集合的概念 ppt课件
合集下载
集合的概念ppt课件
反之,如果X是一个奇数,那么X除以2的余数为1,它能表示为 X=2k+1(k∈Z)的形式。所以,X=2k+1(k∈Z)是所有奇 数的一个共同特征,于是奇数集可以表为 {X∈Z|X=2k+1, k∈Z}.
再如,实数集,有限小数和无限循环小数都具有q╱p(p, q∈Z,p≠0)的形式,这些数组成有理数集,我们将它表示为 Q={X∈R|X=q╱p,p,q∈Z,p≠0}. 其中,X=q╱p(p,q∈Z,p≠0)就是所有有理数具有的共同 特征。
例如,
不等式X-7<3的解是X<10,因为满足X<10的实数有无数个, 所以X-7<3的解集无法用列举法表示。但是我们可以利用解集中 元素的共同特征,即:X是实数,且X<10,把解集表示为 {X∈R|X<10}.
又如,整数集Z可以分为奇数集和偶数集。对于每一个X∈Z,如 果它能表示为X=2k+1(k∈Z)的形式,那么X除以2的余数为1, 它是一个奇数;
(1)小于10的所有自然数组成的集合
解:设小于10的所有自然数组成的集合为A,那么A={0,1,2,3, 4,5,6,7,8,9}.
注,由于元素完全相同的两个集合相等,而与列举的顺序无关,因 此一个集合可以有不同的列举方法,故以上例题的集合还可以写成 A={9,8,7,6,5,4,3,2,1,0}.
集合E={X∈Z|X=2k+1,k∈Z}也可表示为E={X| X=2k+1,k∈Z}.
练习
1.判断下列元素的全体是否组成集合,并说明理由: (1)A,B是平面α内的定点,在平面α内与A,B等距离的点; (2)高中学生中的游泳能手. 2.用符号“∈”或“∉”填空: 0_N; -3_N; 0.5_Z; √2_Z; 1╱3_Q; π_R.
再如,实数集,有限小数和无限循环小数都具有q╱p(p, q∈Z,p≠0)的形式,这些数组成有理数集,我们将它表示为 Q={X∈R|X=q╱p,p,q∈Z,p≠0}. 其中,X=q╱p(p,q∈Z,p≠0)就是所有有理数具有的共同 特征。
例如,
不等式X-7<3的解是X<10,因为满足X<10的实数有无数个, 所以X-7<3的解集无法用列举法表示。但是我们可以利用解集中 元素的共同特征,即:X是实数,且X<10,把解集表示为 {X∈R|X<10}.
又如,整数集Z可以分为奇数集和偶数集。对于每一个X∈Z,如 果它能表示为X=2k+1(k∈Z)的形式,那么X除以2的余数为1, 它是一个奇数;
(1)小于10的所有自然数组成的集合
解:设小于10的所有自然数组成的集合为A,那么A={0,1,2,3, 4,5,6,7,8,9}.
注,由于元素完全相同的两个集合相等,而与列举的顺序无关,因 此一个集合可以有不同的列举方法,故以上例题的集合还可以写成 A={9,8,7,6,5,4,3,2,1,0}.
集合E={X∈Z|X=2k+1,k∈Z}也可表示为E={X| X=2k+1,k∈Z}.
练习
1.判断下列元素的全体是否组成集合,并说明理由: (1)A,B是平面α内的定点,在平面α内与A,B等距离的点; (2)高中学生中的游泳能手. 2.用符号“∈”或“∉”填空: 0_N; -3_N; 0.5_Z; √2_Z; 1╱3_Q; π_R.
高一数学集合ppt课件
3. 如果A⊆B且B和C是两个互不相交的集 合(即B与C没有交集),那么A与C也是 互不相交的。
2. 如果A⊆B且B⊆C,那么A⊆C。
子集的性质
1. 任何一个集合都是其本身的子集,即 A⊆A。
真子集的定义与性质
真子集的定义:如果 一个集合A是集合B的 一个子集,并且A和B 中至少有一个元素不 相同,那么我们称A 是B的真子集,记为 A⊈B。
集合通常用大写字母 表示,如A、B、C等 。
集合的元素
元素是集合中的个体,可以用小 写字母表示,如a、b、c等。
一个元素可以属于一个或多个集 合,不同元素可以属于同一个集
合。
空集是指不含有任何元素的集合 。
集合的表示方法
列举法
图示法
把集合中的元素一一列举出来,用大 括号{}括起来。
用一条封闭的曲线表示集合,内部可 以填充颜色或点上小点表示元素。
如果一个集合不是另一个集合 的真子集,那么称它为该集合 的真超集。
04
集合的交集、并集、补集的图形 表示
交集的图形表示
总结词
交集是指两个或两个以上集合的公共 部分,可以用符号 "∩" 表示。
详细描述
在图形表示中,交集通常用两个或多 个集合的公共部分来表示。例如,在 两个圆的重叠部分中,重叠部分的元 素就是两个圆的交集。
集合的运算性质
01
02
03
交换律
若A、B是两个集合,则A 并B等于B并A,A交B等于 B交A。
结合律
三个集合的交集和并集, 等于这三个集合分别交、 并后再合并得到的交集和 并集。
分配律
两个集合的并集与另一个 集合的交集相等,等于这 两个集合分别与另一个集 合的交集的并集。
集合的概念-课件ppt
(一)集合的概念:
各种各样的事物或一些抽象的符号,都可以看作对象。
一般地,把一些能够确定的不同的对象看成一个整体,就
说这个整体是有这些对象的全体构成的集合(或集)。 构成集合的每个对象叫做这个集合的元素(或成员)
如:小于10的自然数 0,1,2,3,4,5,6,7,8,9 构成了一个集合
集合举例
3、文氏图:用一条封闭的曲线的内部来 表示一个集合.
例1:用列举法表示下列集合
(1)A {x N | 0 x 5} A {1,2,3,4,5} (2)B={2,3}
例2:用描述法表示下列集合
(1){1,1}; (2)大于3的全体偶数构成的集合;
(二)“元素”与“集合”:
1. 集合通常用大写英语字母A,B,C,…来表示,元 素通常用小写英语字母a,b,c,…来表示;
2、元素与集合的关系 (1)属于:如果a是集合A的元素,就说a属于A,记作 a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A, 记作要注意“∈”的方向,不能把a∈A颠倒过来写.
问题:正偶数的集合怎么表示, 能否使用列举法?
{x R | x能被2整除,且大于0} 或{x R | x 2n, n N}
问题解决:用集合中元素的特征性 质来描述
2、描述法: 在集合I中,属于集合A的任意元素x都 具有性质p(x),而不属于集合A的元 素都不具有性质p(x),则性质p(x)叫做 集合A的一个特征性质,于是集合A 可以表示如下:
3.空集
(1)考虑方程x+1=x+2的解的全体构成的集合.显然这 个集合不含任何元素.
(2)一般地,我们把不含任何元素的集合叫做空集, 记作Ф
知识探究
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
第5讲 集合(PPT)
方法三:在数轴上,分别标出2n+1和4k〒1所表示的点,可 以看出它们都对应数轴上的奇数, 故A=B,选C. 方法四:按余数分类,被2除余1的整数是奇数2n+1(n∈Z), 被4除余1或3(即-1)的整数也是全体奇数,∴选C. 方法归纳:同一个集合会有多种表示法,需要我们把握本质 属性,相互转换.
描述法:用集合所含元素的共同特征表示集合的方法. 具体方法是:在花括号内先写上表示这个集合元素的一般符号 及数值(或变化)范围,再画一条竖线,在竖线后写出这个集 合中元素所具有的共同特征. 例如:{x|x>0}就表示所有大于0的数构成的集合; 而{(x,y)|x>0,y>0}就表示第一象限所有点的坐标构成的集合.
集合间的基本关系 1.子集的概念 如果集合A的任何一个元素都是集合B的元素,我们说这两个集 合有包含关系,称集合A是集合B的子集.记作 :AB或 B A . 读作:A包含于B,或B包含A. 即任取xA都有xB AB . 2.子集的分类: 集合相等: ⑴两个集合中元素都相同. ⑵ AB且 BA A=B .
⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了. ⑵互异性:集合中的元素是互不相同的. ⑶无序性:集合中的元素是不需要考虑顺序的.
集合的表示 1.集合一般用大写的字母A,B,C,…,表示集合,用小写的字 母a,b,c,…,表示集合中的元素. 2.如果a是集合A的元素,就说a属于集合A,记作aA;如果a不 是集合A的元素,就说a不属于集合A,记作aA. 3.具体的集合一般有三种表示方法: 列举法:把集合里的元素一一列举出来,并用花括号“{ }”括起来 表示集合的方法.例如{中国,美国,英国,法国,俄罗斯}.
【解析】:其实{x|x=2m-3,m∈Z}就是全体奇数组成
集合的概念ppt课件
04
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质
人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)
如:(1)小于5的答自案然:数{1组,成-的1}集合可表示为____. (2)方程x2-1=0的解集可表示为_{_x_∈__R_|_x_2-.1=0}
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.
集合的概念PPT课件
B {m Z | 6 N*} 3m
B {3,0,1,2}
小 结:本节课学习了以下内容:
1.集合的有关概念 (集合、元素、属于、不属于、有限集、无限集、 空集)
2.集合的表示方法 (列举法、描述法、文氏图共3种)
3.常用数集的定义及记法
作业: 1、列举集合的实例3个,用集合符号表示,并指 出其元素。 2、写出下列集合中的元素 (1){大于-1且小于7的自然数} (2){平方等于2的数} (3){24的约数} 3、书上P7习题1、1第一题 选做题:求集合{3 , x, x2-2x}中x满足的条件。
课堂小练习一
1,下列条件,哪些可构成集合。 A 立方根等于自身的数 B 班级里高个子同学 C 西湖里的鱼 D 较大的数 2,若{1,2}={a,h},则求 a, h。 3,A={平行四边形},a为菱形,b为梯形, c为矩形,d为正方形。则不正确的是 ① a∈A ② b ∈A ③ c ∈A ④ d ∈A
第二节 函数及其性质
一、 函数的概念 二、 函数的几种特性 三、 反函数
一、 函数的概念
1.函数的定义
定义 1 设有两个变量 x和 y,若当变量 x在实数 的某一范围 D 内,任意取定一个数值时,变量 y 按照一 定的规律 f ,有惟一确定的值与之对应,则称 y 是 x 的 函数,记作 y= f (x), xD,其中变量 x称为自变量,变 量 y 称为函数(或因变量).自变量的取值范围 D 称为 函数的定义域.
有限集与无限集 1、 有限集:含有有限个元素的集合。 2、 无限集:含有无限个元素的集合。 3、 空集:不含任何元素的集合。记作Φ,如:
{x R | x2 1 0}
课堂小练习二
(1)由实数 x,x,| x |, x2 ,3 x3 所组成的集合,
集合的概念精品PPT课件
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
• 集合中的各个对象叫做这个集合的元素.
符号及关系表示
• 集合:A,B,C… • 集合的元素:a,b,c…
读作“a属于A”
• 若a是集合A的元素,记作 a A. 读作“a不属于A”
• 若a不是集合A的元素,记作 a A.
集合的元素的性质:
• 确定性:组成集合的元素,必须是能确定的, 不能模棱两可;
• 互异性:集合中的元素是互异的,不能重复出 现;
• 无序性:集合中的ຫໍສະໝຸດ 素没有一定的顺序(通常 用正常的顺序写出).
集合的分类:
• 按元素个数:
– 有限集:含有有限个元素的; – 无限集:含有无限个元素的集合; – 空集:不含任何元素的集合,记作 .
常用集合:
• 实数集R
– (正实数集R+ 、负实数集R- )
第一章 集 合
1.1.1 集合的概念
观察归纳 形成概念
(1)某职业学校电子电器专业全体学生构成的整体 (2)硬盘上存放在一个文件夹里的照片构成的整体 (3)所有能被2整除的数构成的整体 (4)平面直角坐标系中纵坐标为0的点构成的整体
归纳总结 概括定义
• 把能够确指的一些对象看作一个整体,这 个整体就叫做集合,简称集.
作
教材
P4 第3、4题
业
P9 习题1.1第1、2题
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互异性:一个给定的集合中的元素是互不相 同的,即集合中的元素不能相同。
无序性:集合中的元素是无先后顺序的,即
集合里的任何两个元素可以交换位置
这些性质都是从概念中得到的,概念是知识的生长点,思维的发源地.
2020/11/13
9
判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
把集合中的元素一一列举出来,并用花括号{}括起来表示
集合的方法叫做列举法.
(注意:元素与元素之间用逗号隔开)
例1 用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程 x2 x 的所有实数根组成的集合;
(3)由1~20以内的所有素数组成的集合.
一个集合中的元素 的书写一般不考虑 顺序(集合中元素 的无序性).
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
学习目标
1.了解集合的含义以及集合中元素的确定性、互异性与无序性. 2.掌握元素与集合之间的属于关系并能用用符号表示. 3.掌握常用数集及其专用符号,学会使用集合语言叙述数学问 题. 4.掌握集合的表示方法:自然语言、集合语言(列举法、描述 法),并能相互转换.能选择适当的方法表示集合.
Z
Q
R
判断0与N,N*,Z的关系?
课堂练习P5 第1题
解析:判断一个元素是否在某个集合中,关键在于
弄清这个集合由哪些元素组成的.
2020/11/13
12
集合的表示方法
问题 (1) 如何表示“地球上的四大洋”组成的集合?
(2) 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2}
2020/11/13
(第一课时)
1
2009.9.25
集合的含义与表示
德国数学家,集合论的 创始者。1845年3月3 日生于圣彼得堡(今苏 联列宁格勒),1918 年1月6日病逝于哈雷。
了解康托尔
2020/11/13
2Leabharlann 精品资料• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
(2) 我国的小河流.
问题
如果用A表示高一(3)班学生组成的集合,a表示高 一(3)班的一位同学,b表示高一(4)班的一位同 学,那么a、b与集合A分别有什么关系?由此看出元 素与集合之间有什么关系?
2020/11/13
10
元素与集合的关系
由于集合是一些确定对象的集体,因此可以看成 整体,通常用大写字母A,B,C等表示集合.而用 小写字母a,b,c等表示集合中的元素.
1.填空题
⑴现有:①不大于 3 的正有理数.②我校高一年级 所有高个子的同学.③全部长方形.④全体无实根 的一元二次方程.四个条件中所指对象不能组 成集合的_②__.
⑵设集合A={-2,-1,0,1,2},B={ xA时代数
式 x2 1 的值}.则B中的元素是_{3_,0_,-1_} _
2020/11/13
2020/11/13
5
初中学习了哪些集合的实例
数集 自然数的集合,有理数的集合,不等式x-7<3 的解的集合…
点集 圆(到一个定点的距离等于定长的点的集合) 线段的垂直平分线(到一条线段的两个端点的距离 相等的点的集合),等等.
2020/11/13
6
“请我们班所有的女生起立!”,咱们班所有的 女生能不能构成一个集合?
“请我们班身高在1.70米的男生起立!”,他们 能不能构成一个集合?
其实,生活中有很多东西能构成集合,比如新华 字典里所有的汉字可以构成一个集合等等。大家 能不能再举一些生活中的实际例子呢?
2020/11/13
7
集合的概念
一般地,我们把研究对象统称为元素,把一些 元素组成的总体叫做集合(简称为集).
(2) 用描述法表示下列集合 ① {1,-1} ② 大于3的全体偶数构成的集合.
自然语言主要用文字语言表述,而列举法和描述法是用符号语言表述. 列举法主要针对集合中元素个数较少的情况,而描述法主要适用于集合中的 元素个数无限或不宜一一列举的情况.
练习 P5 练习第2题
2020/11/13
17
基础练习
解:(1)A={0,1,2,3,4,5,6,7,8,9}. 1.确定性
(2)B={0,1}.
2.互异性
2020(/131/)1C3 ={2,3,5,7,11,13,17,19}.
3.无序性 13
集合的表示方法
(1) 您能用自然语言描述集合{2,4,6,8}吗? 小于10的正偶数的集合
(2) 您能用列举法表示不等式x-7<3的解集吗? 不能一一列举
18
2.选择题 ⑴ 以下说法正确的( C )
(A) “实数集”可记为{R}或{实数集}或{所有实数}
(B) {a,b,c,d}与{c,d,b,a}是两个不同的集合
(C) “我校高一年级全体数学学得好的同学”不能组 成一个集合,因为其元素不确定
⑵ 已知2是集合M={ 0,a,a23a2}中的元素,
思考:
(1)世界上最高的山能不能构成集合?
(2)世界上的高山能不能构成集合? (3)由实数1、2、3、1组成的集合有几个元素?
(4)由实数1、2、3、1组成的集合记为A,由实数3、 1、2、组成的集合记为B,这两个集合相等吗?
2020/11/13
8
确定性:给定的集合,它的元素必须是确定
的,也就是说给定一个集合,那么任何一个元素在 不在这个集合中就确定了
(请阅读课本P4例2前的内容)
{x R |x10}
2020/11/13
{x|x220}
﹨{x|1 0x2}0
14
第一课时完
2020/11/13
15
2020/11/13
(第二课时)
16
2009.9.25
集合的表示方法
练习 (1) 用列举法表示下列集合
① A { x N |0 x 5 }② B{x|x25x60}
元素与集合的关系有两种:
a A 如果a是集A的元素,记作: a A 如果a不是集A的元素,记作:
例如,用A表示“ 1~20以内所有的质数”组
成的集合,则有3 ∊A,4 ∉A,等等。
2020/11/13
11
常用的数集
数集
符号
自然数集(非负整数集)
N
正整数集
整数集 有理数集
实数集
N* 或 N+
无序性:集合中的元素是无先后顺序的,即
集合里的任何两个元素可以交换位置
这些性质都是从概念中得到的,概念是知识的生长点,思维的发源地.
2020/11/13
9
判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
把集合中的元素一一列举出来,并用花括号{}括起来表示
集合的方法叫做列举法.
(注意:元素与元素之间用逗号隔开)
例1 用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程 x2 x 的所有实数根组成的集合;
(3)由1~20以内的所有素数组成的集合.
一个集合中的元素 的书写一般不考虑 顺序(集合中元素 的无序性).
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
学习目标
1.了解集合的含义以及集合中元素的确定性、互异性与无序性. 2.掌握元素与集合之间的属于关系并能用用符号表示. 3.掌握常用数集及其专用符号,学会使用集合语言叙述数学问 题. 4.掌握集合的表示方法:自然语言、集合语言(列举法、描述 法),并能相互转换.能选择适当的方法表示集合.
Z
Q
R
判断0与N,N*,Z的关系?
课堂练习P5 第1题
解析:判断一个元素是否在某个集合中,关键在于
弄清这个集合由哪些元素组成的.
2020/11/13
12
集合的表示方法
问题 (1) 如何表示“地球上的四大洋”组成的集合?
(2) 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2}
2020/11/13
(第一课时)
1
2009.9.25
集合的含义与表示
德国数学家,集合论的 创始者。1845年3月3 日生于圣彼得堡(今苏 联列宁格勒),1918 年1月6日病逝于哈雷。
了解康托尔
2020/11/13
2Leabharlann 精品资料• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
(2) 我国的小河流.
问题
如果用A表示高一(3)班学生组成的集合,a表示高 一(3)班的一位同学,b表示高一(4)班的一位同 学,那么a、b与集合A分别有什么关系?由此看出元 素与集合之间有什么关系?
2020/11/13
10
元素与集合的关系
由于集合是一些确定对象的集体,因此可以看成 整体,通常用大写字母A,B,C等表示集合.而用 小写字母a,b,c等表示集合中的元素.
1.填空题
⑴现有:①不大于 3 的正有理数.②我校高一年级 所有高个子的同学.③全部长方形.④全体无实根 的一元二次方程.四个条件中所指对象不能组 成集合的_②__.
⑵设集合A={-2,-1,0,1,2},B={ xA时代数
式 x2 1 的值}.则B中的元素是_{3_,0_,-1_} _
2020/11/13
2020/11/13
5
初中学习了哪些集合的实例
数集 自然数的集合,有理数的集合,不等式x-7<3 的解的集合…
点集 圆(到一个定点的距离等于定长的点的集合) 线段的垂直平分线(到一条线段的两个端点的距离 相等的点的集合),等等.
2020/11/13
6
“请我们班所有的女生起立!”,咱们班所有的 女生能不能构成一个集合?
“请我们班身高在1.70米的男生起立!”,他们 能不能构成一个集合?
其实,生活中有很多东西能构成集合,比如新华 字典里所有的汉字可以构成一个集合等等。大家 能不能再举一些生活中的实际例子呢?
2020/11/13
7
集合的概念
一般地,我们把研究对象统称为元素,把一些 元素组成的总体叫做集合(简称为集).
(2) 用描述法表示下列集合 ① {1,-1} ② 大于3的全体偶数构成的集合.
自然语言主要用文字语言表述,而列举法和描述法是用符号语言表述. 列举法主要针对集合中元素个数较少的情况,而描述法主要适用于集合中的 元素个数无限或不宜一一列举的情况.
练习 P5 练习第2题
2020/11/13
17
基础练习
解:(1)A={0,1,2,3,4,5,6,7,8,9}. 1.确定性
(2)B={0,1}.
2.互异性
2020(/131/)1C3 ={2,3,5,7,11,13,17,19}.
3.无序性 13
集合的表示方法
(1) 您能用自然语言描述集合{2,4,6,8}吗? 小于10的正偶数的集合
(2) 您能用列举法表示不等式x-7<3的解集吗? 不能一一列举
18
2.选择题 ⑴ 以下说法正确的( C )
(A) “实数集”可记为{R}或{实数集}或{所有实数}
(B) {a,b,c,d}与{c,d,b,a}是两个不同的集合
(C) “我校高一年级全体数学学得好的同学”不能组 成一个集合,因为其元素不确定
⑵ 已知2是集合M={ 0,a,a23a2}中的元素,
思考:
(1)世界上最高的山能不能构成集合?
(2)世界上的高山能不能构成集合? (3)由实数1、2、3、1组成的集合有几个元素?
(4)由实数1、2、3、1组成的集合记为A,由实数3、 1、2、组成的集合记为B,这两个集合相等吗?
2020/11/13
8
确定性:给定的集合,它的元素必须是确定
的,也就是说给定一个集合,那么任何一个元素在 不在这个集合中就确定了
(请阅读课本P4例2前的内容)
{x R |x10}
2020/11/13
{x|x220}
﹨{x|1 0x2}0
14
第一课时完
2020/11/13
15
2020/11/13
(第二课时)
16
2009.9.25
集合的表示方法
练习 (1) 用列举法表示下列集合
① A { x N |0 x 5 }② B{x|x25x60}
元素与集合的关系有两种:
a A 如果a是集A的元素,记作: a A 如果a不是集A的元素,记作:
例如,用A表示“ 1~20以内所有的质数”组
成的集合,则有3 ∊A,4 ∉A,等等。
2020/11/13
11
常用的数集
数集
符号
自然数集(非负整数集)
N
正整数集
整数集 有理数集
实数集
N* 或 N+