条件概率练习题56626
条件概率经典例题条件概率例题
条件概率经典例题条件概率例题条件概率例题山东省莱芜市第一中学刘志例1 一个家庭中有两个小孩,已知其中有一个是女孩,则这时另一个小孩是男孩的概率为(假定一个小孩是男孩还是女孩是等可能的)( ) 一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}(记…二、计算题解.设事件A表示“甲取到的数比乙大”,设事件B表示“甲取到的数是5的倍数”.则显然所要求的概率为P(A|B).1. 从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率.根据公式…条件概率专题一、知识点? 只须将无条件概率P(B)替换为条件概率P(BA),即可类比套用概率满足的三条公理及其它性质 ? 在古典概型中---P(BA) P(AB) (AB)事件AB包括的基本事件(样本点)数事件A包括的基本事件(样本点)数P(A)…1条件概率例题山东省莱芜市第一中学刘志例1 一个家庭中有两个小孩,已知其中有一个是女孩,则这时另一个小孩是男孩的概率为(假定一个小孩是男孩还是女孩是等可能的)( )一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}(记事件A为“其中一个是女孩”,事件B为“另一个是男孩”,则A={(男,女),(女,男),(女,女)},B={(男,女),(女,男),(男,男)},AB={(男,女),(女,男)}(211131 ,P(AB)= 或P(AB)= C2 442221P(AB)22于是P(B|A)= 33P(A)4解法1:可知P(A)=解法2:事件A包括{(男,女),(女,男),(女,女)},即n(A)=3事件AB包括{(男,女),(女,男)}(即n(AB)=2所以P(B|A)=n(AB)2 n(A)3例2 一个家庭中有两个小孩,已知其中有一个是男孩,则这时另一个小孩是男孩的概率为(假定一个小孩是男孩还是女孩是等可能的)( )2一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}(记事件A为“其中一个是男孩”,事件B为“另一个也是男孩”,则A={(男,女),(女,男),(男,男)},B={(男,女),(女,男),(男,男)},AB={(男,男)}(解法1:可知P(A)=31111,P(AB)= ,或P(AB)= 4422411P(AB)41P(B|A)= 33P(A)4解法2:事件A包括{(男,男),(男,女),(女,男)},即n(A)=3事件AB包括{(男,男)}(即n(AB)=1所以P(B|A)=n(AB)1n(A)32条件概率例题山东省莱芜市第一中学刘志例1 一个家庭中有两个小孩,已知其中有一个是女孩,则这时另一个小孩是男孩的概率为(假定一个小孩是男孩还是女孩是等可能的)( ) 一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}(记…3条件概率例题山东省莱芜市第一中学刘志例1 一个家庭中有两个小孩,已知其中有一个是女孩,则这时另一个小孩是男孩的概率为(假定一个小孩是男孩还是女孩是等可能的)( ) 一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}(记…条件概率例题山东省莱芜市第一中学刘志例1 一个家庭中有两个小孩,已知其中有一个是女孩,则这时另一个小孩是男孩的概率为(假定一个小孩是男孩还是女孩是等可能的)( ) 一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}(记…百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆4。
条件概率练习题
2.2.1条件概率练习题(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--条件概率练习题1.已知P(B|A)=103,P(A)=51,则P(AB)=( ) A .21 B.23 C .32 D.503 2.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P(A|B)=( ) A.21 B.31 C.41 D.813.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又 下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258 B.21 C.83 D.43 4.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次 抽到白球的概率为( ) A.53 B.43 C.21 D. 1035.6位同学参加百米短跑初赛,赛场有6条跑道,则已知甲同学排在第一跑道,乙同 学排在第二跑道的概率( ) A.52 B.51 C.92 D. 736.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率( ) A.52 B.51 C.21 D. 737.福娃是2008年北京第二十九届奥运会的吉祥物,每组福娃都由“贝贝”“晶晶” “欢欢”“迎迎”和“妮妮”这五个福娃组成,甲、乙两人随机地从一组五个福娃中选 取一个留作纪念。
按甲先选乙再选的顺序不放回的选择,则在他俩选择的福娃中“贝贝” 和“晶晶”一只也没有被选中的概率是( ) A.101 B.53 C.103 D.528.任意向(0,1)区间上投掷一个点,用x 表示该点的坐标,则 ={x|0<x<1},事件 A={x|0<x<},B={x|<x<1},P (B|A )=___________________________9.设n 件产品中含有m 件废品,今从中任取两件,在已知其中一件是废品的前提下, 另一件也是废品的概率为________________________10.根据历年气象资料统计,某地四月份刮东风的概率是308,既刮东风又下雨的概率 是307。
条件概率例题
20 道条件概率例题例题1袋中有 5 个红球和 3 个白球,从中不放回地依次摸出两个球。
已知第一次摸出红球,求第二次摸出红球的概率。
解:第一次摸出红球后,袋中还有 4 个红球和 3 个白球,所以第二次摸出红球的概率为4/7。
例题2一个盒子里有 6 个黑球和 4 个白球,从中随机取出两个球。
若已知第一个球是黑球,求第二个球也是黑球的概率。
解:第一个球是黑球后,盒子里还有 5 个黑球和 4 个白球,所以第二个球是黑球的概率为5/9。
例题3有三张卡片,分别写着数字1、2、3。
从中随机抽取一张,放回后再抽取一张。
已知第一次抽到数字2,求第二次抽到数字 3 的概率。
解:因为是有放回抽取,所以第一次抽到数字 2 后,第二次抽取时每张卡片被抽到的概率仍为1/3,所以第二次抽到数字 3 的概率为1/3。
例题4一批产品中有合格品和次品,合格品率为80%。
从中随机抽取一件产品,已知是合格品,求该产品是一等品的概率(设合格品中一等品率为60%)。
解:由条件概率公式,所求概率为合格品中的一等品率,即60%。
例题5箱子里有红色球和蓝色球,红色球占总数的40%。
从箱子里随机取出一个球,已知是红色球,求这个球上标有数字 5 的概率(设红色球中有30%标有数字5)。
解:根据条件概率公式,所求概率为红色球中标有数字 5 的比例,即30%。
例题6某班级男生占总人数的60%。
在男生中,喜欢数学的占70%。
从班级中随机抽取一名学生,已知是男生,求该学生喜欢数学的概率。
解:所求概率为男生中喜欢数学的比例,即70%。
例题7有两个盒子,盒子 A 中有 3 个红球和 2 个白球,盒子 B 中有 4 个红球和3 个白球。
从盒子 A 中随机取出一个球放入盒子B,然后从盒子 B 中随机取出一个球。
已知从盒子 B 中取出的是红球,求从盒子 A 中取出的也是红球的概率。
解:设从盒子 A 中取出红球为事件A,从盒子 B 中取出红球为事件B。
先求P(A) = 3/5,P(B|A) = (4 + 1)/(7 + 1) = 5/8。
条件概率练习题
条件概率练习题1. 假设事件A和事件B是两个独立的事件,它们各自发生的概率分别是P(A)=0.3和P(B)=0.4。
计算事件A和事件B同时发生的概率。
2. 如果事件A和事件B不是独立的,已知P(A)=0.5,P(B)=0.6,以及P(AB)=0.2,求事件B在事件A发生的条件下发生的概率。
3. 某工厂生产的产品中,有5%的产品是次品。
如果从这批产品中随机抽取10件,计算恰好有2件次品的概率。
4. 已知一个家庭有两个孩子,其中一个是男孩。
求这个家庭有两个男孩的概率。
5. 某城市发生地震的概率是0.01,如果这个城市发生了地震,那么发生海啸的概率是0.8。
求这个城市发生海啸的概率。
6. 假设有三扇门,其中一扇门后有奖品,另外两扇门后是空的。
你选择了一扇门,但主持人知道每扇门后的情况,并打开了另一扇没有奖品的门。
现在主持人问你,是否要改变你的选择。
求改变选择后赢得奖品的概率。
7. 某公司有30%的员工是女性,70%的员工是男性。
如果随机抽取一名员工,发现他是部门经理,已知部门经理中有40%是女性,求这名员工是女性的概率。
8. 假设一个袋子里有5个红球和3个蓝球。
如果从袋子里随机取出一个球,发现是红球,计算袋子里剩下4个红球的概率。
9. 某医院对患者进行两种不同的疾病测试,测试A和测试B。
已知测试A的准确率是90%,测试B的准确率是95%。
如果一个患者同时进行了这两种测试,并且两种测试都显示他患病,求他真正患病的概率。
10. 假设有一对夫妇,他们的第一个孩子是女孩。
求他们第二个孩子也是女孩的概率。
11. 某公司有100名员工,其中10名是经理。
如果随机选择一名员工进行培训,发现他已经是经理,求这名员工是经理的概率。
12. 某彩票的中奖概率是1/1000,如果一个人购买了10张彩票,计算他中奖至少一次的概率。
13. 某城市在一年中有30天下雨,如果今天下雨了,那么明天下雨的概率是0.4。
求明天下雨的概率。
条件概率经典习题(含解析)
一.选择题(共11小题)1.从5名女生2名男生中任选3人参加学校组织的演讲比赛,则在女生甲被选中的条件下,男生至少一人被选中的概率是()A.B.C.D.2.已知P(B)=0.3,P(B|A)=0.9,P(B|)=0.2,则P()=()A.B.C.D.3.从某班包含甲、乙的5名班干部中选出3人参加学校的社会实践活动,在甲被选中的情况下,乙也被选中的概率为()A.B.C.D.4.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(B|A),P(A|B)分别等于()A.,B.,C.,D.,5.已知P(A)>0,P(B)>0,P(C)>0,下列说法错误的是()A.若事件A,B独立,则P(A)=P(A|B)B.若事件A,B互斥,则P(B|A)=P(A|B)C.若事件A,B独立,则P(C|AB)=P(C|A)P(C|B)D.若事件A,B互斥,事件A,C独立,事件B,C独立,则P(C|(A+B))=P(C|A).6.6道题目中有5道理科题目和1道文科题目,如果不放回地依次抽取2道题目,则在第1次抽到理科题目的条件下,第2次抽到理科题目的概率为()A.B.C.D.7.盒子里有1个红球与n个白球,随机取球,每次取1个球,取后放回,共取2次.若至少有一次取到红球的条件下,两次取到的都是红球的概率为,则n=()A.3B.4C.6D.88.甲袋中有4个红球,4个白球和2个黑球;乙袋中有3个红球,3个白球和4个黑球.先从甲袋中随机取出一球放入乙袋,分别以A,B,C表示事件“取出的是红球”、“取出的是白球”、“取出的是黑球”;再从乙袋中随机取出一球,以D表示事件“取出的是红球”,则P(D)=()A.B.C.D.9.已知桌上放有3本语文书和3本数学书.小明现从这6本书中任意抽取3本书,A表示事件“至少抽到1本数学书”,B表示事件“抽到语文书和数学书”,则P(B|A)=()A.B.C.D.10.设A,B为两个事件,已知P(B)=0.4,P(A)=0.5,P(B|A)=0.3,则P(A|B)=()A.0.24B.0.375C.0.4D.0.511.袋中有除颜色外完全相同的5个球,其中3个红球和2个白球.现从袋中不放回地连取两个.已知第一次取得红球,则第二次取得白球的概率为()A.0.4B.0.5C.0.6D.0.7二.填空题(共4小题)12.从﹣2,﹣1,1,2,3这5个数中任取2个不同的数,记“两数之积为正数”为事件A,“两数均为负数为事件B.则P(B|A)=.13.一个数学兴趣小组共有2名男生3名女生,从中随机选出2名参加交流会,在已知选出的2名中有1名是男生的条件下,另1名是女生的概率为.14.已知随机事件A,B,P(A)=,P(B)=,P(A|B)=,则=.15.已知,,则P(B)=.参考答案与试题解析一.选择题(共11小题)1.从5名女生2名男生中任选3人参加学校组织的演讲比赛,则在女生甲被选中的条件下,男生至少一人被选中的概率是()A.B.C.D.解答:解:设女生甲被选中为事件A,事件A表示女生甲被选中后再从剩下的6人中选2人,故,设男生至少一人被选中为事件B,事件AB表示女生甲被选中后再选2男生或1男生和1女生(从剩余4女生中选),故,则在女生甲被选中的条件下,男生至少一人被选中的概率是.故选:C.2.已知P(B)=0.3,P(B|A)=0.9,P(B|)=0.2,则P()=()A.B.C.D.解答:解:P(B)=P(A)P(B|A)+,∵P(B)=0.3,P(B|A)=0.9,P(B|)=0.2,∴0.3=P(A)×0.9+[(1﹣P(A)]×0.2,解得P(A)=,∴.故选:A.3.从某班包含甲、乙的5名班干部中选出3人参加学校的社会实践活动,在甲被选中的情况下,乙也被选中的概率为()A.B.C.D.解答:解:令事件A为甲被选中的情况,事件B为乙被选中的情况,故P(A)=,P(AB)=,故P(B|A)=.故选:A.4.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(B|A),P(A|B)分别等于()A.,B.,C.,D.,解答:解:由题意知:事件AB=“三个点数都不同且至少出现一个6点”,∵,,,∴,.故选:B.5.已知P(A)>0,P(B)>0,P(C)>0,下列说法错误的是()A.若事件A,B独立,则P(A)=P(A|B)B.若事件A,B互斥,则P(B|A)=P(A|B)C.若事件A,B独立,则P(C|AB)=P(C|A)P(C|B)D.若事件A,B互斥,事件A,C独立,事件B,C独立,则P(C|(A+B))=P(C|A).解答:解:A,若事件A,B独立,则P(A|B)===P(A),故A正确,B,若事件A,B互斥,则P(AB)=0,则P(B|A)==0,P(A|B)==0,∴P(B|A)=P(A|B),∴B正确,C,若事件A,B独立,则P(AB)=P(A)P(B),∴P(C|(AB))===+≠P(C|A)P(C|B),故C错误,D,∵事件A,B互斥,∴P(A+B)=P(A)+P(B),∵事件A,C独立,事件B,C独立,∴P(AC)=P(A)P(C),P(BC)=P(B)P(C),∴P(C|(A+B))=====P(C)==P(C|A),故D正确.故选:C.6.6道题目中有5道理科题目和1道文科题目,如果不放回地依次抽取2道题目,则在第1次抽到理科题目的条件下,第2次抽到理科题目的概率为()A.B.C.D.解答:解:由题意,6道题目中有5道理科题目和1道文科题目,不放回地抽取两次,设第一次抽到理科题目为事件A,第二次抽到理科题目为事件B,则,P(AB)=,则P(B|A)=.故选:B.7.盒子里有1个红球与n个白球,随机取球,每次取1个球,取后放回,共取2次.若至少有一次取到红球的条件下,两次取到的都是红球的概率为,则n=()A.3B.4C.6D.8解答:解:设事件A为至少有一次取到红球,事件B为两次都取到红球,由每次取后放回知,两次都取到白球的概率为,故,,故n=4.故选:B.8.甲袋中有4个红球,4个白球和2个黑球;乙袋中有3个红球,3个白球和4个黑球.先从甲袋中随机取出一球放入乙袋,分别以A,B,C表示事件“取出的是红球”、“取出的是白球”、“取出的是黑球”;再从乙袋中随机取出一球,以D表示事件“取出的是红球”,则P(D)=()A.B.C.D.解答:解:由题意可得,P(A)=,P(B)=,P(C)=,故P(D)=P(AD)+P(BD)+P(CD)=.故选:C.9.已知桌上放有3本语文书和3本数学书.小明现从这6本书中任意抽取3本书,A表示事件“至少抽到1本数学书”,B表示事件“抽到语文书和数学书”,则P(B|A)=()A.B.C.D.解答:解:根据题意可得,,由条件概率的公式得.故选:D.10.设A,B为两个事件,已知P(B)=0.4,P(A)=0.5,P(B|A)=0.3,则P(A|B)=()A.0.24B.0.375C.0.4D.0.5解答:解:设A,B为两个事件,由已知P(A)=0.5,P(B|A)=0.3,得P(AB)=P (B|A)⋅P(A)=0.15,所以,故选:B.11.袋中有除颜色外完全相同的5个球,其中3个红球和2个白球.现从袋中不放回地连取两个.已知第一次取得红球,则第二次取得白球的概率为()A.0.4B.0.5C.0.6D.0.7解答:解:袋中有除颜色外完全相同的5个球,其中3个红球和2个白球.现从袋中不放回地连取两个.设事件A表示“第一次取到红球”,事件B表示“第二次取到白球”,P(A)=,P(AB)==,∴第一次取得红球的条件下第二次取得白球的概率为:P(B|A)===0.5.故选:B.二.填空题(共4小题)12.从﹣2,﹣1,1,2,3这5个数中任取2个不同的数,记“两数之积为正数”为事件A,“两数均为负数为事件B.则P(B|A)=.解答:解:从﹣2,﹣1,1,2,3这5个数中任取2个不同的数有种取法,其中满足两数之积为正数的有种取法,满足两数之积为正数且两数均为负数的有种取法,所以,,所以.故答案为:13.一个数学兴趣小组共有2名男生3名女生,从中随机选出2名参加交流会,在已知选出的2名中有1名是男生的条件下,另1名是女生的概率为.解答:解:若A表示“2名中至少有1名男生”,B表示“2名中有1名女生”,所以2名中有1名是男生的条件下,另1名是女生的概率为,而,,故.故答案为:.14.已知随机事件A,B,P(A)=,P(B)=,P(A|B)=,则=.解答:解:依题意得,所以,故,所以.故答案为:.15.已知,,则P(B)=.解答:解:由题意得,而,得,而,解得,故答案为:.。
条件概率题库题
条件概率题库一、单选题1.10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为()A.35B.23C.34D.4152.已知某种产品的合格率是79,合格品中的一级品率是45.则这种产品的一级品率为()A.2845B.3536C.45D.233.接种疫苗是预防和控制传染病最经济、有效的公共卫生干预措施.根据实验数据,人在接种某种病毒疫苗后,有80%不会感染这种病毒,若有4人接种了这种疫苗,则最多1人被感染的概率为()A.512625B.256625C.113625D.16254.某大学进行“羽毛球”、“美术”、“音乐”三个社团选拔.某同学经过考核选拔通过该校的“羽毛球”“美术”、“音乐”三个社团的概率依次为1,,2a b,已知三个社团中他恰好能进入两个的概率为15,假设该同学经过考核通过这三个社团选拔成功与否相互独立,则该同学一个社团都不能进入的概率为()A.12B.35C.34D.3105.电视机的使用寿命与显像管开关的次数有关,某品牌的电视机的显像管开关了10000次还能继续使用的概率是0.8,开关了15000次后还能继续使用的概率是0.6,则已经开关了10000次的电视机显像管还能继续使用到15000次的概率是()A.0.20B.0.48C.0.60D.0.756.甲、乙两人进行围棋比赛,若其中一人连续赢两局,则比赛结束.已知每局比赛结果相互独立,且每局甲胜的概率为0.6(没有平局),若比赛在第三局结束,则甲获胜的概率为()A.0.6B.0.4C.0.36D.0.1447.已知盒子里有10个球(除颜色外其他属性都相同),其中4个红球,6个白球甲、乙两人依次不放回地摸取1个球,在甲摸到红球的情况下,乙摸到红球的概率为()A.13B.25C.35D.2158.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13,那么甲、乙两人至少有一人拿到该技能证书的概率是()A.1315B.1115C.23D.359.把一枚骰子连续抛掷两次,记事件M为“两次所得点数均为奇数”,N为“至少有一次点数是5”,则()P N M等于()A.23B.59C.12D.1310.围棋起源于中国,据先秦典籍《世本》记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,甲、乙两人进入最后决赛.比赛采取五局三胜制,即先胜三局的一方获得比赛冠军,比赛结束.假设每局比赛甲胜乙的概率都为23,且各局比赛的胜负互不影响,则在不超过4局的比赛中甲获得冠军的概率为()A.19B.827C.1627D.178111.某单位举行知识竞赛,给每位参赛选手设计了两道题目,已知某单位参赛者答对每道题的概率均为4 5,且各次答对与否相互独立,则该参赛者答完两道题目后至少答对一题的概率为()A.45B.1625C.125D.242512.某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为()A.0.24B.0.36C.0.6D.0.8413.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是()A.12B.13C.14D.1614.一个盒子中装有6个完全相同的小球,将它们进行编号,号码分別为1、2、3、4、5、6,从中不放回地随机抽取2个小球,将其编号之和记为S.在已知S为偶数的情况下,S能被3整除的概率为()A.14B.13C.512D.2315.袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为()A.0.0324B.0.0434C.0.0528D.0.056216.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为()A .0.25B .0.30C .0.31D .0.3517.盒中有10个零件,其中8个是合格品,2个是不合格品,不放回地抽取2次,每次抽1个.已知第一次抽出的是合格品,则第二次抽出的是合格品的概率是()A .15B .29C .79D .71018.袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为()A .3/5B .3/4C .1/2D .3/1019.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询这三个项目,每人限报其中一项,记事件A 为“恰有2名同学所报项目相同”,事件B 为“只有甲同学一人报关怀老人项目”,则()|P B A =()A .16B .13C .23D .5620.长春气象台统计,7月15日净月区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,设事件A 为下雨,事件B 为刮风,那么()|P A B =()A .12B .34C .25D .3821.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于()A .49B .29C .12D .1322.甲、乙、丙、丁四名同学分别从篮球、足球、排球、羽毛球四种球类项目中选择一项进行活动,记事件A 为“四名同学所选项目各不相同”,事件B 为“只有甲同学选羽毛球”,则()|P A B =()A .89B .29C .38D .3423.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()P B A =().A .12B .13C .14D .1524.已知6个高尔夫球中有2个不合格,每次任取1个,不放回地取两次.在第一次取到合格高尔夫球的条件下,第二次取到不合格高尔夫球的概率为()A .35B .25C .23D .31025.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830,则在吹东风的条件下下雨的概率为()A .89B .25C .911D .81126.现从4名男医生和3名女医生中抽取两人加入“援鄂医疗队”,用A 表示事件“抽到的两名医生性别相同”,B 表示事件“抽到的两名医生都是女医生”,则()P B A =()A .13B .47C .23D .3427.设A ,B 为两个事件,且()0P A >,若12(),()33P AB P A ==,则()|P B A 等于()A .49B .19C .29D .1228.2020年初,我国派出医疗小组奔赴相关国家,现有四个医疗小组甲、乙、丙、丁,和有4个需要援助的国家可供选择,每个医疗小组只去一个国家,设事件A =“4个医疗小组去的国家各不相同”,事件B =“小组甲独自去一个国家”,则P (A |B )=()A .29B .13C .49D .5929.一个不透明的袋子中,放有大小相同的5个小球,其中3个黑球,2个白球,如果不放回的依次取出2个球.在第一次取出的是黑球的条件下,第二次取出的是白球的概率是()A .12B .310C .35D .2530.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出次品的条件下,第二次摸到正品的概率是()A .35B .25C .59D .2331.近几年新能源汽车产业正持续快速发展,动力蓄电池技术是新能源汽车的核心技术.已知某品牌新能源汽车的车载动力蓄电池充放电次数达到800次的概率为90%,充放电次数达到1000次的概率为36%.若某用户的该品牌新能源汽车已经经过了800次的充放电,那么他的车能够达到充放电100次的概率为()A .0.324B .0.36C .0.4D .0.5432.甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市为雨天的概率为()A .0.6B .0.7C .0.8D .0.6633.一袋中共有10个大小相同的黑球和白球,若从袋中任意摸出2个球,至少有1个白球的概率为1315,现从中不放回地取球,每次取1球,取2次,若已知第2次取得白球的条件下,则第1次取得黑球的概率为()A .49B .59C .79D .131834.甲、乙、丙、丁四名同学报名参加4100⨯接力比赛,记事件A 为“甲同学跑第一棒”,事件B 为“乙同学跑第二棒”,则()|P B A 的值为()A .14B .13C .34D .1235.从0,1,2,3,4中任取2个不同的数,则在“取到的2个数之和为偶数”的前提下“取到的2个数均为奇数”的概率为()A .14B .35C .16D .31036.已知()310P AB =,()35P A =,则()|P B A 等于()A .950B .12C .910D .1437.端午节是我国的传统节日,每逢端午家家户户都要吃粽子,现有5个粽子,其中3个咸蛋黄馅2个豆沙馅,随机取出2个,事件A =“取到的2个为同一种馅”,事件B =“取到的2个都是豆沙馅”,则()P B A =()A .14B .34C .110D .31038.从1,2,3,4,5,6,7中任取两个不同的数,事件A 为“取到的两个数的和为偶数”,事件B 为“取到的两个数均为偶数”,则()P B A =()A .47B .12C .37D .1339.某学校高三(5)班要从8名班干部(其中5名男生,3名女生)中选取3人参加学校优秀班干部评选,事件:A 男生甲被选中,事件:B 有两名女生被选中,则()P B A =()A .18B .17C .38D .3740.根据历年气象统计资料,某市七月份吹南风的概率为931,下雨的概率为1131,既吹南风又下雨的概率为831,则在吹南风的条件下下雨的概率为()A .89B .811C .25D .91141.一副扑克牌去掉大小王还有52张,充分洗牌后随机不放回的依次摸出2张牌,在第1次摸出黑桃的条件下,第2次也摸出黑桃的概率是()A .113B .117C .417D .122142.若某地区刮风的概率为215,下雨的概率为415,即刮风又下雨的概率为110,则在下雨天里,刮风的概率为()A .12B .34C .38D .822543.假定男女出生率相等,某个家庭有两个小孩,已知该家庭至少有一个女孩,则两个小孩都是女孩的概率是()A .12B .13C .14D .1644.在[]0,2上有两个连续型随机数x ,y ,记事件A :x y >,事件B :2x y >,则()|P B A =()A .512B .1124C .56D .111245.抛掷两枚均匀骰子,观察向上的点数,记事件A 为“两个点数不同”,事件B 为“两个点数中最大点数为4”,则()P B A =()A .112B .16C .15D .5646.小红的妈妈为小红煮了7个汤圆,其中3个黑芝麻馅,4个五仁馅,小红随机取出两个,事件A =“取到的两个是同一种馅”,事件B =“取到的两个都是黑芝麻馅”()|P B A =()A .23B .13C .34D .1647.抛掷一颗质地均匀的骰子的基本事件构成集合{}123456S =,,,,,,令事件{}13,5A =,,{}1,2,4,5,6B =,则()P A B 的值为()A .13B .25C .12D .3548.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“─”和阴爻“--”,如图就是一重卦.在所有重卦中随机取一重卦,记事件A =“取出的重卦中至少有2个阴爻”,事件B =“取出的重卦中恰有3个阳爻”.则()P B A =()A .516B .1132C .2132D .205749.现有3道理科题和2道文科题共5道题,若不放回地依次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为().A .18B .14C .25D .1250.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不完全相同”,事件B 为“小赵独自去一个景点”,则()|P B A =()A .37B .47C .57D .6751.已知某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,则现为20岁的这种动物活到25岁的概率是()A .0.6B .0.5C .0.4D .0.3252..三台中学实验学校现有三门选修课,甲、乙、丙三人每人只选修一门,设事件A 为“三人选修的课程都不同”,B 为“甲独自选修一门”,则概率P (A |B )等于()A .49B .12C .13D .2953.从1,2,3,4,5,6,7中取出两个不同数,记事件A 为“两个数之和为偶数”,事件B 为“两个数均为偶数”,则(|)P B A=()A.13B.17C.37D.1254.已知盒中装有3只螺口灯池与9只卡口灯泡,这些灯泡的外形都相同且灯口向下放若,现需要一只卡口灯泡,电工师傅每次从中任取一只且不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为()A.14B.944C.911D.7955.某单位在一次春游踏青中,开展有奖答题活动.从2道文史题和3道理科题中不放回依次抽取2道题,在第一次抽到理科题的前提下第二次抽到理科题的概率为()A.925B.625C.310D.1256.已知盒中装有大小形状完全相同的2个红球、4个白球、6个黑球.甲每次从中任取一球且不放回,则在他第一次拿到的是白球的前提下,第二次拿到黑球的概率为()A.16B.13C.611D.1257.设A,B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为()A.35B.310C.25D.710二、填空题58.甲、乙两名乒乓球运动员进行乒乓球单打比赛,根据以往比赛的胜负情况知道,每一局甲胜的概率为3 4,乙胜的概率为14,如果比赛采用“五局三胜”制(先胜三局者获胜),则甲获胜的概率为______.59.投掷红、蓝两颗均匀的骰子,设事件A:蓝色骰子的点数为5或6;事件B:两骰子的点数之和大于8,则已知事件B发生的条件下事件A发生的概率()P A B=______.60.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时乙得分的概率为0.6,各球的结果相互独立.在某局打成10:10后,甲先发球,乙以13:11获胜的概率为______. 61.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.3,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为___________.62.A ,B ,C ,D 四人之间进行投票,各人投自己以外的人1票的概率都是13(个人不投自己的票),则仅A 一人是最高得票者的概率为________.63.现有3个灯泡并联而成的闭合电路,如果在某段时间内每个灯泡能正常照明的概率都是0.9,那么在这段时间内该电路上的灯泡至少有两个能正常照明的概率是___________.64.一个医疗小队有3名男医生,4名女医生,从中抽出两个人参加一次医疗座谈会,则已知在一名医生是男医生的条件下,另一名医生也是男医生的概率是______65.如图所示,已知一个系统由甲、乙、丙、丁4个部件组成,当甲、乙都正常工作,或丙、丁都正常工作时,系统就能正常工作.若每个部件的可靠性均为()01r r <<,而且甲、乙、丙、丁互不影响,则系统的可靠度为___________.66.甲乙两人进行乒乓球比赛,约定先连胜两局者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛相互独立,则恰好进行了4局比赛结束且甲赢得比赛的概率为______.67.暑假期间,甲外出旅游的概率是14,乙外出旅游的概率是15,假定甲乙两人的行动相互之间没有影响,则暑假期间两人中至少有一人外出旅游的概率是__________.68.已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为_____.69.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域,分别为华为高性能服务器芯片"鲲鹏920”、清华大学“面向通用人工智能的异构融合天机芯片”、“特斯拉全自动驾驶芯片”、寒武纪云端AI 芯片“思元270”、赛灵思“Versal 自适应计算加速平台”:现有1名学生从这15项“世界互联网领先科技成果”中分别任选3项进行了解,在其中1项选择华为高性能服务器芯片“鲲鹏920”的条件下,选出的3项中至少有2项属于芯片领域的概率为___.70.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A 为“4个人去的景点不相同”,事件B 为“小赵独自去一个景点”,则()P A B =________.71.如果生男孩和生女孩的概率相等,则有3个小孩的家庭中女孩多于男孩的概率为________.72.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,将T 2,T 3两个元件并联后再和T 1串联接入电路,如图所示,则电路不发生故障的概率为________.73.若()34P A =,()14P B =,()12P AB =,则()P B A =______.74.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取两瓶,若取的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率为____________.75.设某种动物从出生算起活到20岁以上的概率为0.9,活到25岁以上的概率为0.5,现有一个20岁的这种动物,则它能活到25岁以上的概率为____.76.已知某种疾病的患病率为0.5%,在患该种疾病的条件下血检呈阳性的概率为99%,则患该种疾病且血检呈阳性的概率为______.77.伟大出自平凡,英雄来自人民.在疫情防控一线,北京某大学学生会自发从学生会6名男生和8名女生骨干成员中选出2人作为队长率领他们加入武汉社区服务队,用A 表示事件“抽到的2名队长性别相同”,B 表示事件“抽到的2名队长都是男生”,则()|P B A =______.78.袋中有5个大小完全相同的球,其中2个黑球,3个白球.不放回地连续取两次,则已知在第一次取到黑球的条件下,第二次取到白球的概率为__________.79.口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次仍取得红球的概率为______.80.从标有1,2,3,4,5的五张卡中,依次抽出2张(取后不放回),则在第一次抽到偶数的情况下,第二次抽到奇数的概率为________;81.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A ,“第2次拿出的是白球”为事件B ,则()P B A 是________82.一个袋中装有外形相同的6个红球和4个白球,不放回地依次摸出2个球,记第一次摸出红球为事件A ,第二次摸出红球为事件B ,则()P B A =______.83.袋中有大小相同的4个红球,6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球,则在前两次取出的是白球的前提下,第三次取出红球的概率为________.84.从装有3个红球2个白球的袋子中先后取2个球,取后不放回,在第一次取到红球的条件下,第二次取到红球的概率为______.85.已知()12P B A =,3()10P AB =,则()P A =__________.86.已知纸箱中装有6瓶消毒液,其中4瓶为合格品,2瓶为不合格品,现从纸箱中任取一瓶消毒液,每瓶消毒液被取到的可能性相同,不放回地取两次,若用A 表示“第一次取到不合格的消毒液”,用B 表示“第二次仍取到不合格的消毒液”,则()P BA =∣__________.87.某地区气象台统计,该地区下雨的概率是415,刮风的概率是25,既刮风又下雨的概率为110,现该地区开始刮风,则该地区会下雨的概率为__________.88.某盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为_______.89.据统计,连续熬夜48小时诱发心脏病的概率为0.055,连续熬夜72小时诱发心脏病的概率为0.19.现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为______.90.一只袋内装有大小相同的3个白球,4个黑球,从中依次取出2个小球,已知第一次取出的是黑球,则第二次取出白球的概率是____.91.把一枚均匀的硬币连续抛掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,则()P B A =______.92.某班有6名班干部,其中男生4人,女生2人,任选3人参加学校组织的义务植树活动,设“男生甲被选中”为事件A ,“女生乙被选中”为事件B .则()|P B A =________.93.加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为__________.94.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率为______________.95.为了营造勤奋读书、努力学习、奋发向上的文化氛围,提高学生的阅读兴趣,某校开展了“朗读者”闯关活动,各选手在第一轮要进行诗词朗读的比拼,第二轮进行诗词背诵的比拼.已知某学生通过第一关的概率为0.8,在已经通过第一关的前提下通过第二关的概率为0.5,则该同学两关均通过的概率为______.96.一个家庭中有三个小孩,假定生男、生女是等可能的.已知这个家庭中有一个是男孩,则至少有一个女孩的概率是________.三、解答题97.袋中有10个大小、材质都相同的小球,其中红球3个,白球7个.每次从袋中随机摸出1个球,摸出的球不再放回.求:(Ⅰ)第一次摸到红球的概率;(Ⅱ)在第一次摸到红球的条件下,第二次也摸到红球的概率;(Ⅲ)第二次摸到红球的概率.98.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.四、双空题99.根据某地区气象台统计,该地区下雨的概率是35,刮风的概率为12,既刮风又下雨的概率为110,则在刮风天里,下雨的概率为__________,在下雨天里,刮风的概率为__________.100.甲袋中有3个红球,2个白球和1个黑球,乙袋中有4个红球,1个白球和1个黑球(除颜色外,球的大小、形状完全相同).先从甲袋中随机取出1球放入乙袋,再从乙袋中随机取出1球.分别以1A ,2A ,3A 表示由甲袋取出的球是红球,白球和黑球的事件,以B 表示由乙袋取出的球是红球的事件,则P ()1|P B A =______,()P B =______.。
条件概率练习题
条件概率练习题一、选择题1. 条件概率P(A|B)表示:A. 事件A发生的条件概率B. 事件B发生的条件概率C. 在事件B发生的条件下,事件A发生的条件概率D. 事件A和事件B同时发生的概率2. 如果事件A和事件B是互斥的,那么P(A|B)等于:A. 0B. 1C. P(A)D. P(B)3. 已知P(A) = 0.3,P(B) = 0.4,P(A∩B) = 0.2,那么P(A|B)等于:A. 0.5B. 0.4C. 0.3D. 0.64. 贝叶斯定理表明了:A. 事件的独立性B. 事件的互斥性C. 条件概率的计算方法D. 事件的必然性5. 如果两个事件A和B相互独立,那么P(A∩B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) × P(B)D. P(A) / P(B)二、计算题6. 已知事件A和事件B的概率分别为P(A) = 0.45,P(B) = 0.55。
如果事件A和事件B同时发生的概率为P(A∩B) = 0.25,求在事件A发生的条件下事件B发生的条件概率P(B|A)。
7. 假设在一个班级中,有60%的学生通过了数学考试,40%的学生通过了物理考试,同时通过数学和物理考试的学生占30%。
求:(a) 一个学生通过了物理考试但没有通过数学考试的概率。
(b) 一个学生通过了数学考试的条件下,他通过了物理考试的条件概率。
8. 假设在一个城市中,有70%的居民拥有汽车,30%的居民拥有游艇。
同时拥有汽车和游艇的居民占20%。
求:(a) 一个居民拥有游艇但没有汽车的概率。
(b) 一个居民拥有汽车的条件下,他拥有游艇的条件概率。
三、应用题9. 在一个小镇上,有两家医院。
医院A的诊断准确率为90%,医院B的诊断准确率为80%。
小镇上患某种罕见病的居民占总人口的1%。
如果一个居民被医院A诊断为患病,求他实际上患病的概率。
10. 假设在一次抽奖活动中,有三类奖品:一等奖、二等奖和三等奖。
条件概率经典例题 条件概率问题
条件概率经典例题条件概率问题游戏的困惑假设你在进行一个游戏节目。
现给三扇门供你选择:一扇门后面是一辆轿车,另两扇门后面分别都是一头山羊。
你的目的当然是想得到比较值钱的轿车,但你却并不能看到门后面的真实情况。
主持人先让你作第一次选择。
在你选择了一扇门后,知道其余两扇门后面是什么的…条件概率练习题一、选择题1.下列式子成立的是( )A.P(A|B)=P(B|A) B.0选修2-3 2.2.1 条件概率1.下列式子成立的是( )A.P(A|B)=P(B|A) B.0游戏的困惑假设你在进行一个游戏节目。
现给三扇门供你选择:一扇门后面是一辆轿车,另两扇门后面分别都是一头山羊。
你的目的当然是想得到比较值钱的轿车,但你却并不能看到门后面的真实情况。
主持人先让你作第一次选择。
在你选择了一扇门后,知道其余两扇门后面是什么的主持人,打开了另一扇门给你看,而且,当然,那里有一头山羊。
现在主持人告诉你,你还有一次选择的机会。
那么请你考虑一下,你是坚持第一次的选择不变,还是改变第一次的选择,才更有可能得到轿车?《广场杂志》刊登出这个题目后,竟引起全美大学生的举国辩论,许多大学的教授们也参与了进来,真可谓盛况空前。
据《纽约时报》报道,这个问题也在中央情报局的办公室内和波斯湾飞机驾驶员的营房里引起了争论,它还被麻省理工学院的数学家们和新墨哥州洛斯阿拉莫斯实验室的计算机程序员们分析过。
现在,请你在学习完本节内容之后来回答一下这个有趣的问题。
解决困惑学习完本节知识之后,我们来看一下游戏中如何运用我们所学的知识去判断究竟是改变主意好还是不改变主意好。
分析与解答当采用不改变主意时,要想得到车,只有第一次选到车才可能。
而第一次选到车的概率为,因此不改变主意时选到车的概率为。
3311当采用改变主意时,要想得到车,只有第一次选到山羊才可能。
而第一次选到山羊的概率为,因此改变主意时选到车的概率为。
3322结论采用改变主意更好。
用事件表达为:设A1表示第一次选到轿车,A2表示第一次选到山羊,B表示最终选到轿车。
条件概率练习
7.1.1条件概率 一、选择题1.袋中有除颜色外完全相同的5个球,其中3个红球和2个白球.现从袋中不放回地连取两个.已知第一次取得红球,则第二次取得白球的概率为( ) A .0.4 B .0.5 C .0.6 D .0.72.10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为( )A .35B .23 C .34 D .4153.(多选)设M 、N 是两个随机事件,则下列等式一定成立的是( )A .()()()P M N P M P N ⋃=+B .()()1P MN P MN =-C .()()()|P MN P M P N M =D .()()()()||P N M P M P M N P N = 二、填空题4.已知甲每次来渝乘坐飞机和高铁的概率分别为0.6和0.4,飞机和高铁正点到达的概率分别为0.8和0.9,若甲已正点抵渝,则甲此次来渝乘坐高铁的概率为____________.5.为积极应对人口老龄化,2021年8月20日,全国人大常委会会议表决通过了关于修改人口与计划生育法的决定,提倡适龄婚育、优生优育,一对夫妻可以生育三个子女.若已知某个家庭有3个小孩,且其中至少有1个男孩的条件下,则第三个孩子是女孩的概率为___________.6.已知1(|)(|)2P A B P B A ==,3(4P A =,则()P B =________. 7.甲、乙两名运动员进行乒乓球比赛,比赛采取5局3胜制,已知每局比赛甲胜的概率为23,乙胜的概率为13,且各局比赛结果互不影响.若第一局乙胜,则本次比赛甲胜的概率为___________.8.已知()()()13P A P B P A B ===∣,则()P A B =∣___________. 9.某医院从3名医生和3名护士中选派4人参加志愿者服务,事件A 表示选派的4人中至少有2名医生,事件B 表示选派的4人中有2名护士,则()P B A =___________.三、解答题10.一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每一次取后不放回.若已知第一只是好的,求第二只也是好的的概率.11.袋中有10个大小、材质都相同的小球,其中红球3个,白球7个.每次从袋中随机摸出1个球,摸出的球不再放回.求:(Ⅰ)第一次摸到红球的概率;(Ⅰ)在第一次摸到红球的条件下,第二次也摸到红球的概率;(Ⅰ)第二次摸到红球的概率.。
条件概率练习
三、条件概率的性质
1、0≤P(B|A)≤1 ;
2、若B和C是两个互斥事件,则
P(B∪C|A)=P(B|A)+P(C|A)
思考一: 一个袋中装有 2 个黑球和 3 个白球,如果不放 回地抽取两个黑球, 记事件 “第一次抽到黑球” 为 A; 事件“第二次抽到黑球”为 B. ⑴分别求事件 A、B、AB 发生的概率; ⑵求 P ( B | A) 练习1. 掷两颗均匀骰子,已知第一颗掷出6点,问“掷 出点数之和不小于10”的概率是多少?
96% 45% 43.2%
练习3.考虑恰有两个小孩的家庭.若已知某一家有男孩, 求这家有两个男孩的概率;若已知某家第一个是男孩, 求这家有两个男孩(相当于第二个也是男孩)的概率. (假定生男生女为等可能)
解
Ω={ (男, 男) , (男 , 女) , (女 , 男) , (女 , 女) } A={(男, 男) },
2.某种动物出生之后活到20岁的概率为0.7,活到25岁的
概率为0.56,求现年为20岁的这种动物活到25岁的概率.
,某 种 诊 断 癌 症 的 试 1. 根 据 以 往 的 临 床 记 录 验具有如下的效果 :若以A 表示事件 "试 验 反 应 为阳性 " ,以 C 表 示 事 件 "被 诊 断 者 患 有 癌 症 ",则 有 P ( A C ) 0.95, P ( A C ) 0.95.现 在 对 自 然 人 群 进行普查 ,设 被 试 验 的 人 患 有 癌的 症概 率 为 0.005, 即 P (C ) 0.005, 试 求 P (C A).
4.全年级100名学生中,有男生(以事件A表示)80人, 女生20人; 来自北京的(以事件B表示)有20人,其中 男生12人,女生8人;免修英语的(以事件C表示)40 人中,有32名男生,8名女生。求
条件概率练习题
题目:一个袋子中有5个红球和3个蓝球,从袋子中随机取出3个球,问取出的3个球都 是红球的概率是多少?
题目:一个袋子中有4个红球和2个白球,从袋子中随机取出3个球,问取出的3个球颜 色不同的概率是多少?
题目:一个袋子中有3个红球和2个白球,从袋子中随机取出2个球,问取出的两个球颜 色相同的概率是多少?
多少?Leabharlann 题目:一个盒子中有5个红球和3个白球, 不放回地依次取出2个球,在第一次取 到红球后,第二次再取到白球的概率是
多少?
高难度题目
添加标题 添加标题 添加标题 添加标题
题目:一个盒子中有5个红球和3个白球,不放回地依次摸出2个球,在 第一次摸出红球后,求第二次再摸出红球的概率。
题目:一个袋子中有5个红球和3个白球,有放回地依次摸出2个球,在 第一次摸出红球后,求第二次再摸出红球的概率。
中等难度题目
题目:一个盒子中有5个红球和3个白球, 不放回地依次取出2个球,在第一次取 到白球后,第二次再取到红球的概率是
多少?
题目:一个盒子中有5个红球和3个白球, 不放回地依次取出2个球,在第一次取 到白球后,第二次再取到白球的概率是
多少?
添加标题
添加标题
添加标题
添加标题
题目:一个盒子中有5个红球和3个白球, 不放回地依次取出2个球,在第一次取 到红球后,第二次再取到红球的概率是
条件概率练习题含答案
条件概率练习题含答案条件概率是概率论中的一个重要概念,用于描述事件在给定其他事件发生的条件下发生的概率。
条件概率的计算往往需要运用到贝叶斯定理,是解决实际问题中复杂概率计算的基础。
下面将给出一些条件概率的练习题,并附带答案供读者参考。
练习题一:某城市有两个广播车队,A车队和B车队,各自服务不同的区域。
根据统计数据,A车队在A区域的音质不良时间占总时间的5%,而在B区域的音质不良时间占总时间的10%。
已知听众在该城市80%来自A区域,20%来自B区域。
现在假设一位听众正遇到音质不良的情况,请问这位听众是来自A区域的概率是多少?解答一:设事件A为来自A区域,事件B为遇到音质不良。
根据题意,我们要求的是在遇到音质不良的条件下,该听众来自A区域的概率。
根据条件概率公式,可以得到:P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B发生的概率。
根据题目中的信息,我们可以得到P(A∩B) = P(A) * P(B|A) = 0.8 * 0.05 = 0.04,P(B) = P(A) * P(B|A) + P(B') * P(B|B') = 0.8 * 0.05 + 0.2 * 0.1 = 0.06,所以P(A|B) = 0.04 / 0.06 = 2/3。
练习题二:一家剧院即将上演两台戏剧,A戏剧和B戏剧,已知A戏剧的门票占总票数的60%,B戏剧的门票占总票数的40%。
观众对A戏剧感兴趣的概率是70%,对B戏剧感兴趣的概率是50%。
现在假设一位观众购票,且对所购剧目感兴趣,请问该观众购买的是B戏剧门票的概率是多少?解答二:设事件A为购买A戏剧门票,事件B为对所购剧目感兴趣。
求解的是在对所购剧目感兴趣的条件下,购买B戏剧门票的概率。
根据条件概率的定义,可以得到:P(B|A) = P(B∩A) / P(A),其中P(B∩A)表示事件B和A同时发生的概率,P(A)表示购买A戏剧门票的概率。
数学课后训练:条件概率
课后训练一、选择题1.已知P(B|A)=12,P(A)=35,则P(AB)=( )A.56B.910C.310D.1102.某种电子元件用满3 000小时不坏的概率为34,用满8 000小时不坏的概率为12.现有一个此种电子元件,已经用满3 000小时不坏,还能用满8 000小时不坏的概率是( )A.34B.23C.12D.133.将两枚质地均匀的骰子各掷一次,设事件A为两个点数都不相同,事件B为两个点数和是7或8,则P(B|A)=()A.13B.518C.1011D.124.甲、乙两班共有70名同学,其中女同学40名,设甲班有30名同学,而女同学有15名,则在碰到甲班同学时正好碰到一名女同学的概率为()A.12B.13C.14D.155.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取产品,每次1件.取两次,已知第二次取得一等品,则第一次取得的是二等品的概率是()A.310B.35C.12D.25二、填空题6.设A,B为两个事件,若事件A和B同时发生的概率为16,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为__________.7.分别用集合M={2,4,5,6,7,8,11,12}中的任意两个元素作分子与分母构成真分数,已知取出的一个元素是12,则取出的另一个元素与之构成可约分数的概率是__________.8.6位同学参加百米短跑比赛,赛场共有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率是__________.三、解答题9.一只口袋内装有2个白球和2个黑球,那么(1)先摸出1个白球不放回,再摸出1个白球的概率是多少?(2)先摸出1个白球后放回,再摸出1个白球的概率是多少?10.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.参考答案1答案:C 解析:∵P (B |A )=()()P AB P A ,∴P (AB )=P (B |A )·P (A )=1332510⨯=.2答案:B 解析:记事件A :“用满3 000小时不坏”,则P (A )=34;记事件B :“用满8 000小时不坏”,则P (B )=12.因为B ⊂A ,所以P (AB )=P (B )=12,则P (B |A )=1()()223()()34P AB P B P A P A ===.3答案:A 解析:由已知n (A )=30,n (AB )=10, ∴P (B |A )=()101()303n AB n A ==.4答案:A 解析:设“碰到甲班同学”为事件A ,“碰到甲班女同学”为事件B ,则P (A )=37,P (AB )=1537014=,所以P (B |A )=()1()2P AB P A =. 5答案:D 解析:令“第二次取得一等品”为事件A ,“第一次取得二等品”为事件B ,则P (AB )=11241165C C 4C C 15⋅=⋅,P (A )=111143241165C C +C C 2C C 3⋅⋅=⋅, 所以P (B |A )=()432()1525P AB P A =⨯=.6答案:13 解析:由已知P (AB )=16,P (B |A )=12,∴P (A )=1()161(|)32P AB P B A ==. 7答案:47解析:设“取出的两个元素中有一个是12”为事件A ,“取出的两个元素构成可约分数”为事件B .则n (A )=7,n (AB )=4,所以P (B |A )=()4()7n AB n A =.8答案:15解析:甲排在第一道记为A ,乙排在第二道记为B .则P (A )=5566A 1A 6=,P (AB )=4466A 1A 30=.∴P (B |A )=1()1301()56P AB P A ==.9答案:解:设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B ,则“先后两次摸到白球”为事件AB ,先摸出一球不放回,再摸出一球共有4×3种结果.∴P (A )=231432⨯=⨯,P (AB )=211436⨯=⨯.∴P (B |A )=1()161()32P AB P A ==. ∴先摸出一个白球不放回,再摸出一个白球的概率为13.答案:设“先摸出1个白球放回”为事件A 1,“再摸出1个白球"为事件B 1,则“两次都摸到白球”为事件A 1B 1.P (A 1)=241442⨯=⨯,P (A 1B 1)=221444⨯=⨯,∴P (B 1|A 1)=1111()141()22P A B P A ==. ∴先摸出1个白球后放回,再摸出1个白球的概率为12.10答案:解:设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB .(1)从6个节目中不放回地依次抽取2个的事件数为n (Ω)=26A =30,根据分步计数原理n (A )=1145A A =20,于是P (A )=()202()303n A n ==Ω.答案:因为n (AB )=24A =12, 于是P (AB )=()122()305n AB n Ω==.答案:方法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P (B |A )=2()352()53P AB P A ==.方法二:因为n (AB )=12,n (A )=20, 所以P (B |A )=()123()205n AB n A ==.。
条件概率练习题
条件概率练习题一、基本概念题1. 设事件A和事件B相互独立,P(A) = 0.4,P(B) = 0.6,求P(A|B)。
2. 已知P(A) = 0.5,P(B) = 0.7,P(A ∩ B) = 0.3,求P(A|B)和P(B|A)。
3. 在一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的条件下,取出第二个球也是红球的概率。
4. 某班级有50名学生,其中30名喜欢篮球,20名喜欢足球,10名既喜欢篮球又喜欢足球。
随机选取一名学生,求该学生喜欢篮球的条件下,也喜欢足球的概率。
二、应用题1. 一批产品中有10%的次品,现随机抽取10件产品,求恰好有2件次品的概率。
3. 抛掷一枚硬币3次,求恰好出现2次正面的概率。
4. 从一副52张的扑克牌中随机抽取4张,求抽到的都是红桃的概率。
三、综合题1. 甲、乙、丙三人独立解同一道数学题,甲解出的概率为0.4,乙解出的概率为0.5,丙解出的概率为0.3。
求至少有两人解出这道题的概率。
2. 一批产品中有20%的次品,现随机抽取5件产品,求恰好有1件次品且第2件是正品的概率。
3. 抛掷一枚均匀的骰子,求出现偶数点数的条件下,再次抛掷出现奇数点数的概率。
4. 从一副52张的扑克牌中随机抽取5张,求抽到的牌中至少有一张是红桃的概率。
四、拓展题1. 设事件A和事件B互斥,P(A) = 0.3,P(B) = 0.4,求P(A|B)。
2. 已知P(A) = 0.6,P(B|A) = 0.8,P(B|非A) = 0.4,求P(A∩ B)。
3. 某班级有60名学生,其中40名喜欢数学,30名喜欢英语,20名既喜欢数学又喜欢英语。
随机选取一名学生,求该学生喜欢数学的条件下,也喜欢英语的概率。
4. 抛掷一枚硬币和一枚骰子,求硬币出现正面且骰子出现6点的概率。
五、逻辑推理题1. 在一个家庭中,有两个孩子,已知至少有一个是女孩,求两个孩子都是女孩的概率。
2. 有三个箱子,分别装有苹果、橘子和苹果橘子混合。
条件概率练习题
条件概率一、选择题1.下列式子成立的是( )A .P (A |B )=P (B |A ) B .0<P (B |A )<1C .P (AB )=P (A )·P (B |A )D .P (A ∩B |A )=P (B ) 2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A.35B.25C.110D.593.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910C.215D.1154.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A.14B.13C.12D.355.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A.56B.34C.23D.136.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( )A.911B.811C.25D.897.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( )A.23B.14C.25D.158.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )A .1B.12C.13D.14二、填空题9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.10.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.三、解答题13.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,求P(B|A).14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率.条件概率一、选择题1.下列式子成立的是( )A .P (A |B )=P (B |A ) B .0<P (B |A )<1C .P (AB )=P (A )·P (B |A )D .P (A ∩B |A )=P (B ) [答案] C[解析] 由P (B |A )=P (AB )P (A )得P (AB )=P (B |A )·P (A ).2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A.35B.25C.110D.59[答案] D[解析] 设第一次摸到的是红球(第二次无限制)为事件A ,则P (A )=6×910×9=35,第一次摸得红球,第二次也摸得红球为事件B ,则P (B )=6×510×9=13,故在第一次摸得红球的条件下第二次也摸得红球的概率为P =P (B )P (A )=59,选D.3.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910C.215D.115[答案] C[解析] 本题主要考查由条件概率公式变形得到的乘法公式,P (AB )=P (B |A )·P (A )=13×25=215,故答案选C. 4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A.14B.13C.12D.35[答案] B[解析] 抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件.所以其概率为4361236=13.5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A.56B.34C.23D.13[答案] C6.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( )A.911B.811C.25D.89[答案] D[解析] 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=1130,P (B )=930,P (AB )=830,从而吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=830930=89. 7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( )A.23B.14C.25D.15[答案] C[解析] 设A i 表示第i 次(i =1,2)取到白球的事件,因为P (A 1)=25,P (A 1A 2)=25×25=425, 在放回取球的情况P (A 2|A 1)=25×2525=25.8.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )A .1B.12C.13D.14[答案] B[解析] 设A i 表示第i 次(i =1,2)抛出偶数点,则P (A 1)=1836,P (A 1A 2)=1836×918,故在第一次抛出偶数点的概率为P (A 2|A 1)=P (A 1A 2)P (A 1)=1836×9181836=12,故选B.二、填空题9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.[答案] 0.310.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.[答案]9599[解析] 设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5100,P (AB )=5100×9599,所以P (B |A )=P (AB )P (A )=9599.准确区分事件B |A 与事件AB 的意义是关键.11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.[答案] 12[解析] 一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.[答案] 3350[解析] 根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数共有33个,故所求概率为3350.三、解答题13.把一枚硬币任意掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,求P (B |A ).[解析] P (B )=P (A )=12,P (AB )=14, P (B |A )=P (AB )P (A )=1412=12.14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.[解析] 解法一:设“取出的是白球”为事件A ,“取出的是黄球”为事件B ,“取出的是黑球”为事件C ,则P (C )=1025=25,∴P (C )=1-25=35,P (B C )=P (B )=525=15∴P (B |C )=P (B C )P (C )=13. 解法二:已知取出的球不是黑球,则它是黄球的概率P =55+10=13.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?[解析] 记事件A :最后从2号箱中取出的是红球;事件B :从1号箱中取出的是红球. P (B )=42+4=23,P (B -)=1-P (B )=13. (1)P (A |B )=3+18+1=49.(2)∵P (A |B -)=38+1=13, ∴P (A )=P (A ∩B )+P (A ∩B -)=P (A |B )P (B )+P (A |B -)P (B -) =49×23+13×13=1127.16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. [解析] 设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=14.(2)要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=415.。
条件概率 及答案
条件概率1.甲乙两城市都位于长江下游,根据一百多年的气象记录,知道一年中雨天的比例甲城市占20%,乙城市占18%,两地同时下雨占12%.求(1)已知甲城市下雨,求乙城市下雨的概率;(2)已知乙城市下雨,求甲城市下雨的概率;2.设100件产品中有70件一等品,25件二等品,规定一、二等品为合格品.从中任取1件,求(1)取得一等品的概率;(2)已知取得的是合格品,求它是一等品的概率.3.把一枚硬币任意抛掷两次,事件A表示“第一次出现正面”,事件B表示“第二次出现正面”,求P(B|A).4.一批产品中有4%的次品,而合格品中一等品占45%.从这批产品中任取一件,求该产品是一等品的概率.5.抛掷红、蓝两个骰子,事件A表示“红骰子出现4点”,事件B表示“蓝骰子出现的点数是偶数”,求P(A|B).6.一个盒子中有6只白球、4只黑球,从中不放回地每次任取1只,连取2次,求(1)第一次取得白球的概率;(2)第一、第二次都取得白球的概率;(3)第一次取得黑球而第二次取得白球的概率.8.掷两枚均匀的骰子,已知点数不同,求至少有一个是6点的概率.9.设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20的这种动物能活到25岁以上的概率?10.某彩票的中奖规则为:从1,2,…,6这六个号码中任意选出三个不同的号码,如果全对(与顺序无关)则中一等奖,求(1)买一注号码中一等奖的概率;(2)假设本期开出的中奖号码为1,2,3,如果某位彩票预测专家根据历史数据推断本期中奖号码中必有2,那么买一注号码中一等奖的概率是多少?(3)若预测本期不会出现5,且本期开出的中奖号码为1,2,3,那么买一注号码中一等奖的概率是多少?11.设A,B为两事件,已知P(A)=0.5,P(B)=0.6,P(B|A)=0.4,试求(1)P(A B);(2)P(AB);12.一个盒子中有6只白球、4只黑球,从中不放回地每次任取1只,连取2次,求第二次取到白球的概率. 解析:A={第一次取到白球}13.盒子中有25个外形相同的球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一球,已知它不是黑球,试求它是黄球的概率.14.盒中有10个红球及1个黄球.A随意抽出第一个球后不放回盒中,之后B随意抽出第二个球.求下列事件的概率.(1)A和B都抽得红球.(2)A和B都抽得黄球.(3)A抽得黄球和B抽得红球.(4)A和B抽得不同颜色的球.(5)已知B抽得黄球,A抽得红球.15.设某种灯管使用了500 h还能继续使用的概率是0.94,使用到700 h后还能继续使用的概率是0.87,问已经使用了500 h的灯管还能继续使用到700 h的概率是多少?课后导练1.甲乙两城市都位于长江下游,根据一百多年的气象记录,知道一年中雨天的比例甲城市占20%,乙城市占18%,两地同时下雨占12%.求(1)已知甲城市下雨,求乙城市下雨的概率;(2)已知乙城市下雨,求甲城市下雨的概率; 解析:以事件A 记甲城市出现雨天,事件B 记乙城市出现雨天,事件AB 则为两地同时出现雨天.已知P (A )=0.20,P (B )=0.18,P (AB )=0.12,因此,P (B|A )=P (AB )/P (A )=0.12/0.20=0.60,P (A|B )=P (AB )/P (B )=0.12/0.18=(1)0.60,(2)0.672.设100件产品中有70件一等品,25件二等品,规定一、二等品为合格品.从中任取1件,求(1)取得一等品的概率;(2)已知取得的是合格品,求它是一等品的概率. 解析:设A 表示取得一等品,B 表示取得合格品,则 (1)因为100件产品中有70件一等品,所以P (A )=10070=0.7 (2)方法1:因为95件合格品中有70件一等品,所以 P (A|B )=9570=0.736 8 方法2: P (A|B )=100/95100/70)()(=B P AB P ≈0.736 83.把一枚硬币任意抛掷两次,事件A 表示“第一次出现正面”,事件B 表示“第二次出现正面”,求P (B|A ).解析:基本事件空间为: Ω={(正,正),(正,,反),(反,正),(反,反)}. A={(正,正),(正,反)} B={(反,正),(正,正)}∴P(AB)=41,P(A)=42∴P(B|A)=214241)()(==A P AB P .答案:214.一批产品中有4%的次品,而合格品中一等品占45%.从这批产品中任取一件,求该产品是一等品的概率. 解析:设A 表示取到的产品是一等品,B 表示取出的产品是合格品,则P (A|B )=45%,P (B )=4% 于是P (B )=1-P (B )=96%所以P (A )=P (AB )=P (B )P (A|B ) =96%×45%=43.2% 5.抛掷红、蓝两个骰子,事件A 表示“红骰子出现4点”,事件B 表示“蓝骰子出现的点数是偶数”,求P (A|B ). 解析:设蓝、红骰子出现的点数分别为x,y ,则(x-y)表示“蓝骰子出现x 点,红骰子出现y 点”的试验结果,于是基本事件空间中的事件数为n(Ω)=36(个). n(B)=3×6=18(个)∴P (B )=213618)()(==Ωn B n P (AB )=121363= ∴P (A|B )=6121121)()(==B P AB P6.一个盒子中有6只白球、4只黑球,从中不放回地每次任取1只,连取2次,求 (1)第一次取得白球的概率;(2)第一、第二次都取得白球的概率;(3)第一次取得黑球而第二次取得白球的概率.解析:设A 表示第一次取得白球,B 表示第二次取得白球,则 (1)P (A )=106=0.6 (2)P (AB )=P (A )P (B|A )=95106⨯≈0.33 (3)P (A B )=P (A )P (B|A )=96104⨯≈0.27B={从100个零件中任取一个是第一台车床加工的} 求:P(A),P(B),P(AB),P(A|B).解析:P(A)=10080,P(B)=10035, P(AB)=10030,P(A|B)=35308.掷两枚均匀的骰子,已知点数不同,求至少有一个是6点的概率.解析1:设两枚骰子出现的点数分别为x,y ,事件A :“两枚骰子出现的点数不同,即x≠y”,事件B :“x,y 中有且只有一个是6点”;事件C :“x=y=6”, 则P(B|A)=3136303610)()(==A P AB P , P(C|A)=0363036)()(==A P AC P∴至少有一个是6点的概率为: P(B ∪C|A)=P(B|A)+P(C|A)=31+0=31. 解析2:也可用古典概型来求解D“至少有一个是6点”包含的结果数是10个,故所求的概率为:P(D)=313010= (由于两枚骰子点数不同,故基本事件空间中包含30个结果).9.设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20的这种动物能活到25岁以上的概率?解析:设这种动物活到20岁以上的事件为A ,活到25岁以上的事件为B ,则P(A)=0.7,而AB=B ,即P(AB)=P(B)=0.4.故事件A 发生条件下B 发生的条件概率为 P(B|A)=7.04.0)()(=A P AB P ≈0.571 410.某彩票的中奖规则为:从1,2,…,6这六个号码中任意选出三个不同的号码,如果全对(与顺序无关)则中一等奖,求(1)买一注号码中一等奖的概率;(2)假设本期开出的中奖号码为1,2,3,如果某位彩票预测专家根据历史数据推断本期中奖号码中必有2,那么买一注号码中一等奖的概率是多少?(3)若预测本期不会出现5,且本期开出的中奖号码为1,2,3,那么买一注号码中一等奖的概率是多少?解析:(1)中一等奖概率为:P=2013633=C C(2)所有含有号码2的组合有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(2,3,4),(2,3,5),(2,3,6),(2,4,5),(2,4,6),(2,5,6).故中一等奖概率为P=101=0.1. (3)记事件A 为“从1,2,3,4,5,6中任选3个数字,这3个数字中不含有5”,事件B :“选的号码为1,2,3”,于是:P(A)=212010)()(3635===ΩC C n A nP(AB)=201136=C ∴P(B|A)=10121201)()(==A P AB P即中一等奖概率为101.11.设A ,B 为两事件,已知P(A)=0.5,P(B)=0.6,P(B|A )=0.4,试求 (1)P(A B); (2)P(AB );解析:(1)P(A B)=P(A )P(B|A )=(1-0.5)×0.4=0.2(2)P(AB)=P(B)-P(A B)=0.6-0.2=0.412.一个盒子中有6只白球、4只黑球,从中不放回地每次任取1只,连取2次,求第二次取到白球的概率. 解析:A={第一次取到白球} B={第二次取到白球}因为B=AB ∪A B 且AB 与A B 互不相容,所以 P (B )=P(AB)+P(A B) =P(A)P(B|A)+P(A )P(B|A ) =106×95+104×96=0.6 13.盒子中有25个外形相同的球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一球,已知它不是黑球,试求它是黄球的概率.解析:设事件A 为“从盒子中任取一球,它不是黑球”;事件B 为“取的球是黄球”,则所求事件的概率为:312515255)()(==A P AB P . 14.盒中有10个红球及1个黄球.A 随意抽出第一个球后不放回盒中,之后B 随意抽出第二个球.求下列事件的概率.(1)A 和B 都抽得红球. (2)A 和B 都抽得黄球.(3)A 抽得黄球和B 抽得红球. (4)A 和B 抽得不同颜色的球. (5)已知B 抽得黄球,A 抽得红球.解析:(1)P=119211210=A A(2)P=0(3)P=1111211110=⨯A A (4)P=11211211110110=⨯+⨯A A A (5)P(A|B)=1011110111)()(==A P AB P15.设某种灯管使用了500 h 还能继续使用的概率是0.94,使用到700 h 后还能继续使用的概率是0.87,问已经使用了500 h 的灯管还能继续使用到700 h 的概率是多少?解析:P=94.087.0=0.926。
条件概率试题
2.2.1 条件概率【学习要求】1.理解条件概率的定义. 2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题. 【学法指导】理解条件概率可以以简单事例为载体,先从古典概型出发求条件概率,然后再进行推广;计算条件概率可利用公式P (B |A )=P (AB )P (A )也可以利用缩小样本空间的观点计算. 1.条件概率的概念设A ,B 为两个事件,且P (A )>0,称P (B |A )= 为在事件 发生的条件下,事件 发生的条件概率.P (B |A )读作 发生的条件下 发生的概率. 2.条件概率的性质 (1)P (B |A )∈ .(2)如果B 与C 是两个互斥事件,则P (B ∪C |A )= .[一点通] 求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P (B |A )=n (AB )n (A ),其中n (AB )表示事件AB 包含的基本事件个数,n (A )表示事件A 包含的基本事件个数.二是直接根据定义计算,P (B |A )=P (AB )P (A ),特别要注意P (AB )的求法.[例1] 一只口袋内装有2个白球和2个黑球,那么:(1)先摸出1个白球不放回,再摸出1个白球的概率是多少? (2)先摸出1个白球后放回,再摸出1个白球的概率是多少? [思路点拨] 先摸出1个白球后放回或不放回,影响到后面取到白球的概率,应注意两个事件同时发生的概率的不同.[精解详析] (1)设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B ,则“先后两次摸到白球”为AB ,先摸1球不放回,再摸1球共有4×3种结果.∴P (A )=2×34×3=12,P (AB )=2×14×3=16.∴P (B |A )=P (AB )P (A )=13.(2)设“先摸出1个白球放回”为事件A 1,“再摸出1个白球”为事件B 1,两次都摸到白球为事件A 1B 1.∴P (A 1)=2×44×4=12,P (A 1B 1)=2×24×4=14.∴P (B 1|A 1)=P (A 1B 1)P (A 1)=1412=12.故先摸1个白球不放回,再摸出1个白球的概率为13;先摸1个白球后放回,再摸出1个白球的概率为12.1.抛掷一枚质地均匀的骰子所出现的点数的所有可能 结果为Ω={1,2,3,4,5,6},记事件A ={2,3,5},B ={1,2,4,5,6},则P(A|B)=( )A.12B.15C.25D.35解析:P(B)=56,P(A∩B)=13,P(A|B)=P(AB)P(B)=1356=252.已知P(A|B)=12,P(B)=13,则P(AB)=________.解析:∵P(A|B)=P(AB) P(B),∴P(AB)=P(A|B)P(B)=12×13=16.3.甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?解:设“甲地为雨天”为事件A,“乙地为雨天”为事件B,由题意,得P(A)=0.20,P(B)=0.18,P(AB)=0.12.(1)乙地为雨天时甲地也为雨天的概率是P(A|B)=P(AB)P(B)=0.120.18≈0.67.(2)甲地为雨天时乙地也为雨天的概率是P(B|A)=P(AB)P(A)=0.120.2=0.60.探究点一条件概率问题1 3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?答最后一名同学抽到中奖奖券的概率为13,不比其他同学小.问题2 如果已知第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?答按照古典概型的计算公式,此时最后一名同学抽到中奖奖券的概率为1 2 .小结已知第一名同学的抽奖结果会影响最后一名同学抽到中奖奖券的概率,这就是条件概率.例1 在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.解设“第1次抽到理科题”为事件A,“第2次抽到理科题”为事件B,则“第1次和第2次都抽到理科题”就是事件AB.(1)从5道题中不放回地依次抽取2道的事件数为n(Ω)=A25=20.根据分步乘法计数原理,n(A)=A13×A14=12.于是P(A)=n(A)n(Ω)=1220=35.(2)因为n(AB)=A23=6,所以P(AB)=n(AB)n(Ω)=620=310.(3)方法一由(1)(2)可得,在“第1次抽到理科题的条件下,第2次抽到理科题”的概率为P(B|A)=P(AB)P(A)=31035=12.方法二因为n(AB)=6,n(A)=12,所以P(B|A)=n(AB)n(A)=612=12.小结利用P(B|A)=n(AB)n(A)解答问题的关键在于明确B中的基本事件空间已经发生了质的变化,即在A事件必然发生的前提下,B事件包含的样本点数即为事件AB包含的样本点数.跟踪训练1 一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求第一次取到白球的条件下,第二次取到黑球的概率.解方法一记“第一次取到白球”为事件A,“第二次取到黑球”为事件B.显然,事件“第一次取到白球,第二次取到黑球”的概率为P(AB)=6×410×9=415.由条件概率的计算公式,得P(B|A)=P(AB)P(A)=415610=49.方法二这个问题还可以这样理解:第一次取到白球,则只剩9个球,其中5个白球,4个黑球,在这个前提下,第二次取到黑球的概率当然是49 .探究点二条件概率的性质及应用问题条件概率满足哪些性质?答条件概率具有一般概率的性质,即对P(B|A)来说有:①0≤P(B|A)≤1;②如果B,C为互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).例2 一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解设“第i次按对密码”为事件A i(i=1,2),则A=A1∪(A1A2)表示“不超过2次就按对密码”.(1)因为事件A1与事件A1A2互斥,由概率的加法公式得P(A)=P(A1)+P(A1A2)=110+9×110×9=15.(2)用B表示“最后一位按偶数”的事件,则P(A|B)=P(A1|B)+P(A1A2|B)=15+4×15×4=25.小结本题条件多,所设事件多,要分清楚事件之间的关系及谁是条件,同时利用公式P(B∪C|A)=P(B|A)+P(C|A)可使有些条件概率的计算较为简捷,但应注意这个性质在“B与C互斥”这一前提下才成立.跟踪训练2 在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解设事件A为“该考生6道题全答对事件B为“该考生答对了其中5道题,另一道答错”,事件C为“该考生答对了其中4道题,另两道答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A、B、C两两互斥,且D=A∪B∪C,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=C610C620+C510·C110C620+C410·C210C620=12 180C620∵P(AD)=P(A∩D)=P(A),P(BD)=P(B∩D)=P(B),∴P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=P(A)P(D)+P(B)P(D)=C6 10 C6 2012 180 C620+C510·C110C62012 180C620=1358.所以他获得优秀成绩的概率是13 581.某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是________.解析设事件A为“能活到20岁”,事件B为“能活到25岁”,则P(A)=0.8,P(B)=0.4,而所求概率为P(B|A),由于B⊆A,故AB=B,于是P(B|A)=P(AB) P(A)=P(B) P(A)=0.40.8=0.5,所以一只20岁的这种动物能活到25岁的概率是0.5.2.1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于()A.18B.14C.25D.12解析P(A)=C23+C22C25=25,P(AB)=C22C25=110,P(B|A)=P(AB)P(A)=14.3.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚值班的概率为________.解析设事件A为“周日值班”,事件B为“周六值班”则P(A)=C16C27,P(AB)=1C27,故P(B|A)=P(AB)P(A)=16.4.考虑恰有两个小孩的家庭.若已知某家有男孩,求这家有两个男孩的概率;若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率.(假定生男生女为等可能)解Ω={(男,男),(男,女),(女,男),(女,女)}.设B=“有男孩”,则B={(男,男),(男,女),(女,男)}.A=“有两个男孩”,则A={(男,男)},B1=“第一个是男孩”,则B1={(男,男),(男,女)}于是得P(B)=34,P(BA)=P(A)=14,∴P(A|B)=P(BA)P(B)=13;P(B1)=12,P(B1A)=P(A)=14,∴P(A|B1)=P(B1A)P(B1)=12.1.条件概率:P(B|A)=P(AB)P(A)=n(AB)n(A).2.概率P(B|A)与P(AB)的区别与联系:P(AB)表示在样本空间Ω中,计算AB发生的概率,而P(B|A)表示在缩小的样本空间ΩA中,计算B发生的概率.用古典概型公式,则P(B|A)=AB中样本点数ΩA中样本点数,P(AB)=AB中样本点数Ω中样本点数.方法规律小结1.计算条件概率要明确:(1)准确理解条件概率的概念:条件概率中的两个事件是互相影响的,其结果受两个条件的概率的制约;(2)要正确求出条件概率,必须首先弄清楚“事件A发生”“事件A发生并且事件B也发生”“事件B在事件A发生的条件下发生”的概率之间的关系.2.互斥事件、对立事件、相互独立事件的区别与联系.Welcome To Download !!!欢迎您的下载,资料仅供参考!。
条件概率知识点例题练习题
条件概率专题一、知识点① 只须将无条件概率()P B 替换为条件概率)(A B P ,即可类比套用概率满足的三条公理及其它性质 ② 在古典概型中 ---)()()()()(A B A A P B A P A B P μμ==A B A =事件包括的基本事件(样本点)数事件包括的基本事件(样本点)数 ③ 在几何概型中 ---)()()()()(A B A A P B A P A B P μμ==(,,)(,,)A B A =区域的几何度量长度面积体积等区域的几何度量长度面积体积等 条件概率及全概率公式3.1.对任意两个事件A 、B , 是否恒有P (A )≥P (A |B ).答:不是. 有人以为附加了一个B 已发生的条件, 就必然缩小了样本空间, 也就缩小了概率, 从而就一定有P (A )≥P (A |B ), 这种猜测是错误的. 事实上,可能P (A )≥P (A |B ), 也可能P (A )≤P (A |B ), 下面举例说明. 在0,1,…,9这十个数字中, 任意抽取一个数字,令A ={抽到一数字是3的倍数};B 1={抽到一数字是偶数}; B 2={抽到一数字大于8}, 那么P (A )=3/10, P (A |B 1)=1/5, P (A |B 2)=1. 因此有 P (A )>P (A |B 1), P (A )<P (A |B 2).3.2.以下两个定义是否是等价的.定义1. 若事件A 、B 满足P (AB )=P (A )P (B ), 则称A 、B 相互独立. 定义2. 若事件A 、B 满足P (A |B )=P (A )或P (B |A )=P (B ), 则称A 、B 相互独立.答:不是的.因为条件概率的定义为P (A |B )=P (AB )/P (B ) 或 P (B |A )=P (AB )/P (A )自然要求P (A )≠0, P (B )≠0, 而定义1不存在这个附加条件, 也就是说,P (AB )=P (A )P (B )对于P (A )=0或P (B )=0也是成立的. 事实上, 若P (A )=0由0≤P (AB )≤P (A )=0可知P (AB )=0故 P (AB )=P (A )P (B ).因此定义1与定义2不等价, 更确切地说由定义2可推出定义1, 但定义1不能推出定义2, 因此一般采用定义1更一般化.3.3.对任意事件A、B, 是否都有 P(AB)≤P(A)≤P(A+B)≤P(A)+P(B).答:是的.由于P(A+B)=P(A)+P(B)-P(AB) (*)因为 P(AB)≥0, 故P(A+B)≤P(A)+P(B).由P(AB)=P(A)P(B|A), 因为0≤P(B|A)≤1,故P(AB)≤P(A);同理P(AB)≤P(B), 从而 P(B)-P(AB)≥0, 由(*)知P(A+B)≥P(A).原命题得证.3.4.在引入条件概率的讨论中, 曾出现过三个概率: P(A|B), P(B|A), P(AB). 从事件的角度去考察, 在A、B相容的情况下, 它们都是下图中标有阴影的部分, 然而从概率计算的角度看, 它们却是不同的. 这究竟是为什么?答:概率的不同主要在于计算时所取的样本空间的差别:P(A|B)的计算基于附加样本空间ΩB;P(B|A)的计算基于附加样本空间ΩA;P(AB)的计算基于原有样本空间Ω.3.5.在n个事件的乘法公式:P(A1A2…A n)=P(A1)P(A2|A1)P(A3|A1A2)…P(A n|A1A2…A n-1)中,涉及那么多条件概率, 为什么在给出上述乘法公式时只提及P(A1A2…A n-1)>0呢?答:按条件概率的本意, 应要求P(A1)>0, P(A1A2)>0, …,P(A1A2…A n-2)>0, P(A1A2…A n-1)>0.事实上, 由于A 1A2A3…A n-2A1A2A3…A n-2A n-1, 从而便有P(A1A2…A n-2)≥P(A1A2…A n-1)>0. 这样, 除P(A1A2…A n-1)>0作为题设外, 其余条件概率所要求的正概率, 如P(A1A2…A n-2) >0, …,P(A1A2) >0, P(A1)>0便是题设条件P(A1A2…A n-1)>0的自然结论了.3.6.计算P(B)时, 如果事件B的表达式中有积又有和, 是否就必定要用全概率公式.答:不是. 这是对全概率公式的形式主义的认识, 完全把它作为一个”公式”来理解是不对的. 其实, 我们没有必要去背这个公式, 应着眼于A1,A2,…,A n的结构. 事实上, 对于具体问题, 若能设出n个事件A i, 使之满足(*)就可得.(**) 这样就便于应用概率的加法公式和乘法公式.因此, 能否使用全概率公式, 关键在于(**)式, 而要有(**)式, 关键又在于适当地对Ω进行一个分割, 即有(*)式.3.7.设P(A)≠0,P(B)≠0, 因为有(1)若A、B互不相容, 则A、B一定不独立.(2)若A、B独立, 则A、B一定不互不相容.故既不互不相容又不独立的事件是不存在的. 上述结论是否正确.答:不正确. 原命题中的结论(1)(2)都是正确的. 但是由(1)(2)(它们互为逆否命题, 有其一就可以了)只能推出在P(A)≠0,P(B)≠0的前提下, 事件A、B既互不相容又独立是不存在的, 并不能推出“A、B既不独立又不互不相容是不存在的”. 事实上, 恰恰相反, 既不互不相容又不独立的事件组是存在的, 下面举一例.5个乒乓球(4新1旧), 每次取一个, 无放回抽取三次, 记A i={第i次取到新球}, i=1, 2, 3. 因为是无放回抽取, 故A1、A2、A3互相不独立, 又A 1A2A3={三次都取到新球}, 显然是可能发生的, 即A1、A2、A3可能同时发生, 因此A1、A2、A3不互不相容.3.8.事件A、B的“对立”与“互不相容”有什么区别和联系? 事件A、B“独立”与“互不相容”又有什么区别和联系?答:“对立”与“互不相容”区别和联系, 从它们的定义看是十分清楚的, 大体上可由如下的命题概括: “对立” →“互不相容”,反之未必成立.至于“独立”与“互不相容”的区别和联系, 并非一目了然.事件的互不相容性只考虑它们是否同时发生,是纯粹的事件的关系, 丝毫未涉及它们的概率, 其关系可借助图直观显示.事件的独立性是由概率表述的, 即当存在概率关系P(A|B)=P(A)或P(B|A)=P(B)时, 称A、B是相互独立的.它们的联系可由下述命题概括: 对于两个非不可能事件A、B, 则有“A、B 互不相容” →“A、B不独立”.其等价命题是: 在P(A)>0与P(B)>0下, 则有“A、B独立” →“A、B不互不相容”(相容). 注意, 上述命题的逆命题不成立.3.9.设A、B为两个事件,若0<P(A)<1, 0<P(B)<1. (*)则A、B相互独立, A、B互不相容, , 这三种情形中的任何两种不能同时成立.答:在条件(*)下当A、B相互独立时, 有P(AB)=P(A)P(B);当A、B互不相容时, 有P(AB)<P(A)P(B);当时, 有P(AB)>P(A)P(B).在条件(*)下, 上述三式中的任何两个不能同时成立. 因此, A、B相互独立, A、B互不相容,这三种情形中的任何两种不能同时成立.此结论表明: 在条件(*)下,若两个事件相互独立时, 必不互不相容,也不一个包含另一个,而只能是相容了.3.10.证明: 若P(A)=0或P(A)=1, 则A与任何事件B相互独立.答:若P(A)=0, 又, 故0≤P(AB)≤P(A)=0.于是P(AB)=0=P(A)P(B),所以A与任何事件B相互独立.若P(A)=1, 则.由前面所证知,与任何事件B相互独立. 再由事件独立性的性质知, 与B相互独立, 即A与B相互独立.另种方法证明: 由P(A)=1知, 进而有.又且AB与互不相容, 故.即A与B相互独立.3.11.设A、B是两个基本事件, 且0<P(A)<1,P(B)>0, , 问事件A与B是什么关系?[解1]由已知条件可得.由比例性质, 得.所以P(AB)=P(A)P(B).因此事件A与B相互独立.[解2]由得.因而.又,所以P(B|A)=P(B).因此事件A与B相互独立.3.12.是不是无论什么情况, 小概率事件决不会成为必然事件.答:不是的. 我们可以证明, 随机试验中, 若A为小概率事件, 不妨设P(A)=ε(0<ε<1为不论多么小的实数 ), 只要不断地独立地重复做此试验, 则A迟早要发生的概率为1.事实上, 设A k={A在第k次试验中发生}, 则P(A k)=ε,, 在前n次试验中A都不发生的概率为:.于是在前n次试验中, A至少发生一次的概率为.如果把试验一次接一次地做下去, 即让n→∞, 由于0<ε<1, 则当n→∞时, 有p→1.n以上事实在生活中是常见的, 例如在森林中吸烟, 一次引起火灾的可能性是很小的, 但如果很多人这样做, 则迟早会引起火灾.3.13.只要不是重复试验, 小概率事件就可以忽视.答:不正确. 小概率事件可不可以忽视, 要由事件的性质来决定, 例如在森林中擦火柴有1%的可能性将导致火灾是不能忽视的, 但火柴有1%的可能性擦不燃是不必在意的.3.14.重复试验一定是独立试验, 理由是: 既然是重复试验就是说每次试验的条件完全相同, 从而试验的结果就不会互相影响, 上述说法对吗?答:不对. 我们举一个反例就可以证明上述结论是错误的.一个罐子中装有4个黑球和3个红球, 随机地抽取一个之后, 再加进2个与抽出的球具有相同颜色的球, 这种手续反复进行, 显然每次试验的条件是相同的. 每抽取一次以后, 这时与取出球有相同颜色的球的数目增加,而与取出球颜色不同的球的数目保持不变,从效果上看,每一次取出的球是什么颜色增加了下一次也取到这种颜色球的概率,因此这不是独立试验,此例是一个如同传染病现象的模型,每一次传染后都增加再传染的概率.3.15.伯努利概型的随机变量是不是都服从二项分布.答:不一定. 例如某射手每次击中目标的概率是p,现在连续向一目标进行射击,直到射中为止. 此试验只有两个可能的结果:A={命中}; ={未命中},且P(A)=p.并且是重复独立试验,因此它是伯努利试验(伯努利概型),设X k={第k次射中},X显然是一个随机变量,但kP(X=k)=q k-1p,k=1,2,…,其中q=p-1,k可见X k是服从参数为p的几何分布,而不是二项分布.3.16.某人想买某本书, 决定到3个新华书店去买, 每个书店有无此书是等可能的. 如有, 是否卖完也是等可能的. 设3个书店有无此书, 是否卖完是相互独立的. 求此人买到此本书的概率.答:(37/64).3.17.在空战中, 甲机先向乙机开火, 击落乙机的概率是0.2; 若乙机未被击落, 就进行还击, 击落甲机的概率是0.3, 则再进攻乙机, 击落乙机的概率是0.4. 在这几个回合中,(1) 甲机被击落的概率是多少?(2) 乙机被击落的概率是多少?答:以A表示事件“第一次攻击中甲击落乙”, 以B表示事件“第二次攻击中乙击落甲”, 以C表示事件“第三次攻击中甲击落乙”.(1)甲机被击落只有在第一次攻击中甲未击落乙才有可能, 故甲机被击落的概率为.(2)乙机被击落有两种情况. 一是第一次攻击中甲击落乙, 二是第三次攻击中甲击落乙, 故乙机被击落的概率是=0.2+(1-0.2)(1-0.3)×0.4=0.424.3.18.某个问题, 若甲先答, 答对的概率为0.4; 若甲答错, 由乙答, 答对的概率为0.5. 求问题由乙答出的概率.答:(0.3)3.19.有5个人在一星期内都要到图书馆借书一次, 一周内某天借书的可能性相同, 求(1)5个人都在星期天借书的概率;(2)5个人都不在星期天借书的概率;(3)5个人不都在星期天借书的概率.答:(1)(1/75);(2)(65/77);(3)(1-1/75).1.从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 二、例题解.设事件A表示“甲取到的数比乙大”,设事件B表示“甲取到的数是5的倍数”. 则显然所要求的概率为P(A|B).根据公式而P(B)=3/15=1/5 ,,∴P(A|B)=9/14.2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”, 设事件B表示“掷出的三个点数都不一样”.则显然所要求的概率为P(A|B).根据公式,,P(A|B)=1/2.3.袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率. 1解.设事件A i表示“第i次取到白球”. (i=1,2,…,N)则根据题意P(A1)=1/2 , P(A2|A1)=2/3,由乘法公式可知:P(A1A2)=P(A2|A1)P(A1)=1/3.而P(A3|A1A2)=3/4 ,P(A1A2A3)=P(A3|A1A2)P(A1A2)=1 /4 .由数学归纳法可以知道P(A1A2…A N)=1/(N+1).4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”,事件B表示“最后取到的是白球”.根据题意: P(B|A)=5/12 ,,P(A)=1/2.∴.5.有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取一球,求此球为白球的概率. 解.设事件A i表示“从甲袋取的2个球中有i个白球”,其中i=0,1,2 .事件B表示“从乙袋中取到的是白球”.显然A0, A1, A2构成一完备事件组,且根据题意P(A)=1/10 , P(A1)=3/5 ,P(A2)=3/10 ;P(B|A)=2/5 , P(B|A1)=1/2 ,P(B|A2)=3/5 ;由全概率公式P(B)=P(B|A0)P(A0)+P(B|A1)P(A1)+P(B|A2)P(A2)=2/5×1/10+1/2×3/5+3/5×3/10=13/25.6.袋中装有编号为1, 2,…, N的N个球,先从袋中任取一球,如该球不是1号球就放回袋中,是1号球就不放回,然后再摸一次,求取到2号球的概率. 解.设事件A表示“第一次取到的是1号球”,则表示“第一次取到的是非1号球”;事件B表示“最后取到的是2号球”.显然P(A)=1/N,,且P(B|A)=1/(N-1),;∴=1/(N-1)×1/N+1/N ×(N-1)/N=(N2-N+1)/N2(N-1).7. 袋中装有8只红球, 2只黑球,每次从中任取一球, 不放回地连续取两次, 求下列事件的概率.(1)取出的两只球都是红球;(2)取出的两只球都是黑球;(3)取出的两只球一只是红球,一只是黑球;(4)第二次取出的是红球. 解.设事件A1表示“第一次取到的是红球”,设事件A2表示“第二次取到的是红球”.(1)要求的是事件A1A2的概率.根据题意P(A1)=4/5,,P(A2|A1)=7/9,∴P(A1A2)=P(A1)P(A2|A1)=4/5×7/9=28/45.(2)要求的是事件的概率.根据题意:,,∴.(3)要求的是取出一只红球一只黑球,它包括两种情形,即求事件的概率.,,,,∴.(4)要求第二次取出红球,即求事件A2的概率.由全概率公式:=7/9×4/5+8/9×1/5=4/5.8. 某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人.一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率.解.设事件A表示“射手能通过选拔进入比赛”,设事件B i表示“射手是第i级射手”.(i=1,2,3,4)显然, B1、B2、B3、B4构成一完备事件组,且P(B1)=4/20, P(B2)=8/20, P(B3)=7/20, P(B4)=1/20;P(A|B1)=0.9, P(A|B2)=0.7, P(A|B3)=0.5, P(A|B4)=0.2.由全概率公式得到P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3)+P(A|B4 )P(B4)=0.9×4/20+0.7×8/20+0.5×7/20+0.2×1/20=0.645.9.轰炸机轰炸某目标,它能飞到距目标400、200、100(米)的概率分别是0.5、0.3、0.2,又设它在距目标400、200、100(米)时的命中率分别是0.01、0.02、解.设事件A1表示“飞机能飞到距目标400米处”,设事件A2表示“飞机能飞到距目标200米处”,设事件A3表示“飞机能飞到距目标100米处”, 用事件B表示“目标被击中”.由题意, P(A1)=0.5, P(A2)=0.3, P(A3)=0.2,0.1 .求目标被命中的概率为多少?且A1、A2、A3构成一完备事件组.又已知P(B|A1)=0.01, P(B|A2)=0.02, P(B|A3)=0.1.由全概率公式得到:P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)=0.01×0.5+0.02×0.3+0.1×0.2=0.031.10. 加工某一零件共需要4道工序,设第一﹑第二﹑第三﹑第四道工序的次品率分别为2%﹑3%﹑5%﹑3%, 假定各道工序的加工互不影响,求加工出零件的次品率是多少?解.设事件A i表示“第i道工序出次品”,i=1,2,3,4因为各道工序的加工互不影响,因此A i是相互独立的事件.P(A1)=0.02, P(A2)=0.03,P(A3)=0.05, P(A4)=0.03,只要任一道工序出次品,则加工出来的零件就是次品.所以要求的是(A1+A2+A3+A4)这个事件的概率.为了运算简便,我们求其对立事件的概率=(1-0.02)(1-0.03)(1-0.05)(1-0.03)=0.876.∴P(A1+A2+A3+A4)=1-0.876=0.124.11. 某人过去射击的成绩是每射5次总有4次命中目标, 根据这一成绩, 求(1)射击三次皆中目标的概率;(2)射击三次有且只有2解.设事件A i表示“第i次命中目标”, i=1,2,3根据已知条件P(A i)=0.8,,i=1,2,3 某人每次射击是否命中目标是相互独立的,因此事件A i是相互独立的.(1)射击三次皆中目标的概率即求P(A1A2A3).次命中目标的概率;(3)射击三次至少有二次命中目标的概率.由独立性:P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=0.83=0.512.(2)“射击三次有且只有2次命中目标”这个事件用B表示. 显然,又根据独立性得到:.(3)“射击三次至少有2次命中目标”这个事件用C 表示.至少有2次命中目标包括2次和3次命中目标,所以C =B +A 1A 2A 3P (C )=P (B )+P (A 1A 2A 3)=0.384+0.512=0.896.12. 三人独立译某一密码, 他们能译出的概率分别为1/3, 1/4,1/5, 求能将密码译出的概率.解.设事件A i 表示“第i 人能译出密码”, i =1,2,3.由于每一人是否能译出密码是相互独立的,最后只要三人中至少有一人能将密码译出,则密码被译出,因此所求的概率为P (A 1+A 2+A 3).已知P (A 1)=1/3, P (A 2)=1/4, P (A 3)=1/5, 而=(1-1/3)(1-1/4)(1-1/5)=0.4.∴P (A 1+A 2+A 3)=1-0.4=0.6.13. 用一门大炮对某目标进行三次独立射击, 第一、二、三次的命中率分别为0.4、0.5、0.7, 若命中此目标一、二、三弹, 该目标被摧毁的概率分别为解.设事件A i 表示“第i 次命中目标”, i =1,2,3.设事件B i 表示“目标被命中i 弹”, i =0,1,2,3. 设事件C 表示“目标被摧毁”.由已知P (A 1)=0.4, P (A 2)=0.5, P (A 3)=0.7; P (C |B 0)=0, P (C |B 1)=0.2, P (C |B 2)=0.6, P (C |B 3)=0.8.0.2、0.6和0.8, 试求此目标被摧毁的概率.又由于三次射击是相互独立的,所以 ,=0.6×0.5×0.7+0.6×0.5×0.3+0.4×0.5×0.3=0.36,=0.6×0.5×0.7+0.4×0.5×0.3+0.4×0.5×0.7=0.41,.由全概率公式得到P (C )=P (C |B 0)P (B 0)+P (C |B 1)P (B 1)+P (C |B 2)P (B 2)+P (C |B 3)P (B 3)=0×0.09+0.2×0.36+0.6×0.41+0.8×0.14=0.43.三、练习题1.已知P(B|A)=103,P(A)=51,则P(AB)=( ) A .21 B.23 C .32 D.5032.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P(A|B)=( )A.21B.31C.41D.813.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258B.21C.83D.434.设某种动物有出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4.现有一个20岁的这种动物,问它能活到25岁以上的概率是 .5.一个口袋内装有2个白球,3个黑球,则(1)先摸出1个白球后放回,再摸出1个白球的概率? (2)先摸出1个白球后不放回,再摸出1个白球的概率?6.某种元件用满6000小时未坏的概率是43,用满10000小时未坏的概率是21,现有一个此种元件,已经用过6000小时未坏,求它能用到10000小时的概率7.某个班级共有学生40人,其中有团员15人,全班分成四个小组,第一小组有学生10人,其中团员4人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件概率一、选择题1.下列式子成立的是( )A .P (A |B )=P (B |A ) B .0<P (B |A )<1C .P (AB )=P (A )·P (B |A )D .P (A ∩B |A )=P (B ) 2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A.35B.25C.110D.593.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910C.215D.1154.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A.14B.13C.12D.355.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A.56B.34C.23D.136.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( )A.911B.811C.25D.897.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( )A.23B.14C.25D.158.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )A .1B.12C.13D.14二、填空题9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.10.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.三、解答题13.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,求P(B|A).14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率.条件概率一、选择题1.下列式子成立的是( )A .P (A |B )=P (B |A ) B .0<P (B |A )<1C .P (AB )=P (A )·P (B |A )D .P (A ∩B |A )=P (B ) [答案] C[解析] 由P (B |A )=P (AB )P (A )得P (AB )=P (B |A )·P (A ). 2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A.35B.25C.110D.59[答案] D[解析] 设第一次摸到的是红球(第二次无限制)为事件A ,则P (A )=6×910×9=35,第一次摸得红球,第二次也摸得红球为事件B ,则P (B )=6×510×9=13,故在第一次摸得红球的条件下第二次也摸得红球的概率为P =P (B )P (A )=59,选D.3.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910C.215D.115[答案] C[解析] 本题主要考查由条件概率公式变形得到的乘法公式,P (AB )=P (B |A )·P (A )=13×25=215,故答案选C. 4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A.14B.13C.12D.35[答案] B[解析] 抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件.所以其概率为4361236=13.5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A.56B.34C.23D.13[答案] C6.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( )A.911B.811C.25D.89[答案] D[解析] 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=1130,P (B )=930,P (AB )=830,从而吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=830930=89.7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( )A.23B.14C.25D.15[答案] C[解析] 设A i 表示第i 次(i =1,2)取到白球的事件,因为P (A 1)=25,P (A 1A 2)=25×25=425,在放回取球的情况P (A 2|A 1)=25×2525=25.8.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )A .1B.12C.13D.14[答案] B[解析] 设A i 表示第i 次(i =1,2)抛出偶数点,则P (A 1)=1836,P (A 1A 2)=1836×918,故在第一次抛出偶数点的概率为P (A 2|A 1)=P (A 1A 2)P (A 1)=1836×9181836=12,故选B.二、填空题9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.[答案] 0.310.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.[答案]9599[解析] 设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5100,P (AB )=5100×9599,所以P (B |A )=P (AB )P (A )=9599.准确区分事件B |A 与事件AB 的意义是关键.11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.[答案] 12[解析] 一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.[答案]3350[解析] 根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数共有33个,故所求概率为3350.三、解答题13.把一枚硬币任意掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,求P (B |A ).[解析] P (B )=P (A )=12,P (AB )=14, P (B |A )=P (AB )P (A )=1412=12.14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.[解析] 解法一:设“取出的是白球”为事件A ,“取出的是黄球”为事件B ,“取出的是黑球”为事件C ,则P (C )=1025=25,∴P (C )=1-25=35,P (B C )=P (B )=525=15∴P (B |C )=P (B C )P (C )=13. 解法二:已知取出的球不是黑球,则它是黄球的概率P =55+10=13.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?[解析] 记事件A :最后从2号箱中取出的是红球;事件B :从1号箱中取出的是红球. P (B )=42+4=23,P (B -)=1-P (B )=13. (1)P (A |B )=3+18+1=49.(2)∵P (A |B -)=38+1=13, ∴P (A )=P (A ∩B )+P (A ∩B -)=P (A |B )P (B )+P (A |B -)P (B -) =49×23+13×13=1127.16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. [解析] 设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=14.(2)要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=415.。