溶胶的制备及电泳实验报告

合集下载

《物理化学基础实验》溶胶的制备及电泳实验

《物理化学基础实验》溶胶的制备及电泳实验

《物理化学基础实验》溶胶的制备及电泳实验一、实验目的1.学会制备和纯化Fe(OH)3溶胶。

2.掌握电泳法测定Fe(OH)3溶胶电动电势的原理和方法。

二、实验原理1.制备和纯化Fe(OH)3溶胶原理:FeCl3+3H2O =Fe(OH)3(胶体)+3HCl 盐的水解氯化铁的水解反应本身是一个吸热反应,加热可以促使平衡向右移动,但是作为胶体的氢氧化铁是有一定的浓度限制的,若浓度过大就会形成氢氧化铁沉淀,而且温度比较高的话胶体粒子之间碰撞的机会会增多,也不利于胶体的稳定性,所以煮沸的时间不能过长。

制成的胶体体系中常有其它杂质存在,而影响其稳定性,因此必须纯化。

常用的纯化方法是半透膜渗析法。

2.电泳在胶体分散体系中,由于胶体本身的电离或胶粒对某些离子的选择性吸附,使胶粒的表面带有一定的电荷。

同时在胶粒附近的介质中必然分布有与胶粒表面电性相反而电荷数量相同的反离子,形成一个扩散双电层。

当胶体相对静止时,整个溶液呈电中性。

但在外电场的作用下,胶体中的胶粒和分散介质反向相对移动时,胶粒向异性电极定向泳动,这种胶粒向正极或负极移动的现象称为电泳。

荷电的胶粒与分散介质间的电势差称为电动电势,用符号ξ表示。

ζ电势是表征胶粒特性的重要物理量之一,在研究胶体性质及实际应用中有着重要的作用。

它与胶体的稳定性有关, ζ绝对值越大,表明胶粒电荷越多,胶粒间斥力越大,胶体越稳定。

界面移动法:测量溶胶的 电位是通过测定在两铂电极间外加一定直流电场,胶体溶液与辅助溶液间可见界面在单位时间内的移动距离来测定电动电势。

在电泳仪的两极间加上电位差E (V )后,在t (s )时间内溶胶界面移动的距离为D (m ),即胶粒的电泳速度U (m •s -1)为: D U t = (1)相距为l (m )的两极间的电位梯度平均值H (V •m -1)为: E H l = (2)从实验求得胶粒电泳速度后,可按照下式求出ζ(V )电位: K U H πηζε=⋅ (3)式中K 为与胶粒形状有关的常数,对于本实验中的氢氧化铁溶胶,胶粒为棒形,有1022113.610K V s kg m --=⨯⋅⋅;而ε为介质的介电常数(无单位),η为介质的粘度(Pa •s )。

溶胶与电泳实验报告

溶胶与电泳实验报告

溶胶与电泳实验报告引言溶胶与电泳是常用的生物分离技术,通过利用不同溶胶和电场作用下,分离带电离子从而实现对生物分子的分离与纯化。

本实验旨在探究溶胶和电泳参数对分离效果的影响,为后续的生物分离实验提供参考。

实验步骤1. 实验前准备:将所需试剂准备好,包括琼脂糖、TAE缓冲液和DNA样品。

2. 制备溶胶:按照配方将琼脂糖与适量的TAE缓冲液加热溶解,待溶解后静置冷却。

3. 制备DNA样品:从所需材料中提取DNA样品,可以采用常规提取方法。

4. 准备电泳槽:将电泳槽放置于水平桌面上,将制备好的溶胶缓冲液倒入槽中。

5. 样品处理:将提取的DNA样品与适量的样品缓冲液混合,进行必要的处理如加热退变。

6. 加样和电泳:将处理好的样品缓冲液混合液利用吸管或微量移液器加入电泳槽中,确保样品被均匀加载。

7. 设置电泳参数:调整电泳仪的参数,如电压、时间和大小等,启动电泳。

8. 分析与记录:观察电泳过程中带电离子的迁移情况,记录结果。

9. 结束与分析:电泳结束后,关闭电源,取出电泳槽,进行染色或可视化处理,分析结果。

实验结果在本次实验中,我们使用不同浓度的琼脂糖制备了不同浓度的溶胶,并加入了DNA样品进行电泳实验。

根据实验结果,我们得出以下结论:1. 溶胶浓度对电泳效果有重要影响。

溶胶浓度过高会导致DNA分子移动速度变慢,分离效果差;而溶胶浓度过低则会导致DNA分子迁移过快,难以分离。

2. 电场强度对电泳效果有显著影响。

在一定范围内,提高电场强度可以加快DNA分子的迁移速度,提高分离效率。

但如果电场强度过高,则可能导致DNA 分子的断裂或畸变,影响实验结果。

3. DNA片段大小对迁移速度有直接影响,较长的DNA片段迁移速度较慢,较短的DNA片段迁移速度较快。

因此,在分析DNA样品时,我们可以根据迁移速度,初步判断DNA片段的大小。

结论通过溶胶与电泳实验,我们探究了溶胶浓度、电场强度和DNA片段大小对电泳效果的影响。

溶胶的制备与电泳

溶胶的制备与电泳

中国石油大学化学原理(Ⅱ)实验报告实验日期:2010-10-20 成绩:班级:石工09-10 学号:09021452 姓名:任婷教师:王增宝同组者:周霞溶胶的制备和电泳一、实验目的1.学会溶胶制备的基本原理、并掌握溶胶制备的主要方法;2.利用界面电泳法测定AgI溶胶的电动电位。

二、实验原理溶胶是溶解度极小的固体在液体中高度分散所形成的溶胶体系,其颗粒直径变动在10-7~10-9m范围。

1.溶胶制备要制备出稳定的溶胶一般需满足两个条件:固体分散相的质点大小必须在胶体分度的范围内;固体分散质点在液体介质中要保持分散不聚结。

为此,一般需要加稳定剂。

制备溶胶原则上有两种方法:将大块固体分割到胶体分散度的大小,此法称为分散法;使小分子或粒子聚集成胶体大小,此法称为凝聚法。

(1)分散法分散法主要有3种方式,即机械研磨、超声分散和胶溶分散。

(2)凝聚法主要有化学反应法及更换介质法,此法的基本原则是形成分子分散的过饱和溶液,控制条件,使形成的不溶物颗粒大小在溶胶分散度内。

2.溶胶的电泳在电场的作用下,胶体粒子向正极或负极移动的现象叫电泳。

电泳现象证实胶体的带电性。

胶体粒子带电是因为在其周围形成了扩散双电层。

按对固体的关系,扩散双电层离子可沿滑动面分为吸附层离子和扩散层离子两部分,使固体表面和分散介质之间有电势差,即ξ电势。

ξ电势的大小可通过电泳实验测得。

在外电场的作用下,根据胶体粒子的相对运动速度计算ξ电势的基本公式是:(3-1)式中:ξ-胶体粒子的电动电势(V);η-介质的动力粘度(Pa.s);d-溶胶界面移动的距离(m);l-两电极之间的距离(m);ε-介电常数(F⁄m);v-两极间的电位差(V);t-电泳进行的时间(s)。

利用电泳测定电动电势有宏观法和微观法两种。

宏观法是观察在电泳管内溶胶与辅助液间界面在电场作用下的移动速度。

微观法借助于超显微镜观察单个胶体粒子在电场作用下的移动速度。

本实验用宏观法测定。

溶胶的制备和电泳

溶胶的制备和电泳

溶胶的制备与电泳一、实验目的1.学会溶胶制备的基本原理、并掌握溶胶制备的主要方法;2.利用界面电泳法测定AgI 溶胶的电动电位。

二、实验原理:溶胶的溶解度极小的固体在液体中高度分散形成的胶态体系,其颗粒直径变动在10-7~10-9m范围。

1、溶胶制备要制备出稳定的溶胶一般需要满足两个条件:固体分散相的质点大小必须在胶体分度的范围内;固体分散质点在液体介质中要保持分散不聚结,为此,一般需要加稳定剂。

制备溶胶原则上有两种方法:将大块固体分割到胶体分散度的大小,此法称为分散法;使小分子或粒子聚集成胶体大小,此法称为凝聚法。

(1)分散法分散法主要有3种方式,即机械研磨、超声分散和胶溶分散。

①研磨法。

常用的设备主要有胶体磨和球磨机等。

胶体磨有两片靠得很近的磨盘或磨刀,均由坚硬耐磨的合金或碳化硅制成。

当上下两磨盘以高速反向转动时(转速约5000~10000 rpm),粗粒子就被磨细。

在机械研磨中胶体磨的效率较高,但一般也只能将质点磨细到1mm左右。

②超声分散法。

频率高于16000 Hz的声波称为超声波。

高频率的超声波传入介质,在介质中产生相同频率的疏密交替,对分散相产生很大撕碎力,从而达到分散效果。

此法操作简单,效率高,经常用作胶体分散及乳状液的制备。

③胶溶法。

胶溶法是把暂时聚集在一起的胶体粒子重新分散而成溶胶。

例如,氢氧化铁、氢氧化铝等的沉淀实际上是胶体质点的聚集体,由于制备时缺少稳定剂,故胶体质点聚在一起而沉淀。

此时若加入少量电解质,胶体质点因吸附离子而带电,沉淀便会在适当地搅拌下更新分散成溶胶。

有时质点聚集成沉淀是因为电解质过多,设法洗去过量的电解质也会使沉淀转化成溶胶。

利用这些方法使沉淀转化成溶胶的过程称为胶溶作用,胶溶作用只能用于新鲜的沉淀。

若沉淀放置过久,小粒经过老化,出现粒子间的连接或变成了大的粒子,就不能利用胶溶作用来达到重新分散的目的。

(2)凝聚法主要有化学反应法及更换介质法。

此法的基本原则是形成分子分散的过饱和溶液,控制条件,使不溶物在成胶体质点的大小时析出。

溶胶的制备及电泳实验报告(一)

溶胶的制备及电泳实验报告(一)

溶胶的制备及电泳实验报告(一)溶胶的制备及电泳实验报告1. 引言•溶胶是一种重要的物质,广泛应用于各种领域•本实验旨在探究溶胶的制备方法以及电泳实验的原理和应用2. 溶胶的制备方法•制备方法一:溶胶法–原料的选取和准备–溶剂的选择和添加–搅拌和均质处理–静置和分离–干燥和粉碎•制备方法二:溶胶凝胶法–溶胶法的基础上,添加凝胶剂–凝胶形成和成型–凝胶的干燥和烧结3. 电泳实验原理•电泳是利用电场对溶质进行迁移分离的方法•原理一:溶质的电荷性质–带电的溶质在电场中会产生迁移–阴离子和阳离子迁移的方向和速度不同•原理二:电场的作用–电场可以加速溶质的迁移–电场强度越大,迁移速度越快•原理三:胶状介质的作用–胶状介质可以阻碍溶质迁移–不同大小的溶质在胶状介质上的迁移速度不同4. 电泳实验的应用•生物学领域–蛋白质的分离和鉴定–DNA测序和染色体分析•化学领域–分子结构的研究–化合物纯化和分离•医学领域–肿瘤标记物的检测–药物分子的筛选5. 结论•溶胶的制备方法多种多样,根据不同需求选择合适的方法•电泳实验是一种重要的分离和分析技术,在多个领域有广泛应用的前景注意:本文章为生成文本,可能存在个别表达不准确或错误的情况,请以实际知识为准。

6. 材料与方法•实验材料:溶胶材料、溶剂、凝胶剂、电泳设备等•实验步骤:1.准备实验材料:称取溶胶材料、选择合适的溶剂和凝胶剂。

2.制备溶胶:按照溶胶制备方法进行操作,包括溶剂的选择、搅拌、分离、干燥等步骤。

3.制备凝胶:在溶胶的基础上加入凝胶剂,进行凝胶形成和成型的步骤。

4.电泳实验:将准备好的样品加载到电泳设备中,设置合适的电场强度和时间进行电泳实验。

5.结果分析:根据电泳结果,进行溶质的分离和分析。

7. 结果与讨论•根据不同的溶胶制备方法和电泳实验条件,得到了不同的实验结果。

•通过对实验结果的分析,可以得到溶质的分离程度、迁移速度、电荷性质等信息。

•根据实验结果和初步分析,讨论实验中可能存在的误差及改进方法。

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告溶胶的制备及电泳实验报告溶胶制备•准备所需材料:溶剂、溶负载体、混合搅拌器、加热设备等。

•将溶剂加热至适当温度。

•将溶剂倒入混合搅拌器中。

•逐渐加入溶负载体,同时用搅拌器均匀混合。

•混合过程中,根据所需溶胶的浓度,逐渐加热或降低温度。

•混合均匀后,继续加热或冷却,直到溶负载体完全溶解且无明显悬浮物。

电泳实验准备•准备所需的电泳仪器和试剂。

•制备电泳缓冲液,根据实验需要选择合适的缓冲液配方。

•将电泳缓冲液注入电泳槽中,确保液面平稳。

•准备样品,将样品加载到电泳槽中。

•连接电泳电源,设置合适的电压、时间和温度参数。

•对电泳实验进行预运行,确保参数设置正确。

电泳实验操作步骤1.开启电泳电源,设置合适的电压。

2.等待样品迁移至适当位置,根据实验需要调整电泳时间。

3.实时观察电泳过程,记录迁移距离和带状图像。

4.根据需要,调整电压和时间,进一步优化分离效果。

5.当样品迁移到电泳胶糊底部时,关闭电源并停止电泳。

6.将电泳胶糊取出,进行染色或进一步分析处理。

实验结果和讨论•分析实验得到的结果,比较样品之间的差异。

•讨论实验结果与预期相符程度,分析可能的原因。

•将实验数据与其他研究结果进行对比和交流。

•提出进一步研究的问题和展望。

结论•通过溶胶的制备及电泳实验,可以实现样品的分离和纯化。

•电泳技术在分子生物学和生物化学领域具有重要的应用价值。

•需要进一步优化实验条件和技术方法,提高分离效果和分辨率。

本文介绍了溶胶的制备及电泳实验的相关步骤和操作要点,同时对实验结果和讨论进行了总结和分析。

通过正确的操作和参数设置,利用电泳技术可以实现样品的分离和纯化,达到预期的目的。

但仍需进一步研究和优化,以提高电泳技术的应用效果和实验分辨率。

讨论和展望通过电泳实验可以实现对不同样品的分离与纯化,有助于进一步研究和了解样品的性质和组成。

在实验中,通过调整电压、时间和温度等参数,可以优化电泳分离效果。

然而,仍然存在一些挑战和改进的空间:•实验条件的优化:不同的样品可能对实验条件有不同的要求,因此需要进一步优化实验参数,以提高分离效果和分辨率。

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告引言:溶胶是由胶粒均匀分散于溶液中而形成的胶体系统。

溶胶具有高度分散性和较小的粒径,因此在许多领域都有广泛应用。

本实验旨在通过制备溶胶和进行电泳实验,探究溶胶的性质和应用。

一、溶胶的制备溶胶的制备是通过将固体胶粒悬浮于溶液中而形成的。

在本实验中,我们选择了氧化铁(Fe2O3)作为胶粒,以水作为溶液。

制备溶胶的步骤如下:1. 首先,称取适量的氧化铁粉末,并将其加入到一定体积的水中。

2. 使用磁力搅拌器将溶液搅拌均匀,使氧化铁粉末完全悬浮于水中。

3. 继续搅拌溶液,直到观察到溶液呈现均匀的红棕色。

4. 最后,用滤纸或滤膜过滤溶液,以去除较大的固体颗粒,得到纯净的溶胶。

二、电泳实验电泳实验是利用电场对溶胶中带电颗粒进行分离和定性分析的方法。

本实验中,我们使用凝胶电泳进行分离和观察。

1. 实验装置实验装置主要包括电泳槽、电源、电极和凝胶。

电泳槽用于容纳溶胶样品和电解液,电源用于提供电场,电极用于连接电源和电泳槽,凝胶则用于分离溶胶中的带电颗粒。

2. 实验步骤(1)首先,将制备好的溶胶样品置于电泳槽中,并加入适量的电解液。

(2)将电极连接至电源,并将电源的正负极分别连接至电泳槽的两端。

(3)调节电源的电压和电流,使其维持在适当的数值。

(4)开启电源,开始电泳过程。

根据溶胶样品中带电颗粒的性质和电场的作用,颗粒会在电场的驱动下向正极或负极移动。

(5)根据不同颗粒的迁移速度和移动距离,可以对溶胶样品进行分离和观察。

3. 实验结果与分析根据电泳实验的结果,我们可以观察到溶胶样品中不同颗粒的分离情况。

带电颗粒的迁移速度与颗粒的电荷量、大小和形状等因素有关。

通过观察颗粒的移动距离和分离程度,可以对溶胶样品中的颗粒进行定性和定量分析。

三、溶胶的应用溶胶在许多领域都有广泛的应用。

以下是几个典型的应用领域:1. 生物医学:溶胶可用于药物输送、基因传递和疫苗制备等领域,利用其分散性和稳定性,实现药物和基因的高效传递。

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告浙江万里学院生物与环境学院化学工程实验技术实验报告实验名称:溶胶的制备及电泳姓名成绩班级学号同组姓名实验日期指导教师签字批改日期年月日一、实验预习(30分)1.实验装置预习(10分)2015年12月28日指导教师______(签字)成绩2.实验仿真预习(10分)2015年12月28日指导教师______(签字)成绩3.预习报告(10分)指导教师______(签字)成绩(1)实验目的1.掌握电泳法测定Fe(OH)3及Sb2S3溶胶电动电势的原理和方法。

2.掌握Fe(OH)3及Sb2S3溶胶的制备及纯化方法。

3.明确求算ζ公式中各物理量的意义。

(2)实验原理溶胶的制备方法可分为分散法和凝聚法。

分散法是用适当方法把较大的物质颗粒变为胶体大小的质点;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶。

Fe(OH)3溶胶的制备是采用的化学法即通过化学反应使生成物呈过饱和状态,然后粒子再结合成溶胶,其结构式可表示为{m [Fe(OH)3]n FeO+(n-x)Cl-}x+x Cl-。

制成的胶体体系中常有其它杂质存在,而影响其稳定性,因此必须纯化。

常用的纯化方法是半透膜渗析法。

在胶体分散体系中,由于胶体本身的电离或胶粒对某些离子的选择性吸附,使胶粒的表面带有一定的电荷。

在外电场作用下,胶粒向异性电极定向泳动,这种胶粒向正极或负极移动的现象称为电泳。

荷电的胶粒与分散介质间的电势差称为电动电势,用符号ζ表示,电动电势的大小直接影响胶粒在电场中的移动速度。

原则上,任何一种胶体的电动现象都可以用来测定电动电势,其中最方便的是用电泳现象中的宏观法来测定,也就是通过观察溶胶与另一种不含胶粒的导电液体的界面在电场中移动速度来测定电动电势。

电动电势ζ与胶粒的性质、介质成分及胶体的浓度有关。

在指定条件下,ζ的数值可根据亥姆霍兹方程式计算。

即(静电单位)或·300(V) (1)式中,K为与胶粒形状有关的常数(对于球形胶粒K=6,棒形胶粒K=4,在实验中均按棒形粒子看待);η为介质的粘度(泊);D为介质的介电常数;u为电泳速度(cm·s-1);H为电位梯度,即单位长度上的电位差。

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告实验目的:1.掌握溶胶的制备方法;2.通过电泳实验了解溶胶的性质和应用。

实验仪器:1.恒温水浴;2.电泳槽;3.电源;4.硅胶片。

实验原理:溶胶是由固体颗粒悬浮在液体介质中形成的分散体系。

在本次实验中,我们使用了硅胶溶胶。

电泳是一种利用电场使电荷载体在电解质中运动的方法。

通过溶胶的电泳可以观察到颗粒在电场中的迁移速度以及颗粒的分离。

实验步骤:1.准备溶胶:将一定量的硅胶粉末加入到一定量的水中,并在恒温水浴中搅拌30分钟直至形成均匀的溶胶;2.准备电泳槽:在电泳槽中注入适量的电解质溶液,并安装电极;3.准备样品:将硅胶溶胶均匀涂布在硅胶片上,并待其干燥;4.进行电泳实验:将样品放入电泳槽中,施加适当的电压,观察颗粒在电解质中的迁移和分离现象;5.拍摄结果:通过显微镜观察颗粒的分离情况,并使用相机拍摄结果。

实验结果:在电泳实验中,我们观察到硅胶溶胶中的颗粒在电场的作用下迁移,并且不同颗粒随着时间的推移逐渐分离。

小颗粒受到电场力的影响较大,迁移速度较快;大颗粒受到电场力的影响较小,迁移速度较慢。

通过电泳实验,我们可以了解颗粒的大小、形态以及电荷状况。

实验结论:通过本次实验,我们成功制备了硅胶溶胶,并通过电泳实验观察到了颗粒的迁移和分离现象。

实验结果表明,溶胶中的颗粒在电场的作用下有不同的迁移速度,从而实现了颗粒的分离。

这种方法可以用于颗粒的筛选和纯化,具有广泛的应用前景。

实验改进:1.在制备溶胶的过程中,可以尝试使用不同粒径的硅胶粉末,以观察不同粒径颗粒的迁移差异;2.可以使用不同浓度的电解质溶液,以观察不同浓度对颗粒分离效果的影响;3.可以对样品进行不同电压和时间的电泳实验,以研究其对颗粒迁移速度和分离效果的影响。

总结:通过本次实验,我们学习了溶胶的制备方法,并通过电泳实验了解了溶胶的性质和应用。

电泳实验是一种重要的分离和纯化方法,在生物、医药、化工等领域具有广泛的应用。

通过不断改进实验条件和方法,我们可以进一步了解和应用溶胶的特点,为相关研究提供参考和依据。

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告

浙江万里学院生物与环境学院化学工程实验技术实验报告实验名称:溶胶的制备及电泳一、实验预习(30分)1.实验装置预习(10分)2015年12月28日指导教师______(签字)成绩2.实验仿真预习(10分)2015年12月28日指导教师______(签字)成绩3.预习报告(10分)指导教师______(签字)成绩(1)实验目的1.掌握电泳法测定Fe(OH)3及Sb2S3溶胶电动电势的原理和方式。

2.掌握Fe(OH)3及Sb2S3溶胶的制备及纯化方式。

3.明确求算ζ公式中各物理量的意义。

(2)实验原理溶胶的制备方式可分为分散法和凝聚法。

分散法是用适当方式把较大的物质颗粒变成胶体大小的质点;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之彼此结合成胶体粒子而取得溶胶。

Fe(OH)3溶胶的制备是采用的化学法即通过化学反映使生成物呈过饱和状态,然后粒子再结合成溶胶,其结构式可表示为{m[Fe(OH)3]n FeO+(n-x)Cl-}x+x Cl-。

制成的胶体体系中常有其它杂质存在,而影响其稳固性,因此必需纯化。

常常利用的纯化方式是半透膜渗析法。

在胶体分散体系中,由于胶体本身的电离或胶粒对某些离子的选择性吸附,使胶粒的表面带有必然的电荷。

在外电场作用下,胶粒向异性电极定向泳动,这种胶粒向正极或负极移动的现象称为电泳。

荷电的胶粒与分散介质间的电势差称为电动电势,用符号ζ表示,电动电势的大小直接影响胶粒在电场中的移动速度。

原则上,任何一种胶体的电动现象都能够用来测定电动电势,其中最方便的是用电泳现象中的宏观法来测定,也就是通过观察溶胶与另一种不含胶粒的导电液体的界面在电场中移动速度来测定电动电势。

电动电势ζ与胶粒的性质、介质成份及胶体的浓度有关。

在指定条件下,ζ的数值可按照亥姆霍兹方程式计算。

即(静电单位)或·300(V) (1) 式中,K为与胶粒形状有关的常数(对于球形胶粒K=6,棒形胶粒K=4,在实验中均按棒形粒子看待);η为介质的粘度(泊);D为介质的介电常数;u为电泳速度(cm·s-1);H为电位梯度,即单位长度上的电位差。

溶胶的制备和电泳

溶胶的制备和电泳

中国石油大学化学原理二实验报告实验日期:_______________ 成绩:_____________班级:_________________ 学号:________________ 姓名: ____________ 教师:__________同组者:__________________________________________________________________________一、实验目的1. 学会溶胶制备的基本原理、并掌握溶胶制备的主要方法;2. 利用界面电泳法测定Agl溶胶的电动位。

二、实验原理溶胶是溶解度极小的固体在液体中高度分散所形成的胶态体系,其颗粒直径变动在10"〜10_ 9m范围。

1. 溶胶制备要制备出稳定的溶胶一般需满足两个条件:固体分散相的质点大小必须在胶体分度的范围内;固体分散质点在液体介质中要保持分散不聚结,为此,一般需要加稳定剂。

制备溶胶原则上有两种方法:将大块固体分割到胶体分散度的大小,此法称为分散法;使小分子或粒子聚集成胶体大小,此法称为凝聚法。

(1) 分散法分散法主要有3种方式,即机械研磨、超声分散和胶溶分散。

①研磨法:常用的设备主要有胶体磨和球磨机等。

胶体磨由两片靠得很近的盘或磨刀,均由坚硬耐磨的合金或碳化硅制成。

当上下两磨盘以高速反向转动时(转速约5000- 10000rpm),粗粒子就被磨细。

在机械磨中胶体研磨的效率较高,但一般只能将质点磨细到1um左右。

②超声分散法:频率高于16000HZ的声波称为超声波,高频率的超声波传入介质,在介质中产生相同频率的疏密交替,对分散相产生很大的撕碎力,从而达到分散效果。

此法操作简单,效率高,经常用作胶体分散及乳状液制备。

③胶溶法:胶溶法是把暂时聚集在一起的胶体粒子重新分散而成溶胶。

例如, 氢氧化铁、氢氧化铝等的沉淀实际上是胶体质点的聚集体,由于制备时缺少稳定剂,故胶体质点聚在一起而沉淀。

此时若加入少量的电解质,胶体质点因吸附离子而带电,沉淀就会在适当的搅拌下重新分散成胶体。

物化实验溶胶制备与电泳

物化实验溶胶制备与电泳

图表5电泳前次,取平均值。

记录电压值。

测完后,关闭电源。

用棉线量出两电极间的距离(不是水。

实验结束,将溶胶倒入指定瓶子中,
(2)计算电动势
电泳速度u=界面移动距离l`/时间
电位梯度E=电压U/两极间距l
ζ=(ηu)/(Εε)=(0.001005*6.13*10^-6)/(241*81)=3.16*10^-13V
六.注意事项:
1、制备溶胶需要铁离子水解充分,所以滴加速度不要太快,搅拌要充分。

另外,千万不要因为水的蒸发,而在制好胶体后加水。

2、做半透膜的锥形瓶一定要干燥。

加水不能太早或太迟。

3、电泳管一定要洗干净,否则无论如何小心都很难得到清晰的界面。

4、最开始加辅助液速度要慢点。

千万注意不要有震荡,遇到这样的情况,一定要马上停下来,等稳定后再加。

界面形成后,滴加速度可以稍微加快。

七、思考和讨论
(1)电泳速率与哪些因素有关?
答:电泳速度的快慢与带电粒子大小、形状、所带电量、溶液粘度、温度、PH、离子强度及电度等因素有关。

(2)在电泳测定中如不用辅助液体,把电极直接插入溶胶中会发生什么现象?
答:负极上会发生Fe(OH)3溶胶聚沉,干扰泳动的察。

溶胶的制备和电泳

溶胶的制备和电泳

嘉应学院化学系实验报告学生姓名:焦思权班级:101 座号:37 温度:18℃气压:99.93kPa 课程名称:现代化学实验与技术1 指导老师:李勇合作者:陈特华、黄贤杰日期:2013/4/22溶胶的制备和电泳一、目的(1)掌握溶胶的制备和净化方法,了解溶胶的电学性质和稳定。

(2)用界面移动法测定胶粒Fe(OH)3的电泳速率,计算溶胶的电势。

二、实验原理溶胶是粒径1-100 nm的固体微粒分散在液体介质中所形成的分散系统,具有高度分散性、聚结不稳定性和多相不均匀性,并具有动力稳定性。

溶胶的制备方法分为分散法和凝聚法两大类。

分散法是把较大物质颗粒变小到胶粒大小范围,如研磨法、胶溶法(新制松软沉淀加人电解质后重新分散)、电弧法(金属电极通电产生电弧使金属变成蒸气后立即在周围冷的介质中凝聚)、超声波法等。

凝聚法是把物质分子或离子凝结变大到胶粒大小范围,如化学反应法、改换溶剂法(改换溶剂使溶质溶解度降低致过饱和而凝析)等。

新制的溶胶一般常含有过多电解质或其他杂质,影响其稳定性,故必须净化处理。

常用的净化方法是渗析法,它是利用半透膜具有能透过离子和小分子而不能透过胶粒的能力,将溶胶用半透膜与纯溶剂隔开,从而将溶胶中过量的电解质和杂质分离除去。

若需提高渗析速度,还可适当加热或外加电场,即热渗析法和电渗析法。

胶粒是带电的,带电的原因主要是胶核表面选择吸附(优先吸附与胶核含相同元素的离子)或表面分子电离。

胶粒带电、溶剂化作用及布朗运动是溶胶具有动力稳定性的三个重要原因。

溶胶的稳定性受电解质的影响极大。

随着溶胶中电解质浓度的增大,胶团扩散反离子层受挤压而变薄,胶粒所带电荷数减少,扩散层反离子的溶剂化作用(在胶粒周围形成具一定弹性的溶剂化外壳)减弱,溶胶稳定性下降,最终导致聚沉。

电解质中起聚沉作用的主要是与胶粒带相反电荷的离子,且价数越高,聚沉能力越强。

电解质的聚沉能力常用聚沉值的倒数来表示,聚沉值是指使溶胶发生明显聚沉所需电解质的最小浓度。

溶胶地制备及电泳实验报告材料

溶胶地制备及电泳实验报告材料

浙江万里学院生物与环境学院化学工程实验技术实验报告实验名称:溶胶的制备及电泳一、实验预习(30分)1.实验装置预习(10分)2015年12月28日指导教师______(签字)成绩2.实验仿真预习(10分)2015年12月28日指导教师______(签字)成绩3.预习报告(10分)指导教师______(签字)成绩(1)实验目的1.掌握电泳法测定Fe(OH)3及Sb2S3溶胶电动电势的原理和方法。

2.掌握Fe(OH)3及Sb2S3溶胶的制备及纯化方法。

3.明确求算ζ公式中各物理量的意义。

(2)实验原理溶胶的制备方法可分为分散法和凝聚法。

分散法是用适当方法把较大的物质颗粒变为胶体大小的质点;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶。

Fe(OH)3溶胶的制备是采用的化学法即通过化学反应使生成物呈过饱和状态,然后粒子再结合成溶胶,其结构式可表示为{m[Fe(OH)3]n FeO+(n-x)Cl-}x+x Cl-。

制成的胶体体系中常有其它杂质存在,而影响其稳定性,因此必须纯化。

常用的纯化方法是半透膜渗析法。

在胶体分散体系中,由于胶体本身的电离或胶粒对某些离子的选择性吸附,使胶粒的表面带有一定的电荷。

在外电场作用下,胶粒向异性电极定向泳动,这种胶粒向正极或负极移动的现象称为电泳。

荷电的胶粒与分散介质间的电势差称为电动电势,用符号ζ表示,电动电势的大小直接影响胶粒在电场中的移动速度。

原则上,任何一种胶体的电动现象都可以用来测定电动电势,其中最方便的是用电泳现象中的宏观法来测定,也就是通过观察溶胶与另一种不含胶粒的导电液体的界面在电场中移动速度来测定电动电势。

电动电势ζ与胶粒的性质、介质成分及胶体的浓度有关。

在指定条件下,ζ的数值可根据亥姆霍兹方程式计算。

即(静电单位)或·300(V) (1)式中,K为与胶粒形状有关的常数(对于球形胶粒K=6,棒形胶粒K=4,在实验中均按棒形粒子看待);η为介质的粘度(泊);D为介质的介电常数;u为电泳速度(cm·s-1);H为电位梯度,即单位长度上的电位差。

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告

溶胶的制备及电泳实验报告一、引言溶胶是由固体颗粒悬浮在液体介质中形成的胶状体系。

溶胶的制备方法多种多样,其中电泳法是一种常用且有效的制备溶胶的方法。

本实验旨在通过电泳实验,探究溶胶的制备及其在电泳过程中的应用。

二、实验材料与方法1. 实验材料:- 铜板- 硫酸铜溶液- 毛细管- 直流电源- 导线- 玻璃棒- 纸巾2. 实验步骤:- 将铜板清洗干净并剪成适当大小的方形片。

- 用纸巾擦拭铜板表面,保证表面干燥无油污。

- 在玻璃棒上滴上硫酸铜溶液,形成一滴液体。

- 将毛细管的一端放入液滴中,另一端用导线连上直流电源的正极。

- 将铜板的一角放在液滴上,使其与毛细管的液滴相接触。

- 打开电源,设定适当的电压和电流,开始电泳过程。

- 观察电泳现象,记录实验数据。

三、实验结果与讨论经过一段时间的电泳过程,我们观察到铜板上形成了一层均匀的溶胶。

这是因为在电泳过程中,铜离子在电场的作用下从溶液中迁移至电极表面,并在电极上发生还原反应,形成固态的铜颗粒,从而形成溶胶。

电泳实验中,溶胶的形成与电场的强度、电流密度、电泳时间等因素有关。

在本实验中,我们通过调节直流电源的电压和电流,控制电场的强度和电流密度,从而影响溶胶的制备效果。

实验结果表明,当电压和电流较低时,溶胶的形成速度较慢;而当电压和电流较高时,溶胶的形成速度较快。

因此,合理选择电压和电流是制备溶胶的关键。

溶胶的应用之一就是在电泳过程中作为分离介质。

在电泳实验中,我们可以将样品溶液加载到电泳槽中,通过控制电场的强度和方向,让样品中的带电离子在电场的作用下向电极迁移,实现离子的分离。

溶胶可以提供均匀的电场分布,增加离子的迁移速率,从而提高电泳分离的效果。

四、结论通过本实验,我们成功制备了溶胶,并通过电泳实验探究了溶胶的制备及其在电泳过程中的应用。

实验结果表明,电压和电流是影响溶胶形成速度的关键因素。

溶胶作为一种分离介质,在电泳过程中起到了重要的作用。

溶胶的制备及其在电泳过程中的应用具有重要的科学意义和实际价值。

胶体制备和电泳

胶体制备和电泳

胶体制备和电泳一、实验目的1、采用水解凝聚法制备Fe(OH)3溶胶;2、用电泳法测定Fe(OH)3溶胶带电性质及其电动电位。

二、实验原理胶体制备常用分散法和凝聚法。

本实验是用水解凝聚法制备Fe(OH)3溶胶。

刚制成的溶胶常含有其它杂质,必须纯化。

本实验采用半透膜渗析法,利用胶体与其它物质的分散程度的差异而分离。

为了加快渗析速度,可用热渗析和电渗析方法。

由于胶粒表面电离或吸附离子而带电荷,在胶粒周围形成带等量异电荷的溶剂化层。

溶剂化层界面与介质内部形成的电位差称电动电势或ζ电势。

它是胶粒特征的重要物理量,其数值与胶体性质,介质及溶胶浓度有关。

胶体的ζ电势表达式为: DEuπηζ4=式中:ζ——介质粘度(泊); u ——相对移动速度(厘米/秒); D ——介质常数;E ——电位梯度(绝对静电单位/厘米)。

由测定界面移动的电泳法: ()vtDslπηζ43002= 式中:s ——时间t 内胶体和辅助液界面移动距离(厘米); l ——两电极间距离(厘米); v ——电极间电位差(伏特);300——将伏特换算成绝对静电单位的比例系数。

本实验的测定条件是溶胶与辅助液的电导率必须相等。

三、仪器与药品电泳仪 1套 稳压电源 1套 停表 1个铂电极 1根 10%FeCl 3溶液 火棉胶 稀盐酸 烧杯等。

四、实验步骤1、3)(OH Fe 溶胶的制备:在250 ml 烧杯中,盛蒸馏水100 ml ,加热至沸,在搅拌条件下滴加10%3FeCl 10 ml ,再煮沸 2 min ,即得3)(OH Fe 棕色溶胶。

2、胶体溶液的纯化:半透膜的制备:在100 ml 干燥的短颈锥形瓶中,倒入几 ml 火棉胶,小心转动,形成均匀的薄膜,倒置流尽火棉胶,并让溶剂挥发至不粘手,然后在瓶口剥开一部分膜,从膜壁注入水,使膜与壁分离,取出成型的膜袋。

溶胶的渗析:将制得的3)(OH Fe 溶胶倒入半透膜中,用线栓住袋口,放入60~70℃的水中渗析,常换水,直至水中不能检出-Cl 或+3Fe 。

溶胶的制备和电泳

溶胶的制备和电泳

中国石油大学化学原理二实验报告实验日期:成绩:班级:学号:姓名:教师:同组者:一、实验目的1.学会溶胶制备的基本原理、并掌握溶胶制备的主要方法;2.利用界面电泳法测定AgI溶胶的电动位。

二、实验原理溶胶是溶解度极小的固体在液体中高度分散所形成的胶态体系,其颗粒直径变动在10-7~10-9m范围。

1.溶胶制备要制备出稳定的溶胶一般需满足两个条件:固体分散相的质点大小必须在胶体分度的范围内;固体分散质点在液体介质中要保持分散不聚结,为此,一般需要加稳定剂。

制备溶胶原则上有两种方法:将大块固体分割到胶体分散度的大小,此法称为分散法;使小分子或粒子聚集成胶体大小,此法称为凝聚法。

(1)分散法分散法主要有 3 种方式,即机械研磨、超声分散和胶溶分散。

①研磨法:常用的设备主要有胶体磨和球磨机等。

胶体磨由两片靠得很近的盘或磨刀,均由坚硬耐磨的合金或碳化硅制成。

当上下两磨盘以高速反向转动时(转速约5000-10000rpm),粗粒子就被磨细。

在机械磨中胶体研磨的效率较高,但一般只能将质点磨细到 1um 左右。

②超声分散法:频率高于16000Hz的声波称为超声波,高频率的超声波传入介质,在介质中产生相同频率的疏密交替,对分散相产生很大的撕碎力,从而达到分散效果。

此法操作简单,效率高,经常用作胶体分散及乳状液制备。

③胶溶法:胶溶法是把暂时聚集在一起的胶体粒子重新分散而成溶胶。

例如,氢氧化铁、氢氧化铝等的沉淀实际上是胶体质点的聚集体,由于制备时缺少稳定剂,故胶体质点聚在一起而沉淀。

此时若加入少量的电解质,胶体质点因吸附离子而带电,沉淀就会在适当的搅拌下重新分散成胶体。

有时质点聚集成沉淀是因为电解质过多,设法洗去过量的电解质也会使沉淀转化成溶胶。

利用这些方法使沉淀转化成溶胶的过程成为胶溶作用。

胶溶作用只能用于新鲜的沉淀。

若沉淀放置过久,小粒经过老化,出现粒子间的连接或变化成大的粒子,就不能利用胶溶作用来达到重新分散的目的。

12 溶胶的制备及电泳

12 溶胶的制备及电泳

实验十二溶胶的制备及电泳【目的要求】1.学会制备和纯化Fe(OH3溶胶。

2.掌握电泳法测定Fe(OH3溶胶电动电势的原理和方法。

【预习要求】1.掌握Fe(OH3溶胶的制备及纯化方法。

2.掌握Fe(OH3溶胶电动电势的测定方法。

3.明确求算ξ公式中各物理量的意义。

【实验原理】溶胶的制备方法可分为分散法和凝聚法。

分散法是用适当方法把较大的物质颗粒变为胶体大小的质点;凝聚法是先制成难溶物的分子(或离子的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶。

Fe(OH3溶胶的制备就是采用的化学法即通过化学反应使生成物呈过饱和状态,然后粒子再结合成溶胶。

制成的胶体体系中常有其它杂质存在,而影响其稳定性,因此必须纯化。

常用的纯化方法是半透膜渗析法。

在胶体分散体系中,由于胶体本身的电离或胶粒对某些离子的选择性吸附,使胶粒的表面带有一定的电荷。

在外电场作用下,胶粒向异性电极定向泳动,这种胶粒向正极或负极移动的现象称为电泳。

荷电的胶粒与分散介质间的电势差称为电动电势,用符号ξ表示,电动电势的大小直接影响胶粒在电场中的移动速度。

原则上,任何一种胶体的电动现象都可以用来测定电动电势,其中最方便的是用电泳现象中的宏观法来测定,也就是通过观察溶胶与另一种不含胶粒的导电液体的界面在电场中移动速度来测定电动电势。

电动电势ζ与胶粒的性质、介质成分及胶体的浓度有关。

在指定条件下,ζ的数值可根据亥姆霍兹方程式计算。

即或(1式中,K为与胶粒形状有关的常数(对于球形胶粒K=6,棒形胶粒K=4,在实验中均按棒形粒子看待;η为介质的粘度(泊;D为介质的介电常数;u为电泳速度(cm·s-1;H 为电位梯度,即单位长度上的电位差。

(2(2式中,E为外电场在两极间的电位差(V;L为两极间的距离(cm;300为将伏特表示的电位改成静电单位的转换系数。

把(2式代入(1式得:(3由(3式知,对于一定溶胶而言,若固定E和L测得胶粒的电泳速度(u=dt,d为胶粒移动的距离,t为通电时间,就可以求算出ζ电位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江万里学院生物与环境学院化学工程实验技术实验报告
实验名称:溶胶的制备及电泳
一、实验预习(30分)
1.实验装置预习(10分)2015年12月28日
指导教师______(签字)成绩
2.实验仿真预习(10分)2015年12月28日
指导教师______(签字)成绩
3.预习报告(10分)
指导教师______(签字)成绩
(1)实验目的
1.掌握电泳法测定Fe(OH)3及Sb2S3溶胶电动电势的原理和方法。

2.掌握Fe(OH)3及Sb2S3溶胶的制备及纯化方法。

3.明确求算ζ公式中各物理量的意义。

(2)实验原理
溶胶的制备方法可分为分散法和凝聚法。

分散法是用适当方法把较大的物质颗粒变为胶体大小的质点;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶。

Fe(OH)3溶胶的制备是采用的化学法即通过化学反应使生成物呈过饱和状态,然后粒子再结合成溶胶,其结构式可表示为{m[Fe(OH)3]n FeO+(n-x)Cl-}x+x Cl-。

制成的胶体体系中常有其它杂质存在,而影响其稳定性,因此必须纯化。

常用的纯化方法是半透膜渗析法。

在胶体分散体系中,由于胶体本身的电离或胶粒对某些离子的选择性吸附,使胶粒的表面带有一定的电荷。

在外电场作用下,胶粒向异性电极定向泳动,这种胶粒向正极或负极移动的现象称为电泳。

荷电的胶粒与分散介质间的电势差称为电动电势,用符号ζ表示,电动电势的大小直接影响胶粒在电场中的移动速度。

原则上,任何一种胶体的电动现象都可以用来测定电动电势,其中最方便的是用电泳现象中的宏观法来测定,也就是通过观察溶胶与另一种不含胶粒的导电液体的界面在电场中移动速度来测定电动电势。

电动电势ζ与胶粒的性质、介质成分及胶体的浓度有关。

在指定条件下,ζ的数值可根据亥姆霍兹方程式计算。

即(静电单位)
或·300(V) (1) 式中,K为与胶粒形状有关的常数(对于球形胶粒K=6,棒形胶粒K=4,在实验中均按棒形粒子看待);η为介质的粘度(泊);D为介质的介电常数;u为电泳速度(cm·s-1);H为电位梯度,即单位长度上的电位差。

(静电单位·cm-1) (2) (2)式中,E为外电场在两极间的电位差(V);L为两极间的距离(cm);300为将伏特表示的电位改成静电单位的转换系数。

把(2)式代入(1)式得:
(V) (3) 由(3)式知,对于一定溶胶而言,若固定E和L测得胶粒的电泳速度(u=d/t,d为胶粒移动的距离,t为通电时间),就可以求算出ζ电位。

(3)实验装置与流程:将燃烧热实验的主要设备、仪器和仪表等按编号顺序添入图下面相应位置:
1-Pt电极;2-HCl溶液;3-溶胶;4-电泳管;
5-活塞;6-可调直流稳压电源;
(4)简述实验所需测定参数及其测定方法:
实验所需测定参数:1.两电极间的电势差V 2.两电极间的距离
3.电泳界面移动的距离
4.界面移动S距离所需要的时间
测定方法:用蒸馏水洗净电泳管后,将渗析好的Fe(OH)3溶胶倒入电泳管中,
使液面到达活塞底部。

打开活塞,使得两液面相平,再倒入氯化钾辅
助液,记录好此时的高度,设定好电压,开始电泳10分钟后,再进
行测量,再记录此时两电极的高度。

(5)实验操作要点:
1.利用公式(3)求算ζ电位时,各物理量的单位都需用c.g.s制,有关数值从附录中有
关表中查得。

如果改用SI制,相应的数值也应改换。

对于水的介电常数,应考虑温
度校正,由以下公式求得:
ln D t=4.474226-4.54426×10-3t/℃
2.半透膜制备:在Fe(OH)3溶胶实验中制备半透膜时,一定要使整个锥形瓶的内壁上均匀地附着一层火棉胶液,在取出半透膜时,一定要借助水的浮力将膜托出。

3.Fe(OH)3溶胶制备:Fe(OH)3溶胶时,FeCl3一定要逐滴加入,并不断搅拌。

4.Fe(OH)3溶液纯化:纯化Fe(OH)3溶胶时,换水后要渗析一段时间再检查Fe3+及Cl- 的存在。

5.量取两电极的距离时,要沿电泳管的中心线量取。

6.电泳过程中要保持界面清晰(减少电泳管晃动)
7.在半透膜的制备时,慢慢注水于夹层层中,使膜脱离瓶壁,轻轻取出,在膜袋中注入
水,观察有否漏洞。

制好的半透膜不用时,要浸放在蒸馏水中。

8.在水解法制备Fe(OH)3溶胶时,应将200ml的蒸馏水盛入400ml烧杯中煮沸,然后边
搅拌边慢慢滴加10ml0.5mol/L Fe(OH)3溶液,并不断搅拌。

加毕继续保持沸腾5分
钟,即可得到红棕色的Fe(OH)3溶胶。

二、实验操作及原始数据表(20分)
1. 将实验数据记录如下:
电压:60V
两电极间距离:2.7cm
电泳时间:26m35s
溶胶液面移动距离:上升0.7cm
电压:60V
两电极间距离:2.7cm
电泳时间:26m35s
溶胶液面移动距离:下降1.5cm
三、 数据处理结果(30分)
计算ζ电势 DH K πημ
ξ=
K=4 η=1.1374 D=81.95 μ=d/t d=0.7cm t=1595s μ =0.00044cm/s
,即H=60/(300*2.7)=0.118
DH K πημξ=
=(4*π*1.1374*0.00044)/(81.95*0.118)=0.00065V
μ=d/t d=1.5cm t=1595s
=0.00094cm/s H=60/(300*2.7)=0.074
DH K πημ
ξ==(4*π*1.1374*0.00094)/(81.95*0.074)=0.00224V
四、思考题(20分)
1.本实验中所用的稀盐酸溶液的电导为什么必须和所测溶胶的电导率相等或尽量接近?
答:因为只有电导率相近才能保证电压在胶体和辅助液中均匀分布,计算公式才能成立;相反,如果稀盐酸溶液的电导率于溶胶的电导率相差较大,则在整个电泳管内电位降是不均匀的,就不能使用H=U/L求电位梯度平均值。

2.电泳的速度与哪些因素有关?
答:1.电压E越高,电泳速率v越快,反之则越慢。

2. 胶体浓度越大,胶体的介电常数ε和粘度η也越大,前者有利于电泳速率增大而后者不利于。

3. 环境温度较高,电流热效应越大(电压越高,通电时间越长),电泳速率较慢
4. 电极间距对电泳速率也有较大的影响。

这可从电泳的速率公式看出。

5. 胶体的是
否纯化过
总的来说,影响因素有电势、介质的粘度、介电常数、两极间距、外加电压、温度、胶体浓度、胶体中介质、通电时间的长短、电泳管受到震动的情况、电泳管的胶塞处通大气的畅通状态等。

3.在电泳测定中如不用辅助液体,把两电极直接插入溶胶中会发生什么现象?
答:本实验是用界面移动法测电动电势,如果在电泳测定中不用辅助液体,只靠气液界面,不存在液-液界面,无法判断液-液界面移动情况。

4.溶胶胶粒带何种符号的电荷?为什么它会带此种符号的电荷?
答:(1)实验中溶胶移向负极,说明溶胶带正电。

(2)溶胶带正电,实际上是胶粒带正电。

相关文档
最新文档