信号与系统实验报告六

合集下载

大连理工大学 信号与系统实验实验6 Simulink仿真连续时间系统 实验报告

大连理工大学 信号与系统实验实验6 Simulink仿真连续时间系统 实验报告

大连理工大学实验报告
学院(系):电信专业:电子信息工程班级:姓名:学号:组:
实验时间:实验室:创新园C221 实验台:
指导教师签字:成绩:
实验六:Simulink仿真连续时间系统
一、实验结果与分析
1.用Simulink仿真载波为简单正弦信号的幅度调制和相干解调。

解:Simulink模块图为
其中,Sine wave产生调制信号,Sine wave1产生直流信号,Sine wave2产生载波信号,Ran-dom Source产生噪声,Digital Filter Design为带通滤波器,Sine wave3产生本地载波信号,Digital Filter Design1为低通滤波器。

主要模块的参数为
主要模块的波形图和频谱图为
二、讨论、建议、质疑
Simulink为我们提供了一个非常直观的解决途径,只要我们能够得到系统函数,画出相应的方框图,就可以方便地描述整个系统,获得需要的信息。

比如在完成简单正弦信号的幅度调制和相干解调时,如果利用MATLAB编写程序,需要调用函数buttord和butter去构建带通和低通滤波器,这是非常繁琐的。

但是Simulink提供了滤波器模块,我们只需要改变其参数,这大大简化了整个过程。

但是在实验中也遇到了一些问题。

因为对Simulink并不是特别熟悉,所以在设计滤波器的时候会觉得很盲目。

比如在完成简单正弦信号的幅度调制和相干解调时,如果稍微改变滤波器的参数,得到的结果就与正确结果大相径庭。

信号与系统软件实验实验报告

信号与系统软件实验实验报告

信号与系统软件实验实验报告一、实验目的本次信号与系统软件实验的主要目的是通过使用相关软件工具,深入理解和掌握信号与系统的基本概念、原理和分析方法,并通过实际操作和实验结果的观察与分析,提高对信号处理和系统性能的认识和应用能力。

二、实验环境本次实验使用的软件工具为_____,运行环境为_____操作系统。

计算机配置为_____处理器,_____内存,_____硬盘。

三、实验内容1、信号的表示与运算生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、锯齿波信号等,并观察其波形和特征参数。

对生成的信号进行加、减、乘、除等运算,分析运算结果的波形和频谱变化。

2、系统的时域分析构建简单的线性时不变系统,如一阶惯性系统、二阶振荡系统等。

输入不同类型的信号,如阶跃信号、冲激信号等,观察系统的输出响应,并分析系统的稳定性、瞬态性能和稳态性能。

3、系统的频域分析对给定的系统进行频率响应分析,计算系统的幅频特性和相频特性。

通过改变系统的参数,观察频率响应的变化规律,并分析系统对不同频率信号的滤波特性。

4、信号的采样与重构对连续时间信号进行采样,研究采样频率对信号重构的影响。

采用不同的重构方法,如零阶保持重构、一阶线性重构等,比较重构信号与原始信号的误差。

四、实验步骤1、打开实验软件,熟悉软件的操作界面和功能菜单。

2、按照实验内容的要求,依次进行各项实验操作。

在信号表示与运算实验中,通过软件提供的函数生成所需的信号,并使用绘图功能显示信号的波形。

然后,利用软件的计算功能进行信号运算,并观察运算结果的波形。

对于系统时域分析实验,首先在软件中构建指定的系统模型,然后输入相应的激励信号,使用仿真功能获取系统的输出响应。

通过观察输出响应的波形,分析系统的性能指标,如上升时间、调节时间、超调量等。

在系统频域分析实验中,利用软件的频率响应分析工具,计算系统的幅频特性和相频特性曲线。

通过调整系统的参数,如增益、时间常数等,观察频率响应曲线的变化情况,并总结规律。

信号与系统实验实验报告

信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。

具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。

2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。

3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。

4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。

二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。

2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。

3、计算机及相关软件:用于进行数据处理和分析。

三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。

连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。

常见的信号类型包括正弦信号、方波信号、脉冲信号等。

2、线性时不变系统线性时不变系统具有叠加性和时不变性。

叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。

3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。

对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。

2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。

3、在示波器上观察并记录不同信号的波形、频率和幅度。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。

2.通过软件工具绘制不同信号的时域和频域图像。

3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。

三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。

2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。

3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。

4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。

四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。

通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。

此外,通过滤波器的处理,我也了解了滤波对信号的影响。

通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。

信号与系统综合实验报告

信号与系统综合实验报告

信号与系统综合实验报告实验一常用信号的观察一、任务与目标1. 了解常用信号的波形和特点。

2. 了解相应信号的参数。

3. 学习函数发生器和示波器的使用。

二、实验过程1.接通函数发生器的电源。

2.调节函数发生器选择不同的频率的正弦波、方波、三角波、锯齿波及组合函数波形,用示波器观察输出波形的变化。

三、实验报告(x为时间,y为幅值)100Hz 4V 正弦波y=2sin(628x-π/2)100Hz 4V 方波y=2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为奇y=-2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为偶100Hz 4V 锯齿波100Hz 4V 三角波由50Hz的正弦波和100Hz正弦波组合的波形y=0.2sin(628x)+0.1sin(314x)实验二零输入、零状态及完全响应一、实验目标1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。

2.学习实验电路方案的设计方法——本实验中采用用模拟电路实现线性系统零输入响应、零状态响应和完全响应的实验方案。

二、原理分析实验指导书P4三、实验过程1、接通电源;2、闭合K2,给电容充电,断开K2闭合K3,观察零输入响应曲线;3、电容放电完成后,断开K3,闭合K1,观察零状态响应曲线;4、断开K1,闭合K3,再次让电容放电,放电完成后断开K3闭合K2,在电容电压稳定于5V后断开K2,闭合K1,观察完全响应曲线。

四、实验报告上图为零输入响应、零状态响应和完全响应曲线。

五、实验思考题系统零输入响应的稳定性与零状态响应的稳定性是否相同?为什么?答:相同。

因为系统零输入响应和零状态响应稳定的充分必要条件都是系统传递函数的全部极点si(i=1,2,3,…,n),完全位于s平面的左半平面。

实验五无源与有源滤波器一、实验原理实验指导书P14二、实验目的1.了解无源和有源滤波器的种类、基本结构及其特性;2.分析和对比无源和有源滤波器的滤波特性;3.掌握无源和有源滤波器参数的设计方法。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统实验报告

信号与系统实验报告

信号与系统实验实验一 常用信号分类与观察一、实验目的1、了解单片机产生低频信号源2、观察常用信号的波形特点及产生方法。

3、学会使用示波器对常用波形参数的测量。

二、实验仪器1、20MHz 双踪示波器一台。

2、信号与系统实验箱一台。

三、实验内容1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。

2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。

四、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。

因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。

在本实验中,将对常用信号和特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。

常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。

1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。

其波形如下图所示:图 1 正弦信号2、指数信号:指数信号可表示为atKe t f =)(。

对于不同的a 取值,其波形表现为不同的形式,如下图所示:图 2 指数信号3、指数衰减正弦信号:其表达式为 ⎪⎩⎪⎨⎧><=-)0()sin()0(0)(t t Ke t t f at ω其波形如下图:图 3 指数衰减正弦信号4、抽样信号:其表达式为: sin ()tSa t t=。

)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。

该函数在很多应用场合具有独特的运用。

其信号如下图所示:图4 抽样信号5、钟形信号(高斯函数):其表达式为:2()()tf t Ee-τ= , 其信号如下图所示:图 5 钟形信号6、脉冲信号:其表达式为)()()(T t u t u t f --=,其中)(t u 为单位阶跃函数。

信号与系统课程实验报告

信号与系统课程实验报告

合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。

二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。

它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。

2.实验线路检查无误后,打开实验箱右侧总电源开关。

3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告在现代科学与工程领域中,信号与系统是一个至关重要的研究方向。

信号与系统研究的是信号的产生、传输和处理,以及系统对信号的响应和影响。

在这个实验报告中,我们将讨论一些关于信号与系统实验的内容,以及实验结果的分析和讨论。

实验一:信号的采集与展示在这个实验中,我们学习了信号的采集与展示。

信号是通过传感器或其他仪器采集的电压或电流的变化,可以是连续的或离散的。

我们使用示波器和数据采集卡来采集信号,并在计算机上进行展示和分析。

实验二:线性时不变系统的特性线性时不变系统是信号与系统中的重要概念。

在这个实验中,我们通过观察系统对不同的输入信号作出的响应来研究系统的特性。

我们使用信号发生器产生不同的输入信号,并观察输出信号的变化。

通过比较输入信号和输出信号的频谱以及幅度响应,我们可以了解系统的频率响应和幅频特性。

实验三:系统的时域特性分析在这个实验中,我们将研究系统的时域特性。

我们使用了冲击信号和阶跃信号作为输入信号,观察输出信号的变化。

通过测量系统的冲击响应和阶跃响应,我们可以了解系统的单位冲激响应和单位阶跃响应。

实验四:卷积与系统的频域特性在这个实验中,我们学习了卷积的概念和系统的频域特性。

卷积是信号与系统中的重要运算,用于计算系统对输入信号的响应。

我们通过使用傅里叶变换来分析系统的频域特性,观察输入信号和输出信号的频谱变化。

实验五:信号的采样与重构在这个实验中,我们研究了信号的采样与重构技术。

信号的采样是将连续时间的信号转换为离散时间的过程,而信号的重构是将离散时间的信号恢复为连续时间的过程。

我们使用数据采集卡来对信号进行采样,并使用数字滤波器来进行信号的重构。

通过观察信号的采样和重构结果,我们可以了解采样率对信号质量的影响。

实验六:系统的稳定性与性能在这个实验中,我们研究了系统的稳定性与性能。

系统的稳定性是指系统对输入信号的响应是否有界,而系统的性能是指系统对不同频率信号的响应如何。

我们使用极坐标图和Nyquist图来分析系统的稳定性和性能,通过观察图形的变化来评估系统的性能。

信号与系统分析实验报告

信号与系统分析实验报告

信号与系统分析实验报告信号与系统分析实验报告引言:信号与系统分析是电子工程领域中的重要课程之一,通过实验可以更好地理解信号与系统的基本概念和原理。

本实验报告将对信号与系统分析实验进行详细的描述和分析。

实验一:信号的采集与重构在这个实验中,我们学习了信号的采集与重构。

首先,我们使用示波器采集了一个正弦信号,并通过数学方法计算出了信号的频率和幅值。

然后,我们使用数字信号处理器对采集到的信号进行重构,并与原始信号进行比较。

实验结果表明,重构后的信号与原始信号非常接近,证明了信号的采集与重构的有效性。

实验二:线性系统的时域响应本实验旨在研究线性系统的时域响应。

我们使用了一个线性系统,通过输入不同的信号,观察输出信号的变化。

实验结果显示,线性系统对于不同的输入信号有不同的响应,但都遵循线性叠加的原则。

通过分析输出信号与输入信号的关系,我们可以得出线性系统的传递函数,并进一步研究系统的稳定性和频率响应。

实验三:频域特性分析在这个实验中,我们研究了信号的频域特性。

通过使用傅里叶变换,我们将时域信号转换为频域信号,并观察信号的频谱。

实验结果显示,不同频率的信号在频域上有不同的分布特性。

我们还学习了滤波器的设计和应用,通过设计一个低通滤波器,我们成功地去除了高频噪声,并得到了干净的信号。

实验四:系统辨识本实验旨在研究系统的辨识方法。

我们使用了一组输入信号和对应的输出信号,通过数学建模的方法,推导出了系统的传递函数。

实验结果表明,通过系统辨识可以准确地描述系统的特性,并为系统的控制和优化提供了基础。

结论:通过本次实验,我们深入学习了信号与系统分析的基本概念和原理。

实验结果证明了信号的采集与重构的有效性,线性系统的时域响应的线性叠加原则,信号的频域特性和滤波器的设计方法,以及系统辨识的重要性。

这些知识和技能对于我们理解和应用信号与系统分析具有重要的意义。

通过实验的实际操作和分析,我们对信号与系统的理论有了更深入的理解,为我们今后的学习和研究打下了坚实的基础。

信号与系统实验报告

信号与系统实验报告

实验三常见信号的MATLAB表示及运算一、实验目的1. 熟悉常见信号的意义、特性及波形2. 学会使用MATLAB表示信号的方法并绘制信号波形3.掌握使用MATLAB进行信号基本运算的指令4.熟悉用MATLAB实现卷积积分的方法二、实验原理根据MA TLAB的数值计算功能和符号运算功能, 在MATLAB中, 信号有两种表示方法, 一种是用向量来表示, 另一种则是用符号运算的方法。

在采用适当的MATLAB语句表示出信号后, 就可以利用MATLAB中的绘图命令绘制出直观的信号波形了。

1.连续时间信号从严格意义上讲, MATLAB并不能处理连续信号。

在MATLAB中, 是用连续信号在等时间间隔点上的样值来近似表示的, 当取样时间间隔足够小时, 这些离散的样值就能较好地近似出连续信号。

在MATLAB中连续信号可用向量或符号运算功能来表示。

⑴向量表示法对于连续时间信号, 可以用两个行向量f和t来表示, 其中向量t是用形如的命令定义的时间范围向量, 其中, 为信号起始时间, 为终止时间, p为时间间隔。

向量f为连续信号在向量t所定义的时间点上的样值。

⑵符号运算表示法如果一个信号或函数可以用符号表达式来表示, 那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。

⑶常见信号的MATLAB表示单位阶跃信号单位阶跃信号的定义为:方法一: 调用Heaviside(t)函数首先定义函数Heaviside(t) 的m函数文件,该文件名应与函数名同名即Heaviside.m。

%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y= Heaviside(t)y=(t>0); %定义函数体, 即函数所执行指令%此处定义t>0时y=1,t<=0时y=0, 注意与实际的阶跃信号定义的区别。

方法二: 数值计算法在MATLAB中, 有一个专门用于表示单位阶跃信号的函数, 即stepfun( )函数, 它是用数值计算法表示的单位阶跃函数。

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6-离散时间系统的z域分析————————————————————————————————作者:————————————————————————————————日期:实验6 离散时间系统的z 域分析(综合型实验)一、 实验目的1) 掌握z 变换及其反变换的定义,并掌握MAT LAB实现方法。

2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。

3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、 实验原理与方法 1. z 变换序列(n)x 的z 变换定义为(z)(n)znn X x +∞-=-∞=∑ (1)Z 反变换定义为11(n)(z)z 2n rx X dz jπ-=⎰(2)MA TLA B中可采用符号数学工具箱z trans 函数和iz trans 函数计算z 变换和z 反变换: Z=ztran s(F)求符号表达式F的z 变换。

F=iztra ns(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换(z)(n)znn H h +∞-=-∞=∑ (3)此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到(z)(z)/X(z)H Y = (4)由(4)式描述的离散时间系统的系统时间函数可以表示为101101...(z)...MM NN b b z b z H a a z a z----+++=+++ (5) 3. 离散时间系统的零极点分析MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。

此外还可采用MATL AB 中zpl ane 函数来求解和绘制离散系统的零极点分布图,zp lane 函数的调用格式为:zplane(b,a) b、a 为系统函数分子分母多项式的系数向量(行向量) zplane (z,p) z 、p为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。

信号与系统的实验报告

信号与系统的实验报告

信号与系统的实验报告信号与系统的实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础学科,它研究的是信号的传输、处理和变换过程,以及系统对信号的响应和特性。

在本次实验中,我们将通过实际操作和数据分析,深入了解信号与系统的相关概念和实际应用。

实验一:信号的采集与重构在这个实验中,我们使用了示波器和函数发生器来采集和重构信号。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和幅度,我们可以观察到信号的不同特性,比如频率、振幅和相位等。

然后,我们将示波器上的信号通过数据采集卡进行采集,并使用计算机软件对采集到的数据进行处理和重构。

通过对比原始信号和重构信号,我们可以验证信号的采集和重构过程是否准确。

实验二:信号的时域分析在这个实验中,我们使用了示波器和频谱分析仪来对信号进行时域分析。

首先,我们通过函数发生器产生了一个方波信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和占空比,我们可以观察到方波信号的周期和占空比等特性。

然后,我们使用频谱分析仪对方波信号进行频谱分析,得到信号的频谱图。

通过分析频谱图,我们可以了解信号的频率成分和能量分布情况,进而对信号的特性进行深入研究。

实验三:系统的时域响应在这个实验中,我们使用了函数发生器、示波器和滤波器来研究系统的时域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到滤波器上进行输入。

然后,我们通过示波器观测滤波器的输出信号,并记录下其时域波形。

通过改变滤波器的参数,比如截止频率和增益等,我们可以观察到系统对信号的响应和滤波效果。

通过对比输入信号和输出信号的波形,我们可以分析系统的时域特性和频率响应。

实验四:系统的频域响应在这个实验中,我们使用了函数发生器、示波器和频谱分析仪来研究系统的频域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到系统中进行输入。

然后,我们通过示波器观测系统的输出信号,并记录下其时域波形。

信号与系统 实验报告

信号与系统 实验报告

信号与系统实验报告信号与系统实验报告一、引言信号与系统是电子信息工程领域中的重要基础课程,通过实验可以加深对于信号与系统理论的理解和掌握。

本次实验旨在通过实际操作,验证信号与系统的基本原理和性质,并对实验结果进行分析和解释。

二、实验目的本次实验的主要目的是:1. 了解信号与系统的基本概念和性质;2. 掌握信号与系统的采样、重建、滤波等基本操作;3. 验证信号与系统的时域和频域特性。

三、实验仪器与原理1. 实验仪器本次实验所需的主要仪器有:信号发生器、示波器、计算机等。

其中,信号发生器用于产生不同类型的信号,示波器用于观测信号波形,计算机用于数据处理和分析。

2. 实验原理信号与系统的基本原理包括采样定理、重建定理、线性时不变系统等。

采样定理指出,对于带限信号,为了能够完全恢复原始信号,采样频率必须大于信号最高频率的两倍。

重建定理则是指出,通过理想低通滤波器可以将采样得到的离散信号重建为连续信号。

四、实验步骤与结果1. 采样与重建实验首先,将信号发生器输出的正弦信号连接到示波器上,观察信号的波形。

然后,将示波器的输出信号连接到计算机上,进行采样,并通过计算机对采样信号进行重建。

最后,将重建得到的信号与原始信号进行对比,分析重建误差。

实验结果显示,当采样频率满足采样定理时,重建误差较小,重建信号与原始信号基本一致。

而当采样频率不满足采样定理时,重建信号存在失真和混叠现象。

2. 系统特性实验接下来,通过调节示波器和信号发生器的参数,观察不同系统对信号的影响。

例如,将示波器设置为高通滤波器,通过改变截止频率,观察信号的低频衰减情况。

同样地,将示波器设置为低通滤波器,观察信号的高频衰减情况。

实验结果表明,不同系统对信号的频率特性有着明显的影响。

高通滤波器会使低频信号衰减,而低通滤波器则会使高频信号衰减。

通过调节滤波器的参数,可以实现对信号频率的选择性衰减。

五、实验分析与讨论通过本次实验,我们对信号与系统的基本原理和性质有了更深入的理解。

《信号与系统》实验报告

《信号与系统》实验报告

《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。

通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。

本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。

本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。

每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。

在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。

1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。

通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。

信号与系统实验报告模板6

信号与系统实验报告模板6

信号与系统实验报告模板6武汉大学教学实验报告电子信息学院电子信息工程专业 2015 年 9 月 25 日实验名称信号的抽样与内插指导教师姓名年级 2013级学号成绩一、预习部分1.实验目的2.实验基本原理3.主要仪器设备(含必要的元器件、工具)一、实验目的1.熟悉信号的抽样与恢复过程2.观察欠采样与过采样时信号频谱的变化3. 掌握采样频率的确定方法二、实验基本原理由时域抽样定理可知,若有限带宽的连续时间信号f (t)的最高角频率为Wm,信号f (t)可以用等间隔的抽样值唯一表示,且抽样间隔T s必须不大于1/2 f m , 或者说抽样频率ωs ≥2ωm。

下图所示为信号抽样与恢复示意图,其中(a)中为抽样前带限信号f (t),其频谱F(ω)为图(b)所示,最高频率为ωm。

当该信号被抽样间隔为T s的冲激序列抽样时,若s T 大于1/2 f m(过采样),则抽样后信号f (t) s 的频谱为图(f)所示,频谱没有产生混迭现象。

将抽样后信号f s(t)通过一个低通滤波器,能恢复原信号f (t)。

若T s小于1/2 f m(欠采样),则抽样后信号f (t) s 的频谱将产生混迭现象,不能从抽样后信号f (t) s 中恢复原信号f (t).三、主要仪器设备(含必要的元器件、工具)要用到的matlab函数及工具箱1. Simulink 仿真利用Simulink 完成信号的抽样与内插实验仿真设计。

2. fft 函数功能:离散傅里叶变换。

调用格式:y = fft(x, n)3. abs 函数功能:求绝对值和复数的模。

调用格式:y = abs(x)二、实验操作部分1.实验数据、表格及数据处理2.实验操作过程(可用图表示)3.实验结论一、实验数据、表格及数据处理1、方波的抽样与恢复(过抽样)方波频率1Hz,振幅为1,第一级低通滤波器截止频率50Hz 抽样信号为120Hz,占空比为50%的矩形波方波信号源的波形图(f=1Hz amplitude=1)方波抽样后波形恢复的方波波形方波频谱图2、三角波的抽样与恢复(欠抽样)三角波频率1Hz,振幅为1,滤波器截止频率为25Hz,抽样信号为频率40Hz,占空比为50%的矩形波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.实验目的
1.复习采样定理
2.掌握应用matlab 函数设计模拟滤波器的方法
3.掌握系统性能分析的方法
4.结合实际综合应用信号与系统的基础理论
二.实验原理
在数字语音系统中,需首先对语音信号(模拟信号)采样,语音信号频率范围[-fh ,fh],信号中一般含有干扰噪声,其频带宽度远大于fh 。

本次实验以电话系统中的语音信号采样系统为对象,设计语音信号采样前滤波器。

数字电话系统结构框图如图8.1,电话系统中一般要保证4kHz 的音频带宽,即取fh =4kHz ,但送话器发出的信号的带宽比fh
大很多。

因此在A/D 转换之前需对其进行模拟预滤波,以防止采样后发生频谱混叠失真。

为使信号采集数量尽量少,设模数转换器的采样频率为8kHz 。

图8.1 数字电话系统结构框图
滤波器的定义
在信号处理时,通常都会遇到有用信号中混入(叠加)噪声的问题,消除或减弱噪声对信号的干扰,是信号处理中的一种最基本且重要的技术。

根据有用信号与噪声不同的特性,抑制不需要的噪声或干扰,
提取出有用信号的过程称为滤波,实现滤波功能的装置称为滤波器。

在A/D 变换前,常常需要设置一个模拟滤波器进行预滤波以限 制信号带宽,去掉高于1/2抽样频率以上的高频分量,防止频谱 混叠现象的发生,称为抗混叠滤波器或预抽样滤波器 模拟滤波器的设计
模拟滤波器的理论和设计方法已发展得相当成熟,且有若干典型的模拟滤波器供我们选择,这些滤波器都有严格的设计公式、现成的曲线和图表供设计人员使用。

典型的模拟滤波器
巴特沃斯 Butterworth 滤波器 幅频特性单调下降 切比雪夫 Chebyshev 滤波器
幅频特性在通带或者在阻带有波动 贝塞尔 Bessel 滤波器
通带内有较好的线性相位持性 椭圆 Ellipse 滤波器
以这些数学函数命名的滤波器是低通滤波器的原型
模拟滤波器按幅度特性可分成低通、高通、带通和带阻滤波器,它们的理想幅度特性如图所示。

模拟低通滤波器的设计指标有αp, Ωp,αs 和Ωs 。

Ωp ;通带截止频率 Ωs :阻带截止频率 αp :通带中最大衰减系数 αs ;阻带最小衰减系数
αp 和αs 一般用dB 数表示。

对于单调下降的幅度特性,可表示成:
222
2
(0)
(0)
10lg
10lg
()
()
a a p s a s a p H j H j H j H j αα==ΩΩ
三.实验内容
1.设计任务即是模拟预滤波系统,要求能够防止语音信号采样后发生频谱混叠失真,语音信号采样频率为8kHz。

实际的话音信号在3.4kHz以内,要保证4kHz的音频带宽,因干扰噪声存在的缘故,实际送话器发出的信号的带宽要大很多,因此需设计模拟低通滤波器,设计指标请根据要求自行选取。

2.性能测试:自制带噪声的话音信号(信号文件dsp01_noise),将wav波形信号作为系统测试信号,测试所设计模拟预滤波系统的滤波性能,对输入及输出信号作频谱分析。

四.实验分析
1、滤波器设计程序:
3、思路分析
1.滤波器设计思路
实际的话音信号在3.4kHz以内,要保证4kHz的音频带宽,因干扰噪声存在的缘故,实际送话器发出的信号的带宽要大很多,因此需设计模拟低通滤波器,通带截止频率为3.4kHz,衰减小于2dB,阻带截止频率为4kHz,衰减小于30dB。

巴特沃斯(butterworth)型模拟滤波器是幅频特性单调下降的模拟低通滤波器,故应选择这种滤波器。

2.语音信号频率分析思路
先读取wav文件得到输入语音信号,再对读入的数据滤波得到输出语音信号。

对这两个语音信号采取相同的分析思路。

使用downsample函数对语音信号进行抽样,再选取其中的前4096*12个点进行快速傅立叶变换(FFT),将快速傅立叶变换的结果取模可得到语音信号的幅频特性。

幅频特性图的最后一点对应的频率就是经过抽样之后的语音信号的频率。

3.结果分析
经过滤波之后得到的wav文件的没有了刺耳的噪声,声音比滤波之前的wav文件要低沉。

对比输入语音频谱与输出语音频谱,可知该低通滤波器将语音信号中的较高频段全部滤去,因此起到了去
除噪声的作用,也能够防止语音信号采样后发生频谱混叠失真,但是同样是由于较高频段被全部滤去,滤波之后的语音明显比滤波之前的语音低沉。

五.实验总结
通过这次实验,我初步掌握了应用matlab函数设计模拟滤波器的方法,初步掌握了系统性能分析的方法,还复习了采样定理。

在这次试验中我也初步掌握了downsample,fft,wavread,buttord,butter等函数的基本使用方法。

同时我也感到了自己知识的不足,所以自己还需要不断的努力学习。

相关文档
最新文档