留数理论及其应用

合集下载

(完整版)复变函数第六章留数理论及其应用知识点总结

(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用§1.留数1.(定理6.1 柯西留数定理):∫f(z)dz=2πi∑Res(f(z),a k)nk=1C2.(定理6.2):设a为f(z)的m阶极点,f(z)=φ(z) (z−a)n,其中φ(z)在点a解析,φ(a)≠0,则Res(f(z),a)=φ(n−1)(a) (n−1)!3.(推论6.3):设a为f(z)的一阶极点,φ(z)=(z−a)f(z),则Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点φ(z)=(z−a)2f(z)则Res(f(z),a)=φ′(a)5.本质奇点处的留数:可以利用洛朗展式6.无穷远点的留数:Res(f(z),∞)=12πi∫f(z)dzΓ−=−c−1即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1z这一项系数的反号7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。

注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。

8.计算留数的另一公式:Res (f (z ),∞)=−Res (f (1t )1t 2,0)§2.用留数定理计算实积分一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ注:注意偶函数二.∫P(x)Q(x)dx +∞−∞型积分1.(引理6.1 大弧引理):S R 上lim R→+∞zf (z )=λ则lim R→+∞∫f(z)dz S R=i(θ2−θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中P (z )=c 0z m +c 1z m−1+⋯+c m (c 0≠0)Q (z )=b 0z n +b 1z n−1+⋯+b n (b 0≠0)为互质多项式,且符合条件:(1)n-m ≥2;(2)Q(z)没有实零点于是有∫f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0+∞−∞注:lim R→R+∞∫f(x)dx +R −R 可记为P.V.∫f(x)dx +∞−∞ 三. ∫P(x)Q(x)e imx dx +∞−∞型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且lim R→+∞g (z )=0在ΓR 上一致成立。

留数理论及应用

留数理论及应用

2.函数的零点与极点的关系
不恒等于零的解析函数f (z)如果能表示成:
f (z) (z z0 )m(z) 其中(z)在z0处解析,且(z0 ) 0, m为一正整数,那么z0称为f (z)的m级零点。
例如:z 0和z 1分别是函数 f (z) z(z 1)3的一级和三级零点。
结论:如果f (z)在z0处解析,那么z0为f (z)的m级零点的充分必要条件是: f (n) (z0 ) 0, (n 0,1,2....m 1) , f (m) (z0 ) 0
如果函数:
f (z) cn z n c0 cn z n
n1
n1
(t) cnt n c0 cnt n
n1
n1
则:t 0是(t)的
(1):不含负幂项(可去奇点)
(2):含有限多个负幂项,t m为最高负幂项(m级奇点)
(3):含无限多个负幂项(本性奇点)
对应:z 是f (z)的 (1):不含正幂项(可去奇点) (2):含有限多个正幂项,z m为最高正幂项(m级奇点) (3):含无限多个正幂项(本性奇点)
那么我们说 z0 是f(z)的可去奇点,或者说f(z)在 z0 有可去奇点。
这是因为令 f (z0 ) 0 ,就得到在整个圆盘
| z z0 | R 内的解析函数f(z)。
例ቤተ መጻሕፍቲ ባይዱ:z 0是 sin z 的可去奇点 z
孤立奇点的分类-极点:
(2)如果只有有限个(至少一个)负整数n,
使得 n 0,
(sinz)3
§5.2 留数定理
1.留数的定义及留数定理
1. 留数定理
设 C 为分段光滑的简单闭合曲线,f (z) 在 C 内除有限孤立
奇点b1,b2 ,L L ,bN 外处处解析,则

04 留数理论及其应用

04 留数理论及其应用
18:53:44
数学物理方法
物理学院 邓胜华
第四章 留数理论 一、留数定理 二、利用留数理论求积分 三、在无穷远点的留数 四NG S.H
1/41
物理学院 邓胜华
18:53:44
第 4 章 留数理论
一、留数的引入
设 z 0 为 f ( z )的一个孤立奇点,
z0 的某去心邻域:0

f (z) cm (z z0 )m c2 (z z0 )2
c 1 ( z z0 ) 1 c0 c1 ( z z0 )
(z z0 )m f (z) cm cm1(z z0 ) c1(z z0 )m1
c0 ( z z0 )m c1 ( z z0 )m 1
C1 C2 Cn
2πiRes[ f ( z ), z1 ] Res[ f ( z ), z2 ] Res[ f ( z ), zn ]
1 1 1 f ( z )dz f ( z )dz f ( z )dz 2πi 2πi C 2 2πi C n 2πi C 1
10/15/2015 DENG S.H 14/41

,
物理学院 邓胜华
第 4 章 留数理论 1 2π 1 iθ iθ f ( ρ e ) ie dθ Res[ f ( z),] f ( z ) d z 0 2πi 2i C 1 2π 1 i f i i d . 2π i 0 re re
P ( z 0 ) 0 , Q ( z 0 ) 0 , Q ( z 0 ) 0 ,
P ( z0 ) 则有 Res[ f ( z ), z0 ] . Q ( z 0 )

留数的求法及应用总结

留数的求法及应用总结

留数的求法及应用总结留数是一种在复变函数理论中用于计算复数函数在奇点处的残留的方法。

留数的计算方法有多种,例如通过直接计算留数公式、Laurent级数展开、辅助函数法、计算围道积分等。

留数的应用非常广泛,包括在计算复积分、求解微分方程、计算极限、求解物理问题等方面都有重要的应用。

首先,我们来看留数的求法。

在复变函数中,函数在奇点点处的留数可以通过以下方法求解:1. 直接计算留数公式:对于简单的函数,可以直接使用留数公式计算。

对于一阶奇点,留数可通过函数在该点的极限值计算:Res[f(z), z=a] = lim(z->a) [(z-a) * f(z)]。

对于高阶奇点,留数可以通过多次取导数再计算极限来求解。

2. Laurent级数展开:对于复变函数,在奇点附近可以进行Laurent级数展开。

然后通过观察Laurent级数的形式,可以读出相应奇点的留数。

3. 辅助函数法:对于一些复杂的函数,可以通过引入辅助函数来计算留数。

通过构造辅助函数,可以使得计算留数的过程变得更加简单。

4. 计算围道积分:复平面上的围道积分可以通过计算围道上的奇点处的留数之和来求解。

通过将围道逐步缩小,将围道上的奇点都计算在内,然后将结果相加即可得到围道积分值。

接下来,我们来看留数的应用。

1. 计算复积分:复积分可以通过计算围道上的奇点处的留数之和来进行计算。

通过围道积分的方法,可以将复积分转化为留数的求和问题,从而简化计算过程。

2. 求解微分方程:在微分方程的求解过程中,往往需要对复函数积分。

通过留数的方法,可以将复积分转化为留数的计算,从而简化问题的求解过程。

3. 计算极限:对于一些复杂的极限问题,可以通过计算极限点处的留数来进行求解。

通过将极限问题转化为留数问题,可以简化问题的求解过程。

4. 物理问题求解:在物理学中,通过留数的方法可以求解一些边界值问题、传热问题、电磁问题等。

通过将物理问题转化为留数问题,可以利用留数的性质来求解物理问题。

复变函数第六章留数理论及其应用知识点总结

复变函数第六章留数理论及其应用知识点总结

注 2:条件可减弱为:f(z)连续到边界 C,且沿 C 有 f(z)≠0 4.(辅角原理):
5.(定理 鲁歇(Rouche)定理):设 C 是一条周线,函数 f(z)及 (z)满足条 件:
(1)它们在 C 的内部均解析,且连续到 C;
(2)在 C 上,|f(z)|>| (z)|
则函数 f(z)与 f(z)+ (z)在 C 内部有同样多(几阶算几个)的零点,即
§2.用留数定理计算实积分
一. 注:注意偶函数
→ 引入
二.
型积分
1.(引理 大弧引理): 上

2.(定理)设
为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有
注:
可记为
三.
型积分
3.(引理 若尔当引理):设函数 g(z)沿半圆周 上连续,且
在 上一致成立。则
2
4.(定理):设 (1)Q 的次数比 P 高; (2)Q 无实数解; (3)m>0 则有
(2)设 b 为 f(z)的 m 阶极点,则 b 必为函数 的一阶极点,并且
3
3.(定理 对数留数定理):设 C 是一条周线,f(z)满足条件: (1)f(z)在 C 的内部是亚纯的; (2)f(z)在 C 上解析且不为零。 则有
注 1:当条件更改为:(1)f 在 Int(C)+C 上解析;(2)C 上有 f≠0,有 ,即
,其中 P(z)及 Q(z)为互质多项式,且符合条件:
特别的,上式可拆分成: 及
四.计算积分路径上有奇点的积分 5.(引理 小弧引理):
于 上一致成立,则有
五.杂例 六.应用多值函数的积分
§3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数:

留数定理及其应用

留数定理及其应用

留数定理及其应用
留数定理是复变函数理论中的重要定理,用于计算函数在奇点处的留数。

具体来说,如果函数f(z)在区域D内解析,除了有
限个孤立奇点外,则对于D内的任意简单闭曲线C,有如下
留数定理:
∮Cf(z)dz = 2πi * sum(Res(f, z_k))
其中,∮C表示沿C的积分,Res(f, z_k)是函数f(z)在奇点z_k
处的留数。

留数定理的应用主要包括以下几个方面:
1. 计算积分:通过计算函数在奇点处的留数,可以用留数定理来计算复变函数沿闭合曲线的积分。

这样可以简化积分计算,尤其对于实数不易计算的积分,留数定理非常有用。

2. 计算极限:通过留数定理,可以计算复变函数在某个奇点处的极限。

如果函数的极限存在,那么它等于该点处的留数。

3. 解析延拓:通过计算函数在奇点处的留数,可以确定函数在奇点处的性质,如极点的类型(一级极点、二级极点等)以及解析延拓的可能性。

4. 解析函数恢复:留数定理可以用于还原函数原本的性质,即通过计算函数在奇点处的留数,可以还原函数在奇点前的数值。

总之,留数定理是复变函数理论中的重要工具,广泛应用于多个数学和工程领域,如积分计算、边界值问题、电路分析等。

它简化了复变函数的计算和研究,为解决实际问题提供了有效的方法。

留数理论及其在计算实积分中的应用

留数理论及其在计算实积分中的应用

指导教师:论文题目:留数理论及其在计算实积分中的应用学院:专业:班级:学号:姓名:留数理论及其在计算实积分中的应用摘要:留数理论是复积分和复级数理论相结合的产物。

留数定理为某些类型积分的计算,提供了极为有效的方法。

在此主要探讨留数定理对实积分的计算。

把求实变函数的积分化为复变函数沿围线的积分,然后应用留数定理,使沿围线的积分计算,归结为留数计算。

本文主要介绍留数定义、留数定理定义、留数计算方法、利用留数定理计算实积分的方法。

关键词:留数,留数定理,实积分。

引言:留数的一个很重要的应用是计算一些特殊类型的实积分。

如,在研究阻尼振动时计算积分dx x x sin 0⎰∞;在研究光的衍射时,需要计算菲涅尔积分dx 2sinx 0⎰∞;在热学中需要计算积分⎰∞-0cos e bxdx ax (a>0,b 为任意实数)等。

如果用实函数分析中的方法来计算这些积分几乎是不可能的,即便能计算某些积分,过程也很繁琐且易出错。

因此,利用留数定理将实变函数的积分化为复变函数沿围线的积分来进行计算,就相对简单多了。

要使用留数计算,需要两个条件:一是被积函数与某个解析函数有关;其次,实积分可化为某个沿闭路的积分。

下面主要介绍留数及留数定理的定义和计算,还有利用留数定理计算类型为⎰πθθ20)sin ,(cos R ,dx e x Q x P dx x i a -)()(,Q(x )P(x )⎰⎰+∞∞-+∞∞(a>0)的实积分和积分路径上有奇点的积分。

另外还会介绍利用留数定理计算物理学中常用的实积分。

一、留数 1.1留数定义设0z 是解析函数f(z)的孤立奇点,我们把f(z)在0z 处的洛朗展开式中负一次幂项的系数1-C 称为f(z)在0z 处的留数。

记作Res[f(z),0z ],即 Res[f(z),0z ]=1-C 。

显然,留数1-C 就是积分⎰c dz z f )(i21π 的值,其中C 为解析函数f(z)在0z 的去心邻域内绕0z 的闭曲线。

第五章 留数理论及其应用

第五章   留数理论及其应用

第五章 留数理论及其应用本章的中心问题是留数定理.借助第四章的讨论,我们引入留数概念并计算留数.我们即将看到柯西-古萨基本定理,柯西积分公式都是留数定理的特殊情况.作为留数定理的应用,我们可以把沿闭曲线的积分的计算转化为孤立奇点处的留数计算.对于高等数学中的一些定积分和广义积分,按过去的计算方法可能比较复杂,甚至难以算出结果,而用留数计算的方法则相对简便.因此留数定理在理论和实际应用中都具有重要意义.1. 留数的定义如果f (z )在z 0处解析,那么对于z 0的邻域中的任意一条简单闭曲线C ,都有()d 0Cf z z =⎰.如果z 0是f (z )的孤立奇点,那么对于解析圆环00z z δ<-<内包含z 0的正向简单闭曲线C ,上述积分只与f (z )和z 0有关,而与C 无关,但积分值不一定为零.现在我们来计算这个积分.由第四章定理4.12,f (z )在z 0的邻域内可展开成罗朗级数:()()nnn f z a z z ∞=-∞=-∑,其中101()d ,0,1,2,2π()n n Cf a n iz ξξξ+==±±-⎰特别地,11()d 2πCa f iξξ-=⎰.于是得到1()d 2πCf iaξξ-=⎰.因此a −1这个系数有它特殊的含义.我们把f (z )在z 0处的罗朗级数中(z −z 0)−1项的系数a −1称为f (z )在孤立奇点z 0处的留数,记为Res [f (z ),z 0]=a −1, (5.1) 即 Res[f (z ),z 0]=1()d 2πCf z z i⎰. (5.2)例5.1 求下列积分的值,其中C 为包含z =0的简单正向闭曲线.(1)3cos d Czz z -⎰ (2)12ed z Cz ⎰.解: (1)令f (z )=z −3cos z ,则z =0为f (z )的孤立奇点.又因cos z =2461,.2!4!6!z z z z -+-+<∞故 f (z )= 3311,0,24!6!z z z z z -+-+<<∞所以Res [f (z ),0]= 12-.(2) 令f (z )= 21e z ,则z =0为f (z )的孤立奇点.因为2e 1,,1!2!!nz n ξξξξ=++++<∞以21z ξ=代入上式,得 f (z )=1242111111,0.1!2!!nz z z n z +⋅+⋅+⋅+<<∞所以,Res[f (z ),0]=0.2. 留数定理 考察积分()d Cf z z ⎰,若闭曲线C 内仅含有f (z )的一个孤立奇点,则可利用公式(5.2)来求积分值.但是如果多于一个孤立奇点,则由下述的留数定理,可以把积分的计算转化成f (z )在C 中的各孤立奇点的留数的计算.定理5.1 留数定理设函数f (z )在区域D 内除有有限个孤立奇点z 1,z 2,…,z n 外处处解析,C 是D 内包围这些奇点的一条正向简单闭曲线,那么[]1()d 2πRes (),.nkk Cf z z i f z z ==∑⎰ (5.3)证明:如图 5.1所示,以z k 为圆心,作完全含在C 内且互不相交的正向小圆C k :|z −z k |=k δ,(k =1,2,…,n ),那么由复合闭路上的柯西积分定理,有12()d ()d ()d ()d .nCC C C f z z f z z f z z f z z =+++⎰⎰⎰⎰但[]()d 2πRes (),.1,2,,.kk C f z z i f z z k n ==⎰于是有[]1()d 2πRes (),knkk C f z z i f z z ==∑⎰.一般来说,求函数在其孤立奇点z 0处的留数只须求出它在以z 0为中心的圆环域内罗朗级数中(z −z 0)−1的系数a −1就可以了,但在很多情况下,函数在孤立奇点的罗朗展开式并不易得到,因此有必要讨论在不知道罗朗展开式的情况下计算留数的方法. 3. 留数的计算方法(1) 如果z 0为f (z )的m 级极点,那么[]()(){}010011Res (),lim ()1!m mm z z d f z z z z f z m dz--→=-- (5.4)证明:因为z 0是f (z )的m 级极点,故在z 0的邻域中有f (z )=()01()g z z z m-,图5.1其中g (z )在z 0处解析,且g (z 0) 0≠.于是f (z )= ()0000000()()1()(),!!n n nn m n n g z g z z z z z z z m n n ∞∞-==-=--∑∑ 其中(z −z 0)−1的系数为()10()1!m g z m --.又g (z )=(z −z 0)m f (z ),因而得到:()()(){}011001()1lim ().1!1!m m m z z g z d z z mf z m m dz---→=---从而(5.4})成立.特别地,当m =1时,我们有下面的结果. (2) 若z 0是f (z )的一级极点,那么Res 00[(),0]lim()().z z f z z z f z →=- (5.5)例5.2 求f (z )=252(1)z z z --分别在z =0和z =1的留数.解: 容易看到z =0是f (z )的一级极点,故由(5.5)得Res[f (z ),0] =21052lim ()lim2.(1)z z z z f z z →→-⋅==--而z =1是f (z )的二级极点,由(5.4)得Res[f (z ),1] =(){}22115(52)lim1()lim2.z z d z z z f z dzz→→---== 在某些情况下,下面的命题用起来更方便. (3) 设f (z )=00()()P z Q z ',P (z ),Q (z )在z 0都是解析的.如果P (z 0)0≠,Q (z 0)=0且Q '(z 0)0≠,那么z 0是f (z )的一级极点,因此有Res[f (z ),z 0]=00().()P z Q z ' (5.6)证明: 事实上,因为Q (z 0)=0及Q '(z 0) 0≠,所以z 0为Q (z )的一级零点,由11()()z Q z z z ϕ=-,其中()z ϕ在z 0解析且0()0z ϕ≠,于是 f (z )=1()()z P z z z ϕ-. 因为在z 0解析且00()()0z P z ϕ≠,故z 0为f (z )的一级极点.根据(5.5)式,有0000000000()()Res[(),]lim()()lim()lim()()()()()()lim .()()()z z z z z z z z P z P z f z z z z f z z z z z Q z Q z Q z P z P z Q z Q z Q z z z →→→→=-=-=--=='-例5.3 计算f (z )= e sin zz在z =0处的留数.解: 这时P (z )=e z ,Q (z )=sin z ,于是P (0)=1,Q (0)=0,Q '(0)=1. 由(5.6)式得Res[f (z ),0]=()0(0)P Q '=1. 上述的几种方法,实质上是把留数的计算变成了微分运算,从而带来了方便.但如果z 0是f (z )的本性奇点,我们没有像上面那种简单的留数计算公式,这时只能通过求f (z )的罗朗展开来得到f (z )在z 0的留数.有时候,对于级比较高的极点,或者求导比较复杂的函数,运用上面的公式也十分复杂,选择求罗朗展开或者其它方法可能更好些.例5.4 计算f (z )= 6sin z zz-在z =0处的留数. 解:因为35663sin 111[()]3!5!1111,3!5!z z z z z z z z z z-=--⋅+⋅+=⋅-⋅+所以Res 16sin 1,0.5!z z a z --⎡⎤==-⎢⎥⎣⎦此题若选择微分的方法,运算相对复杂一些,读者可做验算比较.例5.5 计算积分222d (1)(1)Czz zz -+⎰,这里C : |z –取正向.解:令f (z )=222(1)(1)zz z -+,则z 1=i , z 2=–i 为f (z )的两个一级极点,z 3=1,z 4=–1为f (z )两个二级极点.容易看出z 1,z 2,z 3位于C 的内部.由留数定理,31()d 2πRe [(),].kk Cf z z i s f z z ==∑⎰又Res [f (z ),i ]= 221lim()()lim.(1)()8z iz iz z i f z z z i →→-==-+同理Res [f (z ),–i ]=18. Res [f (z ),1] = 22211lim{(1)()}lim (1)(1)z z d d zz f z dz dz z z →→⎧⎫-=⎨⎬++⎩⎭323221311lim.(1)(1)8z z z z z z →---+==++ 于是111π()d 2π().8884Cif z z i =+-=⎰4. 在无穷远点的留数设函数f (z )在圆环域R <|z |<∞内解析,C 为这圆环域内绕原点的任何一条简单闭曲线,那么称f (z )沿C 的负向积分值1()d 2πCf z z i⎰称为f (z )在∞点的留数,记作Res [f (z ),∞]=1()d 2πCf z z i⎰. (5.7)这个积分值与C 无关,且根据公式(4.23)和(4.24)得Res[f (z ),∞]=111()d ()d ,2π2πCC f z z f z z b i i--==-⎰⎰(5.8)即f (z )在∞点的留数等于它在∞点的去心邻域R <|z |<∞内的罗朗展开式中z –1的系数的相反数.由(5.7)式,我们有下述定理.定理5.2 如果函数f (z )在扩充的复平面内只有有限个孤立奇点,那么f (z )在所有奇点(包括∞点)的留数之和为零.证明:取r 充分大,使f (z )的有限个孤立奇点z k (k =1,2,…,n )都在|z |<r 中. 由留数定理,得1()d 2πRes[(),]nk k z rf z z i f z z =<=∑⎰,其中积分取圆周的正项.由(5.8})式,得Res [f (z ),∞]=()d z rf z z <-⎰.于是就有Res[f (z ),∞]+1Res[(),]nkk f z z =∑=0.例5.6 判定z =∞是函数f (z )=223zz +的什么奇点?并求f (z )在∞点的留数. 解:因为 lim ()0,z f z →∞=所以∞点是可去奇点.又f (z )在复平面内仅有3i 和–3i 为一级极点,且Res[f (z ),3i ]= 3lim3z i z i →+ =1,Res [f (z ),–3i ]= 3lim3z i z i→--=1.故由定理5.2Res[f (z ),∞] = – Res [f (z ),3i ] – Res [f (z ), –3i ] = –1–1= –2.§5.2 留数在积分计算上的应用在高等数学中我们知道,有很多函数的原函数不能用初等函数来表达,因此,通过求原函数的办法求定积分或广义积分就受到限制.利用留数理论可以求一些重要的实函数的积分.下面我们分几种类型介绍怎样利用留数求积分的值.1. 形如()d R x x ∞-∞⎰的积分这里R (x )=()()P z Q z 为有理函数,P (x )=x m +a 1x m –1+…+a m , Q (x )=x n +b 1x n –1+…+b n , P (x ), Q (x )为两个既约实多形式,Q (x )没有实零点,且n –m ≥ 2.我们取复函数R (z )=()()P z Q z ,则除Q (z )的有限个零点外,R (z )处处解析.取积分路线如图5.2所示,其中C r 是以原点为中心,r 为半径的上半圆周,令r 足够大,使R (z )在上半平面上的所有极点z k (k =1,2,…,s )都含在曲线C r 和[–r , r ]所围成的区域内.由留数定理,得1()d ()d 2πRes[(),].rrskk rC R x x R z z i f z z =-+=∑⎰⎰当r 充分大时,右端的值与r 无关.又|R (z )|=111111111111.11m m m m n mn mnnn n a z a z a z a z b z b zb z b zzz----------++++++⋅≤⋅+++-++故存在常数M ,当|z |充分大时,有图5.2|R (z )| 2.n mM M zz-≤≤令z =i re θ,于是πππ20()d (e )e d (e )d πd 0()ri i i C R z z R r ri R r r M M r r r rθθθθθθ=≤≤=→→∞⎰⎰⎰⎰因此在(5.9)式中令r →∞得1()d 2πRes[(),].nk k R x x i R z z +∞-∞==∑⎰(5.10)例5.7 计算积分242d 109x x x x x +∞-∞-+++⎰.解:记R (z )= 242109x x x x -+++,则R (z )满足(5.10)式的条件,且R (z )在上半平面内有2个一级极点z 1=i 和z 2=3i .容易得到Res [R (z ),i ]=1i 16--, Res[R (z ),3i ]= 37i48-,因此 2421i 37i 5d 2πi[]π.109164812x x x x x +∞-∞-+---=+=++⎰例5.8 计算积分24d 1x x x +∞+⎰. 解:注意到R (x )=241x x +为偶函数,于是有224401d d .121x x x x x x +∞+∞-∞=++⎰⎰ 又R (z )的分母高于分子两次,在实轴上无奇点,在上半平面上有两个一级极点1)i i +-+,且Res[R (z)i +R (z1)i -+]= 由公式(5.10})有240d 2ππ.12x x x +∞==+⎰ 故得240d π.14x x x +∞=+⎰ 2. 形如()e d (0)ix R x x αα+∞-∞>⎰的积分这里R (x )是实轴上连续的有理函数,而分母的次数n 至少要比分子的次数m 高一次(n –m ≥1).这时有1()e d 2Re [e (),].sixix k k R x x i s R z z ααπ+∞=-∞=∑⎰(5.11)其中z k (k =1,2,…,s)是R (z )在上半平面的孤立奇点.事实上,如同类型1中处理的一样,取如图(5.2)的积分曲线C r ,当r 充分大,使z k (k =1,2,…,s)全落在曲线C r 与[–r , r ]所围成的区域内.于是 又n –m ≥1,故充分大的|z |,有|R (z )| M z≤. 因此sin cos 0πsin 0ππ2sin sin 0()e d (e )e d (e )e d e d 2e d .rizi r i r C i r r r R z z R r r R r r M M παθαθαθθαθαθαθθθθθ-+---=⋅≤⋅≤=⎰⎰⎰⎰⎰当π02θ≤≤时,2sin πθθ≥,所以有 ()2ππ2π()e d 2ed (1e ).2rizr r C M R z z M rθαααθ--≤=-⎰⎰ 于是,当r →∞时,()ed 0rizC R z z α→⎰,故(5.11})式成立.(5.11})还可以变形为1()cos ()sin d 2πRes[()e ,].siz k k R x xdx i R x x x i R z z ααα+∞+∞=-∞-∞+=∑⎰⎰ (5.12)例5.9 求积分2cos d 45xx x x +∞++⎰.解:设R (z )=2145x x ++,则R (z )的分母高于分子二次,实轴上无奇点,上半平面只有一个一级极点z = –2+i ,故2122()ed 2πRes[()e ,2]2πlim [(2)]()e e e2πlim2π.22ixiz izz iiz iz i R x x i R z i i z i R z i i z i i+∞→-+-∞--→-+=-+=--+==++⎰由公式(5.12}),有2cos d 45x x x x +∞-∞++⎰=Re[12e 2π2i i i --]=1πe cos 2.- 在上面两类型的积分中,都要求R (z )在实轴上无孤立奇点,这时我们取积分闭曲线为图5.2的形式.当R (z )在实轴上有奇点时,我们要根据具体情况,对积分曲线稍作改变.下面以例题说明如何计算此类型的积分.例5.10 计算积分sin d xx x+∞⎰的值. 解:取函数f (z )=e izz,并取围道如图5.3所示,在此围道中f (z )是解析的.由柯西积分定理,得e e e e d d d d 0.r Rr Rix iz ix izR C r C x z x z x z x x --+++=⎰⎰⎰⎰ 令x =–t ,则有e e e d d d .r r Rix it ixR R rx t x x t x ----==-⎰⎰⎰ 所以有e e e e d d d 0.R rRix ix iz izr C C x z z x z z --++=⎰⎰⎰ 即sin e e 2d d d 0.R rRiz izr C C x i x z z x z z ++=⎰⎰⎰现在来证明0e e lim d 0lim d π.R riz izR r C C z z i z z →∞→==-⎰⎰和 由于图5.3π2e ππsin 00sin 0e e d d e d π22e d (0,sin )2ππ(1e ),i R iR izR C R R z R z R Rθθθθθθθθθ---≤⋅==≤≤≥=-⎰⎰⎰⎰时所以e lim d 0.RizR C z z→∞=⎰ 又因为1e 11(),2!!iz n nz z i i z z z n zϕ-=+-+++=+ 其中ϕ(z )在z =0解析,且ϕ(0)=i .因此当|z |充分小时,可设|ϕ(z )|≤2.由于e d d ()d ,r r riz C C C z z z z z z ϕ=+⎰⎰⎰ 而πd e d πe r i i C z ir i z r θθθ==-⎰⎰ 和π()d (e)d 2π.Ri C z z r r r θϕϕθ≤≤⎰⎰故有0e lim d π.rizr C z i z →=-⎰ 综上所述,令R →∞,r →0,则有sin πd .2x x x +∞=⎰3. 形如2π(sin ,cos )d R θθθ⎰的积分这里R (x ,y )是两个变量x ,y 的有理函数,比如R (x ,y )= 2222641x y x y -+-.计算这种积分的一种方法是把它化为单位圆周上的积分.事实上,令z =e i θ,那么21111sin (e e )(),222i i z z i i z iz θθθ--=-=-=21111cos (e e )(),222i i z z i i z izθθθ-+=+=+=1d d .z izθ=从而原积分化为沿正向单位圆周的积分,即2π2201111d (cos ,sin )d [,]()d ,22z z z z zR R f z z z iz iz θθθ==+-==⎰⎰⎰其中f (z )=R [2211,22z z z iz +-]1iz⋅为z 的有理函数,且在单位圆周|z |=1上分母不为零,因而可用留数定理来计算.例5.11 计算积分2π4cos 4d θθ⎰. 解:令z =e (02π)i θθ≤≤,则4444cos 4()2z z θ-+=, 42π448441701111(1)cos 4d ()d d 216z z z z z z z iz i z θθ-==++==⎰⎰⎰ 在0z <<1内,被积函数的罗朗展开式为48179117(1)113.161648z z z z z ---+=+++故2π8441701(1)3cos 4d [2πRes[,0]]π.164z i i z θθ+==⎰ 总结上述的方法,我们发现,由于留数是与闭曲线上的复积分相联系的.因此利用留数来计算定积分需要有两个主要的转化过程:1) 将定积分的被积函数转化为复函数;2) 将定积分的区间转化为复积分的闭路曲线. 根据这种思路,我们可以计算更多的积分.比如,Fresnel 积分2cos d x x ∞⎰和2sin d x x ∞⎰.这两个积分在光学的研究中很有作用.取函数f (z )=2eix ,取积分围道如图5.4,因为f (z )在闭围道内解析,由柯西积分定理,有222e d e d e d 0.ix izix OABOABx z z ++=⎰⎰⎰当z 在OA 上时,z =x , 0≤x ≤r ,22e d e d .rix ixOAx x =⎰⎰当z 在AB 上时,z =r e i θ,0θ≤π4≤,此时4sin 2πθθ≥,所以2422πsin 2e e e.r iz rθθ--=≤故π42422ππe d ed (1e )0,().4r iz r ABz r r rθθ--≤⋅=-→→∞⎰⎰ 当z 在BO 上时,z =x 4πe i ,0,x r ≤≤πππ222444e 0e d ee d ee d .i ri i iz ix x BOrz x x -=⋅=-⎰⎰⎰ 令r →∞,于是(5.13})变为224e d 0ee d ,i ix x x x π∞∞-+-⎰⎰ 又2πe d xx ∞-=⎰, 因此22440πe d ee d e .2i i ix x x x ππ∞∞-==⎰⎰ 上式两边分别取实部和虚部,即得221πcos d sin d .x x x x ∞∞==⎰⎰ 小 结留数定义为:011Res[(),]()d 2πCf z z a f z z i-==⎰其中1a -是函数()f z 在0z 点的罗朗展开式的10()z z --的系数,C 是0z 的去心邻域0<0z z -<R 内的包含0z 的任意一条正向简单闭曲线.图5.4留数定理:若函数()f z 在区域D 内除了有限个孤立奇点21,,,n z z z -外处处解析,C是D 内包含这些起点的一条正向简单闭曲线,则有:1()d 2πRes[(),]nji fCf z z i f z z ==∑⎰.留数定理将积分路径内包含有限个孤立奇点的复积分的计算问题转化为对这些奇点的留数的计算. 如何计算留数,我们有下列方法:⑴ 一般方法:设0z 为函数()f z 的孤立奇点(无论是可去奇点、极点或本性奇点),将()f z 在0z 处展开为罗朗级数,并求出系数1a -,则有01Res[(),]f z z a -=.特别是当0z 为本性奇点时,这个方法是比较常用的方法.⑵ 一级极点情形:若0z 为()f z 的一级极点,则有00Res[(),]lim()()z z f z z z z f z →=-⑶ m 级极点情形:若0z 为()f z 的m 级极点,则有010011Res[(),]lim [()()]!m m m z z d f z z z z f z m dz--→=-⑷ 化为零点问题:若()f z =()()P z Q z ,()P z 和()Q z 在0z 点解析,且()P z ≠0,()Q z =0,'()Q z ≠0,则0z 为()f z 的一级极点,且有000()Res[(),]'()P z f z z Q z =当()f z 为函数时,这个方法是常用的方法.⑸ 可去奇点情形,若0z 是函数f (z )的可去奇点时,则有0Res[(),]0f z z =.无穷远点∞处的留数定义为:设()f z 在R ﹤z ﹤∞内解析,C 为该区域内的绕原点的任意一条正向简单闭曲线,则()f z 在孤立奇点∞处的留数为11Res[(),]()d 2πCf z a f z z i-∞==⎰.若()f z 在扩充复平面内只有有限个孤立奇点,则()f z 的所有奇点(包括无穷远点∞)的留数的总和等于零.应用留数定理,可以计算一些实积分,称为围道积分方法.重要介绍是下列三种类型的实积分:⑴()d R x x ∞-∞⎰; ⑵()ed ,0iaxR x x a ∞-∞>⎰;⑶2π(cos ,sin )d R x θθθ⎰.在利用围道积分时,主要做两方面的工作.一是找一个与所求积分的被积函数密切相关的复变函数()F z ;二是找一条合适的闭路曲线C ,使得在这条闭曲线所围成的区域D 内()F z 只有有限个孤立奇点. ()F z 沿着C 的积分与实积分紧密相关,这样就可以应用留数定理计算实积分.重要术语及主题留数 留数定理 扩充复平面 无穷远点的留数 留数计算 留数定理的应用习题五1.求下列函数的留数.⑴ 5e 1()zf z z -=在0z =处; ⑵ 11()e z f z -=在1z =处.2. 利用各种方法计算()f z 在有限孤立奇点处的留数. ⑴ 232()(2)z f z z z +=+; ⑵ 1()sin f z z z=.3. 利用罗朗展开式求函数21(1)sin z z+在∞处的留数. 4.求函数1()()m mz a z b --(,a b m ≠为整数)在所有孤立奇点(包括∞点)处的留数.5. 计算下列积分. ⑴tan πd Cz z ⎰, n 为正整数,C 为z =n 取正向;⑵10d ()(1)(3)Czz i z z +--⎰, C :z =2,取正向. 6. 计算下列积分.⑴ π0cos d 54cos m θθθ-⎰; ⑵2π20cos3d 12cos a a θθθ-+⎰ ,a >1; ⑶ +2222-d ,()()xx a x b ∞∞++⎰a >0,b >0: ⑷ 22220,()x x a ∞+⎰a >0: ⑸+222sin d ,()x xx x b β∞+⎰β>0, b >0: ⑹+22-e d ,ixx x a∞∞+⎰a >0: 7. 计算下列积分.⑴20sin 2d (1)xx x x ∞+⎰; *⑵ 21d 2πza z i zΓ⎰,其中Γ为直线Re x c =,c >0,0<a <1.。

留数理论及其应用ch 6 6.1

留数理论及其应用ch 6  6.1

推论6.3: 设a为f(z)的一级极点, (z) (z a) f (z),
则 Re s f (z) (a) lim(z a) f (z).
za
za
(6.4)
推论6.4:设a为f(z)的二级极点, (z) (z a)2 f (z),
则 Re s f (z) '(a) lim(z a)2 f (z).
1
z5 z6
11
z
1
1 z
1 z
n0
1n
1 z
n
1 z
n1
1n
1 z
n1
Re s f (z) 1 0 z
Re s f (z) 等于f(z)在点∞的罗朗展式中1/z这一项的系数反号 z
定理6.6 如果f(z)在C∞上只有有限个孤立点 (包括无穷远点在内),a1,a2,…,an,∞,则f(z)在各点 的留数总和为零.
Re s za
f (z)
(n1) (a)
(n 1)!
n
1
1!
lim
za
z
1n
f
(
z
)
n1
.
(6.3)
证 1 (z)
(n1) (a)
Re s f (z)
za
2 i
(z a)n dz
. (n 1)!
n 1, 2,
这里符号(0)(a)=(a) ,且有 (n1)(a) lim(n1)(z). z a
n
Res f (z) Res f (z) 0.
k1 zak
z
n
Re s f (z) Re s f (z).
k 1 zak
z
定理6.6 如果f(z)在C∞上只有有限个孤立点

《数学物理方法》第4章留数定理及其应用

《数学物理方法》第4章留数定理及其应用

法则1 如果z0为f (z)的一级极点,那么
Re
s[
f
( z ),
z0
]
lim ( z
z z0
z0
)
f
(z)
证明
f (z)
c1
z
1 z0
c0
c1 ( z
z0 )
(z z0 ) f (z) c1 c0 (z z0 ) c1(z z0 )2
例1 计算积分
C
zez z2
1
dz,
其中C为正向圆周:| z
12
3)
Re s[
tan
z,
2k 1] 2
sin (cos
z z)
z 2k 1
1
.
2
2
tan zdz 2i
Res[tan z, 2k 1] = 10i
|z|3
k 0
2
11
z sin z
例5 计算下列积分 |z|1
z6 dz.
解 z 0为f (z)的三级极点.
f (z)dz=2i Res[ f (z), 0]
n
f (z)dz 2i R es[ f (z), zk ]
C
k 1
证明 由复闭路定理得
n
f (z)dz f (z)dz
C
k 1 Ck
由留数的定义得
n
f (z)dz 2i R es[ f (z), zk ]
C
k 1
y C1
C
z•1 C2 o C3 • z3 •z2 x
5
三、留数的计算
z0
]
lim(
lim
z z0
P(z0 ) Q(z0 )

留数定义以及应用

留数定义以及应用

留数留数理论,是一个积分,,是一个工具,没有什么新的理论,这样可以得到围线积分,也可以帮助我们得到一个重要的定理:用来研究一个解析函数的0点的个数和奇点的个数问题。

首先介绍什么叫常数,假设A为孤立奇点,前面我们说过一个函数的奇点的个数并不多,但是这些奇点决定着函数的一些特性,也就是在去心邻域的是解析,我们成这样的一个积分,称为A点的留数,有的叫常数,就是f(Z)沿着某一条围线的积分,其中在这个圆周内部呢不一定解析,因为A是一个孤立奇点,去心邻域解析,所以这个积分不一定为0,如果A也是一个解析点,整个元的内部都解析了,由柯西古萨定理积分为0,这个数称为留数,记号:围线的选取和半径大小没有关系,这可以复围线的积分定理可以得到结论,因为不管半径大小,在外围的积分和里面的积分一样,因为在多连通是解析,因为这个数之和A点有关,A为孤立奇点,和半径的选取无关,这个留数的计算办法,描述了围线的积分,就等于什么呢?就等以负一次方的系数,洛朗展示中的,为什么?我们回想,把洛朗展示写出来,就可以知道这一点的留数,留数到底起什么作用?是围线的积分,如果留数好求,就可以用来求围线的积分,当只有一个奇点的情况下,这个围线积分就等于乘以留数,就是公式变形,就是除A没有其他奇点,对于一般的怎么做呢,用定理:这个围线积分=在所有奇点上的常数之和乘以2i,就是求围线的积分=看看里面有多少奇点,再把每一个点的留数求出来相加就是这个围线的积分,因此复变函数的积分不见得要根据原来的方法来算,根据定数定理,主要看多少个奇点,没有奇点就=0,多少个奇点,就把所有的留数算出来,就等于留数之后,就可以把留数作为工具,只要计算留数,怎么证明,就是复围线的柯西积分定理,设想把这些奇点挖掉,即做一些小圆,两两不相交,在围线内部,每一个都是孤立奇点,在围线里面挖掉了小圆,构成多连通区域,根据复围线的柯西积分的定理:外围的积分=内部的及分支和,每一个小圆的积分都等留数乘以2i,要计算围线积分,只要计算这个函数在围线里面的奇点的留数,那么如何来求留数,最好的方法是:洛朗展示的系数,只要把罗兰展示求出来看系数,除了这个方法,还有对极点的话还可以用别的。

留数定理及其应用重点难点

留数定理及其应用重点难点

第四章 留数定理及其应用 重点难点第一节 留数定理1.留数定义的由来:若函数在单连通区域D 中解析,在D 中作一围线C ,如果在围线C 的内部,)(z f 是解析的,则由柯西定理可知0)(=∫Cdz z f ;如果在围线C 的内部,a z =是)(z f 的奇点,则)(Re 2)(a sf i dz z f Cπ=∫,即留下了一个有限数,因而可把 )(Re a sf 称为留数(留数也可等于零)。

2.留数计算公式:在奇点a 邻域中展成的洛朗级数中1()z a −−项的系数1−c 就是留数Re ()sf a ,这是求留数的一般方法。

但是,在某些情况下,有更简便的方法。

例如,若a 是)(z f 的m 阶极点,则111Re ()[()()](1)!m m z a m d s f a f z z a m dz −=−=−−又如,当a 是函数的可去奇点时,由于此时洛朗级数中不含负幂项,于是留数等于零。

3. 讨论解析函数在无限远点的留数时,要注意:函数在无限远点的留数定义中围线的方向是顺时针转向的。

第二节 留数定理的应用1.应用留数定理计算实变函数的积分是复变函数留数理论的一个重要应用,找到适当的闭合回路或变换是这种方法的关键。

2.若函数在单连(通)区域D 中解析,在D 中作一围线C ,如果在围线C 的内部,)(z f 是解析的,则由柯西定理可知0)(=∫Cdz z f ,如果在围线C 的内部,a z =是)(z f 的奇点,则)(Re 2)(a sf i dz z f Cπ=∫,即留下了一个有限数,因而可把)(Re a sf 称为留数(留数也可等于零)。

通过柯西公式和柯西导数公式可导出一阶极点和m 阶极点的留数计算公式。

3. 应用级数分析留数定理。

在奇点k a 邻域中展成的洛朗级数中1)(−−k a z 项的系数1−c 就是留数)(Re k a sf 。

当k a 是函数的本性奇点时,一般只能用洛朗级数展开方法来求留数;当k a 是函数的极点时,也可用这种方法来求取留数;当k a 是函数的可去奇点时,由于此时洛朗级数中不含负幂项,于是留数等于零。

第5章:留数理论及其应用

第5章:留数理论及其应用
Resf (∞) = −a−1 = − Res[g , ξ = 0] d =− (ξ − 0) 2 g (ξ ) = +1 dξ
[
]
16
四、本性奇点处留数的计算 对本性奇点或奇性不明的奇点,没有一般的公式, 只能作Laurent展开,然后取负一次幂的系数!当 极点的阶数较高时,也直接作Laurent展开求留数。 例
cos x = ( z + z ) / 2; sin x = ( z − z ) /( 2i ); dx = dz /(iz )
21
−1
−1
原积分变成
z + z −1 z − z −1 dz , I= R iz | z |=1 2 2 i

• 0 y
• 2π
x
z平面 1 o • x
例题:计算积分
I=


0
cos 2ϑ dϑ , (0 < p < 1). 2 1 − 2 p cosϑ + p
分析:因 1-2pcosϑ+p2=(1-p)2+2p(1-cosϑ),当0<p<1, 在 0≤ϑ ≤2π, 分母大于0, 因而在实轴上无零点。
22
cos 2ϑ = ( e 2iϑ + e −2iϑ ) / 2 = ( z 2 + z −2 ) / 2
1 Resf ( z0 ) ≡ f ( z )dz ∫ 2πi C
为函数f(z)在奇点z0处数f(z)在奇点 z0处作Laurent展开
f ( z) =
n = −∞


an ( z − bk ) n
利用公式
0, (C 不包围z0 ) 1 dz = ∫ 2πi C z − z0 1, (C 包 围 z0 ) 1 n ( z − z ) 0 dz = 0. (n ≠ −1) ∫ 2πi C

第五章 留数理论及其应用习题解答

第五章   留数理论及其应用习题解答

习题五1. 求下列函数的留数.(1)()5e 1z f z z-=在z =0处. 解:5e 1z z-在0<|z |<+∞的罗朗展开式为 23454321111111112!3!4!2!3!4!z z z z z z z z z +++++-=+⋅+⋅+⋅+ ∴5e 111Res ,014!24z z ⎡⎤-=⋅=⎢⎥⎣⎦ (2)()11ez f z -=在z =1处. 解:11ez -在0<1z -| <+∞的罗朗展开式为 ()()()11231111111e 112!3!!111z n z n z z z -=++⋅+⋅++⋅+----∴11Res e ,11z -⎡⎤=⎣⎦.2. 利用各种方法计算f (z )在有限孤立奇点处的留数.(1)()()2322z f z z z +=+ 解:()()2322z f z z z +=+的有限孤立奇点处有z =0,z =-2.其中z =0为二级极点z =-2为一级极点.∴()[]()()120013232324Res ,0lim lim 11!242z z z z z f z z z →→++--⎛⎫=⋅=== ⎪⎝+⎭+ ()[]2232Res ,2lim 1z z f z z→-+-==- 3. 利用罗朗展开式求函数()211sin z z+⋅在∞处的留数. 解:()()()22235111sin 21sin 11111213!5!z z z z zz z z z z +⋅=++⋅⎛⎫=++⋅-⋅+⋅+ ⎪⎝⎭∴()[]1Res ,013!f z =- 从而()[]1Res ,13!f z ∞=-+ 5. 计算下列积分.(1)ctan πd z z ⎰,n 为正整数,c 为|z |=n 取正向.解:c c sin πtan πd d cos πz z z z z =⎰⎰.为在c 内tan πz 有12k z k =+ (k =0,±1,±2…±(n -1))一级极点 由于()()2sin π1Res ,πcos πk z kz f z z z =⎡⎤==-⎣⎦' ∴()c 1tan πd 2πi Res ,2πi 24i πk kz z f z z n n ⎛⎫=⋅⎡⎤=⋅-⋅=- ⎪⎣⎦⎝⎭∑⎰ (2) ()()()10c d i 13zz z z +--⎰ c :|z |=2取正向. 解:因为()()()101i 13z z z +--在c 内有z =1,z =-i 两个奇点. 所以()()()()[]()[]()()[]()[]()()10c 10d 2πi Res ,i Res ,1i 132πi Res ,3Res ,πi3i zf z f z z z z f z f z =⋅-++--=-⋅+∞=-+⎰6. 计算下列积分.(1)π0cos d 54cos m θθθ-⎰ 因被积函数为θ的偶函数,所以ππ1cos d 254cos m I θθθ-=-⎰ 令π1π1sin d 254cos m I θθθ-=-⎰则有 i π1π1e i d 254cos m I I θθθ-+=-⎰ 设i e z θ= d 1d i z z θ= 2os 12c z z θ+=则 ()121211d i 2i 15421d 2i 521m z mz z z I I z z z z z z ==+=⎛⎫+- ⎪⎝⎭=-+⎰⎰被积函数()()2521m z f z z z =-+在|z |=1内只有一个简单极点12z = 但()()[]12211Res ,lim 232521m mz z f z z z →⎡⎤==⎢⎥⎣⎦⋅'-+ 所以111πi 2πi 2i 3232m m I I +=⋅⋅=⋅⋅ 又因为π1π1sin d 254s 0co m I θθθ-=-=⎰∴π0cos d 54cos π32m m θθθ=⋅-⎰(2) 202πcos3d 12cos a a θθθ+-⎰,|a|>1. 解:令2π102cos3d 12cos I a a θθθ+=-⎰ 2π202sin3d 12cos I a a θθθ+=-⎰32π120i 2e i d 12cos I I a a θθθ-++=⎰ 令z =e i θ.31d d i os 2c z z zz θθ==,则 ()()()3122123221321i d 1i 1221d i 1112π2πi Res ,i 1z z z I I z z z a a zz z az a z af z a a a ==+=⋅+-⋅+=-++--⎡⎤=⋅⋅=⎢⎥⎣⎦-⎰⎰ 得()1322π1I a a =- (3)()()2222d x x a x b∞+-∞++⎰,a >0,b >0. 解:令()()()22221R z z a z b =++,被积函数R (z )在上半平面有一级极点z =i a 和i b .故 ()[]()[]()()()()()()()()()()22222222i i 22222πi Res ,i Res ,i 112πi lim i lim i 112πi 2i 2i πz a z b I R z a R z b z a z b z a z b z a z b a b a b a b ab a b →→=+⎡⎤=-+-⎢⎥++++⎣⎦⎡⎤=+⎢⎥--⎣⎦=+4. ()22022d x x x a ∞++⎰,a >0. 解:()()2222022221d d 2x x x x x a x a -∞++∞∞=++⎰⎰ 令()()2222z R z z a =+,则z =±a i 分别为R (z )的二级极点故()()[]()[]()()()22222222i 0i 1d 2πi Res ,i Res ,i 2πi lim lim i i π2z a z a x x R z a R z a x a z z z a z a a-→∞→-=⋅⋅+-+⎛⎫''⎡⎤⎡⎤ ⎪=+⎢⎥⎢⎥ ⎪+-⎣⎦⎣⎦⎝⎭=⎰ (5) ()2022sin d x x x b xβ∞+⋅+⎰,β>0,b>0. 解:()()()i 222222222cos sin e d d i d x x x x x x x x x x b x b x b βββ+++--∞∞∞∞∞∞-⋅⋅⋅=++++⎰⎰⎰ 而考知()()222zR z z b =+,则R (z )在上半平面有z =b i 一个二级极点.()()[]()i i 222i i e d 2πi Res e ,i e π2πi lim e i i 2z x z z b b xx R z b x b z z b b βββββ+--→∞∞⋅=⋅⋅+'⎡⎤=⋅=⋅⋅⎢⎥+⎣⎦⎰()222sin πd e 2b b b xx x x βββ+--∞∞⋅=⋅+⎰ 从而()2022sin ππd e 44e b b x x b b x x b βββββ+-∞⋅=⋅=+⎰ (6) 22i e d xx x a +-∞∞+⎰,a >0 解:令()221R z z a =+,在上半平面有z =a i 一个一级极点 ()[]i i i 22i e e e πd 2πi Res e ,i 2πi lim 2πi i 2i e x z a z az a x R z a x a z a a a -+-→∞∞=⋅⋅=⋅=⋅=++⎰ 7. 计算下列积分(1)()20sin 2d 1x x x x ∞++⎰ 解:令()()211R z z z =+,则R (z )在实轴上有孤立奇点z =0作的原点为圆心r 为半径的上半圆周c r ,使c r ,[-R ,-r ],c r ,[r ,R ]构成封装曲线,此时闭曲线内只有一个奇点i , 是()()[]{}()z 22i 201e 1e Im d Im 2πi Res ,i lim d 2211r r x iz c I x R z z z z x x +-∞∞→⎡⎤==⋅-⎢⎥++⎣⎦⎰⎰ 而()202e d lim πi 1r iz c r z zz →⋅=-+⎰. 设()()2221e 1e πIm 2πi lim πi Im 2πi πi 1e 21222zz i i I z z --→⎡⎤⎡⎤⎛⎫=⋅+=⋅-+=- ⎪⎢⎥⎢⎥+⎝⎭⎣⎦⎣⎦. (2)21d 2πi zT a z z⎰,其中T 为直线Re z =c ,c >0,0<a <1解:在直线z =c +i y (-∞<y <+∞)上,令()ln 22e z z a a f z z z==,()ln 22e i c a f c y c y ⋅+=+,()ln 22e i d d c a f c y y y c y ⋅++--∞∞∞∞+=+⎰⎰收敛,所以积分()i i d c c f z z ∞∞+-⎰是存在的,并且()()()i i i i d lim d lim d c c c c AB R R R R f z z f z z f z z ++--→+∞→+∞∞∞==⎰⎰⎰其中AB 为复平面从c -i R 到c +i R 的线段.考虑函数f(z)沿长方形-R ≤x ≤c ,-R ≤y ≤R 周界的积分.<如图>因为f (z )在其内仅有一个二级极点z =0,而且()[]()()20Res ,0lim ln z f z z f z a →'=⋅= 所以由留数定理.()()()()d d d d 2πi ln AB BE EF FAf z z f z z f z z f z z a +++=⋅⎰⎰⎰⎰ 而()()()()i ln ln ln ln 22222e e e e d d d d 0i x R a x a aC C a R C C R BE C R R f z z x x x C R x R R R x R →+⋅⋅-+--∞==⋅+−−−→++⎰⎰⎰⎰≤≤.。

留数定理的计算及应用

留数定理的计算及应用

留数及其应用摘 要 留数理论是复积分和复级数理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用.关键词 留数定理;留数计算;应用引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法.一. 预备知识 孤立奇点1.设()f z 在点a 的某去心邻域内解析,但在点a 不解析,则称a 为f 的孤立奇点.例如sin zz,1z e 以0=z 为孤立奇点.z 以0=z 为奇点,但不是孤立奇点,是支点.11sinz 以0=z 为奇点(又由1sin0=z ,得1(1, 2...,)π==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1()()(),∞∞-===+-∑∑-nnnnn n f z c z a c z a 称()n=1∞-∑-nnc z a 为()f z 在点a 的主要部分,称()∞=-∑nnn z a c 为()f z 在点a 的正则部分,当主要部分为0时,称a 为()f z 的可去奇点;当主要部分为有限项时,设为(1)11(0)()()------+++≠---m mm m m c c c c z a z a z a称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点.二. 留数的概念及留数定理 1. 留数的定义设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R <⋅<内解析,则积分()()1:,02f z dz z a R i ρρπΓΓ⋅=<<⎰为()f z 在点a 的留数,记为:()Re z as f z =.2. 留数定理介绍留数定理之前,我们先来介绍复周线的柯西积分定理:设D 是由复周线012C C C C --=+++…nC -所围成的有界连通区域,函数()f z 在D 内解析,在_D D C =+上连续,则()0Cf z dz =⎰.定理1[]1(留数定理) 设()f z 在周线或复周线C 所范围的区域D 内,除12,,a a …,n a 外解析,在闭域_D D C =+上除12,,a a …,n a 外连续,则( “大范围”积分) ()()12Re k nz a k Cf z dz i s f z π===∑⎰. (1)证明 以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ⋅=(1,2,k =…,n )使这些圆周及内部均含于D ,并且彼此相互隔离,应用复周线的柯西定理得()()1knk Cf z dz f z dz =Γ=∑⎰⎰,由留数的定义,有()()2Re kkz a f z dz i s f z π=Γ=⎰.特别地,由定义得 ()2Re kkz a f z dz i s π=Γ=⎰,代入(1)式得 ()()12Re knz a k Cf z dz i s f z π===∑⎰.定理2 设a 为()f z 的n 阶极点,()()()nz f z z a ϕ=-,其中()z ϕ在点a 解析,()0a ϕ≠,则()()()()11!n z aa Res f z n ϕ-==-.这里符号()()0a ϕ代表()a ϕ,且有()()()()11lim n n z aa z ϕϕ--→=. 推论3 设a 为()f z 的一阶极点,()()()z z a f z ϕ=-, 则 ()()z aRes f z a ϕ==.推论4 设a 为()f z 的二阶极点,()()()2z z a f z ϕ=-, 则 ()()'z aRes f z a ϕ==.3. 留数的引理引理1 设()f z 沿圆弧:i R S z Re θ= (12θθθ≤≤,R 充分大)上连续,且()lim R zf z λ→+∞=于R S 上一致成立(即与12θθθ≤≤中的θ无关),则()()21limRS R f z dz i θθλ→+∞=-⎰.引理2(若尔当引理) 设函数()g z 沿半圆周:i R z Re θΓ= (0θπ≤≤,R 充分大)上连续,且()lim 0R g z →+∞=在R Γ上一致成立,则()()lim00Rimz R g z e dz m Γ→+∞=>⎰.引理3 (1)设a 为()f z 的n 阶零点,则a 必为函数()()'f z f z 的一阶极点,并且 ()()'z a f z Res n f z =⎡⎤=⎢⎥⎣⎦; (2)设b 为()f z 的m 阶极点,则b 必为函数()()'f z f z 的一阶极点,并且()()'z bf z Res m f z =⎡⎤=-⎢⎥⎣⎦.三. 留数的计算1. 函数在极点的留数法则1:如果0z 为)(z f 的简单极点,则)()(lim ]),([Re 000z f z z z z f s z z -=-法则2:设)()()(z Q z P z f =,其中)(,)(z Q z P 在0z 处解析,如果0)(≠z P ,0z 为)(z Q 的一阶零点,则0z 为)(z f 的一阶极点,且)()(]),([Re 0z Q z P z z f s '=. 法则3:如果0z 为)(z f 的m 阶极点,则)]()[(lim !11]),([Re 01100z f z z dzd m z z f s m m m z z --=---)(. 2. 函数在无穷远点的留数定理 1 如果)(z f 在扩充复平面上只有有限个孤立奇点(包括无穷远点在内)为∞,,,21n z z z ,则)(z f 在各点的留数总和为零.关于在无穷远点的留数计算,我们有以下的规则.法则 4: 211Re [,]Re [(),0]s f z s f z z∞=-⋅(). 例 1 求函数2()1ize f z z=+在奇点处的留数. 解 ()f z 有两个一阶极点z i =±,于是根据(6.5)得2()Re (,)()22i P i e is f i Q i i e===-'2()Re (,)()22i P i e is f i e Q i i ---==='--例 2 求函数3cos ()zf z z=在奇点处的留数. 解 ()f z 有一个三阶极点0z =,故由(6.7)得33001cos 11Re (,0)lim()lim(cos )222z z z s f z z z →→''=⋅=-=-四. 留数定理在定积分中的应用利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分.1. 形如()20cos ,sin f x x dx π⎰型的积分这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。

第六章 留数理论及其应用

第六章 留数理论及其应用
z 0
例题6.5
计算积分: e
1 z2 z 1
dz
分析:z 0是本质奇点,在该点的 去心领域 内有洛朗展式:
1
e
z2
1 1 1 1 2 4 z 2! z

z 1
e z dz 2 i Re s f ( z ) 2 i.c1 0
2
1
z 0
由此例可以看出可去奇点处留数为零,但是留数为零 的点不一定是可去奇点
( z a) f ( z ) (a) Re s f ( z ) lim z a z a (n 1)! (n 1)!

( n 1) n
( n 1)
1 ( z) ( n1) (a) 证明: s f ( z ) Re ( z a)n dz (n 1)! z a 2i
2
再设z u, 注意当z绕一周,u在上面绕两周
2du 于是I 2 i (u 2 6u 1) 4 1 2i. Re s 2 2 i u 3 8 u 6u 1
详细参考P236--237
例题6.10 计算积分:I


0
cos mx dx 5 4 cos x
( n 2 )( n 1) 2
1 1 1 f( ) 2 2 n t t t (1 t )(1 2t ) (1 nt)
以 t 0 为一级极点。
所以
1 1 1 1 Re s f ( ) 2 lim t f ( ) 2 1 t 0 t 0 t t t t
I 2i ( Re s f ( z )) 2i.
Re s f ( z ) lim z1 f ( z )
z 0 z 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Res f(z)= 1
z=p
1-pz
z=p
=
1
2
1-p
.
所以,由留数定理得
I=
1 i
·2πi·
1
2
1-p
=

2
1-p
Σ 0≤
p
<1 Σ 3
乙 例 2 计算积分 I= π cosmx dx,m 为正整数. 0 5-4cosx
乙 1 f(z)dz(Γ:|z-a|=ρ,0<ρ<R)
2πi Γ
为 f(z)在点 a 的留数,记为Res f(z). z=a
定 理 1 f(z)在 周 线 C 所 范 围 的 区 域 D 内 ,除 a1,a2,…an 外 解 析 ,在
闭域D軍=D+C 上除 a1,a2,…an 外连续,则(“大范围”积分)1
解 命 z=eiθ,则 dθ= dz ,当 p≠0 时, iz
1-2pcosθ+p2=1-p(z+z-1)+p2= (z-p)(1-pz) . z
这样就有
乙 I= 1
dz .
i z =1 (z-p)(1-pz)
且在圆|z|<1 内
f(z)=
1 (z-p)(1-pz)
.
只以 z=p 为一阶极点,在|z|=1 上无奇点,
Γ
k = 1 z=ak
两边除以 2πi,并移项即得
n
Σ 乙 Res f(z)+ 1 f(z)dz=0.
k = 1 z=ak
2πi
-
Γ
n
亦即ΣRes f(z)+Res f(z)=0.
k = 1 z=ak
z=∞
要 特 别 注 意 :虽 然 在 f(z)的 有 限 可 去 奇 点 a 处 ,必 有Res f(z)=0,但 z=∞
是,如果点 ∞ 为 f(z)的可去奇 点 (或 解 析 点 ),则Res f(z)可 以 不 是 零 例 z=∞
如 f(z)=2+ 1 以 z=∞ 为可去奇点,但Res f(z)=-1
z
z=∞
下面引入计算留数 f(z)的另一公式
令 t= 1 z
于是
φ(t)=f(
1 t
)=f(z)
且 z 平面上无穷远点的去心邻域 N-{∞}:0≤γ<|z|<+∞ 被变成 t 平
2009 年 第 33 期
设 f(x)在 0≤γ< z <+∞ 内的洛朗展式为
f(z)=…+
c-n
n
z
+…+
c-1 z
n
+c0 +c1 z+…+cn z +…,
由逐项积分定理,即知
乙 Res f(z)= 1
z=a
2πi
f(z)dz=-c-1.
-
Γ
也就是说,Res f(z)等于 f(z)在点 ∞ 的洛朗展式中 1 这一项的系数
证明
(n-1)
乙 Res f(z)= 1
z=a
2πi
Γ
φ(z)
n
(z-a)
dz=
φ (a) (n-1)!
.
定理 3

a

f(z)=
φ(z) ψ(z)

一阶

点(只

φ (z) 及
ψ (z) 在

a

析,且 φ(a)≠0,ψ(a)=0,ψ'(a)≠0),
则 Res f(z)= φ(a) .
z=a
ψ'(a)
0≤γ< z <+∞ 内解析,则称
乙 1 f(z)dz,(Γ: z =ρ>r).
2πi
-
Γ
为 f(z)在点 ∞ 的留数,记为Res f(z),这里 Γ-是指顺时针方向(这个 z=a
方向很自然地可以看作是绕无穷远点的正向)
947
科技信息
○高校讲坛○
SCIENCE &amON
【关键词】留数理论; 泰勒级数; 积分 Residue Theory and Its Application LU Sheng-qi
(Sanjiang University, Nanjing Jiangsu,210012) 【Abstract】Residue theorem is a complex series points and complex product of the combination of theory, the need to correctly understand the concept of an isolated singular point singular point with the isolation of the classification and function in the isolated singular point of the concept of residue. Have left the number of calculations, especially Department to stay the number of poles for law, in practice .Will remain a few points for some of it. To stay the number of complex function theory, one important concept, it is analytic function in the isolated singular point Laurent expansions, Cauchy's theorem, such as closed-circuit complex are closely linked. Research now is to stay a few theories Cauchy integral theory is the continuation of the middle insert Taylor series and Laurent's series is to study a powerful tool for analytic functions. Stay a few in the complex function theory and practical application in itself is very important and calculation of weeks of its line integral (or attributed to inspect weeks line integral) is closely related to the problem. In addition the application of residue theory, we have the conditions to solve the "wide range" of the integral calculation can also visit the region function against distribution. 【Key words】Cauchy integral theory; Theory of Taylor ;Series to stay a few points
面 上 原 点 的 去 心 邻 域 R-{0}:0<|t|< 1 (如 γ=0,规 定 1 =∞);圆 周 Γ:|
γ
γ
z|=ρ>γ ,被变成圆周 γ:|t|=λ= 1 < 1 ,从而易证 ργ
乙 乙 1
2πi
f(z)dz=- 1
-
Γ
2πi
f( 1 vt
)
dy dx
·
1
2
t
dt.
所以
Σ Σ Res f(z)=-Res
z=a
z
反号
定义 3 如果函数 f(z)在扩充 z 平面上只有有限个孤立奇 点 (包 括
无穷远点在内)设为 a1,a2,…an 则 f(z)在各点的留数总和为零 证 以 原 点 为 心 作 圆 周 Γ,使 a1,a2,…an 皆 含 于 Γ 内 部 ,则 由 留 数
定理得

乙f(z)dz=2πiΣRes f(z).
科技信息
○高校讲坛○
SCIENCE & TECHNOLOGY INFORMATION
2009 年 第 33 期
留数理论及其应用
陆生琪 (三江学院 江苏 南京 210012)
【摘 要】 留数定理是复积分和复级数理论相结合的产物, 需要正确理解孤立奇点的概念与孤立奇点的分类和函数在孤立奇点的留数概 念.掌握留数的计算法,特别是极点处留数的求,实际中会用留数求一些实积分. 留数是复变函数论中重要的概念之一,它与解析函数在孤立奇 点处的洛朗展开式、柯西复合闭路定理等都有密切的联系.现在研究的留数理论就是是柯西积分理论的继续,中间插入的泰勒级数和洛朗级数 是研究解析函数的有力工具.留数在复变函数论本身及实际应用中都是很重要的它和计算 周 线 积 分 (或 归 结 为 考 察 周 线 积 分 )的 问 题 有 密 切 关 系.此外应用留数理论,我们已有条件去解决“大范围”的积分计算问题,还可以考察区域内函数的零点分布状况.
-1
-1
则 cosθ= z+z ,sinθ= z-z ,dθ= dz
2
2
iz
当 θ 经历变成[0,2π]时,z 沿圆周|z|=1 的正方向绕行一周 因此有
乙 乙 2π R(cosθ,sinθ)dθ =
-1
-1
R( z+z , z-z ) dz .
相关文档
最新文档