最新人教版七年级数学上册知识点归纳总结及典型试题汇总复习进程
最新人教版七年级数学上册总复习知识点汇总
七年级数学上册知识点第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
完整版)人教版七年级数学上册知识点归纳
完整版)人教版七年级数学上册知识点归纳第一章有理数1.1 正数和负数正数是大于零的数,负数是小于零的数。
有些数既不是正数也不是负数,它们被称为零。
在同一个问题中,用正数和负数表示的量具有相反的意义。
需要注意的是,-a不一定是负数,+a也不一定是正数。
自然数指的是正整数和零的集合,也就是我们常说的自然数。
我们可以用a>0表示a是正数,a≥0表示a是正数或零,a<0表示a是负数,a≤0表示a是负数或零。
1.2 有理数有理数包括正整数、负整数、正分数和负分数,它们都可以写成分数的形式。
正整数和负整数统称为整数。
有理数可以分为六类:正整数、正分数、零、负分数、负整数和整数。
我们可以用数轴来表示有理数,数轴是一条直线,有原点、正方向和单位长度三个要素。
一般来说,当a是正数时,数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度。
两个点关于原点对称,当a是正数时,在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称。
相反数指的是只有符号不同的两个数,它们互为相反数。
a的相反数是-a,的相反数是0.在数轴上,表示相反数的两个点关于原点对称。
绝对值是数a到原点的距离,用|a|表示。
一个正数的绝对值是其本身,一个负数的绝对值是其相反数。
的绝对值是0.绝对值可以表示为a=|a|或a=-|a|。
如果a>0,则|a|=a,如果a<0,则|a|=-a。
有理数的比较可以在数轴上表示,从左到右的顺序就是从小到大的顺序。
需要注意的是,正数大于零,大于负数,正数大于负数;两个负数,其绝对值大的反而小。
1.3 有理数的加减法有理数的加减法可以用数轴来表示。
当加上一个正数时,表示数的点向右移动,当加上一个负数时,表示数的点向左移动。
同样地,当减去一个正数时,表示数的点向左移动,当减去一个负数时,表示数的点向右移动。
人教版七年级上册数学知识点总结归纳(最新最全)
七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
七年级上册数学知识点总结人教版(十五篇)
七年级上册数学知识点总结人教版(十五篇)七年级上册数学知识点总结人教版篇一(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整数之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,取相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5. ab = a +(b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab= ba4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
人教版七年级数学上册知识点整理(完整版)
人教版七年级数学上册知识点整理(完整版)人教版七年级数学上册知识点整理(完整版)第一章有理数一、正数和负数(一)正数:大于0的数。
(二)0的意义1、0既不是正数,也不是负数,0是正数和负数的分界。
2、“0”不仅表示没有,还可以表示某种量的基准。
(三)负数:在正数前面加上符号“﹣”(负)的数。
(四)用正数和负数表示具有相反意义的量1、含义①具有相反意义②具有数量2、通常我们把其中一种意义的量规定为正,用正数表示,那么与它具有相反意义的量就可以用负数表示;例:若规定收入1000元记作+1000元,则支出300元记作-300元。
若规定前进10米记作+10米,则后退5米记作-5米。
注:用正数、负数表示具有相反意义的量时,究竟哪一种意义的量为正是可以任意选择的,但习惯上把“前进、上升、收入、盈利”等规定为正,而把“后退、下降、支出、亏损”等规定为负。
二、有理数(一)分类及有关概念1、根据有理数的定义分有理数整数正整数统称为整数(根据整数的奇偶性)奇数1、3、5、7、9……排列用整数和分数统称为有理数03、5、7、9、11……排列用2n+1负整数偶数(2n )分数(有限小数和无限循环小数也属于分数)正分数正分数和负分数统称分数负分数2、根据有理数的性质分有理数正有理数正整数正分数0负有理数负整数负分数3、数集:把一类数放在一起,就组成了一个集合,简称数集;每个集合最后的省略符号“”表示填入的数只是集合的一部分。
(二)数轴1、概念:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示;但数轴上的点不都表示有理数。
3、一般的,设a是一个正数,表示数a的点在原点的右边,与原点的距离为a个单位长度;表示数﹣a的点在原点的左侧,与原点的距离为a个单位长度。
(三)相反数1、概念:只有符号不同的两个数叫做相反数。
2、几何意义:在数轴上位于原点两侧且到原点距离相等的两个点所表示的数互为相反数。
最新人教版七年级数学上册知识点归纳总结及典型试题汇总
期末总复习:七年级数学上册知识汇总(附习题)第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数, 和 统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a>0 ⇔ a是正数;a<0 ⇔ a是负数;a≥0 ⇔ a是正数或0 ⇔ a是非负数; a ≤ 0 ⇔ a是负数或0 ⇔ a是非正数.2.数轴:数轴是规定了(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是;a-b 的相反数是;a+b的相反数是;(3)相反数的和为⇔ a+b=0 ⇔ a、b互为相反数.(4)相反数的商为.(5)相反数的绝对值相等w w w .x k b 1.c o m 4.绝对值:(1)正数的绝对值等于它,0的绝对值是,负数的绝对值等于;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
人教版七年级上册数学知识点总结
人教版七年级上册数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。
- 有理数的分类:正整数、负整数、正分数、负分数和零。
- 有理数的运算:加法、减法、乘法、除法及混合运算。
2. 整式的加减- 单项式:数与字母的乘积。
- 多项式:几个单项式的和。
- 同类项:所含字母相同,且相同字母的指数也相同的项。
- 合并同类项:将同类项的系数相加,字母和指数不变。
3. 一元一次方程- 方程的定义:含有未知数的等式。
- 解方程:求出使方程成立的未知数的值。
- 一元一次方程的解法:移项、合并同类项、系数化为1。
4. 代数式的值- 代数式的计算:按照运算顺序求得代数式的数值。
- 代数式的简化:通过化简,使代数式尽可能简单。
二、图形与几何1. 线段、射线、直线- 线段:有限长度,有两个端点。
- 射线:有起点无终点,无限延伸。
- 直线:无起点无终点,无限延伸。
2. 角- 角的定义:两条射线的公共端点称为角的顶点。
- 角的分类:锐角、直角、钝角。
- 角的度量:使用度作为单位。
3. 几何图形的性质- 对称性:轴对称、中心对称。
- 相似性:形状相同,大小可能不同。
- 全等性:形状和大小完全相同。
4. 三角形- 三角形的定义:由三条线段围成的图形。
- 三角形的性质:内角和为180度。
- 等腰三角形:两条边相等的三角形。
- 等边三角形:三条边相等的三角形。
三、数据的收集、整理与描述1. 统计调查- 调查方法:全面调查和抽样调查。
- 调查步骤:明确调查目的、制定调查计划、收集数据、处理数据。
2. 频数与频率- 频数:某一数据出现的次数。
- 频率:某一数据出现的次数与总次数的比值。
3. 统计图表- 条形图:用条形的高度表示数据的大小。
- 折线图:用线段的起伏表示数据的变化趋势。
- 扇形图:用扇形的大小表示部分与整体的关系。
四、可能性1. 确定事件与随机事件- 确定事件:必然发生或不可能发生的事件。
- 随机事件:可能发生也可能不发生的事件。
人教版初中七年级数学上册各章知识点总结及章节经典练习附答案
七年级上册各章知识点第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。
问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数确实是有理数。
判定:有理数可分为正有理数和负有理数(错,还有0)②零既不是正数,也不是负数。
判定:0是最小的正整数(错),正整数负整数统称整数(错,还有0 ),正分数负分数统称分数(对)③有限小数和无穷循环小数因都能化成份数,故都是有理数。
判定:0是最小的有理数(错)④无穷不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。
判定:整数和小数统称有理数(错,整数和分数统称有理数)。
二、数轴1.数轴三要素:原点、正方向、单位长度(另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在慢慢变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。
3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)那么对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1. 概念:假设a+b=0,那么a 与b 互为相反数 特例:因为0+0=0,因此0的相反数是02.性质:①假设a 与b 互为相反数,那么a+b= 0②-a 不必然表示负数,但必然表示a 的相反数(仅仅相差一个负号)③假设a 与b 互为相反数且都不为零,a b= -1 ④除0之外,互为相反数的两个数老是成双成对的散布在原点双侧且到原点的距离相等。
⑤互为相反数的两个数绝对值相等,平方也相等。
即:a =a -,()22a a =- 四、绝对值1.概念:在数轴上表示数a 点到原点的距离,称为a 的绝对值。
记作a2.法那么:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。
人教初一数学上册知识点
人教初一数学上册知识点一、知识概述1. 《有理数》①基本定义:有理数就是能够写成两个整数之比的数,简单来说就是整数、有限小数还有无限循环小数这一类的数。
比如2是有理数,也是,因为可以写成1/2,…(无限循环)写成1/3也是有理数。
②重要程度:在初一数学里超级重要。
它是学习后面各种计算、方程的基础。
很多数学概念和实际问题的解决都是基于有理数的运算。
③前置知识:在学有理数之前,得知道整数的概念,会简单的加减法等算术运算。
④应用价值:在生活中算钱的时候就会用到,假如买东西花了元,就是有理数,还有计算距离、速度啥的也用到有理数运算。
2. 《整式》①基本定义:像3x、-4y²这种数与字母的乘积形式就是整式。
单独的一个数或者一个字母也叫做整式,就好比5是整式,a也是整式。
②重要程度:这是代数的起步知识,以后学各种函数、方程等都会涉及到整式的相关知识。
③前置知识:要对有理数运算比较熟,还有知道字母可以表示数这个概念。
④应用价值:举个例子,如果要计算长方形面积,设长为x,宽为y,面积就是xy,这就是整式在生活几何中应用的例子。
二、知识体系1. 《有理数》①知识图谱:有理数在初一数学上册中属于数的概念范畴,是基础的基础,很多其他数的学习都和它相关或基于它拓展。
②关联知识:和后面要学的无理数合起来就是实数了。
有理数的运算规则对整式运算也有启发意义。
③重难点分析:对有理数的正负性在运算中的影响是个难点,像两个负数相乘得正数这种规则有些同学一开始很难理解。
关键点就是得牢记运算规则,多做练习。
④考点分析:考试中经常单独出题考查有理数的运算,要么就是和后面的知识结合一起考查。
考查方式从单纯的计算,到在应用题中的运算都有。
2. 《整式》①知识图谱:整式在代数部分处于起始位置,往后的多项式、因式分解等都以整式为基础。
②关联知识:和方程关系紧密,比如一元一次方程中的未知数就是整式的形式。
③重难点分析:整式的系数、次数概念容易混淆,这是难点。
最新人教版数学七年级上册重点知识详细梳理
人教版数学七年级上册重点知识详细梳理一、有理数1.正数和负数:1)正数:大于0的数。
2)负数:在正数前面加上符号“-”的数。
3)0的意义:不仅表示没有,还可以表示某种量的基准。
2.有理数:1)定义:整数和分数统称为有理数。
2)分类:正整数、0、负整数、正分数、负分数。
3.数轴:1)定义:规定了原点、正方向和单位长度的直线叫做数轴。
2)数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数。
4.相反数:1)定义:只有符号不同的两个数叫做相反数。
2)性质:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
5.绝对值:1)定义:数轴上某个数与原点的距离叫做这个数的绝对值。
2)性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
6.有理数的运算:1)加法:同号两数相加取相同的符号,并把绝对值相加;异号两数相加取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
2)减法:减去一个数等于加上这个数的相反数。
3)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。
4)除法:除以一个不等于0的数,等于乘这个数的倒数。
7.乘方:1)定义:求几个相同因数积的运算叫做乘方。
2)性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何次幂都是0。
二、整式的加减1.单项式:1)定义:都是数或字母的积的式子叫做单项式。
2)系数:单项式中的数字因数叫做这个单项式的系数。
3)次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:1)定义:几个单项式的和叫做多项式。
2)项:每个单项式叫做多项式的项。
3)次数:多项式里次数最高项的次数,叫做这个多项式的次数。
3.合并同类项:1)定义:把多项式中的同类项合并成一项,叫做合并同类项。
2)性质:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总
人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
最新人教版七年级上册数学知识点总结归纳
最新人教版七年级上册数学知识点总结归纳1.正数和负数的概念负数是比0更小的数,正数是比0更大的数。
如果a表示正数,那么-a就是负数;如果a表示负数,那么-a就是正数。
同时,0既不是正数也不是负数,而且无论a是什么,-a仍为0.2.具有相反意义的量如果正数表示某种含义的量,那么负数就可以表示具有相反含义的量。
例如,零上8℃可以表示为+8℃,而零下8℃可以表示为-8℃。
3.0表示的意义0既可以表示“没有”,也可以表示一个确切的量,例如温度的零点。
同时,0也是正数和负数的分界线。
4.有理数的概念有理数指的是可以写成分数形式的数,包括正整数、负整数、正分数、负分数和0.无限不循环小数如π不是有理数,而有限小数和无限循环小数都可以化成分数,因此是有理数。
5.有理数的分类按照有理数的意义可以分为整数和分数,按照正负可以分为正有理数、负有理数和0.其中,正整数和0统称为非负整数,负整数和0统称为非正整数,正有理数和0统称为非负有理数,负有理数和0统称为非正有理数。
6.数轴的概念数轴是一条向两端无限延伸的直线,规定了原点、正方向和单位长度。
7.数轴上的点与有理数的关系所有的有理数都可以用数轴上的点来表示,正有理数表示为原点右边的点,负有理数表示为原点左边的点,0表示为原点。
同时,数轴的三要素包括原点、正方向和单位长度,必须同时存在。
一般地,如果a≥0,那么|a|=a;如果a<0,那么|a|=-a.3.绝对值的性质⑴|a|≥0,且|a|=0的充分必要条件是a=0;⑵|ab|=|a||b|,其中a,b是任意有理数;⑶|a+b|≤|a|+|b|,其中a,b是任意有理数,等号成立的充分必要条件是a,b同号或其中至少一个数为0.4.绝对值的意义绝对值表示一个数到原点的距离,因此绝对值越小,这个数离原点越近;绝对值越大,这个数离原点越远.绝对值还可以表示一个数的大小,而不考虑它的符号.1.绝对值的定义和表示方法一个数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,可以用符号表示:如果a>0,则|a|=a;如果a<0,则|a|=-a;如果a=0,则|a|=0.可以归纳为两个式子:a≥0,等价于|a|=a;a≤0,等价于|a|=-a。
人教版七年级数学上册知识点归纳(附例题解析)
人教版七年级数学上册知识点归纳(附例题解析)第一章:有理数一、有理数的基础知识1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A、一个数前面有“-”号,这个数就是负数;B、非负数就是正数;C、一个数前面没有“-”号,这个数就是正数;D、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-,正整数集合{}整数集合{}负整数集合{}正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a,则a是;若0<a,则a是;若ba<,则ba-是;若ba>,则ba-是;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。
人教版七年级数学上册第三章知识点总结及阶梯练习
人教版七年级数学上册第三章知识点总结及阶梯练习第三章一元一次方程一、知识点回顾方程:含有未知数的方程只含有一个未知数的公式是整数,未知数的个数是1。
这种方程称为一元一次方程2。
解一元一次方程的步骤(1)去掉括号;(2)转移物品;(3)合并同类项;(4)系数化为1.注(1)删除括号是基于删除括号的规则和分布规律。
拆卸支架时,请特别注意支架外的符号,不要漏乘括号中的项(2)去掉括号后,如果方程两边的多项式有相似的项,可以先组合相似的项,然后移动这些项以简化问题的解决程.3.等式的性质:等式的两边加(或减)相同的数(或公式),结果仍然相等。
等式的两边乘同同一个数,或除以同一个不为0的数,结果仍相等。
4、四类问题|1.和差时间;2.产品形态变化;3.遇到问题;4.行程问题:追及问题,相遇问题,相背而行。
二、基础知识巩固1、下列方程中,是一元一次方程的是()(a) x2?4x?3.(b) x?0(c)x?2岁?1.(d) x?1.1.X2。
已知方程式3A?2b?5.那么。
(a) 3a在下面的等式中不一定是真的?5.2b;(b) 3a?1.2b?6.(c) 3ac?2bc?5.(d) a?25b?。
333.在下面的公式中,正确的是()(a)方程3x?2?2x?1,移项,得3x?2x??1?2;(b)方程3?x?2?5?x?1?,去括号,得3?x?2?5x?1;23吨当未知系数变为1,x?1.32x?1x??1到3倍?6.(d)方程式0.20.5(c)方程4.儿子12岁,父亲39岁,()父亲的年龄是儿子的四倍(a)3年后;(b) 3年前;(c) 9年后;(d)不可能5、某数的3倍比它的一半大2,若设某数为y,则列方程为____.6.将内径为3M的长圆柱形试管装满水。
现在,将试管中的水逐渐滴入内径为8米、高度为1.8米的圆柱形玻璃中。
当玻璃中充满水时,试管中的水的高度降低了M原价7.图为“明星超市”中“飘动”洗发水的价格标签。
人教版七年级数学上册知识点归纳总结及典型试题汇总
人教版七年级数学上册知识点归纳总结及典型试题汇总本章主要介绍有理数的概念和运算。
有理数可以用数轴来认识和理解,同时也可以将这些概念串在一起。
在具体运算时,需要注意运算法则、运算律、运算顺序和近似计算。
1.有理数是可以写成 p/q 形式的数,其中 p 和 q 都是整数且 p 不等于 0.有理数包括正整数、正分数、整数、零、负整数和负分数。
需要注意的是,1、-1 和 0 是三个特殊的有理数,它们将数轴上的数分成四个区域,每个区域的数有其自己的特性。
2.数轴是一条直线,规定了三个要素。
3.相反数是指符号相反的两个数,它们的和为 0,商为 -1.需要注意的是,a-b+c 的相反数是-a+b-c,a-b 的相反数是b-a,a+b 的相反数是 -a-b。
4.绝对值是非负数,正数的绝对值等于它本身,负数的绝对值等于它的相反数。
绝对值的意义是数轴上表示某数的点离开原点的距离。
如果两个数互为相反数,则它们的绝对值相等。
5.在比较有理数的大小时,正数永远大于负数,两个负数比较时,绝对值大的反而小。
在数轴上,右边的数总比左边的数大。
例如,-1,-2,+1,+4 表示与标准质量的差,绝对值越小,越接近标准。
6.乘积为 1 的两个数互为倒数。
如果 ab=1,则 a 和 b 互为倒数;如果 ab=-1,则 a 和 b 互为负倒数。
需要注意的是,有些数没有倒数。
1.单项式是由数字或字母乘积组成的式子,如果只有一个数字或字母,也可以称为单项式。
多项式则是由几个单项式相加组成的式子。
2.在单项式中,数字因数称为单项式的系数(要包括符号),所有字母指数的和称为单项式的次数(只与字母有关)。
在多项式中,所含单项式的个数称为多项式的项数,而最高次项的次数则称为多项式的次数。
3.整式是指由单项式相加或相减组成的代数式,而多项式是整式的一种特殊情况。
4.同类项是指含有相同字母并且相同字母的指数的项,与系数和字母的排列顺序无关。
合并同类项的法则是将同类项的系数相加,而字母和字母的指数不变。
最新人教版七年级上册数学知识点归纳总结
最新人教版七年级上册数学知识点归纳总
结
本文将总结最新人教版七年级上册数学的知识点,帮助同学们更好地掌握这些内容。
包括以下知识点:
1. 数的认识与整数
- 数的分类:自然数、整数、有理数
- 整数的绝对值和相反数
- 整数的比较和排序
- 整数的加减法运算
- 有理数的表示与计算
2. 分数与小数
- 分数的定义和性质
- 分数的简化和扩展
- 分数的加减法运算
- 小数的认识与读写
- 小数与分数的互换
3. 代数基础
- 代数式的定义和性质
- 代数式的加减运算
- 代数式的乘法运算
- 代数式的乘法公式
4. 方程与不等式
- 一元一次方程的基本概念
- 一元一次方程的解法与应用- 一元一次不等式的基本概念- 一元一次不等式的解法与应用- 解方程的方法总结
5. 数据的收集与整理
- 数据的收集方式
- 数据的整理和展示
- 图表的阅读和分析
- 数据的比较和推理
6. 几何初步
- 平面图形的认识和特征
- 平面图形的分类和性质
- 常见几何图形的面积计算
- 直线、射线与线段的认识
- 平行线与垂直线的关系
以上是最新人教版七年级上册数学的知识点总结,希望能帮助同学们更好地复习和掌握这些内容。
对于每个知识点,同学们可以通过练习题和实际例子来加深理解和应用。
祝大家学业进步!。
新人教版七年级数学上册重点知识复习资料(全册)
新人教版七年级数学上册重点知识复习资
料(全册)
单元一:整数
- 整数的概念:整数由正整数、0和负整数组成。
- 整数的比较:比较整数大小时,先比较绝对值大小,再根据
正负确定大小关系。
- 整数的加法和减法:同号相加减取结果的绝对值,符号与原
值相同;异号相加减取结果的绝对值,符号与较大数相同。
- 整数的乘法和除法:同号相乘除结果为正,异号相乘除结果
为负。
单元二:分数
- 分数的概念:分数由分子和分母组成,表示真数、假数和零。
- 分数的相等:两个分数相等表示代表同一量的两个数。
- 分数的大小比较:分数大小比较可以通过求公共分母,比较
分子大小进行。
- 分数的加法和减法:分数加减法可以通过通分,然后对分子进行加减。
- 分数的乘法:分数乘法可以直接对分子和分母进行相乘。
- 分数的除法:分数除法可以先求倒数,再进行相乘。
单元三:代数式
- 代数式的概念:含有变量的数学式子称为代数式。
- 代数式的运算:代数式的运算包括加法、减法和乘法。
- 代数式的化简:对代数式进行合并同类项、提取公因式、运用分配律等方法进行化简。
...
(继续写下去,覆盖全册)。
人教版数学七年级上册知识点总结
人教版数学七年级上册知识点总结第一章有理数知识点总结正数: 大于0的数叫做正数。
1.概念负数: 在正数前面加上负号“—”的数叫做负数。
注: 0既不是正数也不是负数, 是正数和负数的分界线, 是整数, 一、正数和负数自然数, 有理数。
(不是带“—”号的数都是负数, 而是在正数前加“—”的数。
)2.意义: 在同一个问题上, 用正数和负数表示具有相反意义的量。
有理数: 整数和分数统称有理数。
1.概念整数: 正整数、0、负整数统称为整数。
分数: 正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注: 正数和零统称为非负数, 负数和零统称为非正数, 正整数和零统称为非负整数, 负整数和零统称为非正整数。
2.分类: 两种二、有理数⑴按正、负性质分类: ⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念: 规定了原点、正方向、单位长度的直线叫做数轴。
三要素: 原点、正方向、单位长度2.对应关系: 数轴上的点和有理数是一一对应的。
三、数轴比较大小: 在数轴上, 右边的数总比左边的数大。
3.应用求两点之间的距离: 两点在原点的同侧作减法, 在原点的两侧作加法。
(注意不带“+”“—”号)代数: 只有符号不同的两个数叫做相反数。
1.概念(0的相反数是0)几何: 在数轴上, 离原点的距离相等的两个点所表示的数叫做相反数。
2.性质: 若a与b互为相反数, 则a+b=0, 即a=-b;反之,若a+b=0, 则a与b互为相反数。
四、相反数两个符号: 符号相同是正数, 符号不同是负数。
3.多重符号的化简多个符号: 三个或三个以上的符号的化简, 看负号的个数, 当“—”号的个数是偶数个时, 结果取正号当“—”号的个数是奇数个时, 结果取负号1.概念: 乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数, 则a·b=1;反之, 若a·b=1, 则a与b互为倒数。
人教版初中数学七年级上册第一二章知识点总结及典型例题剖析
人教版初中数学七年级上册第一二章知识点总结及典型例题剖析人教版七年级数学知识点第一章有理数1.1正数和负数?把0以外的数分为正数和负数。
0是正数与负数的分界。
(既不是正数也不是负数)?负数:比0小的数正数:比0大的数0既不是正数,也不是负数1.2有理数1.2.1有理数?正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
?所有正整数组成正整数集合,所有负整数组成负整数集合。
正整数,0,负整数统称整数。
1.2.2数轴?具有原点,正方向,单位长度的直线叫数轴。
1.2.3相反数?只有符号不同的数叫相反数。
?0的相反数是0 正数的相反数是负数负数的相反数是正数 1.2.4绝对值?绝对值 ,a,?性质:正数的绝对值是它的本身负数的绝对值的它的相反数0的绝对值的01.2.5数的大小比较?数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
一般取右为正方向total heavy model number (m) weight (t) 1 gate dam flat work door door leaves 6.2x2.0 2 2.50 sliding block 7.00 13.00 fixed type winch opening and closing machine 2x100 5 .00 2 electrical equipment 2-containing plate working gate slot of sluice and dam 6.2x2.0 of 2 2.50 2.00 4.00 3 flat access door leaf of sluice and dam 6.2x2.0 7.00 7.00 electric hoist 1 2.50 slider 2x80 1.00 1.50 5.00 1 I50 jacked with electrical equipment 4 flat emergency gate slot of sluice and dam6.2x2.0 of 2 2 .50 2.00 4.00 5 sand spillway gate door leaf 1.5x1.5 1 1.50 1.50 to 3.00 slider screw hoist electrical equipment 6 50.00 2.50 1 sand sluice working gate slot of overflow dam 1.5x1.5 1 3.00 2.00 2.00 7 water inlet trashrack gate leaf 2.0 Fixed X3.5 1 3.00 3.00 3.00 8 water inlet door leaf 2.0x2.5 slider 1 3.00 3.00 3.00 screw hoist 80.00 3.50 1.00 9 electrical equipment working gate slot of the intake 2.0x2.5 1 3.00 ... Table 1-1 the main characteristics of the penstock number item parameter type controller size head a long pipe diameter pipe length 11hydropower station penstock open-air exposed pipe, single pipe joint water supply 1.3M 931m 0.8M 8.3*2m 22 hydropower station penstock open-air exposed pipe, single pipe joint water supply 1.4m 1063.506 m 0.8M 10*2m table 1-2 hydropower station Hydraulic metal structure main characteristics table number project name gate, and stopped dirt gate, and door (Gate) slot opening and closing machine track notes hole mouth size (wide x high) (MXM) number (sets) design head (m) supports type type single heavy (t) total heavy (t) type type opening and closing capacity (KN) head (trip) (m) number (sets) single heavy total heavy model number (m) weight (t) 1 gate dam flat work door door leaves6.2x2.0 2 2.50 sliding block7.00 13.00 fixed type winch opening and closing machine 2x100 5 .00 2 electrical equipment 2-containing plate working gate slot of sluice and dam 6.2x2.0 of 2 2.50 2.00 4.00 3 flat access door?正数大于0,0大于负数,正数大于负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册期末总复习(学)第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数, 和 统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是 ;a+b 的相反数是 ;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3) 0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
6.倒数:乘积为1的两个数互为倒数;注意: 没有倒数; 若ab=1⇔ a 、b 互为 ; 若ab=-1⇔ a 、b 互为 . 等于本身的数汇总:相反数等于本身的数:倒数等于本身的数:绝对值等于本身的数:平方等于本身的数:立方等于本身的数:7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数与零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .(简便运算)12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。
(5)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数=10的指数+116.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。
18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
第一章、 基础训练选择题1、下列运算中正确的是( ).A. |-2|=-2B. -32=-27C. |(3-π)|=-π-3D. 32=-92、下列各判断句中错误的是( )A.数轴上原点的位置可以任意选定B.数轴上与原点的距离等于173个单位的点有两个 C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。
3、a 、b 是有理数,若a >b 且||||a b <,下列说法正确的是( )A.a 一定是正数B.a 一定是负数C.b 一定是正数D.b 一定是负数4、两数相加,如果比每个加数都小,那么这两个数是( )A.同为正数B.同为负数C.一个正数,一个负数D.0和一个负数5、两个非零有理数的和为零,则它们的商是()A.0B.-1C.+1D.不能确定6、一个数和它的倒数相等,则这个数是( )A.1B.-1C. ±1D. ±1和07、如果|a|=-a ,下列成立的是( )A.a>0B.a<0C.a>0或a=0D.a<0或a=08、(-2)11+(-2)10的值是()A.-2B.(-2)21C.0D.-2109、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()A.3瓶B. 4瓶C. 5瓶D. 6瓶10、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数A、1B、2C、3D、411、如果一个数的相反数比它本身大,那么这个数为()A、正数B、负数C、整数D、不等于零的有理数12、下列说法正确的是()A、几个有理数相乘,当因数有奇数个时,积为负;B、几个有理数相乘,当正因数有奇数个时,积为负;C、几个有理数相乘,当负因数有奇数个时,积为负;D、几个有理数相乘,当积为负数时,负因数有奇数个;13、如果零上3℃记作+3℃,那么零下3℃记作()A、—3B、-6C、-3℃D、-6℃14、若a与2互为相反数,则∣a+2∣等于()A、0B、-2C、2D、4第二章 整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。
3.多项式:几个单项式的和叫多项式。
X k b 1 . c o m4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5.⎩⎨⎧多项式单项式整式 (整式是代数式,但是代数式不一定是整式)。
6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的排列顺序无关)。
7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
第二章整式的加减一、选择题(小题3分,共30分)1.下列各式中是多项式的是 ( )A .21- B .y x + C .3ab D .22b a - 2.下列说法中正确的是( ) A .x 的次数是0 B .y 1是单项式 C .21是单项式 D .a 5-的系数是53.如图1,为做一个试管架,在a cm 长的木条上钻了4个圆孔,每个孔直径2cm ,则x 等于 ( )A .58+a cm B .516-a cm C .54-a cm D .58-a cm 4.+-=-+-)()(c a d c b a ( )A . b d -B .d b --C .d b -D . d b +5.只含有z y x ,,的三次多项式中,不可能含有的项是 ( )A .32xB .xyz 5C .37y -D .yz x 2416.化简 )]72(53[2b a a b a ----的结果是 ( )A .b a 107+-B .b a 45+C .b a 4--D .b a 109-7.一台电视机成本价为a 元,销售价比成本价增加了0025,因库存积压,所以就按销售价的0070出售,那么每台实际售价为 ( )A .a )701)(251(0000++元B .a )251(700000+元C .a )701)(251(0000-+元D .a )70251(0000++元8.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 22223421y y xy x +=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )A .xy 7-B . xy 7+C . xy -D .xy +9.把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应( )A . -4(x -3)2+(x -3)B . 4(x -3)2-x (x -3)C . 4(x -3)2-(x -3)D . -4(x -3)2-(x -3)二、填空题(每小题3分,共30分)11.单项式853ab -的系数是 ,次数是 . 12.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是_____.13.当2x =-时,代数式651x x +-的值是 ; 14.计算:22224(2)(2)a b ab a b ab --+= ;16.规定一种新运算:1+--⋅=∆b a b a b a ,如1434343+--⨯=∆,请比较大小:()()34 43-∆∆-(填“>”、“=”或“>”).17.根据生活经验,对代数式a b +作出解释: ;18.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x 立方米(x >60),则该户应交煤气费 元.20.观察下列单项式:0,3x 2,8x 3,15x 4,24x 5,……,按此规律写出第13个单项式是______。