线性方程组的数值解法
第二章 线性方程组的数值解法
第二章 线性方程组的数值解法在科技、工程技术、社会经济等各个领域中很多问题常常归结到求解线性方程组。
例如电学中的网络问题,样条函数问题,构造求解微分方程的差分格式和工程力学中用有限元方法解连续介质力学问题,以及经济学中求解投入产出模型等都导致求解线性方程组。
n 阶线性方程组的一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L K K K K L L 22112222212********* (1.1) 其矩阵形式为b Ax = (1.2) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n nn n n n n b b b b x x x x a a a a a a a a a A M M L K K K K L L 2121212222111211),,2,1,(n j i a ij L =,),,2,1(n i b i L =均为实数,i b 不全为0,且A 为非奇异。
关于线性方程组的数值解法一般分为两类:1.直接法 就是不考虑计算机过程中的舍入误差时,经有限次的四则运算得到方程组准确解的方法。
而实际中由于计算机字长的限制,舍入误差的存在和影响,这种算法也只能求得线性方程组的近似解。
本章将阐述这类算法中最基本的消去法及其某些变形。
这些方法主要用于求解低阶稠密系数矩阵方程组。
2.迭代法 从某个解的近似值出发,通过构造一个无穷序列,用某种极限过程去逐步逼近线性方程组的精确解的方法。
本章主要介绍迭代法与迭代法。
迭代法是解大型稀疏矩阵(矩阵阶数高而且零元素较多)的线性方程组的重要方法。
§1 高斯)(Gauss 消去法1.1 Gauss 消去法Gauss 消去法是将线性方程组化成等价的三角形方程组求解。
首先举例说明Gauss消去法的基本思想和过程。
线性代数方程组的数值解法讨论
线性代数方程组的数值解法讨论解线性方程组的方法,主要分为直接方法和迭代方法两种。
直接法是在没有舍入误差的假设下能在预定的运算次数内求得精确解。
而实际上,原始数据的误差和运算的舍入误差是不可以避免的,实际上获得的也是近似解。
迭代法是构造一定的递推格式,产生逼近精确解的序列。
对于高阶方程组,如一些偏微分方程数值求解中出现的方程组,采用直接法计算代价比较高,迭代法则简单又实用,因此比较受工程人员青睐。
小组成员本着工程应用,讨论将学习的理论知识转变为matlab 代码。
讨论的成果也以各种代码的形式在下面展现。
1 Jacobi 迭代法使用Jacobi 迭代法,首先必须给定初始值,其计算过程可以用以下步骤描述: 步骤1 输入系数矩阵A ,常熟向量b ,初值(0)x ,误差限ε,正整数N ,令1k =.步骤2 (0)11ni i ij jj ii j i x b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,(0)j x 代表(0)x 的第j 个分量。
步骤3 计算11ni i ij j j ii j i y b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,判断1max i i i n x y ε≤≤-<,如果是,则结束迭代,转入步骤5;否则,转入步骤4。
步骤4 判断k N =?如果是,则输出失败标志;否则,置1k k =+,i i x y ⇐,1,2,,i n =,转入步骤2。
步骤5 输出12,,n y y y 。
雅可比迭代代码function [x,k]=Fjacobi(A,b,x0,tol)% jacobi 迭代法 计算线性方程组% tol 为输入误差容限,x0为迭代初值max1= 300; %默认最多迭代300,超过要300次给出警告 D=diag(diag(A)); L=-tril(A,-1);U=-triu(A,1); B=D\(L+U); f=D\b; x=B*x0+f;k=1; %迭代次数while norm(x-x0)>=tol x0=x;x=B*x0+f; k=k+1;if(k>=max1)disp('迭代超过300次,方程组可能不收敛'); return; end%[k x'] %显示每一步迭代的结果 End2 高斯赛德尔迭代由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量(1)k i x +时,用最新分量11()k x +,12()k x +…(1)1k i x +-代替旧分量)1(k x ', )2(k x …)3(k x 就得到高斯赛德尔迭代格式,其数学表达式为:1(1)(1)()111(1,2,,)i n k k k ii ij j ij j j j i ii xb a x a x i n a -++==+⎛⎫=--= ⎪⎝⎭∑∑具体形式如下:()()()(1)()()()11221331111(1)(1)()()22112332222(1)(1)(1)(1)(1)112233,11111k k k k n n k k k k n n k k k k k n n n n n n n n nnx a x a x a x b a x a x a x a x b a x a x a x a x a x b a ++++++++--=----+=----+⋯⋯⋯⋯⋯⋯=-----+矩阵形式表示为:()(1)1(1)()(0,1,2,,),k k k k n +-+=++=x D Lx Ux b将(1)(1)()(0,1,2,,)k k k k n ++=++=Dx Lx Ux b 移项整理得: (1)1()1()()(0,1,2,,))k k x D L Ux D L b k n +--=-+-=记11(),()--=-=-M D L U g D L b ,则(1)()k k x x +=+M g高斯塞德尔迭代function [x,k]=Fgseid(A,b,x0,tol)%高斯-塞德尔迭代法 计算线性方程组 % tol 为误差容限max1= 300; %默认最高迭代300次D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; x=G*x0+f;k=1; while norm(x-x0)>=tol x0=x;x=G*x0+f; k=k+1;if(k>=max1)disp('迭代次数太多,可能不收敛'); return; end% [k,x'] %显示每一步迭代结果 End3 超松弛迭代法在工程中最常遇到的问题便是线性代数方程组的求解,而线性代数方程组的求解一般可以分为两类,一类是直接法(精确法),包括克莱姆法则方法、LD 分解法等,另一类是迭代法(近似法),包括雅克比迭代法、高斯迭代法、超松弛迭代法等。
浅谈线性方程组的数值解法及其应用
浅谈线性方程组的数值解法及其应用1、相关定义1.1、分形油藏基本概念定义3.1[32]:维数为的分形渗透网嵌入到d(d=2,3)维岩块中,即整个导流系统是一个分形体,称具有这种特性的油藏为分形油藏。
df 3.1.1 分形孔隙度θf和渗透率Kf (r) 假设分形体内流体储集在体积为的座点处(设每个座点体积相同),座点密度为。
分形体中,座点孔隙体积为常数。
用描述某种相应对称性(如, Vs N( r ) Vs B B= A 2π h和4π 分别描述直线对称,圆柱面对称和球对称),a为位置-浓度参数[33], 为岩块的欧几里德维数,定义分形孔隙度d θf有: θf= aBVs rdf ?d (3-1) 这说明分形网格的θf 不再是常数,而是随波及半径r 成幂律关系。
取,则有: w r =r df d f w w r θ θr θw=aVBs rwd f ? d,得到分形孔隙度= ,θw 为r = rw 处的孔隙度。
同样渗透率定义为:Kf( r)= aVsB m rd f ?d ? θ (3-2) ( ) r= rw处的渗透率Kw=aVs Bm r wdf ?d ?θ ,得到渗透率Kf r= Kw rrw d f? d ?θ 。
3.1.2 分形参数的物理意义(1)分形维数df 分形维数df 严格地是一个分形体的几何特征,是分形体复杂程度的重要标志。
一般认为,d f值不同,复杂程度也不一样。
随复杂程度加剧,d f 值会愈高。
151.2、分数阶的基本定义从十七世纪分数阶微积分诞生之日起,数学家们就不断的探讨分数阶算子的理论体系。
后经多位数学家的努力,从不同的角度入手,建立了多种不同形式的分数阶算子定义,现在主要通用的三种定义[1]形式为: (1). Grümwald-Letnikov 定义:对于任意的实数α ,记α 的整数部分为[α ] ([α ] 为小于α 的最大整数),假如函数f ( t ) 在区间[α,t ]上有m+ 1 阶连续的导数,α > 0 时, m 至少取[α ],则定义分数阶α 阶导数为: ( ) li0m 0 ( ) n G aD tα f tΔ nhh→ =t ?a h ?α i =∑ ??? ?iα ??? f t ? ih (1-1) ( )( 1)( 2) ( 1) ! i i i 其中,?α = ?α ?α + ?α + L ?α + ? 。
高等工程数学第二章习题及答案
第2章 线性代数方程组数值解法 研究n 阶线性方程组Ax b =的数值解法.()ij A a =是n n⨯矩阵且非奇异,12(,,,)Tn x x x x = ,12(,,,)Tn b b b b =两类数值方法:(1) 直接法:通过有限次的算术运算,若计算过程中没有舍入误差,可以求出精确解的方法.Ax b Gx d == 等价变换G 通常是对角矩阵、三角矩阵或者是一些结构简单的矩阵的乘积.(2) 迭代法:用某种极限过程去逐次逼近方程组的解的方法.(1)()i i Ax b x Bx k x Bx k +==+−−−−−→=+ 等价变换建立迭代格式,0,1,i =一、向量范数与矩阵范数 1. 向量范数【定义】 若对nK 上任一向量x ,对应一个非负实数x ,对任意,nx y R ∈及K α∈,满足如下条件(向量范数三公理) (1) 非负性:0x ≥,且0x =的充要条件是0x =;(2)齐次性:x xαα=;(3)三角不等式:x y x y+≤+.则称x为向量x的范数.常用的向量范数: (1) 1—范数11nii x x ==∑(2) 2—范数12221()ni i x x ==∑(3) ∞—范数1max ii nxx ∞≤≤=(4) 一般的p —范数11()pnpi pi xx ==∑2. 矩阵范数【定义】 若n nK ⨯上任一矩阵()ij n n A a ⨯=,对应一个非负实数A ,对任意的,n nA B K ⨯∈和K α∈,满足如下条件(矩阵范数公理):(1) 非负性:0A ≥,且0A =的充要条件是0A =;(2)齐次性:A Aαα=;(3)三角不等式:A B A B +≤+;(4)乘法不等式:AB A B≤.则称A为矩阵A的范数.矩阵范数与向量范数是相容的:Ax A x≤向量范数产生的从属范数或算子范数:10max maxx x AxA Ax x=≠==常见从属范数:(1) 1—范数111max ||nij j ni A a ≤≤==∑(2) ∞—范数11max ||nij i nj A a ∞≤≤==∑(3) 2—范数2A =谱半径1()max ||H i i n A A ρλ≤≤=,iλ为H A A 的特征值.H A 为A 的共轭转置. 注:矩阵A 的谱半径不超过A 的任一范数,即()A A ρ≤范数等价性定理:,s t x x为n R 上向量的任意两种范数,则存在常数12,0c c >,使得12,ns t s c x x c x x R ≤≤ ∀∈.注:矩阵范数有同样的结论. 【定理2.1】是任一向量范数,向量序列()k x 收敛于向量*x 的充要条件是()*0,k x x k -→ →∞二、 Gauss 消去法 1.顺序Gauss 消去法 将方程Ax b =写成如下形式11112211,121122222,11122,1n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a ++++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩其中记,1,1,2,,.i n i a b i n +==消元过程:第一次消元:设110a ≠,由第2,3,,n 个方程减去第一个方程乘以1111/(2,3,,)i i m a a i n == ,则将方程组中第一个未知数1x消去,得到同解方程11112211,1(1)(1)(1)22222,1(1)(1)(1)22,1n n n n n n n nn n n n a x a x a x a a x a x a a x a x a ++++++=⎧⎪ ++=⎪⎨⎪⎪ ++=⎩其中, (1)11,2,3,,;2,3,,,1ijij i j a a m a i n j n n =-==+ . 1111/i i m a a =,2,3,,i n = .第二次消元:设(1)220a ≠,.由第2,3,,n 个方程减去方程组中的第2个方程乘以(1)(1)2222/(3,4,,)i i m a a i n == ,则将方程组第2个未知数2x 消去,得到同解方程11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(2)(2)(2)33,1n n n n n n n n n nnn n n n a x a x a x a x a a x a a x a a x a x a a x a x a ++++++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ ++=⎩其中(2)(1)(1)22, 3,4,,; 3,4,,,1ij ij i j a a m a i n j n n =-==+ . (1)(1)2222/i i m a a =,3,4,,i n = .经过1n -次消元后,原方程组变成等价方程组11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(1)(1),1n n n n n n n n n n n nn n n n a x a x a x a x a a x a a x a a x a x a a x a +++--+++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ =⎩其中()(1)(1), 1,2,,k k k ij ij ik ij a a m a i k k n --=-=++ , 1,2,,,1j k k n n =+++ .(1)(1)/k k ik ik kkm a a --=,1,2,,i k k n =++ ;1,2,,1k n =- .回代过程:(1)(1),1(1)(1)(1),1,,1/[]/,1,2,,2,1.n n n n n m n i i i ii n i j j i j j i x a a x a a x a i n n --+---+=+⎧=⎪⎨=-=--⎪⎩∑计算量:按常规把乘除法的计算次数合在一起作为Gauss 消去法总的计算量,而略去加减法的计算次数. 在消去过程中,对固定的消去次数(1,2,,1)k k n =- ,有:除法(1)(1),,/,1,1,,k k ik i k k k m a a i k k n --= =++ 共计n k -次;乘法(1),,1,2,,;1,2,,,1k ik k j m a i k k n j k k n n - =++ =+++ 共计()(1)n k n k --+次.因此,消去过程总的计算量为1311[()(1)]3n k M n k n k n k n-==--++-≈∑ 回代过程的乘除法计算次数为21()2n n +.与消去法计算量相比可以略去不计.所以, Gauss 消去法总的计算量大约为313n .2. Gauss-Jordan 消去法Gauss-Jordan 消去法是Gauss 消去法的一种变形.此方法的第一次消元过程同Gauss 消去法一样,得到(1)(1)(1)(1)11112213311,1(1)(1)(1)(1)22223322,1(1)(1)(1)(1)32233333,1(1)(1)(1)(1)2233,1,,,,n n n n n n n n n nn nn n n n a x a x a x a x a a x a x a x a a x a x a x a a x a x a x a ++++⎧++++=⎪ +++=⎪ +++=⎨ +++= ⎪⎪⎪⎪⎩其中,(1)11,2,,,1jj a a j n n ==+ . 第二次消元:设(1)220a ≠,由第1,3,4,,n 个方程减去第2个方程乘以(1)(1)2222/(1,3,4,,)i i m a a i n == ,则得到同解方程组(2)(2)(2)11113311,1(1)(2)(2)(2)22223322,1(2)(2)(2)33333,1(2)(2)33,1,,,n n n n n n n n n nnn n n n a x a x a x a a x a x a x a a x a x a a x a x a +++++ +++= +++= ++= ++= (2),⎧⎪⎪⎪⎨⎪⎪⎪⎩继续类似的过程,在第k 次消元时,设(1)k kk a -,将第i 个方程减去第k 个方程乘以(1)(1)/k k ik ik kk m a a --=,这里1,3,4,1,1,,i k k n =-+ .经过1n -次消元,得到(2)1111,1(1)(2)2222,1(2)(2)33,1,,,n n n n n a x a a x a a x a +++⎧ =⎪ =⎪⎪ ⎨⎪⎪⎪ =⎩其中()(1)(1),1,2,,1,1,,k k k ij ij ik kj a a m a i k k n --=-=-+ ;1,2,,,1; 1,2,,1j n n k n =+=- .此时,求解回代过程为(1)(1),1/,1,2,,n i i i n iix a a i n --+= = 经统计,总的计算量约为312M n ≈次乘除法. 从表面上看Gauss-Jordan 消去法似乎比Gauss 消去法好,但从计算量上看Gauss -Jordan 消去法明显比Gauss消去法的计算量要大,这说明用Gauss-Jordan 消去法解线性方程组并不可取.但用此方法求矩阵的逆却很方便. 3.列选主元Gauss 消去法在介绍Gauss 消去法时,始终假设(1)0k kk a -≠,称(1)k kka -为主元.若(1)0k kka -=,显然消去过程无法进行.实际上,既使(1)0k kka -≠,但(1)k kka -很小时,用它作除数对实际计算结果也是很不利的.称这样的(1)k kka -为小主元.【例2.2】设计算机可保证10位有效数字,用消元法解方程1112120.3100.7,0.9,x x x x -⎧⨯+=⎪⎨ +=⎪⎩【解】经过第一次消元:第2个方程减去第1个方程乘以212111/m a a =得1112(1)(1)222230.3100.7x x a x a -⎧⨯+=⎪⎨ =⎪⎩其中(1)1222222111/0.333333333310a a a a =-=-⨯,(1)123323211113(/)0.233333333310a a a a a =-⋅=-⨯于是解得(1)(1)223221/0.7000000000,0.0000000000,x a a x ⎧==⎪⎨=⎪⎩而真解为120.2,0.7x x = =注:造成结果失真的主要因素是主元素11a太小,而且在消元过程中作了分母,为避免这个情况发生,应在消元之前,作行交换.【定义】 若 (1)(1)||max ||k k k r k ik k i na a --≤≤=,则称(1)||k k r k a - 为列主元素. k r 行为主元素行,这时可将第 k r行与第k 行进行交换,使(1)||k k r k a - 位于交换后的等价方程组的 (1)k kk a - 位置,然后再施实消去法,这种方法称为列选主元Gauss 消去法或部分主元Gauss 消去法.【例2.3】 应用列选主元Gauss 消去法解上述方程. 【解】 因为2111a a >,所以先交换第1行与第2行,得1211120.9,0.3100.7,x x x x -⎧+=⎪⎨⨯+=⎪⎩ 然后再应用Gauss 消去法,得到消元后的方程组为1220.9,0.7.x x x ⎧+=⎨=⎩回代求解,可以得到正确的结果.即120.2,0.7x x = =.三、三角分解法 设方程组Ax b =的系数矩阵A 的顺序主子式不为零.即1112121222110,1,2,,.kk k k k kka a a a a a k n a a a ∆=≠=在Gauss 消去法中,第一次消元时,相当于用单位下三角阵211131111010010n m L m m -⎡⎤⎢⎥- ⎢⎥⎢⎥=- ⎢⎥ ⎢⎥⎢⎥- ⎢⎥⎣⎦ ,左乘方程组Ax b =,得11A x b =,其中11121(1)(1)122211(1)200n n n nn a a a a a A L a a -(1)⎡⎤⎢⎥ ⎢⎥==⎢⎥ ⎢⎥⎢⎥ ⎣⎦ ,1(1)(1)111,11,1,1(,,,)Tn n n n b L b a a a -+++== .第二次消元时,相当于用单位下三角阵1232210101001n L m m - ⎡⎤⎢⎥ ⎢⎥⎢⎥= - ⎢⎥⎢⎥⎢⎥ - ⎢⎥⎣⎦0 ,左乘方程组11A x b =,得22A x b =其中11121(1)(1)22211(2)(2)221333(2)(2)300000n n n n nn a a a a a A L L A a a a a --⎡⎤ ⎢⎥ ⎢⎥⎢⎥== ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦ ,11(1)(2)(2)2211,12,13,1,1(,,,,).Tn n n n n b L L b a a a a --++++==经过1n -次消元,最后得到等价方程组11n n A x b --=其中11121(1)222111111221(1)n n n n n n nn a a a a a A L L L L A a (1)--------⎡⎤⎢⎥ ⎢⎥==⎢⎥⎢⎥⎢⎥ ⎣⎦1111(1)(1)112221,12,1,1(,,,)n Tn n n n n n n b L L L L b a a a --------+++==注意到1n A -是一个上三角阵,记111111221n n n U A L L L L A -------==则121()n A L L L U LU -==其中,121n L L L L -= . 不难验证21313212_1111n n nn m L m m m m m ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 1 ⎢⎥⎣⎦是单位下三角阵.于是解线性方程组Ax b =,就转化为解方程 LUx b =,若令Ux y =就得到一个与 Ax b =等价的方程组Ly b Ux y =⎧⎨=⎩【定理2.2】 若 A 为 n 阶方阵,且 A 的所有顺序主子式0k ∆≠,1,2,,k n = .则存在唯一的一个单位下三角矩阵 L 和一个上三角矩阵 U ,使A LU =.在上述过程中,若不假设A 的顺序主子式都不为零,只假设A 非奇异,那么Gauss 消去法将不可避免要应用两行对换的初等变换.第一次消元,将第1行与第1r 行交换,相当于将方程组Ax b =左乘矩阵11r P :1111r r P Ax P b=经第一次消元得11111111r r L P Ax L P b--=即系数矩阵为11111r A L P A-=,其中110111r P ⎡⎢ ⎢ 1= 1 0 1 ⎣0 0 ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦1 列 1r列 类似地,经1n -次消元,有121111111,22,11n n n n n r n n r r A L P L P L P A----------= .如果预先知道每一个(1,2,,1)iir P i n =- ,则在消元之前就全部作交换,得 1211,2,1,n n n r n r r A P P P A PA----== ,其中,1211,2,1,n n n r n r r P P P P ----= .即原方程变为PAx Pb =然后再消元,相当于对PA 做三角分解PA LU =由以上讨论,可得结论 【定理2.3】 若A 非奇异,则一定存在排列矩阵 P ,使得 PA 被分解为一个单位下三角阵和一个上三角1 行1行r阵的乘积,即PA LU =成立.这时,原方程组Ax b = 等价于 PAx Pb =,即等价于求解LUx Pb =令Ux y =则Ly Pb =实际求解时,先解方程组Ly Pb =,再根据 y 求解 Ux y =,即得原方程组Ax b =的解. 这种求解方法称为三角分解法.常用三角分解方法有以下几种. 1.Doolittle 分解方法 假设系数矩阵A 不需要进行行交换,且三角分解是唯一的. 记21121110n n l L l l ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ ⎢⎥⎣⎦ , 11121222n n nn u u u u u U u ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ 0 ⎣⎦ 于是有1112111121222212222112111110n n n n n n n n nn a a a u u u u u a a a l l l a a a ⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎣⎦⎣⎦ nn u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥0 ⎣⎦从前面讨论A 的LU 分解过程可看出,L 、U 的元素都是用有关的(1)k ij a -来表示的,而它们的计算较麻烦.现在给出直接从系数矩阵A ,通过比较等式的两边逐步把L 和U 构造出来的方法,而不必利用Gauss 消去法的中间结果(1)k ij a -.计算步骤: (1) 由L 阵的第1行分别乘U 阵的各列,先算出U 阵的第1行元素 11,1,2,,j j u a j n = = .然后,由L 阵的各行分别去乘U 阵的第1列,算出L 阵的第1列元素1111/,2,3,,i i l a a i n = = .(2)现假设已经算出U 阵的前1r -行元素,L 阵的前1r -列元素,下面来算U 阵的第r 行元素,L 阵的第r 列元素.由L 阵的第r 行分别乘U 阵的第j 列(,1,,)j r r n =+ ,得11r ij rk kj rjk a l u u -==+∑所以,得U 阵的第r 行元素11,,1,,r rj rj rk kj k u a l u j r r n-==- =+∑ .再由L 阵的第i 行(1,2,,)i r r n =++ 分别去乘U 阵的第r 列,得11r ir ik kr ir rrk a l u l u -==+∑,所以,得L 阵的第r 列元素11[]/,1,2,,.r ir ir ik kr rr k l a l u u i r r n -==- =++∑取1,2,,r n = 逐步计算,就可完成三角分解A LU =;(3)解与Ax b = 等价的方程组Ly b Ux y =⎧⎨=⎩逐次用向前代入过程先解Ly b = 得1111,2,3,,.i i i ij j j y b y b l y i n -==⎧⎪⎨=- =⎪⎩∑然后再用逐次向后回代过程解Ux y =得1/,()/,1,2,,2,1.n n nn n i i ij j ii j i x y u x y u x u i n n =+=⎧⎪⎨=- =--⎪⎩∑2.Crout 分解方法仍假设系数矩阵A 不需要进行行交换,且三角分解是唯一的.即ˆA L=ˆU .与Doolittle 分解方法的区别在111212122211n n n n nn a a a a a a a a a ⎡⎤ ⎢⎥ ⎢⎥=⎢⎥ ⎢⎥⎢⎥ ⎣⎦ 1122ˆˆl l ⎡⎤ 0⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥⎣⎦ 122ˆ1ˆ10n u u ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1 ⎣⎦ 比较两边,则可推导出与Doolittle 分解方法类似的公式,不过Crout 分解方法是先算ˆL 的第r 列,然后再算ˆU的第r 行.3.Cholesky 分解方法若 A 为对称正定矩阵,则有 ˆT U L =,即11()()TT T A LDL LD LD LL ===其中L 为下三角阵. 进一步展开为1121111211112122221222221212n n n n n n nn n n nn a a a l l l l a a a l l l l l l l a a a ⎡⎤⎡⎤ ⎢⎥⎢⎥ 0 ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦⎣⎦ 0nn l ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦ 比较两边对应元素,容易得到12121()r rr rr rk k l a l -==-∑ ,11()/r ir ir ik rk rrk l a l l l -==-∑ 1,2,,;1,2,,.r n i r r n ==++Cholesky 分解的优点:不用选主元. 由21rrr rk k a l ==∑ 可以看出||1,2,,.rk l k r ≤=这表明中间量rk l得以控制,因此不会产生由中间量放大使计算不稳定的现象. Cholesky 分解的缺点:需要作开方运算. 改进的Cholesky 分解: 改为使用分解T A LDL =即11121121121221222121111n n n n n n n n nn a a a d l l l d a a a l l d a a a ⎡⎤ 1 ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 1 1 ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎢⎥ ⎣⎦⎣⎦⎣⎦ 2n l ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1⎣⎦其中21ˆl 1ˆn l 2ˆn l ˆnn l 1ˆn u12111()/r r rr rk k k r ir ir ik k rk rk d a l d l a l d l d-=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑,1,2,,;1,2,,.r n i r r n ==++Cholesky 分解方法或平方根法:应用Cholesky 分解可将Ax b =分解为两个三角形方程组T Ly b L x y ⎧= ⎪⎨= ⎪⎩分别可解得111111/,()/.i i i ik k ii k y b l y b l y l i n -=⎧=⎪⎨=-, =2,3,,⎪⎩∑和1/,()/1,.n n nn n i i ki k ii k i x y l x y l x l i n n =+⎧=⎪⎨=-, =--2,,2,1⎪⎩∑改进的Cholesky 分解方法或改进的平方根法:应用改进的Cholesky 分解,将方程组Ax b =分解为下面两个方程组1,,T Ly b L x D y -= ⎧⎨= ⎩同理可解得1111,,2,3,,.i i i ik k k y b y b l y i n ==⎧=⎪⎨=- =⎪⎩∑和1/,/,1,2,,2,1.n n n n i i i ki k k i x y d x y d l x i n n =+⎧=⎪⎨=- =--⎪⎩∑ 4.解三对角方程组的追赶法若()ij n n A a ⨯=满足1||||,1,2,,.nii ij j j ia a i n =≠> =∑则称A 为严格对角占优矩阵.若A 满足1||||,1,2,,.nii ij j j ia a i n =≠≥ =∑且其中至少有一个严格不等式成立,则称A 为弱对角占优矩阵.现在考虑Ax d = 的求解,即11112222211111n n n n n n n n n b c x d a b c x d a b c x d d a b x -----⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ = ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 系数矩阵A 满足条件11||||0,||||||,,0,2,3,, 1.||||0,i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+ ≠=-⎨⎪>>⎩采用Crout 分解方法11112222221111n n n n n n n b c a b c a b c a b βαβγαγα---⎡⎤ ⎡⎤⎢⎥ 1 ⎢⎥⎢⎥ ⎢⎥⎢⎥ = ⎢⎥⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎣⎦ ⎣⎦ 1n β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥1 ⎢⎥⎢⎥ 1 ⎣⎦其中,,,i i i αβγ为待定系数.比较上式两边可得到111111,;,,2,3,,;,2,3,, 1.i i i i i i i i i b c a b i n c i n ααβγγβααβ-= == =+ == =-进而可导出1111111,2,3,,.,/,,2,3,,./(),2,3,, 1.i i i i i i ii i i i a i n b c b b i n c b i n γαβααββαβ--⎧= =⎪= =⎪⎨=- =⎪⎪=- =-⎩由此可看出,真正需要计算的是(1,2,,1)i n β=- ,而i α可由,i i b a 和1i β-产生.因此,实现了A 的Crout 分解后,求解Ax d =就等价于解方程组Ly dUx y =⎧⎨=⎩从而得到解三对角方程组的追赶法公式: (1) 计算i β的递推公式:1111/,/(),2,3,, 1.i i i i i c b c b i n ββαβ-⎧=⎪⎨=- =-⎪⎩(2) 解方程组Ly d =:11111/()/(),2,3,,.i i i i i i i y d b y d a y b a i n β--⎧=⎪⎨=-- =⎪⎩(3) 解方程组Ux y =:1,1,2,,2,1.n n i i i i x y x y x i n n β+⎧=⎪⎨=- =--⎪⎩追赶法的乘除法次数是66n -次.将计算121n βββ-→→→ 及12n y y y →→→ 的过程称之为“追”的过程,将计算方程组Ax d =的解121n n x x x x -→→→→ 的过程称之为“赶”的过程.四、迭代法 将Ax b =改写为一个等价的方程组 x Bx k =+建立迭代公式 (1)(),0,1,2,.i i x Bx k i +=+ =称矩阵B 为迭代矩阵.【定义】 如果对固定的矩阵B及向量k,对任意初始猜值向量(0)x ,迭代公式(1)()i i +()i()*lim i i x x →+∞=成立,其中*x 是一确定的向量,它不依赖于(0)x 的选取.则称此迭代公式是收敛的,否则称为发散的.如果迭代收敛,则应有**,x Bx k =+1. 收敛性()()*,0,1,2,i i x x i ε=- =为第i步迭代的误差向量.则有(1)(1)*()*()(),0,1,2,.x x B x x B i εε++=-=-==所以,容易推出()(0),0,1,2,,i i B i εε= =其中,(0)(0)*xxε=-为初始猜值的误差向量.设n nB K ⨯∈,lim 0i i B →+∞=⇔ ()1B ρ<.迭代法收敛基本定理: 下面三个命题是等价的 (1) 迭代法(1)()i i x Bx k +=+收敛;(2)()1B ρ<;(3) 至少存在一种矩阵的从属范数⋅,使1B <注:当条件()1B ρ<难以检验时,用1B 或B ∞等容易求出的范数,检验11B <或1B∞<来作为收敛的充分条件较为方便.常用迭代法如下. 2.Jacob 迭代 考察线性方程组Ax b =,设A 为非奇异的n 阶方阵,且对角线元素0ii a ≠(1,2,,)i n = .此时,可将矩阵A 写成如下形式A D L U =++,1122(,,,)nn D diag a a a = ,21313212000n n a L a a a a ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 0 ⎢⎥⎣⎦ ,12131232000n n a a a a a U ⎡⎤ ⎢⎥ ⎢⎥⎢⎥= 0 ⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎣⎦ ,建立Jacobi 迭代公式(1)1()1(),i i x D L U x D b +--=-++迭代矩阵11()J B D L U I D A --=-+=-J B 的具体元素为112111122122221200n n J n n nn nn a a a a a a B a a a a a a ⎡⎤ - -⎢⎥⎢⎥⎢⎥- - ⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥- - 0 ⎢⎥⎣⎦ Jacobi 迭代法的分量形式如下1(1)()()111(),j n i i i jj jm m jm m m m j jj xb a x a x a -+==+=--∑∑1,2,,;0,1,2,.j n i = =3.Gauss-Seidel 迭代容易看出,在Jacobi 迭代法中,每次迭代用的是前一次迭代的全部分量()(1,2,,)i jx j n = .实际上,在计算(1)i j x +时,最新的分量(1)(1)(1)121,,,i i i j x x x +++- 已经算出,但没有被利用.事实上,如果Jacobi 迭代收敛,最新算出的分量一般都比前一次旧的分量更加逼近精确解,因此,若在求(1)i j x+时,利用刚刚计算出的新分量(1)(1)(1)121,,,i i i j x x x+++- ,对Jacobi 迭代加以修改,可得迭代公式1(1)(1)()111(),j ni i i jj jm m jm m m m j jj xb a x a x a -++==+=--∑∑1,2,,;0,1,2,.j n i = =矩阵形式(1)1()1()(),0,1,2,.i i x D L Ux D L b i +--=-++-+=1()G B D L U -=--+注:(1)两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更快一些.(2)但也有这样的方程组,对Jacobi 迭代法收敛,而对Gauss-Seidel 迭代法却是发散的. 【例2.4】 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下面的方程组121232342,46,4 2.x x x x x x x ⎧- =⎪-+-=⎨⎪-+=⎩初始猜值取0(0,0,0)x =. 【解】 Jacobi 迭代公式为(1)()12(1)()()213(1)()321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下 (1)(2)(3)(4)(0.5,1.5,0.5),(0.875,1.75,0.875),(0.938,1.938,0.938),(0.984,1.969,0.984).T T T T x x x x ====Gauss-Seidel 迭代公式为(1)()12(1)(1)()213(1)(1)321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下(1)(2)(3)(4)(0.5,1.625,0.9063),(0.9063,1.9532,0.9883),(0.9883,2.0,0.9985),(0.9985,1.999,0.9998).T T T T x x x x ====从这个例子可以看到,两种迭代法作出的向量序列(){}i x 逐步逼近方程组的精确解*(1,2,1)T x =,而且Gauss-Seidel 迭代法收敛速度较快.一般情况下,当这两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更3.超松弛迭代法为了加快迭代的收敛速度,可将Gauss-Seidel 迭代公式改写成1(1)()(1)()11(),j ni i i i jjj jm m jm m m m jjj xx b a x a x a -++===+--∑∑ 1,2,,;0,1,2,.j n i = =并记1(1)(1)()11(),j ni i i jj jm m jm m m m jjj rb a x a x a -++===--∑∑称 (1)i j r + 为 1i + 步迭代的第 j 个分量的误差向量.当迭代收敛时,显然有所有的误差向量(1)0(),1,2,,.i j r i j n +→→∞=为了获得更快的迭代公式,引入因子R ω∈,对误差向量 (1)i j r + 加以修正,得超松弛迭代法(简称SOR 方法)(1)()(1),0,1,2,.i i i j j j x x r i ω++=+ =即1(1)()(1)()1(),j ni i i i jjj jm mjm m m m jjjxx b a xa x a ω-++===+--∑∑1,2,,;0,1,2,.j n i = =适当选取因子ω,可望比Gauss-Seidel 迭代法收敛得更快.称ω为松弛因子.特别当1ω=时,SOR 方法就是Gauss-Seidel 迭代法.写成矩阵向量形式(1)1()1()[(1)](),j i x D L D U x D L b ωωωωω+--=+--++0,1,2,.i =迭代矩阵为1()[(1)].B D L D U ωωωω-=+--实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的. 4.迭代收敛其它判别方法:用迭代法收敛基本定理来判断收敛性时,当n 较大时,迭代矩阵的谱半径计算比较困难,因此,人们试图建立直接利用矩阵元素的条件来判别迭代法的收敛定理. (1) 若方程组Ax b =中的系数矩阵A 是对称正定阵,则 Gauss-Seidel 迭代法收敛. 对于SOR 方法,当02ω<< 时迭代收敛(2)若A 为严格对角占优阵,则解方程组 Ax b = 的Jacobi 迭代法,Gauss -Seidel 迭代法均收敛. 对于SOR 方法,当01ω<< 时迭代收敛.【例2.5】 设线性方程组为121221,32,x x x x ⎧+=-⎪⎨+=⎪⎩建立收敛的Jacobi 迭代公式和Gauss -Seidel 迭代公式. 【解】 对方程组直接建立迭代公式,其Jacobi 迭代矩阵为0230J B -⎡⎤=⎢⎥- ⎣⎦,显见谱半径()1J B ρ=>,故Jacobi 迭代公式发散.同理Gauss -Seidel 迭代矩阵为0206G B -⎡⎤=⎢⎥ ⎣⎦,谱半径()61G B ρ=>,故Gauss -Seidel 选代公式也发散. 若交换原方程组两个方程的次序,得一等价方程组121232,21,x x x x ⎧+=⎪⎨+=-⎪⎩其系数矩阵显然对角占优,故对这一等价方程组建立的Jacobi 迭代公式,Gauss -Seidel 迭代公式皆收敛. (3)SOR 方法收敛的必要条件是 02ω<<【定理2.5】 如果A 是对称正定阵,且02ω<<,则解Ax b =的SOR 方法收敛.注:当(0,2)ω∈ 时,并不是对任意类型的矩阵A ,解线性方程组Ax b =的SOR 方法都是收敛的.当SOR 方法收敛时,通常希望选择一个最佳的值opt ω使SOR 方法的收敛速度最快.然而遗憾的是,目前尚无确定最佳超松弛因子opt ω的一般理论结果.实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的.【例2.6】 求解线性方程组Ax b =,其中10.3000900.308980.30009100.4669110.274710.30898A - -- -0.46691 0= - -- 00.274711(5.32088,6.07624,8.80455,2.67600).T b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ - ⎣⎦ =-分别利用Jacobi 迭代法,Gauss -Seidel 迭代法,SOR 迭代法求解. 【解】其结果列入下表中,方程组精确解(五位有效数字)为*(8.4877,6.4275, 4.7028,4.0066).T x =-Jacobi 迭代法计算结果i()1i x()2i x ()3i x ()4i x ()2||||i r0 012.3095 1 5.3209 6.0762 -8.8046 2.6760 5.3609 27.97113.5621 -5.2324 1.90143.631820 8.4872 6.4263 -4.7035 4.0041 0.0041 218.48606.4271 -4.7050 4.0063 0.0028Gauss-Seidel 迭代法计算结果i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 5.3209 7.6730 -5.2220 2.8855 3.6202 28.51506.1933 -5.1201 3.90040.49098 8.4832 6.4228 -4.7064 4.0043 0.0078 98.48556.4252-4.70554.00550.0038SOR 迭代法计算结果(1.16ω=)i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 6.1722 9.1970 -5.2320 3.6492 3.6659 29.69416.1177 -4.8999 4.43351.33136 8.4842 6.4253 -4.7005 4.4047 0.0051 78.48686.4288-4.70314.00650.0016计算结果表明,若求出精确到小数点后两位的近似解,Jacobi 迭代法需要21次,Gauss -Seidel 迭代法需要9次,而SOR 迭代法(选松弛因子 1.16ω=)仅需要7次,起到加速作用.5.误差分析 【定理2.6】设 *x 是方程 Ax b = 的惟一解,v ⋅ 是某一种向量范数,若对应的迭代矩阵其范数1v B <,则迭代法(1)(),0,1,2,.i i xBx k i +=+ = 收敛,且产生向量序列(){}i x 满足()*()(1)||||||||||||1||||i i i vv vvB x x x x B --≤--()*(1)(0)||||||||||||1||||i i vv vvB x x x x B -≤--【证明】 由迭代收敛基本定理的(3)知,迭代法(1)(),0,1,2,.i i x Bx k i +=+ =收敛到方程的解*x .于是,由迭代公式立即得到(1)*()*(1)()()(1)(),().i i i i i i x x B x x x x B x x ++--=--=-为书写方便把v 范数中v 略去,有估计式(1)*()*||||||||||||,i i x x B x x +-≤⋅-(1)()()(1)||||||||||||.i i i i x x B x x +--≤⋅-再利用向量范数不等式||||||||||||x y x y -≥-于是得第一个不等式()(1)(1)()()*(1)*()*||||||||||||||||||||(1||||)||||,i i i i i i i B x x x x x x x x B x x -++ -≥-≥--- ≥--再反复递推即第二个不等式.注:(1)若事先给出误差精度ε,利用第二个不等式可得到迭代次数的估计(1)(0)(1||||)ln ln ||||||||v v v B i B x x ε⎡⎤->⎢⎥-⎣⎦ (2)在||||v B 不太接近1的情况下,由第一个不等式,可用()(1)||||i i v x x ε--<作为控制迭代终止的条件,并取 ()i x 作为方程组 Ax b = 的近似解.但是在||||v B 很接近1时,此方法并不可靠.一般可取1,2,v =∞或F .【例2.7】 用Jacobi 迭代法解方程组123123123202324,812,231530.x x x x x x x x x ⎧++=⎪++=⎨⎪-+=⎩问Jacobi 迭代是否收敛?若收敛,取(0)(0,0,0)T x =,需要迭代多少次,才能保证各分量的误差绝对值小于610-?【解】 Jacobi 迭代的分量公式为(1)()()123(1)()()213(1)()()3121(2423)201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x +++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩Jacobi 迭代矩阵J B 为130102011088210155J B ⎡⎤ - -⎢⎥⎢⎥⎢⎥=- -⎢⎥⎢⎥⎢⎥- ⎢⎥⎣⎦,由5251||||max ,,1208153J B ∞⎧⎫==<⎨⎬⎩⎭知,Jacobi 迭代收敛. 因设(0)(0,0,0)Tx =,用迭代公式计算一次得(1)(1)(1)12363,, 2.52x x x = = =而(1)(0)|||| 2.x x ∞-=于是有6110(1)13ln ln 13.23i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所以,要保证各分量误差绝对值小于610-,需要迭代14次.【例2.8】 用Gauss -Seidel 迭代法解例2.11中的方程组,问迭代是否收敛?若收敛,取(0)(0,0,0)Tx =,需要迭代多少次,才能保证各分量误差的绝对值小于610-?【解】 Gauss -Seidel 迭代矩阵G B 为102403601()03025524000G B D L U - - ⎡⎤⎢⎥=-+= -⎢⎥⎢⎥ 38 -3⎣⎦显然1||||14G B =<,所以迭代收敛. Gauss -Seidel 迭代分量公式为(1)()()123(1)(1)()213(1)(1)(1)3121(2423),201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x ++++++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩因取(0)(0,0,0)T x =,故迭代一次得(1)(1)(1)1231.2, 1.35, 2.11x x x = = =于是有(1)(0)|||| 2.11x x ∞-=,计算得6110(1)14ln ln 10.2.114i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所在,要保证各分量误差绝对值小于610-,需要迭代11次.。
数值计算08-线性方程组数值解法(优选.)
0
(k=1,2,…,n) ,则可通过高斯消元法求出Ax=b 的解。
引理
A的主元素
a(k) kk
0
(k=1,2,…,n) 的充要条件
是矩阵A的各阶顺序主子式不为零,即
a11
a1k
D1 a11 0 Dk
0, k 2, 3, , n
ak1
akk
定理2 Ax=b 可用高 斯消元法求解的充分必要条件是: 系数矩阵 A 的各阶顺序主子式均不为零。
Page 5
线性代数方程组的计算机解法常用方法:
直接法 迭代法
消去法 矩阵三角分解法
Page 6
直接法:经过有限步算术运算,可求得方程组
的精确解的方法(若在计算过程中没有舍入误差)
迭代法:用某种极限过程去逐步逼近线性方程
组精确解的方法 迭代法具有占存储单元少,程序设计简单,原
始系数矩阵在迭代过程中不变等优点,但存在收 敛性及收敛速度等问题
a(k) ik
a(k) kk
aijk
mik
a
k
kj
bik1 bik mikbkk
xn
bnn annn
bii
n
a
i
ij
x
j
,
xi
ji1
aiii
i, j k 1, k 2,, n
i n 1,,2,1
高斯消元法的条件
Page 20
定理1
如果在消元过程中A的主元素
a(k) kk
即:
a111
a112 a222
a11n a22n
x1 x2
bb1212
an22
an2n
xn
bn2
其中:
实验五(线性方程组的数值解法和非线性方程求解)
1大学数学实验 实验报告 | 2014/4/5一、 实验目的1、学习用Matlab 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;2、通过实例学习用线性代数方程组解决简化问题。
二、 实验内容项目一:种群的繁殖与稳定收获:种群的数量因繁殖而增加,因自然死亡而减少,对于人工饲养的种群(比如家畜)而言,为了保证稳定的收获,各个年龄的种群数量应维持不变。
种群因雌性个体的繁殖而改变,为方便起见以下种群数量均指其中的雌性。
种群年龄记作k=1,2,…,n ,当年年龄k 的种群数量记作x k ,繁殖率记作b k (每个雌性个体1年的繁殖的数量),自然存活率记作s k (s k =1−d k ,d k 为1年的死亡率),收获量记作ℎk ,则来年年龄k 的种群数量x ̌k 应该为x ̌k =∑b k n k=1x k , x ̌k+1=s k x k −ℎk , (k=1,2,…,n -1)。
要求各个年龄的种群数量每年维持不变就是要求使得x ̌k =x k , (k=1,2,…,n -1).(1) 如果b k , s k 已知,给定收获量ℎk ,建立求各个年龄的稳定种群数量x k 的模型(用矩阵、向量表示).(2) 设n =5,b 1=b 2=b 5=0,b 3=5,b 4=3,s 1=s 4=0.4,s 2=s 3=0.6,如要求ℎ1~ℎ5为500,400,200,100,100,求x 1~x 5.(3) 要使ℎ1~ℎ5均为500,如何达到?问题分析:该问题属于简单的种群数量增长模型,在一定的条件(存活率,繁殖率等)下为使各年龄阶段的种群数量保持不变,各个年龄段的种群数量将会满足一定的要求,只要找到种群数量与各个参量之间的关系,建立起种群数量恒定的方程就可以求解出各年龄阶段的种群数量。
模型建立:根据题目中的信息,令x ̌k =x k ,得到方程组如下:{x ̌1=∑b k nk=1x k =x 1x ̌k+1=s k x k −ℎk =x k+1整理得到:{−x 1∑b k nk=1x k =0−x k+1+s k x k =ℎk2 大学数学实验 实验报告 | 2014/4/52写成系数矩阵的形式如下:A =[b 1−1b 2b 3s 1−100s 2−1…b n−1b n0000⋮⋱⋮000000000⋯00−10s n−1−1]令h =[0, ℎ1,ℎ2,ℎ3,…,ℎn−2,ℎn−1]Tx =[x n , x n−1,…,x 1]T则方程组化为矩阵形式:Ax =h ,即为所求模型。
第2章 线性方程组的数值解法
第2章 线性方程组的数值解法2.1 引言在自然科学研究和工程技术的应用中,许多问题的解决,诸如非线性问题线性化、求微分方程的数值解最终都归结为线性方程组的求解问题. 我们在后面章节中的样条插值、曲线拟合、数值代数等,也需要求解线性方程组。
一般地,设n 阶线性方程组(linear system of equations of order n )为11112211211222221122,,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (2.1.1) 表示成矩阵形式=Ax b , (2.1.2)其中()111212122212n n ij n nn n nn a a a a a a a a a a ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ A ,12n x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ x ,12n b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦b , (2.1.3) A 为系数矩阵(coefficient matrix).目前在计算机上经常使用的、简单有效的线性方程组的数值解法大致分为两类:直接法(direct method)和迭代法(iterative method). 其中直接法适用于以稠密矩阵为系数矩阵的中低阶线性方程组,而迭代法主要用于求解以稀疏矩阵为系数矩阵的高阶线性方程组。
本章首先介绍解线性方程组的两种常用的直接法:Gauss 消去法与矩阵三角分解法;然后介绍解线性方程组的三种常用的迭代法:Jacobi 迭代法、Gauss-Seidel 迭代法、超松弛法(SOR 法),并讨论它们的收敛性。
最后,讨论了线性方程组的性态。
2.2 Gauss 消去法Gauss 消去法(Gaussian elimination method )的基本思想是使用初等行变换将方程组转化为一个同解的上三角形方程组,再通过回代,求出该三角形方程组的解.2.2.1 Gauss 消去法Gauss 消去法包括消元和回代两个过程. 下面先举例说明Gauss 消去法求解线性方程组的主要过程.例2.2.1 求解线性方程组123123123471,2581,3611 1.x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ 解 将该线性方程组写成增广矩阵(augmented matrix)的形式1471258136111⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦用Gauss 消去法求解过程如下:1.消元过程12213323323214711471147125810361036136111061020020r r r r r r r r r -+→-+→-+→⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥−−−−→---−−−−→---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦,从而原方程组等价地变为上三角形方程组123233471,361,20.x x x x x x ++=⎧⎪--=-⎨⎪=⎩2.回代过程从第3 个方程解出30x =,将其代入第2 个方程得()2216/31/3x x =--+=,再将30x =及21/3x =回代到第1个方程,解出1231471/3x x x =--=-. 从而得到原方程组的解123113,0.x x x =-==对于一般线性方程组(2.1.1),使用Gauss 消去法求解分为以下两步:1.消元过程为方便起见,记()(0)(0),ijn na ⨯==A A ()T(0)(0)(0)(0)1,12,1,1,,,n n n n a a a +++== b b ,则方程组(2.1.1)为()()()()()()()()()()()()000011112211,1000021122222,100001122,1,,.n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a +++⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ (2.2.1) 第1次消元:若()0110a ≠,对方程组(2.2.1) 执行初等行变换11i i i r l r r -→, 2,3,,i n = ,得第1个导出方程组——————————————————————————高斯 (Carl Friedrich Gauss 1777年4月30 日 – 1855年2月23 ) 是德国数学家、天文学家,在许多科学领域都做出了杰出的贡献,他为现代数论、微分几何(曲面论)、误差理论等许多数学分支奠定了基础. 他的数学研究以简明、严谨、完美而著称于世. 他在数学上与阿基米德、牛顿和欧拉齐名,被称为“数学王子”,被公认为有史以来最伟大的数学家之一.()()()()()()()()()()000011112211,111122222,111122,1,,,n nn n n n n nn n n n a x a x a x a a x a x a a x a x a +++⎧+++=⎪⎪++=⎨⎪⎪++=⎩(2.2.2)其中()()1111/i i l a a =,()()()10011,2,3,,;2,3,, 1.ij ij i j a a l a i n j n =-==+第2次消元:若()1220a ≠,对方程组(2.2.2)执行初等行变换22,i i i r l r r -→ 3,4,,i n = ,得第2个导出方程组()()()()()()()()()()()()()()()0000011112213311,1111122223322,122233333,122233,1,,,,n nn n n n n nn n nn nn n a x a x a x a x a a x a x a x a a x a x a a x a x a ++++⎧++++=⎪⎪+++=⎪⎪++=⎨⎪⎪⎪++=⎪⎩(2.2.3)其中()()112222/i i l a a =,()()()21122,3,4,,;3,4,, 1.ij ij i j a a l a i n j n =-==+第k 次消元:若()10k kka -≠,对第1k -个导出方程组执行初等行变换i ik k i r l r r -→,1,2,,i k k n =++ , 得第k 个导出方程组()()()()()()()()()()()()()()()000001111221,1111,110112221,1122,11,111,1,1,11,1,,,,k k n nn k k n n n k k k k k k k n nk n k k k n k k nn n n n a x a x a x a x a a x a x a x a a x a x a a x a x a +++++++++++++++⎧+++++=⎪⎪++++=⎪⎪⎨++=⎪⎪⎪⎪++=⎩(2.2.4)其中()()11k k ik ikkkl a a --=,()()()11,k k k ij ij ik kj a a l a --=- 1,,;1,, 1.i k n j k n =+=++ 重复上述过程1n -次,得到第1n -个导出方程组()()()()()()()()()()()()()()0000011112213311,1111122223322,122233333,111,1,,,.n n n n n n n nn n n nn nn n a x a x a x a x a a x a x a x a a x a x a a x a +++--+⎧++++=⎪⎪+++=⎪⎪++=⎨⎪⎪⎪=⎪⎩(2.2.5)其中()()()()()1111,,1,2,,1;1,,;1,, 1.k k kk k ik ikkkij ijik kjl a a a a l a k n i k n j k n ----==-=-=+=++ (2.2.6)这样,通过消元过程就将方程组(2.1.1)化成了等价的上三角形方程组(2.2.5).2.回代过程回代过程就是求上三角形方程组(2.2.5)的解. 若()10n nna -≠,则从最后一个方程开始,先求出()()11,1,/n n n n n n n x a a --+=,再由第1n -个方程解出1n x -,依此类推可解出221,,,n x x x - . 一般(2.2.7)定义 2.2.1 由式(2.2.2)-(2.2.7)确定的求解线性方程组的算法称为Gauss 消去法(Gaussian elimination method),包括消元(elimination)和回代(backward substitution)两个过程。
线性代数方程组的数值解法_百度文库
线性代数方程组的数值解法【实验目的】1. 学会用MATLAB 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;2. 通过实例学习用线性代数方程组解决简化的实际问题。
【实验内容】【题目1】通过求解线性方程组A1x=b1和A2x=b2,理解条件数的意义和方程组的性态对解的影响。
其中A1是n阶范德蒙矩阵,即⎡1x0⎢1x1⎢A1=⎢⎢⎢⎣1xn-12x0x12 2xn-1n-1⎤ x0⎥ x1n-1⎥1,...,n-1 ,xk=1+0.1k,k=0,⎥ n-1⎥ xn-1⎥⎦A2是n阶希尔伯特矩阵,b1,b2分别是A1,A2的行和。
(1)编程构造A1(A2可直接用命令产生)和b1,b2;你能预先知道方程组A1x=和A2x=。
b2的解吗?令n=5,用左除命令求解(用预先知道的解可检验程序)b1(2)令n=5,7,9,…,计算A1,A2的条件数。
为观察它们是否病态,做以下试验:b1,b2不变,A1和A2的元素A1(n,n),A2(n,n)分别加扰动ε后求解;A1和A2不变,b1,b2的分量b1(n),分析A和b的微小扰动对解的影响。
b2(n)分别加扰动ε求解。
ε取10-1010,-8,10-6。
(3)经扰动得到的解记做x~,计算误差-x~x,与用条件数估计的误差相比较。
1.1构造A1,A2和b1,b2首先令n=5,构造出A1,A2和b1,b2。
首先运行以下程序,输出A1。
运行以下程序对A1,A2求行和:由于b1,b2分别是A1,A2的行和,所以可以预知x1=运行下列程序,用左除命令对b1,b2进行求解:得到以下结果: T。
x2=(1,1, ,1)1.2 计算条件数并观察是否为病态1.不加扰动,计算条件数。
运行以下程序:由此可知,A1,A2的条件数分别是3.574∗10, 4,766∗10。
2.b1,b2不变,A1(n,n),A2(n,n)分别加扰动(1)n=5时设x11,x12,x13分别为A1添加扰动10−10,10−8,10−6后的解。
线性方程组的数值解法及其应用
线性方程组的数值解法及其应用一、问题描述现实中的问题大多数是连续的,例如工程中求解结构受力后的变形,空气动力学中计算机翼周围的流场,气象预报中计算大气的流动。
这些现象大多是用若干个微分方程描述。
用数值方法求解微分方程(组),不论是差分方法还是有限元方法,通常都是通过对微分方程(连续的问题,未知数的维数是无限的)进行离散,得到线性方程组(离散问题,因为未知数的维数是有限的)。
因此线性方程组的求解在科学与工程中的应用非常广泛。
经典的求解线性方程组的方法一般分为两类:直接法和迭代法。
二、基本要求1)掌握用MATLAB软件求线性方程初值问题数值解的方法;2)通过实例学习用线性方程组模型解决简化的实际问题;3)了解用高斯赛德尔列主元消去法和雅可比迭代法解线性方程组。
三、测试数据1) 直接法:A=[0.002 52.88;4.573 -7.290];b=[52.90;38.44];2) 迭代法:A=[10 -1 -2;-1 10 -2;-1 -1 5];b=[7.2;8.3;4.2];四、算法程序及结果1)function[RA,RB,n,x]=liezy1(A,b)B=[A b];n=length(b);RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('因为RA~=RB,所以此方程组无解.')returnif RA==RBif RA==ndisp('因为RA=RB=n,所以此方程组有唯一解.')x=zeros(n,1);C=zeros(1,n+1);for p=1:n-1[Y,j]=max(abs(B(p:n,p)));C=B(p,:);B(p,:)=B(j+p-1,:);B(j+p-1,:)=C;for k=p+1:nm=B(k,p)/B(p,p);B(k,p:n+1)=B(k,p:n+1)-m*B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n);x(n)=b(n)/A(n,n);for q=n-1:-1:1x(q)=(b(q)-sum(A(q,q+1:n)*x(q+1:n)))/A(q,q);endelsedisp('因为RA=RB<n,所以此方程组有无穷多解.')endend测试:A=[0.002 52.88;4.573 -7.290];>> b=[52.90;38.44];>> [RA,RB,n,x]=liezy1(A,b)因为RA=RB=n,所以此方程组有唯一解.RA =2RB =2n =2x =10.00001.00002)function Jacobi(A,b,x0,P,error,max1)[n n]=size(A);x=zeros(n,1);for k=1:max1for j=1;nx(j)=(b(j)-A(j,[1:j-1,j+1:n])*x0([1:j-1,j+1:n]))/A(j,j);endxerrx=norm(x-x0,P);x0=x;x1=A\b;if(errx<error)disp('迭代次数k,精确解x1和近似解x分别是:')kx1xreturnendendif(errx>=error)disp('请注意:Jacobi迭代次数已经超过最大迭代次数max1.') end测试:A=[10 -1 -2;-1 10 -2;-1 -1 5];>>b=[7.2;8.3;4.2];>>x0=[0;0;0];>>Jacobi(A,b,x0,inf,0.001,100)n =3x =0.7200迭代次数k,精确解x1和近似解x分别是:k =2x1 =1.10001.20001.3000x =0.7200五、应用举例1)营养学家配制一种具有1200卡,30g蛋白质及300mg维生素C的配餐。
线性方程组的8种解法专题讲解
线性方程组的8种解法专题讲解线性方程组是数学中常见的问题之一,解决线性方程组可以帮助我们求出方程组的解,从而解决实际问题。
本文将介绍线性方程组的8种常见解法。
1. 列主元消去法列主元消去法是解决线性方程组的常用方法。
该方法通过将方程组转化为阶梯型矩阵,然后进行回代求解,得到方程组的解。
这一方法适用于任意维度的线性方程组。
2. 高斯消元法高斯消元法是解决线性方程组的经典方法之一。
该方法将方程组转化为阶梯型矩阵,并通过变换矩阵的方式使得主元为1,然后进行回代求解,得到方程组的解。
高斯消元法适用于任意维度的线性方程组。
3. 高斯-约当消元法高斯-约当消元法是对高斯消元法的改进。
该方法在高斯消元法的基础上,通过变换矩阵的方式使得主元为0,然后进行回代求解,得到方程组的解。
高斯-约当消元法适用于任意维度的线性方程组。
4. 矩阵分解法矩阵分解法是一种将线性方程组转化为矩阵分解形式,从而求解线性方程组的方法。
常见的矩阵分解方法有LU分解、QR分解等。
这些方法可以有效地降低求解线性方程组的计算复杂度。
5. 特征值分解法特征值分解法是一种将线性方程组转化为特征值和特征向量的形式,从而求解线性方程组的方法。
通过求解方程组的特征值和特征向量,可以得到方程组的解。
特征值分解法适用于具有特殊结构的线性方程组。
6. 奇异值分解法奇异值分解法是一种将线性方程组转化为奇异值分解形式,从而求解线性方程组的方法。
通过奇异值分解,可以得到方程组的解。
奇异值分解法适用于具有特殊结构的线性方程组。
7. 迭代法迭代法是一种通过逐步逼近方程组的解来求解线性方程组的方法。
常见的迭代法有雅可比迭代法、高斯-赛德尔迭代法等。
迭代法的优点是可以适应各种规模的线性方程组。
8. 数值求解法数值求解法是一种通过数值计算的方式来求解线性方程组的方法。
常见的数值求解法有牛顿法、梯度下降法等。
数值求解法可以处理复杂的线性方程组。
以上是线性方程组的8种常见解法。
线性方程组的数值解法与非线性方程求解
淮海工学院实验报告书
课程名称:数学实验
实验名称:线性方程组的数值解法与非线性方程求解班级数学091
姓名:耿萍学号:090911107
日期:2012.4.27 地点数学实验室
指导教师:曹卫平成绩:
数理科学系
-259.49
x3 =
13467.74
7580.65
5564.52
3951.61
1870.97
从x1可以看出,第5年龄段:x5=140.5>100=h5 ,说明收获量h5可以达到100。
从x2可以看出,x5为-259.49,但种群数量不可能为负数,在本题所给条件下,无法使h1~h5均为500。
从x3可以看出,x5=1870>500=h5,说明收获量h5可达到500,从而h1~h5均可达到500。
(3)
1)由题目已知条件,假设第i月月初待还贷款为,贷款月利率为r,则可列出:
=150000 =*(1+r)-1000 …=1000/r+(-1000/r)
2) 记第一家银行月利率为s,第二家银行年利率为t,则:
=4500/s+(-4500/r)。
大学数学实验五_线性代数方程组的数值解法
【实验目的】 1、学会用 MATLAB 软件数值求解线性代数方程组,对迭代法的收敛性和解
的稳定性作初步分析。 2、通过实例学习用线性代数方程组解决简化的实际问题。
【实验内容】
3 已知方程组 Ax=b,其中
,定义为
试通过迭代法求解此方程组,认识迭代法收敛的含义以及迭代初值和方程组系数矩阵性质对 收敛速度的影响。实验要求: (1) 选取不同的初始向量 x(0)和不同的方程组的右端项向量 b,给定迭代误差要求,用雅
k=k+1; xj=Bj*xj+fj; 多输出了矩阵 P,矩阵 P 可视为一个行向量,其每个元素均为迭代 k 次后得到的 xk。这样以 k 为横轴,解向量为纵轴,可输出图形观察 xk 是否收敛。函数 GaussSeidel 也需作同样修改,修改后的函数在此不再赘述。
模型: 已知某年该植物的数量为 x0,记第 k 年的植物数量为 xk,那么有 xk + pxk-1 + qxk-2 = 0 (k = 2, 3, …… , n)
其中 p = -a1bc,q = -a2b(1-a1)bc。若要求 n 年后数量达到 xn,则 Ax = b
其中
,
,
7
① 用稀疏系数矩阵求解。
这个函数中,n 表示矩阵 A 的阶数,在本题中恒取 20,a 表示主对角线元素的值,b 在 本题中恒取-1/4,c 在本题中恒取-1/2。
编写用雅可比迭代法求方程解的函数 Jacobi。
function [xj,k]=Jacobi(A,X0,b,e) D=diag(diag(A)); n=length(A); L=-(tril(A)-D); U=-(triu(A)-D); fj=D\b; Bj=D\(L+U); xj=X0; k=0; while norm(A*xj-b)/norm(b)>e
计算方法线性方程组数值解法
d
2
a3b3c3
x3
d3
an
1bn1cn
1
xn
1
d
n
1
anbn xn dn
其系数矩阵为三对角形,元素满足以下条件:
|b1|>|c1|>0
|bi|≥|ai|+|ci|,且aici≠0 i=2,3,……n-1; |bn|≥|an|>0。
可以采用追赶法求解
4
线性代数方面的计算方法就是研究求解线 性方程组的一些数值解法与研究计算矩阵 的特征值及特征向量的数值方法。
5
设有线性方程组
a11x1 a12x2 a1nxn b1 a21x1a22x2a2nxnb2 an1x1 an2x2 annxn bn
式中,aij,bi为已知常数,xi为待求的未知量。记
u
2
2
u 2 n
u n 1,n 1u n 1,n
u n n
10
若uii≠0(i=1,2,……n),则由下至上依次回代得
xn yn / unn
xn1 ( yn1 xi yi
un1,n xn ) / un1,n1
n
uij x j ) / uii
0
a
( 2
2 2
)
a
( 2
2) ,k 1
a
( 2
2) ,k
a
( 2
2) ,n
a
( 2
2) ,n 1
0 A(k)
0 0
a
( k
k) ,k
a
( k
k) ,k 1
a
k
k ,n
a
( k
k) 1,n
1
C++线性方程组地数值解法
线性方程组的数值解法一、下三角方程组的解法 对于线性方程组:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----121012102,11,10,11,20,20,11010010001n n n n n B B B B Y Y Y Y L L L L L L 即:⎪⎪⎪⎩⎪⎪⎪⎨⎧=++++=++=+=-----1132,111,100,12211,200,21100,100n n n n n B Y Y L Y L Y L B Y Y L Y L B Y Y L B Y∴⎪⎪⎪⎩⎪⎪⎪⎨⎧----=--=-==-------22,111,100,11111,200,22200,11100n n n n n n n Y L Y L Y L B Y Y L Y L B Y Y L B Y B Y写成通式的形式:∑-=-=10i j j ij i i Y L B Y )1,,2,1,0(-=n iC++源程序:#include <iostream.h> const int n=4;void LYB(double L[n][n+1]) {for(int i=0;i<n;i++) {for(int j=0;j<=i-1;j++) L[i][n]-=L[i][j]*L[j][n]; } }void main(){double L[n][n+1]={{1,0,0,0,4},{1,1,0,0,7},{1,-1,1,0,3},{1,-1,-1,1,0}};LYB(L);for(int i=0;i<n;i++)cout<<"Y["<<i<<"]="<<L[i][n]<<endl; }二、上三角方程组的解法对于线性方程组:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------121012101,11,22,21,12,11,11,02,01,00,0000000n n n n n n n Y Y Y Y X X X X U U U U U U U U U U 即:⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==+++=++++-------------------111,1211,222,2111,122,111,1011,022,011,000,0n n n n n n n n n n n n n n n n n n n Y X U Y X U X U Y X U X U X U Y X U X U X U X U∴⎪⎪⎪⎩⎪⎪⎪⎨⎧----=----=-==---------------0,011,022,011,0001,111,133,122,1112,211,2221,111/)(/)(/)(/)(U X U X U X U Y X U X U X U X U Y X U X U Y X U Y X n n n n n n n n n n n n n n n写成通式的形式:)0,1,2,,1,1(11 --=-=∑-+=n n i U X UY X iin i j jiji i#include <iostream.h> const int n=4;void UXY(double U[n][n+1]) {for(int i=n-1;i>=0;i--) {for(int j=i+1;j<=n-1;j++) U[i][n]-=U[i][j]*U[j][n]; U[i][n]/=U[i][i];}}void main(){doubleU[n][n+1]={{1,-1,-1,1,0},{0,1,-1,1,3},{0,0,1,1,3},{0,0,0,1,2}};UXY(U);for(int i=0;i<n;i++)cout<<"X["<<i<<"]="<<U[i][n]<<endl;}三、GAUSS消去法解线性方程组1、消去目标⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⇓⇓⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----------------n n n n n n n n n n n n n n n n n n n n n n n n n u u u u x x x x u u u u u u u u u u a a a a x x x x a a a a a a a a a a a a a a a a ,1,2,1,012101,11,22,21,12,11,11,02,01,00,0,1,2,1,012101,12,11,10,11,22,21,20,21,12,11,10,11,02,01,00,0000000 同解变形2、消去过程〔假定在以下消去演算中不会出现分母为0的情况〕为直观起见,我们把方程组写成如下形式:⎪⎪⎪⎩⎪⎪⎪⎨⎧=++++=++++=++++=++++-------------)0(,11)0(1,12)0(2,11)0(1,10)0(0,1)0(,21)0(1,22)0(2,21)0(1,20)0(0,2)0(,21)0(1,12)0(2,11)0(1,10)0(0,1)0(,01)0(1,02)0(2,01)0(1,00)0(0,0nn n n n n n n nn n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a a x a x a x a x a 第0步,实现第0列目标:消去第〔1〕、〔2〕、……、〔n-1〕中的0x 项,〔0〕式保持不变。
线性方程组的数值解法-安振华-2012011837
实验5:线性方程组的数值解法化学工程系分2 安振华2012011837【实验目的】1、掌握线性方程组的常用数值解法,包括高斯消去法、LU分解法以及校正法。
2、体验数值计算的时间复杂度和计算规模的关系。
3、加深对数值计算误差的理解。
4、学习使用迭代法等算法,求解非线性方程。
5、学习如何使用MATLAB解非线性方程组和方程组。
【实验容】【实验五:习题9】种群的繁殖与稳定收获:种群的数量因繁殖而增加,因自然死亡而减少,对于人工饲养的种群(比如家畜)而言,为了保证稳定的收获,各个年龄的种群数量应保持不变,种群因雌性个体的繁殖而改变,为方便起见以下种群数量均指其中的雌性。
种群年龄记作k=1,2,…,n,当年年龄k的种群数量记作x k,繁殖率记作b k(每个雌性个体在1年繁殖的数量),自然存活率记作s k(s k=1-d k,d k为1年的死亡率),收获量记作h k,则来年年龄k的种群数量k x应为:111,(1,2,,1)n k k k k k k k x b x x s x h k n +===-=⋅⋅⋅-∑要求各个年龄的种群数量每年维持不变就是要使(1,2,,)k k x x k n ==⋅⋅⋅(1) 若b k ,s k 已知,给定收获量h k ,建立求各年龄的稳定种群数量x k 的模型(用矩阵向量表示)(2) 设n=5,b 1=b 2=b 5=0,b 3=5,b 4=3,s 1=s 4=0.4,s 2=s 3=0.6,如果要求h 1~h 5为500,400,200,100,100,求x 1~x 5 (3) 要使h 1~h 5均为500,如何达到? 【分析】为方便起见以下种群数量均指其中的雌性。
我们并且有以下的假设:(1)雌性个体的繁殖率和存活率在特定的时间是不变的。
(2)人工饲养的种群在质量和数量上是不受外界环境和资源的限制的。
(3)模型中不考虑人为的或是自然的灾害所造成的种群数量、繁殖率和存活率的变动。
数学建模线性方程组的数值解法
直接法 经过有限次算术运算求出精确解(实际上 由 于 有 舍 入 误 差 只 能 得 到 近 似 解 ) ---- 高 斯 (Gauss)消元法及与它密切相关的矩阵LU分解 迭代法 从初始解出发,根据设计好的步骤用逐次 求出的近似解逼近精确解 ---- 雅可比(Jacobi) 迭代法和高斯—塞德尔(Gauss—Seidel)迭代法
(k )
0.1x1
( k 1)
0.3x2
( k 1)
1.4
Gauss-Seideil迭代公式 Dx ( k 1) Lx ( k 1) Ux ( k ) b
用它作除数会导致舍入误 差的很大增加 解决 办法 选
(k ) aik
(i k , n) 最大的一个(列主元)
将列主元所在行与第k行交换后, 再按上面的 高斯消元法进行下去,称为列主元消元法。
直接法 - 高斯消元法的矩阵表示
高斯消元法的第一次消元
a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 an1 x1 an 2 x2 ann xn bn
数值解法(迭代解法)的收敛性
实验5的主要内容
1. 两类数值解法: 直接方法;迭代方法
2. 超定线性方程组的最小二乘解 3. 线性方程组数值解法的MATLAB实现 4. 实际问题中方程组的数值解
线性方程组的一般形式、两类解法
a11 x1 a12 x 2 a1n x n b1 a 21 x1 a 22 x 2 a 2 n x n b2 a n1 x1 a n 2 x 2 a nn x n bn
大学数学实验
Mathematical Experiments 实验5 线性代数方程组的数值解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生课程---数值分析
2013-2014 秋季学期
其中
(k 1) (k ) (k ) aij aij mik akj , (i, j k 1,, n)
(k ) bi( k 1) bi( k ) mik bk , (i k 1,, n)
第n-1步: … …
各种类型的矩阵 1) 对角矩阵 2) 三对角矩阵 3) 上三角矩阵 4) Hessenberg阵 5) 对称矩阵 6) 埃尔米特矩阵 7) 对称正定矩阵 8) 正交矩阵 9) 酉矩阵 10) 初等置换阵 11) 置换阵
汕头大学工学院 研究生课程---数值分析 2013-2014 秋季学期
三、线性方程组的两类解法
汕头大学工学院
研究生课程---数值分析
2013-2014 秋季学期
§2 解线性方程组的直接方法
一、高斯消去法
•设有线性方程组:AX=b
a11 a12 a1n x1 b1 a x b a a 21 22 2n 2 2 . A , X , b a n1 an 2 ann xn bn
a (1) 11 0 0
(1) x (1) a1 b 1 n 1 ( 2) ( 2) ( 2) x a22 a2n 2 b2 . ( n) ( n) x 0 ann bn n (1) a12
1. 消去:对于 k 1,2,, n,
(1) 若akk 0, 则停止计算.
(2) 对于i k 1,, n (i ) aik mik aik / akk (ii ) 对于j k 1,, n aij aij mik akj .
( n) a ( n ) xn bn nn
n ( k ) (k ) (k ) xk bk akj x j akk , (k n 1,,1) j k 1 分析
2013-2014 秋季学期
说明:若线性方程组的系数矩阵非奇异,则它总可以通 过带行交换的高斯消去法进行求解。
(2)回代过程
汕头大学工学院 研究生课程---数值分析 2013-2014 秋季学期
a (1) 11 0 0
(n) 0, 则 若 ann
(1) x (1) a1 b 1 n 1 ( 2) ( 2) ( 2) x a22 a2n 2 b2 . ( n) ( n) x 0 ann bn n (1) a12
( 2) 0, 第二步:若 a22
用… ….
… …
(k ) (k ) (k ) 第k步:若 akk 0, 用 mik aik / akk 乘第k行加到第i行
中,得到
a (1) a (1) 1k 11 (k ) akk 0 0
汕头大学工学院
(1) b (1) x a1 1 n 1 (k ) (k ) (k ) akk 1 akn xk bk ( k 1) . ( k 1) ( k 1) x ak 1k 1 ak 1n k 1 bk 1 ( k 1) ( k 1) x ( k 1 ) ank 1 ann n bn (1) a1 k 1
•高斯消去法如何求解一般线性方程组?
汕头大学工学院 研究生课程---数值分析 2013-2014 秋季学期
高斯消去法的步骤:
(1)消元过程
(1) (1) (1) 0, 用 mi1 ai1 / a11 乘第一行 第一步:若 a11
加到第i行中,得到
a (1) 11 0 0
(k ) 0, k 1,2,, n, 可以通过高斯消去法求解。 定理5 (1) akk
(2)系数矩阵非奇异,总可以通过带行交换的高斯消去法进
行求解。
汕头大学工学院
研究生课程---数值分析
2013-2014 秋季学期
(k ) 算法归纳:若akk 0, k 1,2,, n,A( k )覆盖A, mik覆盖aik .
其中
( 2) (1) (1) aij aij mi1 a1 j , (i, j 2,3,, n)
(1) bi( 2) bi(1) mi1 b1 , (i 2,3,, n)
研究生课程---数值分析 2013-2014 秋季学期
汕头大学工学院
即消去第2至第n个方程中的未知数x1
直接法 迭代法
四、本讲内容安排
解线性方程组的直接方法
高斯消去法 高斯主元素消去法 矩阵三角分解法
√
√
研究生课程---数值分析 2013-2014 秋季学期
汕头大学工学院
解线性方程组的迭代法
雅可比迭代法 高斯-赛德尔迭代法 逐次超松弛迭代法
√ √
Matlab与线性方程组求解