【人教A版】数学必修一第二章 2.2 第2课时基本不等式的应用
(新教材)【人教A版】必修一2.2.2(数学)
所以a+b≥2 >0,b+c≥2 >0,c+a≥2 >0,所以
(a+b)(b+c)(c+a)≥2 ·2 ·2 =8abc,即
(a+b)(b+c)(c+a)≥8abc,当且仅当a=b=c时等号成立.
ab
bc
ac
ab bc ac
2.设a>0,b>0,a+b=1,
求证:
.
(a 1)2 (b 1 )2 25
时a ,cb等 c号成3 立 ( ba.
a b
)
(
c a
a c
)
(
c b
b c
)
1 3
【内化·悟】 利用基本不等式证明不等式的关键是什么? 提示:观察所求不等式的特点,逐步转化到可利用基本 不等式进行证明.
【类题·通】 利用基本不等式证明不等式的策略与注意事项 (1)策略:从已证不等式和问题的已知条件出发,借助不 等式的性质和有关定理,经过逐步的逻辑推理,最后转 化为所求问题,其特征是以“已知”看“可知”,逐步 推向“未知”.
(3)把“1”的表达式与所求最值的表达式相乘或相除, 进而构造和或积的形式. (4)利用基本不等式求解最值.
【习练·破】
已知x ,y均为正数,且 1 9 1 ,求x +y的最小值.
xy
【解析】x+y=(x+y) ( 1 9 ) 10 y 9x ≥10+
xy
xy
2 y 9x =16,
世纪金榜导学号
abc
111 abc
【思维·引】1.转化为证明 利用基本不等式分步证明.
高中数学2-2基本不等式第2课时基本不等式的应用课时作业新人教A版必修第一册
2.2 基本不等式 第2课时 基本不等式的应用必备知识基础练1.[2022·广东惠州高一期末]若a >1,则a +1a -1有( ) A .最小值为3 B .最大值为3 C .最小值为-1 D .最大值为-1 2.函数y =x +16x +2(x >-2)取最小值时x 的值为( ) A .6 B .2 C . 3 D . 63.[2022·湖南衡阳高一期末]已知x ,y 均为正数,且x +y =1,求1x +4y的最值( )A .最大值9B .最小值9C .最大值4D .最小值44.在班级文化建设评比中,某班设计的班徽是一个直角三角形图案.已知该直角三角形的面积为50,则它周长的最小值为( )A .20B .10 2C .40D .102+205.若正实数m ,n 满足2m +1n=1,则2m +n 的最小值为( )A .4 2B .6C .2 2D .96.[2022·湖北武汉高一期末](多选)下列说法正确的是( ) A .x +1x(x >0)的最小值是2B .x 2+2x 2+2的最小值是 2C .x 2+5x 2+4的最小值是2D .2-3x -4x的最小值是2-4 37.若x >-1,则x +1x +1的最小值是________,此时x =________. 8.用一根铁丝折成面积为π的长方形的四条边,则所用铁丝的长度最短为________.关键能力综合练1.[2022·湖南长郡中学高一期末]已知p =a +1a -2(a >2),q =-b 2-2b +3(b ∈R ),则p ,q 的大小关系为( )A .p ≥qB .p ≤qC .p >qD .p <q2.已知a ,b ,c 都是正数,且a +2b +c =1,则1a +1b +1c的最小值是( )A .3+2 2B .3-2 2C .6-4 2D .6+4 23.[2022·福建莆田一中高一期末]函数f (x )=x 2-4x +5x -2(x ≥52)有( )A .最大值52B .最小值52C .最大值2D .最小值24.[2022·山东薛城高一期末]已知a ,b ∈R +,且a +2b =3ab ,则2a +b 的最小值为( ) A .3 B .4 C .6 D .95.[2022·湖南雅礼中学高一期末]近来猪肉价格起伏较大,假设第一周、第二周的猪肉价格分别为a 元/斤、b 元/斤,甲和乙购买猪肉的方式不同,甲每周购买20元钱的猪肉,乙每周购买6斤猪肉,甲、乙两次平均单价分别记为m 1,m 2,则下列结论正确的是( )A .m 1=m 2B .m 1>m 2C .m 2>m 1D .m 1,m 2的大小无法确定6.[2022·山东枣庄高一期末]设正实数m 、n 满足m +n =2,则( )A .n m +2n的最小值为2 2 B .m +n 的最小值为2 C .mn 的最大值为1 D .m 2+n 2的最小值为27.函数f (x )=4x 2+1x(x >0)取得最小值时x 的取值为________.8.[2022·河北唐山高一期末]当x >0时,函数f (x )=xx 2+1的最大值为________.9.已知x ,y ∈R +,且满足x +2y =2xy ,那么x +4y 的最小值?xy 的最小值?10.做一个体积为48 m 3,高为3米的无上边盖的长方体纸盒,底面造价每平方米40元,四周每平方米为50元,问长与宽取什么数值时总造价最低,最低是多少?核心素养升级练1.已知a >0,b >0,1a +1b=1,若不等式2a +b ≥m 恒成立,则m 的最大值为( )A .2+ 3B .3+ 2C .3+2 2D .52.一批货物随17列货车从A 市以v km/h 匀速直达B 市,已知两地铁路线长400 km ,为了安全,两列货车间距离不得小于(v20)2km ,那么这批物资全部运到B 市,最快需要________小时,(不计货车的车身长),此时货车的速度是________ km/h.3.在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题:(1)已知正实数x 、y 满足2x +y =1,求1x +12y 的最小值.甲给出的解法:由1=2x +y≥22x ·y ,得xy ≤24,所以1x +12y≥2 1x ·12y =2xy≥4,所以1x +12y 的最小值为4.而乙却说甲的解法是错的,请你指出其中的问题,并给出正确的解法;(2)结合上述问题(1)的结构形式,试求函数y =1x +12-3x (0<x <23)的最小值.第2课时 基本不等式的应用必备知识基础练1.答案:A解析:∵a >1,∴a -1>0, ∴a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a -1=1a -1即a =2时取等号,∴a +1a -1有最小值为3. 2.答案:B解析:因为x >-2,所以x +2>0, 所以y =x +16x +2=x +2+16x +2-2≥2 (x +2)·16x +2-2=6, 当且仅当x +2=16x +2且x >-2,即x =2时等号成立. 3.答案:B解析:因为x ,y 均为正数,且x +y =1, 则1x +4y =(1x +4y )(x +y )=5+y x +4xy≥5+2y x ·4xy=9, 当且仅当x =13,y =23时,1x +4y 有最小值9.4.答案:D解析:设两直角边分别为a ,b ,则斜边为a 2+b 2, 所以该直角三角形的面积为S =12ab =50,则ab =100,周长为a +b +a 2+b 2≥2ab +2ab =20+102,当且仅当a =b =10时等号成立,故周长的最小值为102+20. 5.答案:D解析:正实数m ,n 满足2m +1n=1,2m +n =(2m +n )(2m +1n )=5+2m n +2nm≥5+4=9,等号成立的条件为:m n =n m⇒m =n =3. 6.答案:AB解析:当x >0时,x +1x≥2x ·1x =2(当且仅当x =1x,即x =1时取等号),A 正确; x 2+2x 2+2=x 2+2,因为x 2≥0,所以x 2+2x 2+2=x 2+2≥2,B 正确; x 2+5x 2+4=x 2+4+1x 2+4=x 2+4+1x 2+4≥2,当且仅当x 2+4=1x 2+4,即x 2=-3时,等号成立,显然不成立,故C 错误;当x =1时,2-3x -4x=2-3-4=-5<2-43,D 错误.7.答案:1 0 解析:因为x >-1, 所以x +1x +1=x +1+1x +1-1≥2 (x +1)·1x +1-1=1, 当且仅当x +1=1x +1,即x =0时,等号成立, 所以其最小值是1,此时x =0. 8.答案:4π解析:设长方形的长宽分别为a ,b (a >0,b >0),所以ab =π,所用铁丝的长度为2(a +b )≥4ab =4π,当且仅当a =b =π时取等号.关键能力综合练1.答案:A解析:因为a >2,可得p =a +1a -2=(a -2)+1a -2+2≥2 (a -2)·1a -2+2=4, 当且仅当a -2=1a -2时,即a =3时,等号成立,即p ≥4, 又由q =-b 2-2b +3=-(b +1)2+4,所以q ≤4, 所以p ≥q . 2.答案:D解析:1a +1b +1c=⎝ ⎛⎭⎪⎫1a +1b +1c (a +2b +c )=4+2b a +c a +a b +c b +a c +2bc ≥4+22ba·a b+2c a ·a c+2c b ·2bc =6+42, 当且仅当2b a=a b ,c a =a c ,c b=2bc时,等号成立, 即a 2=c 2=2b 2时,等号成立. 3.答案:D解析:方法一 ∵x ≥52,∴x -2>0,则x 2-4x +5x -2=(x -2)2+1x -2=(x -2)+1(x -2)≥2,当且仅当x -2=1x -2,即x =3时,等号成立. 方法二 令x -2=t ,∵x ≥52,∴t ≥12,∴x =t +2.将其代入,原函数可化为y =(t +2)2-4(t +2)+5t =t 2+1t =t +1t≥2t ·1t=2,当且仅当t =1t,即t =1时等号成立,此时x =3.4.答案:A解析:因为a +2b =3ab ,故2a +1b=3,故2a +b =13(2a +b )(2a +1b )=13(5+2b a +2a b )≥13(5+4)=3,当且仅当a =b =1时等号成立, 故2a +b 的最小值为3. 5.答案:C解析:根据题意可得m 1=20+2020a +20b=2ab a +b ≤2ab2ab =ab ,当且仅当a =b 时等号成立,m 2=6a +6b 12=a +b2≥ab ,当且仅当a =b 时等号成立, 由题意可得a ≠b ,所以m 1<ab ,m 2>ab ,则m 2>m 1. 6.答案:CD解析:对于选项A ,因为m >0,n >0,m +n =2,所以n m +2n =n m+m +n n=n m +m n+1≥2n m ·mn+1=2+1=3,当且仅当n m =m n且m +n =2,即m =n =1时取等号,则A 错误;对于选项B, (m +n )2=m +n +2mn =2+2mn ≤2+m +n =4,当且仅当m =n =1时等号成立,则m +n ≤2,即m +n 的最大值为2,则B 错误;对于选项C ,m +n ≥2mn ,即mn ≤(m +n2)2=1,当且仅当m =n =1时,等号成立,则C正确;对于选项D, m 2+n 2=(m +n )2-2mn =4-2mn ≥4-2(m +n2)2=2,当且仅当m =n =1时,等号成立,则D 正确.7.答案:12解析:x >0,f (x )=4x +1x≥24x ·1x =4,当且仅当4x =1x ⇒x =12时取“=”.8.答案:12解析:∵x >0,∴f (x )=xx 2+1=1x +1x≤12x ×1x=12, 当且仅当x =1时取等号, 即函数f (x )=xx 2+1的最大值为12. 9.解析:x +2y =2xy ,则1x +12y=1,故x +4y =(x +4y )(1x +12y )=1+4y x +x 2y +2≥3+22,当且仅当4y x =x2y 即x =22y 时等号成立,x +4y 的最小值为3+2 2.又1x +12y =1≥2 12xy,解得xy ≥2,当且仅当x =2y =2时等号成立,xy 的最小值为2.10.解析:设长方体底面的长为a m ,宽为b m ,显然a ,b >0,则3ab =48,故b =16a,总造价为y 元,则y =2(3a +48a )×50+16×40=300(a +16a)+640≥300×2a ·16a+640=3 040,当且仅当a =16a,即a =b =4时等号成立,∴当底面的长与宽均为4米时总费用最少,最少为3 040元.核心素养升级练1.答案:C解析:由不等式2a +b ≥m 恒成立可知,只需m 小于等于2a +b 的最小值, 由a >0,b >0,1a +1b=1,可得2a +b =(2a +b )(1a +1b )=3+b a +2ab≥3+2b a ×2a b =3+22,当且仅当b a =2a b时取等号,∴m ≤3+22,∴m 的最大值为3+2 2.2.答案:8 100解析:设这批物资全部运到B 市用的时间为y 小时,因为不计货车的身长,所以设货车为一个点,可知最前的点与最后的点之间距离最小值为16×(v20)2千米时,时间最快.则y =(v20)2×16+400v =v 25+400v≥2v25×400v=8,当且仅当v 25=400v即v =100千米/小时时,时间y min =8小时.3.解析:(1)甲的解法中两次用到基本不等式,取到等号的条件分别是2x =y 和x =2y ,显然不能同时成立,故甲的解法是错的.正确的解法如下:因为x >0,y >0,且2x +y =1, 所以1x +12y =(2x +y )(1x +12y )=52+y x +x y ≥52+2 y x ·x y =92, 当且仅当y x =x y ,即x =y =13时取“=”,所以1x +12y 的最小值为92.(2)因为0<x <23,所以0<2-3x <2,所以y =1x +12-3x=12[3x +(2-3x )][1x +12-3x ] =12(4+3x 2-3x +2-3x x ) ≥12(4+2 3x 2-3x ·2-3xx)=2+3,当且仅当3x 2-3x =2-3xx ,即x =1-33∈(0,23)时取“=”, 所以y =1x +12-3x (0<x <23)的最小值为2+ 3.。
高中数学第二章一元二次函数方程和不等式2.2基本不等式第2课时基本不等式的应用课件新人教A版必修第一
(2)由基本不等式,得 y=x+28x8≥24 2. 当且仅当 x=28x8,即 x=12 2时,等号成立, 则 y 最小值=24 2≈34. 即最少需要约 34 米铁丝网.
2
PART TWO
易错特别练
易错点 忽略等号成立的一致性 已知 x>0,y>0,且 x+2y=1,求证:1x+1y≥3+2 2. 易错分析 易错解为1x+1y=(x+2y)1x+1y≥2 2xy·2 x1y=4 2.在证明 过程中使用了两次基本不等式:x+2y≥2 2xy,1x+1y≥2 x1y,但这两次取 “=”分别需满足 x=2y 与 x=y,自相矛盾,所以“=”取不到.
A.60 件 B.80 件 C.100 件 D.120 件
答案 B
解析 设每件产品的平均费用为 y 元,由题意得,y=80x0+8x≥2 =20.当且仅当80x0=8x(x>0),即 x=80 时“=”成立,故选 B.
800 x x ·8
11.用 17 列货车将一批货物从 A 市以 v km/h 的速度匀速行驶直达 B 市.已知 A,B 两市间铁路线长 400 km,为了确保安全,每列货车之间的距 离不得小于2v02 km,则这批货物全部运到 B 市最快需要________h,此时货 车的速度是________km/h.
(1)记全年所付运费和保管费之和为 y 元,求 y 关于 x 的函数; (2)若要使全年用于支付运费和保管费的资金最少,则每批应购入电脑多 少台?
解 (1)由题意得 y=36x0×300+k×3000x. 当 x=20 时,y=7800,解得 k=0.04. 所以 y=36x0×300+0.04×3000x=108x000+120x(x∈N*). (2)由(1)得 y=108x000+120x≥2 108x000×120x=2×3600=7200.当且 仅当108x000=120x,即 x=30 时,等号成立. 所以要使全年用于支付运费和保管费的资金最少,每批应购入电脑 30 台.
人教A版高中数学必修一《2.2 基本不等式》优质课公开课课件、教案
2.2基本不等式教材分析:“基本不等式”是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.教学目标【知识与技能】1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.掌握基本不等式;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题【过程与方法】通过实例探究抽象基本不等式;【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.教学重难点【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程;【教学难点】1.基本不等式等号成立条件;2.利用基本不等式求最大值、最小值.教学过程1.课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,,有a2+b2≥2ab,当且仅当a=b时,等号成立特别地,如果a>0,b>0,我们用,分别代替上式中的a,b,可得①当且仅当a=b时,等号成立.通常称不等式(1)为基本不等式(basic inequality).其中,叫做正数a,b的算术平均数,叫做正数a,b的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.思考:上面通过考察a2+b2=2ab的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.2.讲授新课1)类比弦图几何图形的面积关系认识基本不等式特别的,如果a>0,b>0,我们用分别代替a、b,可得,通常我们把上式写作:2)从不等式的性质推导基本不等式用分析法证明:要证(1)只要证a+b ≥(2)要证(2),只要证a+b- ≥0 (3)要证(3),只要证(- )2≥0 (4)显然,(4)是成立的.当且仅当a=b时,(4)中的等号成立.探究1:在右图中,A B是圆的直径,点C是AB上的一点,AC=a,BC=b.过点C作垂直于AB的弦DE,连接AD、BD.你能利用这个图形得出基本不等式的几何解释吗?易证Rt△ACD∽Rt△DCB,那么CD2=CA·CB即CD=.这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.因此:基本不等式几何意义是“半径不小于半弦”评述:1.如果把看作是正数a、b的等差中项,看作是正数a、b的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2. 在数学中,我们称为a、b的算术平均数,称为a、b的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力.例1已知x>0,求x+的最小值.分析:求x+的最小值,就是要求一个y0(=x0+),使x>0,都有x+≥y.观察x+,发现x=1.联系基本不等式,可以利用正数x和的算术平均数与几何平均数的关系得到y0=2.解:因为x>0,所以x+=2当且仅当x=,即x2=1,x=1时,等号成立,因此所求的最小值为2.在本题的解答中,我们不仅明确了x>0,有x+≥2,而且给出了“当且仅当x=,即=1,x=1时,等号成立”,这是为了说明2是x+(x>0)的一个取值,想一想,当y0<2时,x+=y0成立吗?这时能说y.是x+(x>0)的最小值吗?例3(1)用篱笆围一个面积为100m2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36m的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?分析:(1)矩形菜园的面积是矩形的两邻边之积,于是问题转化为:矩形的邻边之积为定值,边长多大时周长最短.(2)矩形菜园的周长是矩形两邻边之和的2倍,于是问题转化为:矩形的邻边之和为定值,边长多大时面积最大.例4某工厂要建造一个长方体形无盖贮水池,其容积为4800m2,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么怎样设计水池能使总造价最低?最低总造价是多少?分析:贮水池呈长方体形,它的高是3m,池底的边长没有确定.如果池底的边长确定了,那么水池的总造价也就确定了.因此,应当考察池底的边长取什么值时,水池的总造价最低.解:设贮水池池底的相邻两条边的边长分别为xm,ym,水池的总造价为2元.根据题意,有z=150×+120(2×3x+2×3y)=240000+720(x+y).由容积为4800m3,可得3xy=4800,因此xy=1600.所以z≥240000+720×2,当x=y=40时,上式等号成立,此时z=297600.所以,将贮水池的池底设计成边长为40m的正方形时总造价最低,最低总造价是297600元.【设计意图】例题讲解,学以致用.3.随堂练习4.【设计意图】讲练结合,熟悉新知.4.课时小结本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b的算术平均数(),几何平均数()及它们的关系().它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab≤,ab≤()2.我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.。
人教版(新教材)高中数学必修1(第一册)学案:2.2 第2课时 基本不等式的应用
第2课时 基本不等式的应用学习目标 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点 用基本不等式求最值用基本不等式x +y2≥xy 求最值应注意:(1)x ,y 是正数;(2)①如果xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; ②如果x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(3)讨论等号成立的条件是否满足. 预习小测 自我检验1.已知0<x <12,则y =x (1-2x )的最大值为________.『答 案』 18『解 析』 y =x (1-2x )=12·2x ·(1-2x )≤12⎝ ⎛⎭⎪⎫2x +1-2x 22=18, 当且仅当2x =1-2x ,即x =14时取“=”.2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________. 『答 案』 20『解 析』 总运费与总存储费用之和 y =4x +400x ×4=4x +1600x ≥24x ·1600x=160,当且仅当4x =1600x ,即x =20时取等号.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司每台机器年平均利润的最大值是________万元. 『答 案』 8『解 析』 年平均利润y x =-x +18-25x =-⎝⎛⎭⎫x +25x +18≤-225x·x +18=-10+18=8,当且仅当x =5时取“=”.4.已知x >2,则x +4x -2的最小值为________.『答 案』 6 『解 析』 x +4x -2=x -2+4x -2+2, ∵x -2>0,∴x -2+4x -2+2≥24+2=4+2=6.当且仅当x -2=4x -2,即x =4时取“=”.一、利用基本不等式变形求最值例1 已知x >0,y >0,且1x +9y =1,求x +y 的最小值.解 方法一 ∵x >0,y >0,1x +9y =1,∴x +y =⎝⎛⎭⎫1x +9y (x +y )=y x +9xy +10 ≥6+10=16, 当且仅当y x =9xy,又1x +9y =1,即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.方法二 由1x +9y =1,得(x -1)(y -9)=9(定值).由1x +9y =1可知x >1,y >9, ∴x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=16,当且仅当x -1=y -9=3, 即x =4,y =12时上式取等号, 故当x =4,y =12时,(x +y )min =16.延伸探究 若将条件换为:x >0,y >0且2x +8y =xy ,求x +y 的最小值. 解 方法一 由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2xx -8=x +(2x -16)+16x -8=(x -8)+16x -8+10≥2(x -8)×16x -8+10=18.当且仅当x -8=16x -8,即x =12时,等号成立.∴x +y 的最小值是18.方法二 由2x +8y -xy =0及x >0,y >0, 得8x +2y=1. ∴x +y =(x +y )⎝⎛⎭⎫8x +2y =8y x +2xy+10≥28y x ·2xy+10=18. 当且仅当8y x =2xy ,即x =2y =12时等号成立.∴x +y 的最小值是18.反思感悟 应根据已知条件适当进行“拆”“拼”“凑”“合”“变形”,创造应用基本不等式及使等号成立的条件.当连续应用基本不等式时,要注意各不等式取等号时的条件要一致,否则也不能求出最值;特别注意“1”的代换.跟踪训练1 已知正数x ,y 满足x +y =1,则1x +4y 的最小值是________.『答 案』 9『解 析』 ∵x +y =1, ∴1x +4y =(x +y )⎝⎛⎭⎫1x +4y =1+4+y x +4x y.∵x >0,y >0,∴y x >0,4xy >0,∴y x +4xy≥2y x ·4xy=4, ∴5+y x +4x y≥9.当且仅当⎩⎪⎨⎪⎧x +y =1,y x =4x y,即x =13,y =23时等号成立.∴⎝⎛⎭⎫1x +4y min =9.二、基本不等式在实际问题中的应用例2 “足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品二次加工后进行推广促销,预计该批产品销售量Q 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为Q =x +12(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本2⎝⎛⎭⎫Q +1Q 万元(不包含推广促销费用),若加工后的每件成品的销售价格定为⎝⎛⎭⎫2+20Q 元/件. 那么当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?(利润=销售额-成本-推广促销费) 解 设该批产品的利润为y , 由题意知y =⎝⎛⎭⎫2+20Q ·Q -2⎝⎛⎭⎫Q +1Q -x =2Q +20-2Q -2Q -x =20-2Q-x=20-4x +1-x =21-⎣⎢⎡⎦⎥⎤4x +1+(x +1),0≤x ≤3.∵21-⎣⎢⎡⎦⎥⎤4x +1+(x +1)≤21-24=17,当且仅当x =1时,上式取“=”, ∴当x =1时,y max =17.答 当推广促销费投入1万元时,利润最大为17万元.反思感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用基本不等式求最值,要注意验证等号是否成立. 跟踪训练2 2016年11月3日20点43分我国长征五号运载火箭在海南文昌发射中心成功发射,它被公认为是我国从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用了很多新技术新产品,甲工厂承担了某种产品的生产,并以x 千克/时的速度匀速生产时(为保证质量要求1≤x ≤10),每小时可消耗A 材料kx 2+9千克,已知每小时生产1千克该产品时,消耗A 材料10千克.消耗A 材料总重量为y 千克,那么要使生产1000千克该产品消耗A 材料最少,工厂应选取何种生产速度?并求消耗的A 材料最少为多少. 解 由题意,得k +9=10,即k =1, 生产1000千克该产品需要的时间是1000x ,所以生产1000千克该产品消耗的A 材料为 y =1000x (x 2+9)=1000⎝⎛⎭⎫x +9x ≥1000×29=6000, 当且仅当x =9x,即x =3时,等号成立,且1<3<10.故工厂应选取3千克/时的生产速度,消耗的A 材料最少,最少为6000千克.基本不等式在实际问题中的应用典例 围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图.已知旧墙的维修费用为45元/m ,新墙的造价为180 元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解 设矩形的另一边长为a m ,则y =45x +180(x -2)+180×2a =225x +360a -360.由已知xa =360,得a =360x ,∴y =225x +3602x -360.∵x >0,∴225x +3602x ≥2225×3602=10800.∴y =225x +3602x -360≥10440.当且仅当225x =3602x时,等号成立.即当x =24m 时,修建围墙的总费用最小,最小总费用是10440元.『素养提升』 数学建模是对现实问题进行数学抽象,建立和求解模型的过程耗时费力,所以建立的模型要有广泛的应用才有价值.本例中所涉及的y =x +ax (a >0)就是一个应用广泛的函数模型.1.设x >0,则3-3x -1x 的最大值是( )A .3B .3-2 2C .-1D .3-2 3『答 案』 D『解 析』 ∵x >0,∴3x +1x≥23x ·1x =23,当且仅当x =33时取等号,∴-⎝⎛⎭⎫3x +1x ≤-23,则3-3x -1x≤3-23,故选D.2.已知x 2-x +1x -1(x >1)在x =t 时取得最小值,则t 等于( )A .1+ 2B .2C .3D .4『答 案』 B『解 析』 x 2-x +1x -1=x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x -1=1x -1,即x =2时,等号成立.3.将一根铁丝切割成三段做一个面积为2m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5mB .6.8mC .7mD .7.2m 『答 案』 C『解 析』 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l=a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C.4.已知正数a ,b 满足a +2b =2,则2a +1b 的最小值为________.『答 案』 4『解 析』 2a +1b =⎝⎛⎭⎫2a +1b ×12(a +2b ) =12⎝⎛⎭⎫4+a b +4b a ≥12(4+24)=4. 当且仅当a b =4b a ,即a =1,b =12时等号成立,∴2a +1b的最小值为4. 5.设计用32m 2的材料制造某种长方体车厢(无盖),按交通法规定厢宽为2m ,则车厢的最大容积是________m 3. 『答 案』 16『解 析』 设车厢的长为b m ,高为a m. 由已知得2b +2ab +4a =32,即b =16-2aa +1,∴V =a ·16-2a a +1·2=2·16a -2a 2a +1.设a +1=t ,则V =2⎝⎛⎭⎫20-2t -18t ≤2⎝⎛⎭⎫20-22t ·18t =16,当且仅当t=3,即a=2,b=4时等号成立.1.知识清单:(1)已知x,y是正数.①若x+y=S(和为定值),则当x=y时,积xy取得最大值.②若x·y=P(积为定值),则当x=y时,和x+y取得最小值.即:“和定积最大,积定和最小”.(2)求解应用题的方法与步骤.①审题,②建模(列式),③解模,④作答.2.方法归纳:注意条件的变换,常用“1”的代换方法求最值.3.常见误区:缺少等号成立的条件.。
2.2.2 利用基本不等式解决最值问题【课时教学设计】-高中数学人教A版必修第一册
2.2 基本不等式第2课时 利用基本不等式解决最值问题(一)教学内容:基本不等式的应用(简单的数学情境和实际情境)(二)教学目标1.通过数学情境中的应用,能够利用基本不等式求简单的最值问题,发展数学运算、数据分析等核心素养.2.通过实际情境中的应用,能求解一些简单最优化问题,解决实际问题中的最值,发展学生的数学建模、逻辑推理等核心素养。
(三)教学重点及难点1. 重点:运用基本不等式解决简单的最值问题.2. 难点:对实际问题的分析建模和使用基本不等式的结构观察。
.(四)教学过程设计1.复习回顾,铺垫引入师:根据上一节课的知识,回顾一下基本不等式的内容是什么?它有何作用?如何利用基本不等式求最值?需要注意什么?生:已知x ,y 都是正数,则①如果积xy 等于定值P(积为定值),那么当x =y 时,和x +y 有最小值2P. ②如果和x +y 等于定值S(和为定值),那么当x =y 时,积xy 有最大值14S 2. 利用基本不等式可以求最值,验证等号成立是求最值的必要条件,即运用“一正、二定、三相等”的方法可以解决最值问题.【设计意图】回顾上节课所学知识,对基本不等式的形式加强记忆以及熟悉其使用条件.例1:;24,21的最小值求)设(++->x x x(2)已知10<<x ,求()x x 31-的最大值及相应的x 值。
(1)师:大家观察结构,我们应该如何求这个和的最小值?生:可以式子先变形,2242-+++x x ,变成两个正数的和,再通过两个正数的积是定值来求解。
学生板演. (2)师:我们再来看这题,应该如何求它的最大值?生:式子乘以3再来变形,31)31(3⨯-x x ,变成两个正数的和是定值从而得到解决。
师追问:还有别的解法吗?生:这个式子其实是二次函数,可以利用配方法求解。
【设计意图】培养学生转化化归的数学思想,把不熟悉的问题向熟悉的问题转化.2.合作学习,建模探究例2:(1)用篱笆围一个面积为1002m 的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36 m 的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?师:第(1)题已知什么条件,我们求什么?生:已知矩形的面积,求周长的最小值(教师在黑板上画图)师:如果设矩形菜园相邻两条边的长分别为x m, y m (在图上标出),则周长为2(x+y) m,那如何求周长的最小值?生:用基本不等式求最值。
人教A版高中数学第一册(必修1)课时作业3:§2.2 第2课时 基本不等式的应用练习题
第2课时 基本不等式的应用1.已知x >0,则9x +x 的最小值为( )A .6B .5C .4D .3 『答 案』 A『解 析』 ∵x >0,∴9x+x ≥2x ·9x=6, 当且仅当x =9x ,即x =3时,等号成立.2.已知x >-2,则x +1x +2的最小值为( )A .-12B .-1C .2D .0『答 案』 D『解 析』 ∵x >-2,∴x +2>0, ∴x +1x +2=x +2+1x +2-2≥2-2=0,当且仅当x =-1时,等号成立.3.若正实数a ,b 满足a +b =2,则ab 的最大值为( ) A .1B .22C .2D .4 『答 案』 A『解 析』 由基本不等式得,ab ≤⎝ ⎛⎭⎪⎫a +b 22=1,当且仅当a =b =1时,等号成立. 4.(多选)设y =x +1x -2,则( )A .当x >0时,y 有最小值0B .当x >0时,y 有最大值0C .当x <0时,y 有最大值-4D .当x <0时,y 有最小值-4 『答 案』 AC『解 析』 当x >0时,y =x +1x -2≥2x ·1x-2 =2-2=0,当且仅当x =1x,即x =1时,等号成立,故A 正确,B 错误;当x <0时,y =-⎣⎢⎡⎦⎥⎤(-x )+1(-x )-2≤-2-2=-4,当且仅当-x =1-x,即x =-1时,等号成立,故C 正确,D 错误.5.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( ) A .16B .25C .9D .36 『答 案』 B『解 析』 (1+x )(1+y )≤⎣⎢⎡⎦⎥⎤(1+x )+(1+y )22=⎣⎢⎡⎦⎥⎤2+(x +y )22=⎝ ⎛⎭⎪⎫2+822=25, 当且仅当1+x =1+y ,即x =y =4时,等号成立. 6.已知a >0,b >0,则1a +1b +2ab 的最小值是________.『答 案』 4『解 析』 ∵a >0,b >0, ∴1a +1b+2ab ≥21ab+2ab ≥41ab·ab =4,当且仅当a =b =1时,等号成立. 7.若正数m ,n 满足2m +n =1,则1m +1n 的最小值为________.『答 案』 3+2 2 『解 析』 ∵2m +n =1, 则1m +1n =⎝⎛⎭⎫1m +1n (2m +n ) =3+2m n +n m ≥3+22,当且仅当n =2m ,即m =1-22,n =2-1时,等号成立,即最小值为3+2 2.8.要制作一个容积为4m 3,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 『答 案』 160『解 析』 设底面矩形的一边长为x ,由容器的容积为4m 3,高为1m ,得另一边长为4x m.记容器的总造价为y 元,则y =4×20+2⎝⎛⎭⎫x +4x ×1×10=80+20⎝⎛⎭⎫x +4x ≥80+20×2x ·4x=160, 当且仅当x =4x ,即x =2时,等号成立.因此当x =2时,y 取得最小值160, 即容器的最低总造价为160元. 9.(1)已知x <3,求4x -3+x 的最大值;(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值.解 (1)∵x <3,∴x -3<0, ∴4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x =3-x ,即x =1时,等号成立,∴4x -3+x 的最大值为-1. (2)∵x ,y 是正实数,x +y =4, ∴1x +3y =⎝⎛⎭⎫1x +3y ·x +y4=14⎝⎛⎭⎫4+y x +3x y ≥1+234=1+32, 当且仅当y x =3xy,即x =2(3-1),y =2(3-3)时等号成立.故1x +3y 的最小值为1+32. 10.某农业科研单位打算开发一个生态渔业养殖项目,准备购置一块1800平方米的矩形地块,中间挖三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为2米,如图所示,池塘所占面积为S 平方米,其中a ∶b =1∶2.(1)试用x ,y 表示S ;(2)若要使S 最大,则x ,y 的值分别为多少? 解 (1)由题意得,xy =1 800,b =2a , 则y =a +b +6=3a +6,S =a (x -4)+b (x -6)=a (x -4)+2a (x -6)=(3x -16)a =(3x -16)×y -63=xy -6x -163y +32=1832-6x -163y ,其中6<x <300,6<y <300.(2)由(1)可知,6<x <300,6<y <300,xy =1 800, 6x +163y ≥26x ·163y =26×16×600=480,当且仅当6x =163y 时等号成立,∴S =1 832-6x -163y ≤1 832-480=1 352,此时9x =8y ,xy =1 800,解得x =40,y =45, 即x 为40,y 为45.11.设自变量x 对应的因变量为y ,在满足对任意的x ,不等式y ≤M 都成立的所有常数M 中,将M 的最小值叫做y 的上确界.若a ,b 为正实数,且a +b =1,则-12a -2b 的上确界为( )A .-92B.92C.14D .-4『答 案』 A『解 析』 因为a ,b 为正实数,且a +b =1, 所以12a +2b =⎝⎛⎭⎫12a +2b ×(a +b )=52+⎝⎛⎭⎫b 2a +2a b ≥52+2b 2a ×2a b =92, 当且仅当b =2a ,即a =13,b =23时,等号成立,因此有-12a -2b ≤-92,即-12a -2b 的上确界为-92.12.(多选)一个矩形的周长为l ,面积为S ,则下列四组数对中,可作为数对(S ,l )的有( ) A .(1,4) B .(6,8) C .(7,12) D.⎝⎛⎭⎫3,12 『答 案』 AC『解 析』 设矩形的长和宽分别为x ,y , 则x +y =12l ,S =xy .由xy ≤⎝ ⎛⎭⎪⎫x +y 22知,S ≤l 216,故AC 成立.13.已知x >-1,则(x +10)(x +2)x +1的最小值为________.『答 案』 16『解 析』 (x +10)(x +2)x +1=(x +1+9)(x +1+1)x +1=(x +1)2+10(x +1)+9x +1=(x +1)+9x +1+10,∵x >-1,∴x +1>0,∴(x +1)+9x +1+10≥29+10=16.当且仅当x +1=9x +1,即x =2时,等号成立.14.若对∀x >-1,不等式x +1x +1-1≥a 恒成立,则实数a 的取值范围是________.『答 案』 a ≤0『解 析』 因为x >-1,所以x +1>0, 则x +1x +1-1=x +1+1x +1-2 ≥2(x +1)×1x +1-2=2-2=0,当且仅当x +1=1x +1,即x =0时等号成立,由题意可得a ≤⎝ ⎛⎭⎪⎫x +1x +1-1min =0,即a ≤0.15.若不等式ax 2+1x 2+1≥2-3a 3(a >0)恒成立,则实数a 的取值范围是________.『答 案』 ⎩⎨⎧⎭⎬⎫a ⎪⎪a ≥19 『解 析』 原不等式可转化为a (x 2+1)+1x 2+1≥23,又a >0,则a (x 2+1)+1x 2+1≥2a (x 2+1)·1x 2+1=2a ,当且仅当a (x 2+1)=1x 2+1, 即a =1(x 2+1)2时,等号成立,则根据恒成立的意义可知2a ≥23,解得a ≥19.16.某厂家拟在2020年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销量是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).那么该厂家2020年的促销费用为多少万元时,厂家的利润最大?最大利润为多少?解 设2020年该产品利润为y , 由题意,可知当m =0时,x =1, ∴1=3-k ,解得k =2,∴x =3-2m +1,又每件产品的销售价格为1.5×8+16xx 元,∴y =x ⎝ ⎛⎭⎪⎫1.5×8+16x x -(8+16x +m )=4+8x -m =4+8⎝ ⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29,∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时,等号成立,∴y ≤-8+29=21,∴y max =21.故该厂家2020年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.。
人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习
【新教材】人教统编版高中数学必修一A版第二章教案教学设计2.1《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。
数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题 1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、 两个实数比较大小的方法 作差法 {a −b >0⟺a >ba −b =0⟺a =b a −b <0⟺a <b作商法{ ab >1⟺a >b ab =1⟺a =b ab <1⟺a <b2.不等式的基本性质3.重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例1 判断下列命题是否正确:(1)c a b c b a >⇒>>,( ) (2)22bc ac b a >⇒> ( ) (3)bd ac d c b a >⇒>>,( ) (4)b a cb c a >⇒>22 ( ) (5) 22b a b a >⇒> ( ) (6)22b a b a >⇒> ( ) (7) dbc ad c b a >⇒>>>>0,0 ( ) 【答案】(1)× (2) × (3)× (4)√ (5)× (6) √ (7 )×解题技巧:(不等式性质应用)可用特殊值代入验证,也可用不等式的性质推证. 跟踪训练一1、用不等号“>”或“<”填空:(1)如果a>b ,c<d ,那么a-c ______ b-d ; (2)如果a>b>0,c<d<0,那么ac______bd ; (3)如果a>b>0,那么1a 2 ______1b 2 (4)如果a>b>c>0,那么ca _______ cb【答案】(1) > (2) < (3) < (4) < 题型二 比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小 (2).已知a >b >0,c >0,求ca >cb 。
基本不等式 2022-2023学年高一上学期数学人教A版(2019)必修第一册
分析:利用函数 y t 1 (t>0)的单调性.
t
t (0,1] 单调递减, t [1, ) 单调递增
解: y x2 5 x2 4 1 x2 4
x2 4
x2 4
令t x2 4 则y t 1 (t 2) t
当t
2,即:
x
0时,
ymin
5 2
1 x2 4
练习
等号成立.
ab a b 2
因此,基本不等式
ab a b 2
的几何意义是“半径不小于半弦”
基本不等式 ab a b 代数意义
2
如果把 a b看作是正数a、b的等差中项,把 ab
2
看作是正数a、b的等比中项,那么该定理可以叙 述为:两个正数的等差中项不小于它们的等比中项.
a b 为a、b的算术平均数, ab 为几何平均数, 那么 2
当直角三角形变为等腰直角三角形,即a=b时, 正方形EFGH缩为一个点,这时有
a2 b2 2ab
结论1:
若a, b R,则a2 b2 2ab(当且仅当 a b时“”成立).
证明: 作差比较 a2+b2-2ab=(a-b)2
当ab时,(a-b)2>0 得 a2+b2>2ab
当a=b时,(a-b)2=0 得 a2+b2=2ab
x y x bx x b(x a) ab (x a) ab a b
xa
xa
xa
2 ab a b ( a b)2
解2 : x y (x y)( a b ) xy
a b a y b x a b 2 ab ( a b)2 xy
例5.求函数 y x 2 5 的最小值.
解:(1)设矩形菜园的长为x m,宽为y m,则 xy=100,篱笆的长为2(x+y)m.由
新人教A版高中数学教材目录(必修+选修)【很全面】
人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
人教版高中数学A版高中数学必修一《基本不等式》一元二次函数、方程和不等式(第二课时基本不等式的应用)
同理1b-1≥2
bac,1c-1≥2
ab c.
上述三个不等式两边均为正,分别相乘,
得1a-11b-11c-1≥2 abc·2 bac·2 cab=8. 当且仅当 a=b=c=13时,等号成立.
在本例条件下,求证:1a+1b+1c≥9. 证明:因为 a,b,c∈(0,+∞),且 a+b+c=1, 所以1a+1b+1c =a+ab+c+a+bb+c+a+cb+c =3+ba+ab+ac+ac+bc+bc ≥3+2+2+2=9. 当且仅当 a=b=c=13时,等号成立.
利用基本不等式证明不等式的思路 利用基本不等式证明不等式时,要先观察题中要证明的不等式 的结构特征,若不能直接使用基本不等式证明,则考虑对代数 式进行拆项、变形、配凑等,使之达到能使用基本不等式的形 式;若题目中还有已知条件,则先观察已知条件和所证不等式 之间的联系,当已知条件中含有“1”时,要注意“1”的代换.另 外,解题时要时刻注意等号能否取到.
解析:每年购买次数为40x0次. 所以总费用=40x0·4+4x≥2 6 400=160, 当且仅当1 6x00=4x, 即 x=20 时等号成立. 答案:20
3.已知 a,b,c,d 都是正数,求证:(ab+cd)(ac+bd)≥4abcd.
证明:由 a,b,c,d 都是正数,得 ab+2 cd≥ ab·cd, ac+2 bd≥ ac·bd, 所以(ab+cd)4(ac+bd)≥abcd, 即(ab+cd)(ac+bd)≥4abcd.
基本不等式的综合问题
若不等式 9x+ax2≥a+1(常数 a>0)对一切正实数 x 成
立,求 a 的取值范围. 【解】 常数 a>0,若 9x+ax2≥a+1 对一切正实数 x 成立,则 a+1≤9x+ax2的最小值,
高中数学第二章2.2.2基本不等式的应用讲义新人教A版必修第一册
第2课时 基本不等式的应用题型一 利用基本不等式证明不等式[经典例题]例1 已知a 、b 、c >0,求证:a 2b +b 2c +c 2a ≥a +b +c .【解析】 ∵a ,b ,c ,a 2b ,b 2c ,c 2a 均大于0,∴a 2b+b ≥2a 2b·b =2a . 当且仅当a 2b =b 时等号成立.b 2c+c ≥2b 2c·c =2b . 当且仅当b 2c =c 时等号成立.c 2a+a ≥2c 2a·a =2c , 当且仅当c 2a=a 时等号成立.相加得a 2b +b +b 2c +c +c 2a +a ≥2a +2b +2c ,∴a 2b +b 2c +c 2a≥a +b +c . 状元随笔判断a ,b ,c ,a 2b ,b 2c ,c2a均大于0→证a2b+b≥2a →证b2c+c≥2b →证c2a+a≥2c →得所证不等式方法归纳(1)在利用a +b ≥2ab 时,一定要注意是否满足条件a >0,b >0. (2)在利用基本不等式a +b ≥2ab 或a +b2≥ab (a >0,b >0)时要注意对所给代数式通过添项配凑,构造符合基本不等式的形式.(3)另外,在解题时还要注意不等式性质和函数性质的应用. 跟踪训练1 已知x >0,y >0,z >0.求证:⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8.证明:因为x >0,y >0,z >0,所以y x +z x≥2yz x>0,x y +z y ≥2xz y >0, x z +y z ≥2xy z>0, 所以⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8yz ·xz ·xyxyz =8,当且仅当x =y =z 时等号成立.分别对y x +z x ,x y +z y ,x z +yz 用基本不等式⇒同向不等式相乘.题型二 利用基本不等式解决实际问题 [教材P 47例4]例2 某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m 3,深为3 m .如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么怎样设计水池能使总造价最低?最低总造价是多少?【解析】 设贮水池池底的相邻两条边的边长分别为x m ,y m ,水池的总造价为z 元.根据题意,有z =150×4 8003+120(2×3x +2×3y ) =240 000+720(x +y ).由容积为4 800 m 3,可得3xy =4 800. 因此xy =1 600.所以z ≥240 000+720×2xy ,当x =y =40时,上式等号成立,此时z =297 600.所以,将贮水池的池底设计成边长为40 m 的正方形时总造价最低,最低总造价是297 600元.状元随笔 贮水池呈长方体形,它的高是3 m ,池底的边长没有确定.如果池底的边长确定了,那么水池的总造价就确定了.因此,应当考察池底的边长取什么值时,水池的总造价最低.教材反思利用基本不等式解决实际问题的步骤解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出答案.跟踪训练2 某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.(1)问捕捞几年后总盈利最大,最大是多少? (2)问捕捞几年后的平均利润最大,最大是多少? 解析:(1)设该船捕捞n 年后的总盈利y 万元.则y =50n -98-⎣⎢⎡⎦⎥⎤12×n +n (n -1)2×4 =-2n 2+40n -98=-2(n -10)2+102, ∴当捕捞10年后总盈利最大,最大是102万元. (2)年平均利润为y n =-2⎝ ⎛⎭⎪⎫n +49n -20≤-2⎝⎛⎭⎪⎫2n ·49n -20=12,当且仅当n =49n,即n =7时上式取等号.所以,当捕捞7年后年平均利润最大,最大是12万元.状元随笔 1.盈利等于总收入-支出,注意支出,由两部分组成. 2.利用基本不等式求平均利润.一、选择题1.已知a ,b ,c ,是正实数,且a +b +c =1,则1a +1b +1c的最小值为( )A .3B .6C .9D .12解析:∵a +b +c =1,∴1a +1b +1c =⎝ ⎛⎭⎪⎫1a +1b +1c (a +b +c )=3+a b +b a +a c +c a +b c +cb≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:C2.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92C .3 D.322解析:因为-6≤a ≤3,所以3-a ≥0,a +6≥0,则由基本不等式可知,(3-a )(a +6)≤(3-a )+(a +6)2=92,当且仅当3-a =a +6,即a =-32时,等号成立.答案:B3.将一根铁丝切割成三段做一个面积为4.5 m 2的直角三角形框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( )A .9.5 mB .10 mC .10.5 mD .11 m解析:不妨设直角三角形两直角边长分别为a ,b ,则ab =9,注意到直角三角形的周长为l =a +b +a 2+b 2,从而l =a +b +a 2+b 2≥2ab +2ab =6+32≈10.24,当且仅当a =b =3时,l 取得最小值.从最节俭的角度来看,选择10.5 m.答案:C4.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b =( ) A .-3 B .2 C .3 D .8 解析:y =x -4+9x +1=x +1+9x +1-5.由x >-1,得x +1>0,9x +1>0,所以由基本不等式得y =x +1+9x +1-5≥2(x +1)×9x +1-5=1,当且仅当x +1=9x +1,即x =2时取等号,所以a =2,b =1,a +b =3.答案:C二、填空题5.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司年平均利润的最大值是________万元.解析:每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.答案:86.若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.解析:设xy =t (t >0),由xy =2x +y +6≥22xy +6,即t 2≥22t +6,(t -32)(t +2)≥0,∴t ≥32,则xy ≥18,当且仅当2x =y,2x +y +6=xy ,即x =3,y =6时等号成立,∴xy 的最小值为18.答案:187.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%,若p >q >0,则提价多的方案是________.解析:设原价为1,则提价后的价格为 方案甲:(1+p %)(1+q %), 方案乙:⎝⎛⎭⎪⎫1+p +q 2%2, 因为(1+p %)(1+q %)≤1+p %+1+q %2=1+p +q2%,且p >q >0,所以(1+p %)(1+q %)<1+p +q2%,即(1+p %)(1+q %)<⎝⎛⎭⎪⎫1+p +q 2%2, 所以提价多的方案是乙. 答案:乙 三、解答题8.已知a >0,b >0,a +b =1,求证:⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥9.证明:∵a >0,b >0,a +b =1, ∴1+1a =1+a +b a =2+ba,同理,1+1b =2+ab,∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎫2+b a ⎝⎛⎭⎪⎫2+a b=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9(当且仅当a =b =12时等号成立).9.桑基鱼塘是广东省珠江三角洲一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1 800平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为2米,如图所示,池塘所占面积为S 平方米,其中a b =1 2.(1)试用x ,y 表示S ;(2)若要使S 最大,则x ,y 的值各为多少?解析:(1)由题可得,xy =1 800,b =2a ,则y =a +b +6=3a +6,S =(x -4)a +(x -6)b =(3x -16)a =(3x -16)y -63=1 832-6x -163y (x >6,y >6,xy =1 800). (2)方法一 S =1 832-6x -163y ≤1 832-26x ×163y =1 832-480=1 352,当且仅当6x =163y ,xy =1 800,即x =40,y =45时,S 取得最大值1 352.方法二 S =1 832-6x -163×1 800x =1 832-⎝ ⎛⎭⎪⎫6x +9 600x ≤1 832-26x ×9 600x=1832-480=1 352,当且仅当6x =9 600x ,即x =40时取等号,S 取得最大值,此时y =1 800x=45.[尖子生题库]10.已知a >b ,ab =1,求证:a 2+b 2≥22(a -b ).证明:∵a >b ,∴a -b >0,又ab =1,∴a 2+b 2a -b =a 2+b 2+2ab -2ab a -b =(a -b )2+2ab a -b =a -b +2a -b≥2(a -b )·2a -b=22,即a 2+b 2a -b ≥22,即a 2+b 2≥22(a -b ),当且仅当a -b =2a -b,即a -b =2时取等号.。
人教A版(2019)高中数学必修第一册2.2基本不等式教案
2.2 基本不等式学习目标:1.知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题;2.过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养;3.情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过程中,体会数学的严谨性,发现数学的实用性教学重点:基本不等式的定义,证明方法和几何解释;用基本不等式解决简单的最值问题.教学难点:基本不等式的几何解释,用基本不等式解决简单最值问题.教学过程:教学内容师生活动设计意图情境导学探新知情境1:展示第24届国际数学家大会的会标,介绍赵爽弦图历史渊源.情境2:介绍知名校友国际数学新秀韦东奕.师:展示部分北京数学家大会的图片,介绍发展史.生:欣赏和感受数学历史文华,榜样就在我们身边.渗透德育,激发学生的民族自豪感,调动学生数学学习积极性.合作探究释问题1:你能否从数学家的角度来欣赏会标,由哪些几何图形构成?蕴含怎样的不等关系?师:提出问题1,留给学生一分钟时间独立思考.生:整个图案由正方形和四个全等的直角三角形构成.生:大正方形面积不小于四个直角三角形面积和.激发学生探究欲望,引导学生从几何图形出发抽象出重要不等式,为接下来基本不等式做铺垫,体会数疑难重要不等式:222a b ab+≥当且仅当a b=时,等号成立. 师:设直角三角形的直角边分别为a,b,如何表示上述不等关系?师:观察数学模型,当a,b,满足什么条件时,大正方形面积等于四个直角三角形面积和?生:a b=时取得相等学建模,数形结合的思想.合作探究释疑难问题2:由重要不等式出发,如何才能得到两个正数和与积的不等关系?基本不等式:0,0a b>>2a bab+≥当且仅当a=b时取得等号.2a b+是两个正数a,b的算术平均数,ab是两个正数a, b的几何平均数师:重要不等式体现了平方和与积的关系,你能想到哪些方法使其转变成两个正数和与积的关系?生:小组交流讨论,时长3分钟.生:可用正数,a b代替原式中的a,b,即得到2a b ab+≥生:原不等式两边同时加2ab2224a b ab ab++≥即()24a b ab+≥即2a b ab+≥师:何时取等?生:当且仅当a b=等号成立.师:板书基本不等式体会代换方法在数学学习中的作用,感受数学知识间的联系,通过分析基本不等式的结构特征得到基本不等式的代数解释,加深对基本不等式的认识,多种方法下,培养学生的发散思维.合问题3:是否还有其它方式证明师:有哪些方式可以比较两个代数式的大小?从几何和代数两个角度实现基本作探究释疑难(),02a bab a b+≥>?做差法证明基本不等式.生:做差法.生:一人黑板板书做差法证明基本不等式,其余同学练习本证明.生:黑板上讲解证明思路,过程.师:结合板书同学证明步骤,讲强调取等的重要性.不等式的证明,培养学生逻辑推理能力,实现从感性认识到理性认识升华.合作探究释疑难问题4:“当a b=时等号成立”“仅当a b=时等号成立”含义分别是什么?师:结合第一章我们研究的常用逻辑用语,你能否发现,“a b=”和“等号成立”之间的关系?生:“当a b=时等号成立”是说“a b=”是“等号成立”的充分条件; “仅当a b=时等号成立”是说“a b=”是“等号成立”的必要条件,也就是“a b=”和“等号成立”互为充要条件.师:肯定学生能够前后知识融会贯通.强调基本不等式取等条件,加深学生对于等号是否成立的理性认识.加强学生前后知识间的联系和数学应用意识.合作探究释疑难问题5:如图AB是圆的直径,点C是AB上一点,AC=a,BC=b,过点C做垂直于AB的弦DE,连接AD,BD,你能利用这个图形得到基本不等式的几何解释吗?师:前后4人小组,4分钟时间讨论交流.生:小组讨论,选派小组代表上台为同学展示交流成果,其他同学做补充.师:肯定小组交流成果.师:几何画板动态演示,使学生直观感受变与不变.师:引导学生总结,半径即为2a b+,CD ab=,圆中直径不小于任意一条弦,当且仅当弦过圆心时,学生自己发现基本不等式的几何解释相对较困难,给出几何图形后,引导学生将ab和2a b+与图中的几何元素建立起联系,再观察这些几何元素在变化中表现得大小关系,从而得到基。
2.2+课时2+基本不等式的应用-2024-2025学年高一上学期数学人教A版(2019)必修第一册
则y= x (6<x<500),
y-6
S=(x-4)a+(x-6)a=(2x-10)a=(2x-10)· 2 =(x-5)(y-6)=3 030-6x
15 000
- x (6<x<500).
15 000
15 000
(2)S=3 030-6x- x ≤3 030-2 6x· x =3 030-2×300=2 430.
15 000
当且仅当6x= x ,即x=50时,“=”成立,此时x=50.y=60,
Smax=2 430.即设计x=50 m,y=60 m时,运动场地面积最大,最大值为2
430 m2.
作者编号:32001
课堂总结
1.基本不等式的变式: + ≥ 2 , ≤
+ 2
2
2.利用基本不等式求最值时,要注意: 一正二定三相等
时,再考虑函数的单调性.
(4)正确写出答案.
作者编号:32001
当堂检测
1.某公司一年购买某种货物600吨,每次购买x吨,运费为6
万元/次,一年的总存储费用为4x万元.要使一年的总运费
与总存储费用之和最小,则x的值是_____________.
解析:本题考查基本不等式及其应用.
600
设总费用为 y 万元,则 y= x ×6+4x=
求得 x=15,即铁栅的长是 15 米.
作者编号:32001
新课讲授
归纳总结
求实际问题中最值的一般思路
(1)先读懂题意,设出变量,理清思路,列出函数关系
式.
(2)把实际问题抽象成函数的最大值或最小值问题.
(3)在定义域内,求函数的最大值或最小值时,一般先
2.2.2基本不等式的应用【新教材】人教A版高中数学必修第一册课件
例题讲解
用篱笆围一个面积为1 00m2矩形菜园,问这个矩形的 长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?
例题讲解
用篱笆围一个面积为1 00m2矩形菜园,问这个矩形的 长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?
解:设矩形菜园的相邻两条边的长分别为xcm,ycm,篱笆的
长度为2(x+y)m.由已知得xy=100.
②如果和 最大值
x__+_14y_等S__于2 __定_;值S,那么当x
=y时,积xy有
(3)讨论等号成立的条件是否满足.
复习回顾
利用基本不等式求积的最大值或求和的最小值时,需满足 (1)a,b必须是正数.(一正) (2)在a+b为定值时,便可以知道ab的最大值;
在ab为定值时,便可以知道a+b的最大值. (二定) (3)当且仅当a=b时,等式成立(三相等)
因此,当这个矩形菜园是边长为9m的正方形时,菜园的 面积最大,最大面积是81m2.
练习
用20cm长的铁丝折成一个面积最大的矩形,应当怎样折?
练习
用20cm长的铁丝折成一个面积最大的矩形,应当怎样折?
分析:可设宽 矩分 形 a别 和 的 b, 为 长 已和 知2周 c0m ቤተ መጻሕፍቲ ባይዱ 长
则a 可 b 1,由 知 0 a b a b 2 可 a 得 b 2, 5 2
由 xy xy 得 xy2 xy2, 0
2
所以 2xy40
当且仅x当y10时,上式等.号成立
因此,当这个矩形菜园是边长为10m的正方形时,所用篱 笆最短,最短篱笆的长度为40m.
练习
已知直角三角形的面积等于50,两条直角边各为多少 时,两条直角边的和最小,最小值是多少?
2基本不等式说课稿-高一上学期数学人教A版(2019)必修第一册
2基本不等式说课稿-高一上学期数学人教A版(2019)必修第一册第二章一元二次函数、方程和不等式§2.2《基本不等式》(第1课时)说课稿一、说教材分析本节课是人教A版必修第一册第二章《一元二次函数、方程和不等式》第2节《基本不等式》第1课时的内容。
基本不等式是一种重要且基本的不等式类型,在中学数学知识体系中也是一个非常重要的、基础的内容,它与很多重要的数学概念和性质有关。
基本不等式的代数结构也是数学模型思想的一个范例,借助这个模型可以求最大值和最小值。
学习基本不等式内容可以进一步发展学生的逻辑推理、数学运算和数学建模等数学核心素养,为后续进一步学习不等式内容打好基础。
二、说学情分析基本不等式是在学生已经学习了等式性质与不等式性质,并且具备了一定的推理论证能力的基础上进行的。
基本不等式是几何平均数不大于算术平均数的最简单和最基本的情形。
基本不等式的代数结构也是数学模型思想的一个范例,借助这个模型可以求最大值和最小值。
在理解和应用基本不等式的过程中,体现了数形结合、数学建模等数学思想。
通过该内容的学习,不仅能进一步发展学生的推理论证能力,数学运算和数学建模的数学素养,而且能使学生把这些认识迁移到后继的学习中去,为以后学习一元二次不等式等打好基础。
三、说教学目标1.通过对赵爽勾股圆方图的观察分析,抽象概括出基本不等式;理解基本不等式的三种不同证明方法;2.结合具体实例,会用基本不等式解决简单的最大(小)值问题;3.进一步发展数学抽象、逻辑推理、数学运算等数学核心素养和观察分析、抽象概括的能力;4.通过赵爽勾股圆方图,展现中国古代数学成就,厚植爱国主义情怀,增强民族自信。
四、说教学重点和难点重点:基本不等式的内容、意义,应用基本不等式解决简单的最大(小)值问题。
难点:基本不等式的证明过程。
五、说教法、学法分析1.教法:本节课以赵爽勾股圆方图引入,通过学生观察分析、抽象概括出基本不等式。
以问题驱动课堂,教师不断启发学生自主探究,充分发挥学生的积极性、主动性;在课堂上,教师有效地渗透数学思想方法,发展学生数学素养。
人教A版高中同步学案数学必修一精品课件 第二章 基本不等式-第2课时 基本不等式及其变形的简单应用
都相同,就加油两次来说,甲、乙谁更合算( A )
A.甲更合算
B.乙更合算
C.甲、乙同样合算
D.无法判断谁更合算
2 +2
2 +2
6.(多选题)设 > 0, > 0,已知 =
, =
,则下列说法正确的是()
+
3
1
1
时,等号成立.所以( −
12
2
− 2 ) ≤
1
.故当
108
=
1
3
= ,当且仅当
1
2
1
3
2 )( − 2 ) ⋅ 4 ≤ ( )3 ,因此
1
1
米时,长方体盒子的容积取到最大值 立方米.
12
108
1
解做成的长方体的底面是一个边长为(
2
以 =
3
1
2
1
(
2
−2
1
2
1
)(
2
− 2 ).由(2)中已证的不等式,可知
1
1
2
( − 2 )( − 2 ) ⋅ 4 ≤
− 2 = 4 ,即 =
=
1
(
2
−2
1
)(
2
− 2 )的正方形,高为,所
1
(2−2 )+(2−2 )+4
9.某电商自营店,其主打商品每年需要6000件,每年次进货,每次购买件,每次购买商
2
品需手续费300元,已购进未卖出的商品要付库存费,可认为平均库存量为 ,每件商品库
10
高一数学必修一第二章第二课基本不等式
高一数学必修一第二章第二课基本不等式摘要:1.必修一第二章第二课:基本不等式2.基本不等式的概念3.基本不等式的推导和证明4.基本不等式的应用举例5.总结与拓展正文:【1.必修一第二章第二课:基本不等式】在高一数学必修一的第二章中,我们迎来了第二课——基本不等式。
这一课是整个高中数学学习过程中非常重要的一部分,它将为我们后续学习更复杂的数学知识打下坚实的基础。
那么,什么是基本不等式呢?它又有哪些应用呢?让我们一起来探讨。
【2.基本不等式的概念】基本不等式,又称柯西不等式,是指在实数范围内,两个数的平方和与两个数的乘积之间存在的一种不等关系。
它的数学表达式为:(a+b)^2 >=4ab。
这个不等式在数学中有着广泛的应用,是解决许多数学问题的关键思想。
【3.基本不等式的推导和证明】接下来,我们将来推导和证明基本不等式。
首先,我们假设有两个实数a 和b,那么(a+b)^2 = a^2 + 2ab + b^2。
根据基本不等式,我们要证明a^2 + 2ab + b^2 >= 4ab。
将4ab 移到左边,我们得到a^2 - 2ab +b^2 >= 0,也就是(a-b)^2 >= 0。
这个不等式显然成立,因为一个数的平方永远大于等于0。
所以,我们成功地证明了基本不等式。
【4.基本不等式的应用举例】了解了基本不等式的概念和证明,我们来看看它在实际问题中的应用。
假设有一个等差数列,首项为a,公差为b,项数为n,我们要求这个等差数列的和。
根据等差数列求和公式,我们可以得到S_n = na + n(n-1)/2 * b。
由于n 是正整数,我们可以利用基本不等式得到:S_n >= 2 * sqrt(na * (n-1)/2 * b)。
这个式子告诉我们,在等差数列中,当n 固定时,a 和b 的乘积越大,和就越大。
【5.总结与拓展】通过学习基本不等式,我们不仅掌握了一个重要的数学知识,还学会了如何运用它解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)讨论等号成立的条件是否满足.
ห้องสมุดไป่ตู้
预习小测 自我检验
YU XI XIAO CE ZI WO JIAN YAN
1.已知
0<x<12,则
1 y=x(1-2x)的最大值为__8___.
A.6.5 m
B.6.8 m
√C.7 m
D.7.2 m
解析 设两直角边分别为 a,b,直角三角形的框架的周长为 l,则12ab=2, ∴ab=4,l=a+b+ a2+b2≥2 ab+ 2ab=4+2 2≈6.828(m).
跟踪训练2 2016年11月3日20点43分我国长征五号运载火箭在海南文昌发射中心成 功发射,它被公认为是我国从航天大国向航天强国迈进的重要标志.长征五号运载火 箭的设计生产采用了很多新技术新产品,甲工厂承担了某种产品的生产,并以x千克 /时的速度匀速生产时(为保证质量要求1≤x≤10),每小时可消耗A材料kx2+9千克, 已知每小时生产1千克该产品时,消耗A材料10千克.消耗A材料总重量为y千克,那么 要使生产1 000千克该产品消耗A材料最少,工厂应选取何种生产速度?并求消耗的A 材料最少为多少.
试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
素养
提升 数学建模是对现实问题进行数学抽象,建立和求解模型的过程耗时费力,
所以建立的模型要有广泛的应用才有价值.本例中所涉及的y=x+ a (a>0) x
就是一个应用广泛的函数模型.
3 随堂演练
PART THREE
1.设 x>0,则 3-3x-1x的最大值是
y=4x+40x0×4=4x+1 6x00≥2
1 4x·
6x00=160,
当且仅当 4x=1 6x00,
即x=20时取等号.
3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利 润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则 该公司每台机器年平均利润的最大值是____8____万元.
C.3
D.4
解析 x2-x-x+1 1=xx-x-11+1=x+x-1 1 =x-1+x-1 1+1≥2+1=3, 当且仅当 x-1=x-1 1,即 x=2 时,等号成立.
12345
3.将一根铁丝切割成三段做一个面积为2 m2、形状为直角三角形的框架,在下列四
种长度的铁丝中,选用最合理(够用且浪费最少)的是
2 题型探究
PART TWO
一、利用基本不等式变形求最值
例 1 已知 x>0,y>0,且1x+9y=1,求 x+y 的最小值.
延伸探究 若将条件换为:x>0,y>0且2x+8y=xy,求x+y的最小值.
反思
感悟 应根据已知条件适当进行“拆”“拼”“凑”“合”“变形”,创造应
用基本不等式及使等号成立的条件.当连续应用基本不等式时,要注意各 不等式取等号时的条件要一致,否则也不能求出最值;特别注意“1”
解析 y=x(1-2x)=12·2x·(1-2x)
≤122x+12-2x2=18,
当且仅当 2x=1-2x,即 x=14时取“=”.
2.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储 费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=__2_0__.
解析 总运费与总存储费用之和
核心素养之数学建模
HE XIN SU YANG ZHI SHU XUE JIAN MO
基本不等式在实际问题中的应用 典例 围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧 墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m的进出 口,如图.已知旧墙的维修费用为45 元/m,新墙的造价为180 元/m.设利用的旧墙长 度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).
解析 年平均利润yx=-x+18-2x5=-x+2x5+18 ≤-2 2x5·x+18=-10+18=8,当且仅当 x=5 时取“=”.
4.已知 x>2,则 x+x-4 2的最小值为____6____.
解析 x+x-4 2=x-2+x-4 2+2, ∵x-2>0,∴x-2+x-4 2+2≥2 4+2=4+2=6. 当且仅当 x-2=x-4 2,即 x=4 时取“=”.
第二章 2.2 基本不等式
第2课时 基本不等式的应用
学习目标
XUEXIMUBIAO
1.熟练掌握基本不等式及变形的应用. 2.会用基本不等式解决简单的最大(小)值问题. 3.能够运用基本不等式解决生活中的应用问题.
知识点 用基本不等式求最值
用基本不等式x+2 y≥ xy求最值应注意: (1)x,y是 正数 ;
的代换.
跟踪训练 1 已知正数 x,y 满足 x+y=1,则1x+4y的最小值是___9___.
二、基本不等式在实际问题中的应用
例2 “足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中 华民族伟大“中国梦”的重要保障.某地政府在对山区乡镇企业实施精准扶贫的工作 中,准备投入资金将当地农产品二次加工后进行推广促销,预计该批产品销售量Q 万件(生产量与销售量相等)与推广促销费 x 万元之间的函数关系为 Q=x+2 1(其中推广
A.3 C.-1
B.3-2 2
√D.3-2 3
解析 ∵x>0,∴3x+1x≥2 当且仅当 x= 33时取等号,
3x·1x=2 3,
∴-3x+1x≤-2 3,
则 3-3x-1x≤3-2 3,故选 D.
12345
2.已知x2-x-x+1 1(x>1)在 x=t 时取得最小值,则 t 等于
A.1+ 2
√B.2
促销费不能超过 3 万元).已知加工此批农产品还要投入成本 2Q+Q1 万元(不包含推广
促销费用),若加工后的每件成品的销售价格定为2+2Q0元/件. 那么当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?(利润 =销售额-成本-推广促销费)
反思
感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学 知识解决问题(求解),最后要回应题意下结论(作答).使用基本不等式求 最值,要注意验证等号是否成立.