O口引脚
(1)P0口:双向8位三态I/O口,此口为地址总线(低8位)及数据总线分时
复用口,可驱动8个LS型TTL负载。
(2) P1口:8位准双向I/O口,可驱动4个8位)复用,可驱动4个LS
型TTL负载。
(4)P3口:8位准双向I/O口,双功能复用口,可驱动4个LS型TTL负
MCS-51单片机引脚功能介绍
40只引脚双列直插封装(DIP)。40只引脚按功能分为3类:
(1)电源及时钟引脚: Vcc、Vss;XTAL1、XTAL2。
(2)控制引脚:PSEN*、EA*、ALE、RESET (即RST)。
(3)I/O口引脚:P0、P1、P2、P3,为4个8位I/O口的外部引脚。
2.2.1电源及时钟引脚
(2)ALE/PROG*(30脚):第一功能ALE为地址锁存允许,可驱动8个LS
型TTL负载。PROG*为本引脚的第二功能。为编程脉冲输入端。
(3)PSEN*(29脚):读外部程序存储器的选通信号。可以驱动8个LS型
TTL负载。
(4)EA*/VPP(EnableAddress/VoltagePulseofPrograming,31脚)EA*为内
MCS-51单片机的引脚及内部结构.
P3口各引脚对应的第二功能
P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7
RXD TXD /INT0 /INT1 T0 T1
/WR /RD
PSW各位定义
D7H D6H D5H D4H D3H D2H D1H D0H CY AC F0 RS1 RS0 OV — P
(1)CY(PSW.7):进位标志位 (2)AC(PSW.6):辅助进位标志位。 (3)F0 (PSW.5):用户标志位。 (4)RS1、RS0(PSW.4、PSW.3):工作寄存器组选择位。 用于选择CPU当前使用寄存器组。
4、I/O引脚
﹡ P0口(P0.0~P0.7):8位双向并行I/O接口。扩展外部存 储器或I/O口时,作为低8位地址总线和8位数据线的分时复 用接口,为双向三态。
﹡P1口(P1.0~P1.7) :8位准双向并行I/O接口。
﹡P2口(P2.0~P2.7) :8位准双向并行I/O接口。扩展外 部数据、程序存储器时,作为高8位地址输出端口。
用户RAM区(数据缓冲区) 位寻址区(00H~7FH) 工作寄存器区3区(R7~R0) 工作寄存器区2区(R7~R0) 工作寄存器区1区(R7~R0) 工作寄存器区0区(R7~R0)
内部RAM共有256个单元,通常把256个单元按功 能分划分为两部分:低128字节(00H~7FH)和高128 字节(80H~FFH)
1、P0口: P0口的字节地址为80H,位地址为80H~87H,既可以
做普通的I/O口使用也可以作为低8位的地址/数据线使用。
P0口某位结构
MCS51单片机的引脚
MCS51单片机的引脚单片机,这个在电子世界里扮演着重要角色的小家伙,其中MCS51 单片机更是经典中的经典。
要深入了解 MCS51 单片机,就不得不从它的引脚说起。
MCS51 单片机一般有 40 个引脚,这些引脚就像是单片机与外部世界交流的“窗口”,各有各的功能和作用。
先来说说电源引脚。
VCC(40 脚)和 VSS(20 脚),VCC 接+5V 电源,为单片机提供工作所需的能量;VSS 则接地,形成完整的电路回路。
这就好比人的心脏和血管,为整个身体输送着“动力”和“养分”。
时钟引脚 XTAL1(19 脚)和 XTAL2(18 脚)也很关键。
时钟就像是单片机的“心跳”,控制着单片机内部的工作节奏。
XTAL1 是内部振荡器反相放大器的输入端,XTAL2 则是输出端。
通过外接晶振和电容,就能为单片机提供稳定的时钟信号,让它有条不紊地工作。
控制引脚更是有着重要的作用。
RST(9 脚)是复位引脚,当这个引脚接收到高电平并保持一定时间后,单片机就会重新初始化,就像电脑死机后重启一样。
ALE/PROG(30 脚),在访问外部存储器时,这个引脚会输出一个脉冲信号用于锁存低 8 位地址。
PSEN(29 脚)则是读外部程序存储器的选通信号,低电平有效。
EA/VPP(31 脚)决定了单片机访问程序存储器的方式,如果接高电平,先访问内部程序存储器,超出范围后再访问外部;如果接低电平,则只访问外部程序存储器。
再看看输入输出引脚,也就是我们常说的 I/O 口。
P0 口(39 32 脚)是一个 8 位漏极开路的双向 I/O 口。
在访问外部存储器时,它分时用作低 8 位地址线和 8 位数据线。
P1 口(1 8 脚)是一个准双向 I/O 口,只能作为通用的输入输出口使用。
P2 口(21 28 脚)也是一个准双向I/O 口,在访问外部存储器时,它输出高 8 位地址。
P3 口(10 17 脚)除了作为准双向 I/O 口外,还具有第二功能。
51单片机资料-单片机IO口介绍
20
综上所述:当P0作为I/O口使用时,特别是作 为输出时,输出级属于开漏电路,必须外接 上拉电阻才会有高电平输出;如果作为输入, 必须先向相应的锁存器写“1”,才不会影响 输入电平。
DQ CLK Q
T1
T2 MUX
P0.n P0口 引脚
读引脚
5
驱动场效应管T2栅极接通。故内部总线与P0口同相。由 于输出驱动级是漏极开路电路,若驱动NMOS或其
它拉流负载时,需要外接上拉电阻。P0的输出级可驱动
8个LSTTL负载。
读锁存器
地址/数据 VCC 控制
内部总线 写锁存器
DQ CLK Q
读锁存器
地址/数据 VCC 控制
内部总线 写锁存器
DQ CLK Q
T1
P0.n P0口
T2
引脚
MUX
读引脚
9
P0口必须接上拉电阻;
在读信号之前数据之前,先要向相应的锁存器做写1操作的I/O口 称为准双向口;
三态输入缓冲器的作用:
VCC
(ANL P0,A)
OUTPUT
Q1
P0i
9 01 3
GND
①P1口的一位的结构
它由一个输出锁存器、两个三态输入缓冲器和输出驱
动电路组成----准双向口。
VCC
读锁存器
内部总线 写锁存器
DQ CLK Q
R
P1.n P1口
T
引脚
读引脚
51单片机常用芯片引脚图
51单片机常用芯片引脚图(共8页)-本页仅作为预览文档封面,使用时请删除本页-常用芯片引脚图一、 单片机类1、MCS-51芯片介绍:MCS-51系列单片机是美国Intel 公司开发的8位单片机,又可以分为多个子系列。
MCS-51系列单片机共有40条引脚,包括32条I/O 接口引脚、4条控制引脚、2条电源引脚、2条时钟引脚。
引脚说明: ~:P0口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时的地址/数据复用口。
~:P1口8位口线,通用I/O 接口无第二功能。
~:P2口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时传送高8位地址。
~:P3口8位口线,第一功能作为通用I/O 接口,第二功能作为为单片机的控制信号。
ALE/ PROG :地址锁存允许/编程脉冲输入信号线(输出信号)PSEN :片外程序存储器开发信号引脚(输出信号)EA/Vpp :片外程序存储器使用信号引脚/编程电源输入引脚RST/VPD :复位/备用电源引脚2、MCS-96芯片介绍:MCS-96系列单片机是美国Intel 公司继MCS-51系列单片机之后推出的16位单片机系列。
它含有比较丰富的软、硬件资源,适用于要求较高的实时控制场合。
它分为48引脚和68引脚两种,以48引脚居多。
引脚说明:RXD/ TXD/:串行数据传出分发送和接受引脚,同时也作为P2口的两条口线~:高速输入器的输入端 ~:高速输出器的输出端(有两个和HS1共用)12345678910111213141516171819204039383736353433323130292827262524232221P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RST RXD/P3.0TXD/P3.1INT0/P3.2INT1/P3.3T0/P3.4T1/P3.5WR/P3.6RD/P3.7XTAL2XTAL1V SS V CC P0.0/AD 0P0.1/AD 1P0.2/AD 2P0.3/AD 3P0.4/AD 4P0.5/AD 5P0.6/AD 6P0.7/AD 7EA/V PP ALE/PROG PSENP2.7/A 15P2.6/A 14P2.5/A 13P2.4/A 12P2.3/A 11P2.2/A 10P2.1/A 9P2.0/A 8803180518751Vcc:主电源引脚(+5V) Vss:数字电路地引脚(0V) Vpd:内部RAM备用电源引脚(+5V):A/D转换器基准电源引 VREF脚(+5V)AGND:A/D转换器参考地引脚XTAL1、XTAL2:内部振荡器反相器输入、输出端,常外接晶振。
MCS-51单片机IO口详解
单片机IO口结构及上拉电阻MCS-51有4组8位I/O口:P0、P1、P2和P3口,P1、P2和P3为准双向口,P0口则为双向三态输入输出口,下面我们分别介绍这几个口线。
一、P0口和P2口图1和图2为P0口和P2口其中一位的电路图。
由图可见,电路中包含一个数据输出锁存器(D触发器)和两个三态数据输入缓冲器,另外还有一个数据输出的驱动(T1和T2)和控制电路。
这两组口线用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口,而不能象P1、P3直接用作输出口。
它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。
图1 单片机P0口内部一位结构图图2 单片机P0口内部一位结构图P2口作为外部数据存储器或程序存储器的地址总线的高8位输出口AB8-AB15,P0口由ALE选通作为地址总线的低8位输出口AB0-AB7。
外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD读写信号选通,因为2^16=64k,所以MCS-51最大可外接64kB的程序存储器和数据存储器。
二、P1口图3为P1口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至"1",此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。
图3 单片机P2口内部一位结构图作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。
需要说明的是,作为输入口使用时,有两种情况:1.首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,象JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。
2.读P1口线状态时,打开三态门G2,将外部状态读入CPU。
MCS-51单片机的引脚
P0.1 P0.2
(2)、振荡从电片内路R:OXMT的A0L0010、H单XT元A开L始2
P0.3
取 指 令 , 即 从 片 内 ROM 的
P0.4 (3)、复位引脚:RST
P0.5
0000H开始执行程序;若EA为
P0.6 P0.7
(存4)器、,将并低行8口位地:址P锁0、住。P1当、80P521 、送出P3低
8位地址的时候,锁存器应该处于送数状
(态5);、在低EA8位:地访址问消程失之序前存,锁储存控器制应信该处号
于锁存状态。
(26、)、当P片S外E存N储:器外存部取R数O据M时读,选AL通E信为 号
(7低 器)8不、位存A地取L址E数输:据出地时锁,址存A锁信LE存号输;控出当制固片信定外频号存率储的
P1. 0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
RST RXD/ P3. 0 TXD/ P3.1 INT0/ P3.2 INT1/ P3.3
T0/ P3.4 T1/ P3.5 WR/ P3.6 RD/ P3.7
XTAL2 XTAL1
VSS
1
40
2
39
3
38
4 5
8031
(7)、ALE:地址锁存控制信号
1、管脚图
MCS51单片机信内E号A外访程引问序外存R脚O储M简控器制选信介择号。,当
P1. 0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
RST RXD/ P3. 0 TXD/ P3.1 INT0/ P3.2 INT1/ P3.3
T0/ P3.4 T1/ P3.5 WR/ P3.6 RD/ P3.7
XTAL2 XTAL1
51单片机各引脚及端口详解
51单片机各引脚及端口详解51单片机引脚功能:MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照----单片机引脚图:l ~ P0口8位双向口线(在引脚的39~32号端子)。
l ~ P1口8位双向口线(在引脚的1~8号端子)。
l ~ P2口8位双向口线(在引脚的21~28号端子)。
l ~ P2口8位双向口线(在引脚的10~17号端子)。
这4个I/O口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。
P0口有三个功能:1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口)2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口)3、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。
P1口只做I/O口使用:其内部有上拉电阻。
P2口有两个功能:1、扩展外部存储器时,当作地址总线使用2、做一般I/O口使用,其内部有上拉电阻;P3口有两个功能:除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。
有内部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的,即:编程脉冲:30脚(ALE/PROG)编程电压(25V):31脚(EA/Vpp)接触过工业设备的兄弟可能会看到有些印刷线路板上会有一个电池,这个电池是干什么用的呢这就是单片机的备用电源,当外接电源下降到下限值时,备用电源就会经第二功能的方式由第9脚(即RST/VPD)引入,以保护内部RAM中的信息不会丢失。
在介绍这四个I/O口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢他起什么作用呢都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。
51单片机各引脚
9、RST/VPD(9脚)RST复位(高电平复位):当输入的信号连续2个机器周期以上高电平时即为有效,用以完成单片机的复位初始化操作。
推荐在此引脚与VSS引脚之间连接一个约8.2k的下拉电阻,与VCC引脚之间连接一个约10μF的电容,以保证可靠地复位。
VPD备用电源:VCC掉电期间,此引脚可接上备用电源,以保证内部RAM的数据不丢失。
当VCC主电源下掉到低于规定的电平,而VPD在其规定的电压范围(5±0.5V)内,VPD就向内部RAM提供备用电源。
18、19、时钟引脚时钟引脚外接晶体与片内的反相放大器构成了一个振荡器,它提供了单片机的时钟控制信号。
时钟引脚也可外接晶体振荡器。
(1)XTAL1(19脚):接外部晶体的一个引脚。
在单片机内部,它是反向放大器的的输入端。
这个放大器构成了片内振荡器。
如果采用外接晶体振荡器时,此引脚应接地。
(2)XTAL2(18脚):接外部晶体的另一端,在单片机内部接至内部反相放大器的输出端。
如果采用外部晶体振荡器时,该引脚接受振荡器的信号,即直接把此信号直接接到内部时钟的发生器的输入端。
XTAL1和XTAL2经常外接石英晶振和电容组成的反馈回路,以输出矩形脉冲作为单片机的时钟信号。
29、PSEN(29脚)外部程序存储器的读选通信号。
执行MOVC访问片外程序时,PSEN自动产生低电平,以实现外部ROM单元的读操作,其他情况均为高电平。
1. 内部ROM读取时,PSEN不动作;2. 外部ROM读取时,在每个机器周期会动作两次。
但在此期间,每当访问外部数据存储器时,这两次有效的PSEN信号将不出现;3. 外部RAM读取时,两个PSEN脉冲被跳过不会输出;4. 外接ROM时,与ROM的OE脚相接。
30、ALE/PROG(30脚)第一功能ALE(Address Lock Enable)为地址锁存允许,访问片外存储器时使用。
在系统扩展时,ALE用于控制把P0口的输出低8位地址送锁存器锁存起来,以实现低位地址和数据的隔离。
MCS-51单片机的引脚
它是外部程序存储器ROM的读 选通信号。在执行访问外部 ROM指令时,会自动产生PSEN (1)、电源线:VCC(+5V)、VSS(地) 信号;而在访问外部数据存储 (2)、振荡电路:XTAL1、XTAL2 器RAM或访问内部ROM时,不产 生PSEN信号。 (3)、复位引脚:RST (4)、并行口:P0、P1、P2、P3
MCS-51的引脚
教学内容
教学内容:理解端口的概念,掌握端口 的结构,MCS-51的引脚。 重点:掌握外部设备进行数据交流的硬 件系统。
引入课程
CPU+M:计算机主机。 配合外设(I/O)构成计算机硬件系统。
MCS51单片机信号引脚简介
P1. 0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 RST RXD/ P3. 0 TXD/ P3.1 INT0/ P3.2 INT1/ P3.3 T0/ P3.4 T1/ P3.5 WR/ P3.6 RD/ P3.7 XTAL2 XTAL1 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
读引脚
D
Q
P0.n
CLK Q
MUX
T2
P0口 引脚
驱动场效应管T2栅极接通。故内部总线与P0口同相。由 于输出驱动级是漏极开路电路,若驱动NMOS或其 它拉流负载时,需要外接上拉电阻。P0的输出级可驱动 8个LSTTL负载。
读锁存器 地址/数据 控制 VCC
T1
内部总线 写锁存器
读引脚
D
Q
P0.n
管脚图
P3口线为多功能引脚,可自动切 换用作数据总线、地址总线、 控制总线和或I/O 接口外部引 脚。
MCS51系列单片机引脚定义
P3口,第一功能是类似于P1口的准双向8位IO模式。这8个引脚的第二功能如下:
P3.0 - RXD(串口接收脚)
P3.1 - TXD(串口发送脚)
P3.2 - [INT0](?獠恐卸?0)
P3.3 - [INT1](外部中断1)
P3.4 - T0(定时计数器0外部计数脉冲输入)
P3.5 - T1(定时计数器1外部计数脉冲输入)
P3.6 - [WR](外部数据存储器写选通)
P3.7 - [RD](外部数据存储器读选通)
ALE/[PROG] (Pin 30)
在单片机访问外部存储器时,用于输出低8位地址锁存信号。在对片内EPROM编程时,用于输入编程脉冲。
[PSEN] (Pin 29)
用于输出外部程序存储器读取选通信号。
[EA]/VPP (Pin 31)
在[EA]接低电平时,单片机只访问外部程序存储器,寻址最大64KB外部程序存储器空间。当[EA]接高电平时,单片机既能访问内部程序器又能访问外部存储器,并根据指令的地址自动决定寻址内部还是外部程序存储器。此时最大可寻址的外部程序存储器空间因内部程序存储器空间的大小不同而不同(这句话是根据原书上所描述,由这句话可以了解到,此时内部和外部程序存储器是统一编址的,由实验得知外部程序存储器的低端空间的地址为内部程序存储器所占用,无法直接被寻址)。在对内部EPROM编程期间,此引脚用来输入21V的编程电压。
P1口,准双向IO引脚,和P0口工作于IO模式类似。在8032/8052中,P1.0引脚的第二功能为定时/计数器2的外部计数脉冲输入端,P1.1脚的第二功能为定时/计数器2的俘获、重装触发控制输入端。
MCS-51单片机原理及接口技术
2 5 6 9 12 15 16 19
19 18 9 12 13 14 15 1 2 3 4 5 6 7 8
1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q
MCS-51
A 1 3 2 74LS32
RD WR PSEN ALE/P TXD RXD
74LS273引脚封装图 引脚封装图
MCS-51与74LS273的接口电路图 与 的接口电路图
ห้องสมุดไป่ตู้
4.3.1简单I/O接口芯片的扩展 4.3.1简单I/O接口芯片的扩展 简单I/O
简单的I/O口扩展通常是采用 电路锁存器、 简单的 口扩展通常是采用TTL或CMOS电路锁存器、三 口扩展通常是采用 或 电路锁存器 态门等作为扩展芯片( 态门等作为扩展芯片(74LS244、74LS245、74LS273、 、 、 、 74LS373、 74LS377等 ) , 通过P0口来实现扩展的一种 、 等 通过 口来实现扩展的一种 方案。它具有电路简单、成本低、配置灵活的特点。 方案。它具有电路简单、成本低、配置灵活的特点。 简单的I/O口扩展主要包括: 简单的 口扩展主要包括: 口扩展主要包括 缓冲器扩展输入口(三态门: 缓冲器扩展输入口(三态门: 74LS244、74LS245等) 、 等 锁存器扩展输出口(锁存器: 锁存器扩展输出口(锁存器: 74LS273、74LS373、 、 、 74LS377等) 等
4.3 输入 输出接口扩展 输入/输出接口扩展
• MCS-51系列单片机内部有4个双向的8位并行I/O端 MCS-51系列单片机内部有4个双向的8位并行I/O端 系列单片机内部有 I/O P0、P1、P2和P3口 口:P0、P1、P2和P3口。 • 在实际的应用系统中,P0口分时地作为低8位地址 在实际的应用系统中,P0口分时地作为低 口分时地作为低8 线和数据线,P2口作为高 位地址线。这时,P0口 口作为高8 线和数据线,P2口作为高8位地址线。这时,P0口 和部分或全部的P2口无法再作通用I/O P2口无法再作通用I/O口 和部分或全部的P2口无法再作通用I/O口。 • P3口的一些口线首先要满足第二功能的要求。这 P3口的一些口线首先要满足第二功能的要求 口的一些口线首先要满足第二功能的要求。 时就需要进行单片机I/O口的扩展。 I/O口的扩展 时就需要进行单片机I/O口的扩展。 常用的I/O扩展有以下两种形式: I/O扩展有以下两种形式 常用的I/O扩展有以下两种形式: 简单I/O I/O接口芯片的扩展 简单I/O接口芯片的扩展 可编程I/O接口电路的扩展 可编程I/O接口电路的扩展 I/O
MCS-51单片机的并行I-O
内 部总 线 写 锁存 器
D
Q
P 3.X
锁 存器
CP Q
内 部上 拉 电 阻
P 3.X 引脚 &
读 引脚
第 二输 入 功 能
P3口的位结构
P3端口(P3.0-P3.7,10-17脚); P3端口是一个带内部上拉电阻的8位I/O端口,P3端口的每一位
可以驱动4个LS型TTL负载; P3端口除了做为一般I/O端口外,每个引脚还具有第二功能。
“读—修改—写”类指令的端口输出与P0的端口输出功能相同。 3.地址总线
CPU在执行读片外ROM、读/写片外RAM或I/O口指令时,单片机 内硬件自动将控制信号C=1,MUX开关接到地址线,地址信息经非门 和驱动管V输出。
1.4 P3口的结构和功能
1.P3口的结构
读 锁存 器
第 二输 出 功 能 VCC来自1.2 P1口的结构和功能
1.P1口的结构
读锁 存器
内部 总线 写锁 存器
D
Q
P 1.X
锁存 器
CP Q
VCC
内部 上拉电阻 P 1.X 引脚
读引 脚
P1口的位结构
1.3 P2口的结构和功能
1.P2口的结构
读锁存器
内部总线 写锁存器
DQ P 2.X 锁存器
CP Q
VCC
地址 控制 MUX
内部上拉电阻
CPU在执行输入指令时,首先低8位地址信息出现在地址/数据总 线上,P0.x引脚的状态与地址/数据总线的地址信息相同。然后, CPU自动使模拟转换开关MUX拨向锁存器,并向P0口写入0FFH,同时 “读引脚”信号有效,数据经缓冲器读入内部总线。因此,可以认 为P0口作为地址/数据总线使用时是一个真正的双向口。
51单片机各引脚及端口详解
51单片机各引脚及端口详解51单片机引脚功能:MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照----单片机引脚图:I ~ P0 口 8位双向口线(在引脚的39~32号端子)。
I ~ P1 口 8位双向口线(在引脚的1~8号端子)。
I ~ P2 口 8位双向口线(在引脚的21~28号端子)。
I ~ P2 口 8位双向口线(在引脚的10~17号端子)。
这4个I/O 口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。
P0 口有三个功能:1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口)2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口)3、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。
P1 口只做I/O 口使用:其内部有上拉电阻。
P2 口有两个功能:1、扩展外部存储器时,当作地址总线使用2、做一般I/O 口使用,其内部有上拉电阻;P3 口有两个功能:除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。
有内部EPRO啲单片机芯片(例如 8751),为写入程序需提供专门的编程脉冲和编程电源这些信号也是由信号引脚的形式提供的,即:编程脉冲:30脚(ALE/PROG 编程电压(25V): 31 脚(EA/Vpp)接触过工业设备的兄弟可能会看到有些印刷线路板上会有一个电池,这个电池是干什么用的呢这就是单片机的备用电源,当外接电源下降到下限值时,备用电源就会经第二功能的方式由第9脚(即RST/VPD弓|入,以保护内部RAM中的信息不会丢失。
在介绍这四个I/O 口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢他起什么作用呢都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输入为低电平则可提供电流源;所以如果P0 口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MCS-51单片机的引脚和输入输出端口
MCS-51有4组8位I/O口,共占用32个引脚:P0、P1、P2和P3口,P1、P2和P3为准双向口,P0口则为双向三态输入输出口。
●P0口(P0.0~P0.7)占用32~39脚;
●P1口(P1.0~P1.7)占用1~8脚;
●P2口(P2.0~P2.7)占用21~28脚;
●P3口(P3.0~P3.7)占用10~17脚;
这四个口的主要功能如下:
(1) P0 口是一个8位不带内部上拉电阻的漏极开路型准双向I/O口,因此该口输出时需外接上拉电阻,而P1 、P2 和P3口都是带内部上拉电阻的8位双向I/O口。
(2) 在访问片外ROM时,P0口分时兼作数据总线和低8位地址线;P2口作高位地址线。
(3) 内部带程序存储器的芯片,在EPROM编程和程序验证时,P1输入低8位地址,P2输入高8位地址,P0输入指令代码。
(注:P1、P2作输入口时,必须要使每位先置“1”,才能读入外部数据。
)
(4) P3口除作双向I/0口外还兼有专用功能。
P0口和P2口:
图1为P0口和P2口其中一位的电路图,由图可见,电路中包含一个数据输出锁存器和两个三态数据输入缓冲器,另外还有一个数据输出的驱动和控制电路。
这两组口线用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口,而不能像P1、P3直接用作输出口。
它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。
P2口作为外部数据存储器或程序存储器的地址总线的高8位输出口AB8-AB15,P0口由ALE选通作为地址总线的低8位输出口AB0-AB7。
外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD读写信号选通,因为216=64k,所以8051最大可外接64kB的程序存储器和数据存储器
P1口:图2为P1口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至1,此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。
作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。
需要说明的是,作为输入口使用时,有两种情况,其一是:首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,像JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。
其二是:读P1口线状态时,打开三态门G2,将外部状态读入CPU。
P3口:P3口的电路如图3所示,P3口为准双向口,为适应引脚的第二功能的需要,增加了第二
功能控制逻辑,在真正的应用电路中,第二功能显得更为重要。
由于第二功能信号有输入输出两种情况,我们分别加以说明。
P3口的输入输出及P3口锁存器、中断、定时/计数器、串行口和特殊功能寄存器有关,P3口的第一功能和P1口一样可作为输入输出端口,同样具有字节操作和位操作两种方式,在位操作模式下,每一位均可定义为输入或输出。
我们着重讨论P3口的第二功能,P3口的第二功能各管脚定义如下[13]:
P3.0:串行输入口(RXD);
P3.1:串行输出口(TXD);
P3.2:外中断0(INT0);
P3.3:外中断1(INT1);
P3.4:定时/计数器0的外部输入口(T0);
P3.5:定时/计数器1的外部输入口(T1);
P3.6:外部数据存储器写选通(WR);
P3.7:外部数据存储器读选通(RD);
对于第二功能为输出引脚,当作I/O口使用时,第二功能信号线应保持高电平,与非门开通,以维持从锁存器到输出口数据输出通路畅通无阻。
而当作第二功能口线使用时,该位的锁存器置高电平,使与非门对第二功能信号的输出是畅通的,从而实现第二功能信号的输出。
对于第二功能为输入的信号引脚,在口线上的输入通路增设了一个缓冲器,输入的第二功能信号即从这个缓冲器的输出端取得。
而作为I/O口线输入端时,取自三态缓冲器的输出端。
这样,不管是作为输入口使用还是第二功能信号输入,输出电路中的锁存器输出和第二功能输出信号线均应置“1”。