初中数学几何证明经典试题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学几何证明经典试题(含答案)
work Information Technology Company.2020YEAR
初中几何证明题 经典题(一)
1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .
求证:CD =GF .(初二)
2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)
3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是
AA 1、BB 1、CC 1、DD 1的中点.
求证:四边形A 2B 2C 2D 2是正方形.(初二)
A
P
C
D
B A F
G C E B O D D 2 C 2
B 2 A 2 D 1
C 1 B 1
C B D
A A 1
4、已知:如图,在四边形ABCD 中,AD =BC ,M 、
点,AD 、BC 的延长线交MN 于E 、F .
求证:∠DEN =∠F .
经典题(二)
1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .
(1)求证:AH =2OM ;
(2)若∠BAC =600,求证:AH =AO .(初二)
2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、求证:AP =AQ .(初二)
3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:
B
F
设MN 是圆O 的弦,过MN 的中点A 任作两弦BC
分别交MN 于P 、Q . 求证:AP =AQ
.(初二)
4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.
求证:点P 到边AB 的距离等于AB
经典题(三)
1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .
求证:CE =CF .(初二)
2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .
求证:AE =AF
3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥
AP ,CF 平分∠DCE . 求证:PA =PF .(初二)
4、如图,PC 切圆O
于C ,AC PO
相交于B 、D .求证:AB =DC ,BC
经典题(四)
1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,求:∠APB 的度数.(初二)
2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.
求证:∠PAB=∠PCB.(初二)
3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)
4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交
于P,且
AE=CF.求证:∠DPA=∠DPC.(初二)
经典难题(五)
1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC , 求证:
≤L <2.
2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.
3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC 3a ,求正方形的
边长.
4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB ∠DCA =300,∠EBA =200,求∠BED 的度数.
A P
C B A C
B P
D
E
D
A A
C B P
D
经典题(一)
1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,
即△GHF∽△OGE,可得EO
GF
=
GO
GH
=
CO
CD
,又CO=EO,所以CD=GF得证。
2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得
△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150 所以∠DCP=300 ,从而得出△PBC是正三角形
3.如下图连接BC
1和AB
1
分别找其中点F,E.连接C
2
F与A
2
E并延长相交于Q点,
连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,
由A2E=1
2A
1
B
1
=1
2
B
1
C
1
= FB
2
,EB
2
=1
2
AB=1
2
BC=F C1 ,又∠GFQ+∠Q=900和
∠GE B2+∠Q=900,所以∠GE B2=∠GFQ又∠B2FC2=∠A2EB2,
可得△B2FC2≌△A2EB2,所以A2B2=B2C2,
又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,
从而可得∠A2B2 C2=900 ,
同理可得其他边垂直且相等,
从而得出四边形A2B2C2D2是正方形。
4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。