线性方程组求解的数值方法

合集下载

线性方程组数值方法

线性方程组数值方法

线性方程组数值方法Ax ,必须满足系数矩阵的对角元素非零的条件。

1、回代:用回代法求解上三角线性方程组bfunction x=backsub(A,b)%Input -A is an nxn upper-triangular nonsingular matrix% -b is an nx1 matrix%Output-x is the solution to the linear system Ax=b%Find the dimension of b and initialize xn=length(b);x=zeros(n,1);x(n)=b(n)/A(n,n);for k=n-1:-1:1x(k)=(b(k)-A(k,k+1:n)*x(k+1:n))/A(k,k);end例:A=[1 2 1 4;0 -4 2 -5;0 0 -5 -7.5;0 0 0 -9];b=[13;2;-35;-18];x=backsub(A,b)2、高斯消去法(不选主元素)function x=gauss(A,b)%Input -A is an nxn nonsingular matrix% -b is an nx1 matrix%Output-x is an nx1 matrix containing the solution to Ax=b%Initialize x[n,n]=size(A);x=zeros(n,1);%Form the augmented matrix:Aug=[A|b]Aug=[A b];for k=1:n-1%Elimination process for column kfor i=k+1:nm=Aug(i,k)/Aug(k,k);Aug(i,k:n+1)=Aug(i,k:n+1)-m*Aug(k,k:n+1);endend%Output Elimination matrixAug%Back SubstitutionA=Aug(1:n,1:n);b=Aug(1:n,n+1);x(n)=b(n)/A(n,n);for k=n-1:-1:1x(k)=(b(k)-A(k,k+1:n)*x(k+1:n))/A(k,k);end例: A=[4 -9 2;2 -4 6;-1 1 -3];b=[5;3;-4]; x=gauss(A,b)3、列主元消去法function x=gauss_column(A,b)%Input -A is an nxn nonsingular matrix% -b is an nx1 matrix%Output-x is an nx1 matrix containing the solution to Ax=b%Initialize x and the temporary storage matrix C[n,n]=size(A);x=zeros(n,1);C=zeros(1,n+1);%Form the augmented matrix:Aug=[A|b]Aug=[A b];for k=1:n-1%Partial pivoting for column k[y,j]=max(abs(Aug(k:n,k)));%Interchange row k and jC=Aug(k,:);Aug(k,:)=Aug(j+k-1,:);Aug(j+k-1,:)=C;if Aug(k,k)==0'A was singular,No unique solution'breakend%Elimination process for column kfor i=k+1:nm=Aug(i,k)/Aug(k,k);Aug(i,k:n+1)=Aug(i,k:n+1)-m*Aug(k,k:n+1);endend%Back Substitution on [U|y] using backsubx=backsub(Aug(1:n,1:n),Aug(1:n,n+1));例:A=[1 2 1 4;2 0 4 3;4 2 2 1;-3 1 3 2];b=[13;28;20;6];x=gauss_column(A,b)4、LU分解法(不选主元素)function x=lufact(A,b)%Input -A is an nxn matrix% -b is an nx1 matrix%Output-x is an nx1 matrix containing the solution to Ax=b%Initilize x,y,[n,n]=size(A);x=zeros(n,1);y=zeros(n,1);for k=1:n-1%Calculate multiplier and place in subdiagonal portion of A for i=k+1:nmult=A(i,k)/A(k,k);A(i,k)=mult;A(i,k+1:n)=A(i,k+1:n)-mult*A(k,k+1:n);endend%Output LU factorization compact matrixA%solve for yy(1)=b(1);for i=2:ny(i)=b(i)-A(i,1:i-1)*y(1:i-1);end%Solve for xx(n)=y(n)/A(n,n);for i=n-1:-1:1x(i)=(y(i)-A(i,i+1:n)*x(i+1:n))/A(i,i);end例:A=[4 -9 2;2 -4 6;-1 1 -3];b=[5;3;-4];x=lufact(A,b)5、列主元LU分解法(PA=LU)A是非奇异矩阵function x=lu_column(A,b)%Input -A is an nxn matrix% -b is an nx1 matrix%Output-x is an nx1 matrix containing the solution to Ax=b%Initilize x,y,the temporary storage matrix C,and the row%permutation information matrix R[n,n]=size(A);x=zeros(n,1);y=zeros(n,1);C=zeros(1,n);R=1:n;for k=1:n-1%Find the pivot row for column k[maxl,j]=max(abs(A(k:n,k)));%Interchange row k and jC=A(k,:);A(k,:)=A(j+k-1,:);A(j+k-1,:)=C;d=R(k);R(k)=R(j+k-1);R(j+k-1)=d;if A(k,k)==0'A is singular,No unique solution'breakend%Calculate multiplier and place in subdiagonal portion of A for i=k+1:nmult=A(i,k)/A(k,k);A(i,k)=mult;A(i,k+1:n)=A(i,k+1:n)-mult*A(k,k+1:n);endend%Output LU factorization compact matrixA%solve for yy(1)=b(R(1));for i=2:ny(i)=b(R(i))-A(i,1:i-1)*y(1:i-1);end%Solve for xx(n)=y(n)/A(n,n);for i=n-1:-1:1x(i)=(y(i)-A(i,i+1:n)*x(i+1:n))/A(i,i);end例:A=[1 2 6;4 8 -1;-2 3 -5];b=[1;2;3];x=lu_column(A,b)6、Jacobi迭代:程序可用的充分条件是A具有严格对角优势。

线性代数方程组的数值解法讨论

线性代数方程组的数值解法讨论

线性代数方程组的数值解法讨论解线性方程组的方法,主要分为直接方法和迭代方法两种。

直接法是在没有舍入误差的假设下能在预定的运算次数内求得精确解。

而实际上,原始数据的误差和运算的舍入误差是不可以避免的,实际上获得的也是近似解。

迭代法是构造一定的递推格式,产生逼近精确解的序列。

对于高阶方程组,如一些偏微分方程数值求解中出现的方程组,采用直接法计算代价比较高,迭代法则简单又实用,因此比较受工程人员青睐。

小组成员本着工程应用,讨论将学习的理论知识转变为matlab 代码。

讨论的成果也以各种代码的形式在下面展现。

1 Jacobi 迭代法使用Jacobi 迭代法,首先必须给定初始值,其计算过程可以用以下步骤描述: 步骤1 输入系数矩阵A ,常熟向量b ,初值(0)x ,误差限ε,正整数N ,令1k =.步骤2 (0)11ni i ij jj ii j i x b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,(0)j x 代表(0)x 的第j 个分量。

步骤3 计算11ni i ij j j ii j i y b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,判断1max i i i n x y ε≤≤-<,如果是,则结束迭代,转入步骤5;否则,转入步骤4。

步骤4 判断k N =?如果是,则输出失败标志;否则,置1k k =+,i i x y ⇐,1,2,,i n =,转入步骤2。

步骤5 输出12,,n y y y 。

雅可比迭代代码function [x,k]=Fjacobi(A,b,x0,tol)% jacobi 迭代法 计算线性方程组% tol 为输入误差容限,x0为迭代初值max1= 300; %默认最多迭代300,超过要300次给出警告 D=diag(diag(A)); L=-tril(A,-1);U=-triu(A,1); B=D\(L+U); f=D\b; x=B*x0+f;k=1; %迭代次数while norm(x-x0)>=tol x0=x;x=B*x0+f; k=k+1;if(k>=max1)disp('迭代超过300次,方程组可能不收敛'); return; end%[k x'] %显示每一步迭代的结果 End2 高斯赛德尔迭代由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量(1)k i x +时,用最新分量11()k x +,12()k x +…(1)1k i x +-代替旧分量)1(k x ', )2(k x …)3(k x 就得到高斯赛德尔迭代格式,其数学表达式为:1(1)(1)()111(1,2,,)i n k k k ii ij j ij j j j i ii xb a x a x i n a -++==+⎛⎫=--= ⎪⎝⎭∑∑具体形式如下:()()()(1)()()()11221331111(1)(1)()()22112332222(1)(1)(1)(1)(1)112233,11111k k k k n n k k k k n n k k k k k n n n n n n n n nnx a x a x a x b a x a x a x a x b a x a x a x a x a x b a ++++++++--=----+=----+⋯⋯⋯⋯⋯⋯=-----+矩阵形式表示为:()(1)1(1)()(0,1,2,,),k k k k n +-+=++=x D Lx Ux b将(1)(1)()(0,1,2,,)k k k k n ++=++=Dx Lx Ux b 移项整理得: (1)1()1()()(0,1,2,,))k k x D L Ux D L b k n +--=-+-=记11(),()--=-=-M D L U g D L b ,则(1)()k k x x +=+M g高斯塞德尔迭代function [x,k]=Fgseid(A,b,x0,tol)%高斯-塞德尔迭代法 计算线性方程组 % tol 为误差容限max1= 300; %默认最高迭代300次D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; x=G*x0+f;k=1; while norm(x-x0)>=tol x0=x;x=G*x0+f; k=k+1;if(k>=max1)disp('迭代次数太多,可能不收敛'); return; end% [k,x'] %显示每一步迭代结果 End3 超松弛迭代法在工程中最常遇到的问题便是线性代数方程组的求解,而线性代数方程组的求解一般可以分为两类,一类是直接法(精确法),包括克莱姆法则方法、LD 分解法等,另一类是迭代法(近似法),包括雅克比迭代法、高斯迭代法、超松弛迭代法等。

数值计算08-线性方程组数值解法(优选.)

数值计算08-线性方程组数值解法(优选.)

0
(k=1,2,…,n) ,则可通过高斯消元法求出Ax=b 的解。
引理
A的主元素
a(k) kk
0
(k=1,2,…,n) 的充要条件
是矩阵A的各阶顺序主子式不为零,即
a11
a1k
D1 a11 0 Dk
0, k 2, 3, , n
ak1
akk
定理2 Ax=b 可用高 斯消元法求解的充分必要条件是: 系数矩阵 A 的各阶顺序主子式均不为零。
Page 5
线性代数方程组的计算机解法常用方法:
直接法 迭代法
消去法 矩阵三角分解法
Page 6
直接法:经过有限步算术运算,可求得方程组
的精确解的方法(若在计算过程中没有舍入误差)
迭代法:用某种极限过程去逐步逼近线性方程
组精确解的方法 迭代法具有占存储单元少,程序设计简单,原
始系数矩阵在迭代过程中不变等优点,但存在收 敛性及收敛速度等问题
a(k) ik
a(k) kk
aijk
mik
a
k
kj
bik1 bik mikbkk
xn
bnn annn
bii
n
a
i
ij
x
j
,
xi
ji1
aiii
i, j k 1, k 2,, n
i n 1,,2,1
高斯消元法的条件
Page 20
定理1
如果在消元过程中A的主元素
a(k) kk
即:
a111
a112 a222
a11n a22n
x1 x2
bb1212
an22
an2n
xn
bn2
其中:

数值求解方法

数值求解方法

数值求解方法数值求解方法是一种通过数值计算来解决数学问题的方法。

在许多实际问题中,我们需要求解各种方程或函数的根、极值、积分等问题,而数值求解方法可以提供一种有效的途径来解决这些问题。

本文将介绍几种常见的数值求解方法,并分析其原理和应用。

一、二分法二分法是一种简单而有效的数值求解方法,它通过不断将求解区间一分为二,并根据函数值的正负判断根的位置,最终逼近根的位置。

二分法的原理是基于函数在连续区间上的性质,通过不断缩小求解区间的范围来逼近根的位置。

二分法的优点是简单易用,但收敛速度相对较慢,对于某些特殊函数可能不适用。

二、牛顿迭代法牛顿迭代法是一种通过线性逼近来求解方程的数值方法。

它通过对方程进行泰勒展开,利用切线与x轴的交点作为下一个近似解,从而逐步逼近方程的根。

牛顿迭代法的优点是收敛速度快,但对于某些复杂函数可能存在收敛性问题,需要进行合理的初始近似值选择。

三、割线法割线法是一种通过线性逼近来求解方程的数值方法,类似于牛顿迭代法。

它通过对方程进行割线近似,利用割线与x轴的交点作为下一个近似解,从而逐步逼近方程的根。

割线法的优点是相对于牛顿迭代法而言,不需要计算函数的导数,因此更加简单易用,但收敛速度较慢。

四、高斯消元法高斯消元法是一种用于求解线性方程组的数值方法。

它通过对方程组进行一系列的行变换,将方程组化为上三角形矩阵,然后通过回代求解得到方程组的解。

高斯消元法的优点是简单直观,适用于一般的线性方程组求解,但对于某些特殊的方程组可能存在奇异性或多解的问题。

五、龙贝格积分法龙贝格积分法是一种用于数值积分的方法,通过对区间进行逐步细分,并计算相应的复合梯形面积来逼近积分值。

龙贝格积分法的优点是收敛速度较快,精度较高,适用于各种类型的函数积分求解,但对于某些特殊函数可能存在收敛性问题。

六、插值法插值法是一种通过已知数据点来求解未知数据点的数值方法。

它通过构造一个插值函数,使得该函数在已知数据点上与原函数值相等,从而通过插值函数来求解未知数据点的近似值。

第2章 线性方程组的数值解法

第2章  线性方程组的数值解法

第2章 线性方程组的数值解法2.1 引言在自然科学研究和工程技术的应用中,许多问题的解决,诸如非线性问题线性化、求微分方程的数值解最终都归结为线性方程组的求解问题. 我们在后面章节中的样条插值、曲线拟合、数值代数等,也需要求解线性方程组。

一般地,设n 阶线性方程组(linear system of equations of order n )为11112211211222221122,,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (2.1.1) 表示成矩阵形式=Ax b , (2.1.2)其中()111212122212n n ij n nn n nn a a a a a a a a a a ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ A ,12n x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ x ,12n b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦b , (2.1.3) A 为系数矩阵(coefficient matrix).目前在计算机上经常使用的、简单有效的线性方程组的数值解法大致分为两类:直接法(direct method)和迭代法(iterative method). 其中直接法适用于以稠密矩阵为系数矩阵的中低阶线性方程组,而迭代法主要用于求解以稀疏矩阵为系数矩阵的高阶线性方程组。

本章首先介绍解线性方程组的两种常用的直接法:Gauss 消去法与矩阵三角分解法;然后介绍解线性方程组的三种常用的迭代法:Jacobi 迭代法、Gauss-Seidel 迭代法、超松弛法(SOR 法),并讨论它们的收敛性。

最后,讨论了线性方程组的性态。

2.2 Gauss 消去法Gauss 消去法(Gaussian elimination method )的基本思想是使用初等行变换将方程组转化为一个同解的上三角形方程组,再通过回代,求出该三角形方程组的解.2.2.1 Gauss 消去法Gauss 消去法包括消元和回代两个过程. 下面先举例说明Gauss 消去法求解线性方程组的主要过程.例2.2.1 求解线性方程组123123123471,2581,3611 1.x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ 解 将该线性方程组写成增广矩阵(augmented matrix)的形式1471258136111⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦用Gauss 消去法求解过程如下:1.消元过程12213323323214711471147125810361036136111061020020r r r r r r r r r -+→-+→-+→⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥−−−−→---−−−−→---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦,从而原方程组等价地变为上三角形方程组123233471,361,20.x x x x x x ++=⎧⎪--=-⎨⎪=⎩2.回代过程从第3 个方程解出30x =,将其代入第2 个方程得()2216/31/3x x =--+=,再将30x =及21/3x =回代到第1个方程,解出1231471/3x x x =--=-. 从而得到原方程组的解123113,0.x x x =-==对于一般线性方程组(2.1.1),使用Gauss 消去法求解分为以下两步:1.消元过程为方便起见,记()(0)(0),ijn na ⨯==A A ()T(0)(0)(0)(0)1,12,1,1,,,n n n n a a a +++== b b ,则方程组(2.1.1)为()()()()()()()()()()()()000011112211,1000021122222,100001122,1,,.n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a +++⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ (2.2.1) 第1次消元:若()0110a ≠,对方程组(2.2.1) 执行初等行变换11i i i r l r r -→, 2,3,,i n = ,得第1个导出方程组——————————————————————————高斯 (Carl Friedrich Gauss 1777年4月30 日 – 1855年2月23 ) 是德国数学家、天文学家,在许多科学领域都做出了杰出的贡献,他为现代数论、微分几何(曲面论)、误差理论等许多数学分支奠定了基础. 他的数学研究以简明、严谨、完美而著称于世. 他在数学上与阿基米德、牛顿和欧拉齐名,被称为“数学王子”,被公认为有史以来最伟大的数学家之一.()()()()()()()()()()000011112211,111122222,111122,1,,,n nn n n n n nn n n n a x a x a x a a x a x a a x a x a +++⎧+++=⎪⎪++=⎨⎪⎪++=⎩(2.2.2)其中()()1111/i i l a a =,()()()10011,2,3,,;2,3,, 1.ij ij i j a a l a i n j n =-==+第2次消元:若()1220a ≠,对方程组(2.2.2)执行初等行变换22,i i i r l r r -→ 3,4,,i n = ,得第2个导出方程组()()()()()()()()()()()()()()()0000011112213311,1111122223322,122233333,122233,1,,,,n nn n n n n nn n nn nn n a x a x a x a x a a x a x a x a a x a x a a x a x a ++++⎧++++=⎪⎪+++=⎪⎪++=⎨⎪⎪⎪++=⎪⎩(2.2.3)其中()()112222/i i l a a =,()()()21122,3,4,,;3,4,, 1.ij ij i j a a l a i n j n =-==+第k 次消元:若()10k kka -≠,对第1k -个导出方程组执行初等行变换i ik k i r l r r -→,1,2,,i k k n =++ , 得第k 个导出方程组()()()()()()()()()()()()()()()000001111221,1111,110112221,1122,11,111,1,1,11,1,,,,k k n nn k k n n n k k k k k k k n nk n k k k n k k nn n n n a x a x a x a x a a x a x a x a a x a x a a x a x a +++++++++++++++⎧+++++=⎪⎪++++=⎪⎪⎨++=⎪⎪⎪⎪++=⎩(2.2.4)其中()()11k k ik ikkkl a a --=,()()()11,k k k ij ij ik kj a a l a --=- 1,,;1,, 1.i k n j k n =+=++ 重复上述过程1n -次,得到第1n -个导出方程组()()()()()()()()()()()()()()0000011112213311,1111122223322,122233333,111,1,,,.n n n n n n n nn n n nn nn n a x a x a x a x a a x a x a x a a x a x a a x a +++--+⎧++++=⎪⎪+++=⎪⎪++=⎨⎪⎪⎪=⎪⎩(2.2.5)其中()()()()()1111,,1,2,,1;1,,;1,, 1.k k kk k ik ikkkij ijik kjl a a a a l a k n i k n j k n ----==-=-=+=++ (2.2.6)这样,通过消元过程就将方程组(2.1.1)化成了等价的上三角形方程组(2.2.5).2.回代过程回代过程就是求上三角形方程组(2.2.5)的解. 若()10n nna -≠,则从最后一个方程开始,先求出()()11,1,/n n n n n n n x a a --+=,再由第1n -个方程解出1n x -,依此类推可解出221,,,n x x x - . 一般(2.2.7)定义 2.2.1 由式(2.2.2)-(2.2.7)确定的求解线性方程组的算法称为Gauss 消去法(Gaussian elimination method),包括消元(elimination)和回代(backward substitution)两个过程。

线性方程组的几种求解方法

线性方程组的几种求解方法

线性方程组的几种求解方法1.高斯消元法高斯消元法是求解线性方程组的一种常用方法。

该方法的基本思想是通过对方程组进行一系列简化操作,使得方程组的解易于求得。

首先将方程组表示为增广矩阵,然后通过一系列的行变换将增广矩阵化为行简化阶梯形,最后通过回代求解出方程组的解。

2.列主元高斯消元法列主元高斯消元法是在高斯消元法的基础上进行改进的方法。

在该方法中,每次选取主元时不再仅仅选择当前列的第一个非零元素,而是从当前列中选取绝对值最大的元素作为主元。

通过选取列主元,可以避免数值稳定性问题,提高计算精度。

3.LU分解法LU分解法是一种将线性方程组的系数矩阵分解为一个下三角矩阵L 和一个上三角矩阵U的方法。

首先进行列主元高斯消元法得到行阶梯形矩阵,然后对行阶梯形矩阵进行进一步的操作,得到L和U。

最后通过回代求解出方程组的解。

4.追赶法(三角分解法)追赶法也称为三角分解法,适用于系数矩阵是对角占优的三对角矩阵的线性方程组。

追赶法是一种直接求解法,将系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,然后通过简单的代数运算即可求得方程组的解。

5.雅可比迭代法雅可比迭代法是一种迭代法,适用于对称正定矩阵的线性方程组。

该方法的基本思想是通过不断迭代求解出方程组的解。

首先将方程组表示为x=Bx+f的形式,然后通过迭代计算不断逼近x的解。

6.高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进方法。

该方法在每一次迭代时,使用已经更新的解来计算新的解。

相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。

7.松弛因子迭代法松弛因子迭代法是一种对高斯-赛德尔迭代法的改进方法。

该方法在每一次迭代时,通过引入松弛因子来调节新解与旧解之间的关系。

可以通过选择合适的松弛因子来加快迭代速度。

以上是一些常用的线性方程组求解方法,不同的方法适用于不同类型的线性方程组。

在实际应用中,根据问题的特点和要求选择合适的求解方法可以提高计算的效率和精度。

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法

数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。

线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。

线性方程组的解法包括直接解法和迭代解法两种方法。

一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。

这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。

1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。

这种方法可以减少计算量,提高计算效率。

1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。

它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。

Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。

二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。

它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。

Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。

2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。

它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。

Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。

2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。

它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。

SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。

三、总结线性方程组解法是数值分析中的一个重要内容。

直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。

线性方程组解法归纳总结

线性方程组解法归纳总结

线性方程组解法归纳总结在数学领域中,线性方程组是一类常见的方程组,它由一组线性方程组成。

解决线性方程组是代数学的基础知识之一,广泛应用于各个领域。

本文将对线性方程组的解法进行归纳总结。

一、高斯消元法高斯消元法是解决线性方程组的基本方法之一。

其基本思想是通过逐步消元,将线性方程组转化为一个上三角形方程组,从而求得方程组的解。

具体步骤如下:1. 将线性方程组写成增广矩阵的形式,即将系数矩阵和常数向量合并成一个矩阵。

2. 选取一个非零的主元(通常选取主对角线上的元素),通过初等行变换将其它行的对应位置元素消为零。

3. 重复上述步骤,逐步将系数矩阵转化为上三角形矩阵。

4. 通过回代法,从最后一行开始求解未知数,逐步得到线性方程组的解。

高斯消元法的优点是理论基础牢固,适用于各种规模的线性方程组。

然而,该方法有时会遇到主元为零或部分主元为零的情况,需要进行特殊处理。

二、克拉默法则克拉默法则是一种用行列式求解线性方程组的方法。

它利用方程组的系数矩阵和常数向量的行列式来求解未知数。

具体步骤如下:1. 求出系数矩阵的行列式,若行列式为零则方程组无解。

2. 对于每个未知数,将系数矩阵中对应的列替换为常数向量,再求出替换后矩阵的行列式。

3. 用未知数的行列式值除以系数矩阵的行列式值,即可得到该未知数的解。

克拉默法则的优点是计算简单,适用于求解小规模的线性方程组。

然而,由于需要计算多次行列式,对于大规模的线性方程组来说效率较低。

三、矩阵法矩阵法是一种将线性方程组转化为矩阵运算的方法。

通过矩阵的逆运算或者伴随矩阵求解线性方程组。

具体步骤如下:1. 将线性方程组写成矩阵的形式,其中系数矩阵为A,未知数矩阵为X,常数向量矩阵为B。

即AX=B。

2. 若系数矩阵A可逆,则使用逆矩阵求解,即X=A^(-1)B。

3. 若系数矩阵A不可逆,则使用伴随矩阵求解,即X=A^T(ATA)^(-1)B。

矩阵法的优点是适用于各种规模的线性方程组,且运算速度较快。

超松弛迭代法历史演变

超松弛迭代法历史演变

超松弛迭代法历史演变超松弛迭代法(SOR)是一种用于线性方程组求解的数值方法。

它结合了松弛迭代法和高斯-赛德尔迭代法的优点,具有快速收敛和稳定性的特点。

本文将从超松弛迭代法的起源开始,详细阐述它的历史演变。

超松弛迭代法最早由美国数学家David M.Young于1950年提出。

当时,他受到高斯-赛德尔迭代法的启发,希望通过引入松弛参数来提高迭代的收敛速度。

这个想法是在每次迭代时,对于每个未知数,根据已知的值和方程组来更新它的值,而不是等到所有未知数都计算完毕再更新。

这样可以更快地逼近方程组的解。

然而,Young的初始提案并不是很成功。

他发现在一些情况下,超松弛迭代法的收敛速度并没有比传统的迭代法更快。

于是,他开始研究如何选择合适的松弛参数。

在他的研究中,他发现如果松弛参数大于1,超松弛迭代法的收敛速度会加快,而如果松弛参数小于1,收敛速度反而会变慢。

这一发现打开了超松弛迭代法的新局面。

在1960年代,科学家们开始对超松弛迭代法进行更深入的研究和改进。

他们发现,超松弛迭代法在对称正定矩阵的线性方程组求解中表现得尤为出色。

这是由于对称正定矩阵具有特殊的性质,可以使得超松弛迭代法更快地收敛。

为了进一步提高超松弛迭代法的收敛速度,研究人员开始探索如何自适应地选择松弛参数。

他们发现,选择合适的松弛参数可以使得超松弛迭代法在不同情况下都表现得更好。

于是,一些自适应超松弛迭代法被提出。

在20世纪80年代和90年代,随着计算机技术的快速发展,科学家们开始使用超松弛迭代法来解决更大规模的线性方程组。

他们发现,超松弛迭代法可以通过并行计算的方式,进一步提高求解效率。

这为超松弛迭代法的应用提供了更广阔的空间。

随着时间的推移,超松弛迭代法在求解线性方程组中的应用越来越广泛。

它被广泛应用于科学计算、工程建模、优化问题等领域。

许多数值计算软件和库都提供了超松弛迭代法的实现,使得使用者可以方便地应用该方法。

尽管超松弛迭代法在求解线性方程组中表现出色,但它也有一些局限性。

线性方程组的数值解法及其应用

线性方程组的数值解法及其应用

线性方程组的数值解法及其应用一、问题描述现实中的问题大多数是连续的,例如工程中求解结构受力后的变形,空气动力学中计算机翼周围的流场,气象预报中计算大气的流动。

这些现象大多是用若干个微分方程描述。

用数值方法求解微分方程(组),不论是差分方法还是有限元方法,通常都是通过对微分方程(连续的问题,未知数的维数是无限的)进行离散,得到线性方程组(离散问题,因为未知数的维数是有限的)。

因此线性方程组的求解在科学与工程中的应用非常广泛。

经典的求解线性方程组的方法一般分为两类:直接法和迭代法。

二、基本要求1)掌握用MATLAB软件求线性方程初值问题数值解的方法;2)通过实例学习用线性方程组模型解决简化的实际问题;3)了解用高斯赛德尔列主元消去法和雅可比迭代法解线性方程组。

三、测试数据1) 直接法:A=[0.002 52.88;4.573 -7.290];b=[52.90;38.44];2) 迭代法:A=[10 -1 -2;-1 10 -2;-1 -1 5];b=[7.2;8.3;4.2];四、算法程序及结果1)function[RA,RB,n,x]=liezy1(A,b)B=[A b];n=length(b);RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('因为RA~=RB,所以此方程组无解.')returnif RA==RBif RA==ndisp('因为RA=RB=n,所以此方程组有唯一解.')x=zeros(n,1);C=zeros(1,n+1);for p=1:n-1[Y,j]=max(abs(B(p:n,p)));C=B(p,:);B(p,:)=B(j+p-1,:);B(j+p-1,:)=C;for k=p+1:nm=B(k,p)/B(p,p);B(k,p:n+1)=B(k,p:n+1)-m*B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n);x(n)=b(n)/A(n,n);for q=n-1:-1:1x(q)=(b(q)-sum(A(q,q+1:n)*x(q+1:n)))/A(q,q);endelsedisp('因为RA=RB<n,所以此方程组有无穷多解.')endend测试:A=[0.002 52.88;4.573 -7.290];>> b=[52.90;38.44];>> [RA,RB,n,x]=liezy1(A,b)因为RA=RB=n,所以此方程组有唯一解.RA =2RB =2n =2x =10.00001.00002)function Jacobi(A,b,x0,P,error,max1)[n n]=size(A);x=zeros(n,1);for k=1:max1for j=1;nx(j)=(b(j)-A(j,[1:j-1,j+1:n])*x0([1:j-1,j+1:n]))/A(j,j);endxerrx=norm(x-x0,P);x0=x;x1=A\b;if(errx<error)disp('迭代次数k,精确解x1和近似解x分别是:')kx1xreturnendendif(errx>=error)disp('请注意:Jacobi迭代次数已经超过最大迭代次数max1.') end测试:A=[10 -1 -2;-1 10 -2;-1 -1 5];>>b=[7.2;8.3;4.2];>>x0=[0;0;0];>>Jacobi(A,b,x0,inf,0.001,100)n =3x =0.7200迭代次数k,精确解x1和近似解x分别是:k =2x1 =1.10001.20001.3000x =0.7200五、应用举例1)营养学家配制一种具有1200卡,30g蛋白质及300mg维生素C的配餐。

线性方程组的8种解法专题讲解

线性方程组的8种解法专题讲解

线性方程组的8种解法专题讲解线性方程组是数学中常见的问题之一,解决线性方程组可以帮助我们求出方程组的解,从而解决实际问题。

本文将介绍线性方程组的8种常见解法。

1. 列主元消去法列主元消去法是解决线性方程组的常用方法。

该方法通过将方程组转化为阶梯型矩阵,然后进行回代求解,得到方程组的解。

这一方法适用于任意维度的线性方程组。

2. 高斯消元法高斯消元法是解决线性方程组的经典方法之一。

该方法将方程组转化为阶梯型矩阵,并通过变换矩阵的方式使得主元为1,然后进行回代求解,得到方程组的解。

高斯消元法适用于任意维度的线性方程组。

3. 高斯-约当消元法高斯-约当消元法是对高斯消元法的改进。

该方法在高斯消元法的基础上,通过变换矩阵的方式使得主元为0,然后进行回代求解,得到方程组的解。

高斯-约当消元法适用于任意维度的线性方程组。

4. 矩阵分解法矩阵分解法是一种将线性方程组转化为矩阵分解形式,从而求解线性方程组的方法。

常见的矩阵分解方法有LU分解、QR分解等。

这些方法可以有效地降低求解线性方程组的计算复杂度。

5. 特征值分解法特征值分解法是一种将线性方程组转化为特征值和特征向量的形式,从而求解线性方程组的方法。

通过求解方程组的特征值和特征向量,可以得到方程组的解。

特征值分解法适用于具有特殊结构的线性方程组。

6. 奇异值分解法奇异值分解法是一种将线性方程组转化为奇异值分解形式,从而求解线性方程组的方法。

通过奇异值分解,可以得到方程组的解。

奇异值分解法适用于具有特殊结构的线性方程组。

7. 迭代法迭代法是一种通过逐步逼近方程组的解来求解线性方程组的方法。

常见的迭代法有雅可比迭代法、高斯-赛德尔迭代法等。

迭代法的优点是可以适应各种规模的线性方程组。

8. 数值求解法数值求解法是一种通过数值计算的方式来求解线性方程组的方法。

常见的数值求解法有牛顿法、梯度下降法等。

数值求解法可以处理复杂的线性方程组。

以上是线性方程组的8种常见解法。

线性方程组与矩阵特征值求解的数值方法

线性方程组与矩阵特征值求解的数值方法

(m-k)次乘法运算
A(k与1) A前(k)k行元素相同, A(k的1)左上角k阶阵
a (1) 11
A(k) 11
a1(kk )
为上三角阵。
a
(k kk
)
第k步约化公式:
Lk A(k ) A(k1)
Lk
b
(k
)
b(k 1)
(3)继续上述约化过程,且设a
(k kk
)
0(k
1,2,
, s),
(2.1)
A~
1 2
4 5
7 8
1
1
( (
E2 E3
) )
2( 3(
E1 E1
) )
E E
2 3
1 0
4 3
7 6
1(E3 ) 2(E2 ) E3 1
1
0
4 3
7 6
11,
3
6
11
1
0
6
10
2
0
0
2
0
(2)回代求解,得:x1
1, 3
x
2
1, 3
x
3
0。
结论:
整个计算过程可分为两部分:(1)消元:把原 方程组转化为系数矩阵为上三角矩阵的方程组; (2)回代:由系数矩阵为上三角矩阵的方程组求解
0, 计算乘数
m ik
a(k) ik
a
(k kk
)
,(i
(m-k)次除法运算 k 1, , m),
k)
)进行行初等变换,使
A( k )第k列
a(k kk
) 以下元素约为零,
即 ri mikrk ri (i k 1,L , m) ,得到与原方程组等价的方程组 A(k 1) x b(k 1)

线性方程组与矩阵特征值求解的数值方法

线性方程组与矩阵特征值求解的数值方法

线性方程组与矩阵特征值求解的数值方法线性方程组与矩阵特征值求解是线性代数中的两个重要问题。

线性方程组解决了形如Ax=b的方程组,其中A为一个m×n的矩阵,b为一个m 维的向量,求解x使得该方程组成立。

矩阵特征值求解是求解形如Ax=λx的特征值和特征向量问题,其中A为一个n×n的矩阵,λ为特征值,x为特征向量。

这两个问题在实际应用中有广泛的应用,如计算机图形学、仿真和优化等领域。

本文将介绍线性方程组和矩阵特征值求解的数值方法。

一、线性方程组的求解方法1.1直接法直接法是指通过一系列的代数运算和变换直接求解线性方程组的解。

经典的直接法有高斯消元法、LU分解法和Cholesky分解法等。

这些方法的时间复杂度通常为O(n^3)。

直接法的优点是解的精度高,稳定性好,适用于小规模的问题。

1.2迭代法迭代法是指通过迭代计算逼近线性方程组的解。

迭代法的基本思想是将原方程组转化为递推的形式,并选择一个初始解,通过递推计算得到趋于或精确的解。

常用的迭代法有Jacobi迭代法、Gauss-Seidel迭代法和SOR迭代法等。

这些方法的时间复杂度通常为O(n^2)。

迭代法的优点是适用于大规模问题,但收敛速度慢,精度较差。

二、矩阵特征值求解方法2.1幂法幂法是求解特征值最大的特征值与对应特征向量的方法。

假设有一个n×n的矩阵A,选择一个初始向量x(0),通过迭代计算x(k)=Ax(k-1)/,Ax(k-1),其中,·,表示向量的范数,直到收敛为止。

最后得到的x为特征向量,特征值为λ=(Ax·x)/(x·x)。

幂法的收敛速度较慢,但适用于特征值分布差异较大的情况。

2.2反幂法反幂法是求解特征值最小的特征值与对应特征向量的方法。

和幂法类似,反幂法选择一个初始向量x(0),通过迭代计算x(k)=(A-λI)^-1x(k-1)/,(A-λI)^-1x(k-1),其中I为单位矩阵,λ为近似的特征值,直到收敛为止。

线性方程组的方法-数值分析-王兵团-北京交通大学

线性方程组的方法-数值分析-王兵团-北京交通大学

线性⽅程组的⽅法-数值分析-王兵团-北京交通⼤学注解:1.线性代数中线性⽅程组的⽅法:克拉默法则。

线性⽅程组:Ax=b解:x i=D i/D如果A可逆,还可以写成:x=A-1/b⽅程组的解是:系数⾏列式某⼀项换成等式右端常数项/系数⾏列式。

既然可以有这么好的公式,那为何还要学习其它解法呢?答:好多数学的公式⼀旦⽤到计算机⾥⾯,就不⾏了。

有⼈实验过,100万/s的计算量,解算40阶的线性⽅程组的解,要算⼀年。

天⽓预报的话有⼏百万⼏千万的⽅程组,怎样快速解出来?⼤规模集成电路也需要解⼤规模⽅程组的。

⼈们需要快速求解⼤规模的线性⽅程组,这样,理论解就不⾏了。

数值分析讲的是怎样⽤计算机快速求出数学问题的解。

注解:1.如果⽅程组的数量>未知数个数,没有解,或者有最⼩⼆乘解。

2.如果如果⽅程组的数量<未知数个数,没有解,有⽆穷多解。

3.如果如果⽅程组的数量=未知数个数,有唯⼀解。

计算机做的最多的是这种情况:即⽅(阵)的情况。

4.线性⽅程组怎么得来的?答:每次实验得来的。

5.⼀个系统,有n个元器件,x i代表第i个元器件,每个元器件相当于⼀个变量x i,它们之间的变化有⼀定的关系。

每实验⼀次,得到⼀个它们之间相互关系的⽅程。

实验n次,得到n个⽅程。

通过⽅程组,求出n个元器件情况。

注解:1.计算机求的解都是近似解。

2.学⼀个东西,怎样学好?答:通过类⽐去看。

注解:1.简单迭代法是怎样做的?答:注解:1.初值可以给成:[0,0,0,...].2.x是⼀个向量。

注解:1.构造迭代格式所⽤的等价形式⼀定是有的。

2.未必都收敛的意思:⽐如,如果c给的合适,就收敛,如果不合适,就不收敛。

3.前⽂的引例就是example9.注解:1.x k代表第k步的迭代值。

x k是⼀个向量,所以ε(k)也是⼀个向量,是指第k步的迭代误差。

2.红⾊部分的等式是⼀个递推式⼦。

3.。

完全取决于迭代矩阵B,跟初值怎样选择是没有关系的。

计算方法线性方程组数值解法

计算方法线性方程组数值解法

d
2
a3b3c3
x3
d3
an
1bn1cn
1
xn
1
d
n
1
anbn xn dn
其系数矩阵为三对角形,元素满足以下条件:
|b1|>|c1|>0
|bi|≥|ai|+|ci|,且aici≠0 i=2,3,……n-1; |bn|≥|an|>0。
可以采用追赶法求解
4
线性代数方面的计算方法就是研究求解线 性方程组的一些数值解法与研究计算矩阵 的特征值及特征向量的数值方法。
5
设有线性方程组
a11x1 a12x2 a1nxn b1 a21x1a22x2a2nxnb2 an1x1 an2x2 annxn bn
式中,aij,bi为已知常数,xi为待求的未知量。记
u
2
2
u 2 n
u n 1,n 1u n 1,n
u n n
10
若uii≠0(i=1,2,……n),则由下至上依次回代得
xn yn / unn
xn1 ( yn1 xi yi
un1,n xn ) / un1,n1
n
uij x j ) / uii
0
a
( 2
2 2
)
a
( 2
2) ,k 1
a
( 2
2) ,k
a
( 2
2) ,n
a
( 2
2) ,n 1
0 A(k)
0 0
a
( k
k) ,k
a
( k
k) ,k 1
a
k
k ,n
a
( k
k) 1,n
1

线性方程组的几种求解方法

线性方程组的几种求解方法

线性方程组的几种求解方法线性方程组是指由一系列线性方程组成的方程组。

求解线性方程组是在给定的约束条件下找到满足所有方程的解。

在数学和工程领域,线性方程组的求解是一项重要的任务,涉及到许多实际问题的建模和分析。

本文将介绍几种常见的线性方程组的求解方法。

1. 高斯消元法(Gaussian elimination)高斯消元法是求解线性方程组的最常用方法之一、它通过矩阵的初等行变换将线性方程组化简为阶梯形矩阵,然后通过回代求解未知数的值。

高斯消元法具有简单、直观的特点,适用于一般的线性方程组求解。

2. 列主元高斯消元法(Gaussian elimination with partial pivoting)列主元高斯消元法是高斯消元法的改进版本。

它在每一步选择主元时,选取列中绝对值最大的元素作为主元,以减小误差的传播。

这种方法可以提高数值稳定性,但相对于普通高斯消元法,计算量较大。

3. 克拉默法则(Cramer's rule)克拉默法则是一种用于求解线性方程组的代数方法。

它通过计算系数矩阵的行列式和各个未知数的代数余子式,得到每个未知数的值。

克拉默法则适用于方程组个数和未知数个数相等的情况,但由于计算行列式的复杂度高,不适用于大规模的线性方程组求解。

4. 矩阵分解法(Matrix factorization)矩阵分解法通过将系数矩阵分解为两个或多个特定形式的矩阵的乘积,从而简化线性方程组的求解。

常见的矩阵分解方法有LU分解、QR分解、Cholesky分解等。

矩阵分解法适用于大规模线性方程组的求解,具有高效、稳定的特点。

5. 迭代法(Iterative methods)迭代法是一种逐步逼近解的方法,通过迭代计算逐渐接近线性方程组的解。

常见的迭代法有雅可比迭代法、高斯-赛德尔迭代法和共轭梯度法等。

迭代法适用于大规模稀疏线性方程组的求解,具有快速收敛、节约存储空间的特点。

6. 特殊结构法(Special structure methods)对于具有特殊结构的线性方程组,可以利用其特殊性质设计相应的求解方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

... ...
...
(i k 1, ..., n)
a(1) 1n
a(2) 2n ...
a(n) nn
x1
x2 ... xn
bb12((12))
...
bn(n)
§3.1 Gaussian Elimination and LU Decomposition
X(p)=(b(p)-U(p,p+1:n)*X(p+1:n))/U(p,p); end
3.0 Introduction
3.0 Introduction
【作业】(1)编写Matlab程序解下列上三角形方程组:
4x1 x2 2x3 3x4 20
2x2 7x3 4x4 7 6x3 5x4 4
103xx11
7x2 2x2
6x3
7 4
5x1 x2 5x3 6.
解:用行初等变换将方程组的增广矩阵化为行阶梯形:
10 7 0 7 [ A, b] 3 2 6 4 r2 (3/10)r1, r2 (5/10)r1
5 1 5 6
10 7 0 7
10 7 0 7
10 7 0 7
3x4 6.
(2)编写Matlab程序解下列下三角形方程组:
5x1
x1 3 x1
x1
3x2 4x2 3x2
6x3 6x3 x4
10 4 2 5.
§3.1 Gauss消去法与LU分解法
直接法的基本思想: 将线性方程组化成与之等价的上三角形或下三角形, 再用回代法求解。它的核心是矩阵分解。
线性方程组的系数矩阵:
3.0 Introduction
(1)低价稠密矩阵(阶数<150); (2)大型稀疏矩阵(阶数高且零元素较多)。
求解线性方程组的方法:
(1)直接法: 经过有限步算术运算,求得精确解 (假设计算过程没有舍入误差)。 如Gauss消去法,三 角分解法。
(2)间接法(迭代法): 通过迭代序列,逐步逼近方 程组的解。如Jacobi迭代法,Gauss-Seidel迭代法。
xk
ik 1
akk
, k n 1, n 2, ,2,1.
Backsub.m
function X=backsub(U,b) % 解上三角方程组--回代过程 %Backsubstitution in Gauss elimination % Input--U is a n x n upper-trianglular matrix % --b is a n x 1 constant vctor % Output--X is the solution vector of UX=b % Usage: X=backsub(U,b) %Find the dimension of b and initialize X n=length(b); X=zeros(n,1); X(n)=b(n)/U(n,n); for p=n-1:-1:1
0
0.1 6
6.1 r2 r3 0
2.5 5 2.5 r3(0.1/ 2.5)r2 0 2.5
5
2.5
0 2.5 5 2.5
0 0.1 6 6.1
0 0 6.2 6.2
解得
x=(0, -1, 1)’.
§3.1 Gaussian Elimination and LU Decomposition
Step
k:设
a
(k kk
)
, 0计算因子
且计算
a ( k 1) ij
b( k 1) i
a(k) ij
b(k ) i
mik
a(k kj
)
mik
b(k ) k
(i, j k 1, ..., n)
共进行 n? 步1
mik
a(k) ik
/ ak(kk )
a1(11)
a(1) 12
a(2) 22
Ch3 线性方程组求解的数 值方法
Numerical Solutions of Systems of Linear Equations
§3.0 Introduction
工程问题(电子网络,船体放样等)
自然科学(实验数据的最小二乘法曲线拟合)
线性方程组
解非线性方程组
解常/偏微分方程组(差分法,有限元法)
将增广矩阵/* augmented matrix */ 第 i 行 mi1 第1行,
得到
a (1) 11
a (1) 12
...
a (1) 1n
A( 2 )
b1(1) b (2)
其中
a(2) ij
b(2) i
a (1) ij
b(1) i
m
i
a (1)
1 1j
mi1b1(1)
(i, j 2, ...,n)
【注】上述过程可用矩阵表示为:
其中
LU=PA
1Hale Waihona Puke 0 0L0.5
1 0,
0.3 0.04 1
10 7 0
U
0
2.5
5 ,
0 0 6.2
1 0 0 P 0 0 1.
0 1 0
【高斯消元法思路】
§3.1 Gaussian Elimination and LU Decomposition
(1) 用消元法将A化为上三角阵 upper-triangular matrix ; (2) 回代求解 backward substitution 。
§3.1 Gaussian Elimination and LU Decomposition
消元

A(1) A (ai(j1) )nn ,
b (1)
b
b1(1) ...
bn(1)
Step
1:设
a(1) 11
, 0计算因子
mi1
a(1) i1
/
a(1) 11
(i 2, ..., n)
【最简单的情形】三角形线性方程组:
3.0 Introduction
a11x1 a12x2 a1n xn b1,
a22x2 a2n xn b2 ,
ann xn bn.
简记为
Ax b,A为上三角矩阵。
若所有aii 0,可用“回代”过程得到方程组的解。
xn
bn ann
,
n
b rki xi
核心:矩阵分解。
Gauss消去法(Gaussian elimination):
(对方程组的三种变换)
(1)交换两个方程的次序; (2)用一个非零常数乘一个方程; (3)将一个方程的非零倍数加到另一个方程上去。
这等价与对增广矩阵进行三种行初等变换,将它化为行阶梯形。
【例3.1】解下列线性方程组:
§3.1 Gaussian Elimination and LU Decomposition
相关文档
最新文档