高中数学角的概念
专题17 三角函数概念与诱导公式 (教师版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】知识点一:三角函数基本概念1.角的概念(1)任意角:①高中数学53个题型归纳与方法技巧总结篇专题17三角函数概念与诱导公式定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是{}Z k k S ∈+︒⋅==,αββ360.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(4)象限角的集合表示方法:2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:rad 180π=︒,rad 1801π=︒,π︒=180rad 1.(3)扇形的弧长公式:r l ⋅=α,扇形的面积公式:22121r lr S ⋅==α.3.任意角的三角函数(1)定义:任意角α的终边与单位圆交于点)(y x P ,时,则y =αsin ,x =αcos ,)0(tan ≠=x xyα.(2)推广:三角函数坐标法定义中,若取点P )(y x P ,是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则r y =αsin ,r x =αcos ,)0(tan ≠=x xyα三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号αsin R ++--αcos R+--+αtan }2|{Z k k ∈+≠,ππαα+-+-记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦.4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线知识点二:同角三角函数基本关系1.同角三角函数的基本关系(1)平方关系:1cos sin 22=+αα.(2)商数关系:)2(tan cos sin ππααααk +≠=;知识点三:三角函数诱导公式公式一二三四五六角)(2Z k k ∈+απαπ+α-απ-απ-2απ+2正弦αsin αsin -αsin -αsin αcos αcos 余弦αcos αcos -αcos αcos -αsin αsin -正切αtan αtan αtan -αtan -口诀函数名不变,符号看象限函数名改变,符号看象限【记忆口诀】奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.【方法技巧与总结】1.利用1cos sin 22=+αα可以实现角α的正弦、余弦的互化,利用αααtan cos sin =可以实现角α的弦切互化.2.“ααααααcos sin cos sin cos sin -+,,”方程思想知一求二.222(sin cos )sin cos 2sin cos 1sin 2ααααααα+=++=+222(sin cos )sin cos 2sin cos 1sin 2ααααααα-=+-=-22(sin cos )(sin cos )2αααα++-=【题型归纳目录】题型一:终边相同的角的集合的表示与区别题型二:等分角的象限问题题型三:弧长与扇形面积公式的计算题型四:三角函数定义题题型五:象限符号与坐标轴角的三角函数值题型六:同角求值—条件中出现的角和结论中出现的角是相同的题型七:诱导求值与变形【典例例题】题型一:终边相同的角的集合的表示与区别例1.(2022·全国·高三专题练习)与角94π的终边相同的角的表达式中,正确的是()A .245k π+ ,k Z ∈B .93604k π⋅+,k Z ∈C .360315k ⋅- ,k Z ∈D .54k ππ+,k Z ∈【答案】C 【解析】【分析】要写出与94π的终边相同的角,只要在该角上加2π的整数倍即可.【详解】首先角度制与弧度制不能混用,所以选项AB 错误;又与94π的终边相同的角可以写成92()4k k Z ππ+∈,所以C 正确.故选:C .例2.(2022·全国·高三专题练习)若角α的终边在直线y x =-上,则角α的取值集合为()A .2,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z B .32,4k k πααπ⎧⎫=+∈⎨⎬⎩⎭Z C .3,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z D .,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z 【答案】D 【解析】【分析】根据若,αβ终边相同,则2,k k Z βπα=+∈求解.【详解】解:,由图知,角α的取值集合为:()32,2,4421,2,44,4k k Z k k Z k k Z k k Z k k Z ππααπααπππααπααππααπ⎧⎫⎧⎫=+∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫==+-∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==-∈⎨⎬⎩⎭故选:D.【点睛】本题主要考查终边相同的角,还考查了集合的运算能力,属于基础题.例3.(2022·上海市嘉定区第二中学高一阶段练习)设集合{}{}|45180,|135180,A k k Z k k Z αααα==︒+⋅︒∈⋃=︒+⋅︒∈,集合{}|4590,B k k Z ββ==︒+⋅︒∈,则()A .AB =∅ B .A BC .B AD .A B=【答案】D 【解析】【分析】考虑A 中角的终边的位置,再考虑B 中角的终边的位置,从而可得两个集合的关系.【详解】.45180,k k Z α=︒+⋅︒∈表示终边在直线y x =上的角,135180,k k Z α=︒+⋅︒∈表示终边在直线y x =-上的角,而4590,k k Z β=︒+⋅︒∈表示终边在四条射线上的角,四条射线分别是射线,0;,0;,0;,0y x x y x x y x x y x x =≥=-≤=≤=-≥,它们构成直线y x =、直线y x =-,故A B =.故选:D.【点睛】本题考查终边相同的角,注意180k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线,而90k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线或相互垂直,本题属于中档题.(多选题)例4.(2022·全国·高三专题练习)如果角α与角45γ+︒的终边相同,角β与45γ-︒的终边相同,那么αβ-的可能值为()A .90︒B .360︒C .450︒D .2330︒【答案】AC 【解析】根据终边相同可得角与角之间的关系,从而可得αβ-的代数形式,故可得正确的选项.【详解】因为角α与角45γ+︒的终边相同,故45360k γα ,其中k Z ∈,同理145360k βγ=-︒+⋅︒,其中1k Z ∈,故90360n αβ-=︒+⋅︒,其中n Z ∈,当0n =或1n =时,90αβ-=︒或450αβ-=︒,故AC 正确,令36090360n ︒=︒+⋅︒,此方程无整数解n ;令903060233n =︒+⋅︒︒即569n =,此方程无整数解n ;故BD 错误.故选:AC.(多选题)例5.(2022·全国·高三专题练习)下列条件中,能使α和β的终边关于y 轴对称的是()A .90αβ+=︒B .180αβ+=︒C .()36090k k αβ+=⋅︒+︒∈ZD .()()21180k k αβ+=+⋅︒∈Z 【答案】BD 【解析】【分析】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z ,逐一判断正误即可.【详解】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z 可知,选项B 中,180αβ+=︒符合题意;选项D 中,()()21180k k αβ+=+⋅︒∈Z 符合题意;选项AC 中,可取0,90αβ=︒=︒时显然可见α和β的终边不关于y 轴对称.故选:BD.例6.(2022·全国·高三专题练习)写出两个与113π-终边相同的角___________.【答案】3π,53π-(其他正确答案也可)【解析】【分析】利用终边相同的角的定义求解.【详解】设α是与113π-终边相同的角,则112,3k k Z παπ=-∈,令1k =,得53πα=-,令2k =,得3πα=,故答案为:3π,53π-(其他正确答案也可)【方法技巧与总结】(1)终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2)注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.题型二:等分角的象限问题例7.(2022·浙江·高三专题练习)若18045,k k Z α=⋅+∈ ,则α的终边在()A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限【答案】A 【解析】【分析】分21,k n n Z =+∈和2,k n n =∈Z 讨论可得角的终边所在的象限.【详解】解:因为18045,k k Z α=⋅+∈ ,所以当21,k n n Z =+∈时,218018045360225,n n n Z α=⋅++=⋅+∈ ,其终边在第三象限;当2,k n n =∈Z 时,21804536045,n n n Z α=⋅+=⋅+∈ ,其终边在第一象限.综上,α的终边在第一、三象限.故选:A.例8.(2022·全国·高三专题练习(理))角α的终边属于第一象限,那么3α的终边不可能属于的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】【分析】由题意知,222k k ππαπ<<+,k Z ∈,即可得3α的范围,讨论3k n =、31k n =+、32k n =+()n Z ∈对应3α的终边位置即可.【详解】∵角α的终边在第一象限,∴222k k ππαπ<<+,k Z ∈,则223363k k παππ<<+,k Z ∈,当3()k n n Z =∈时,此时3α的终边落在第一象限,当31()k n n Z =+∈时,此时3α的终边落在第二象限,当32()k n n Z =+∈时,此时3α的终边落在第三象限,综上,角α的终边不可能落在第四象限,故选:D.例9.(2022·全国·高三专题练习)θ是第二象限角,则下列选项中一定为负值的是()A .sin2θB .cos2θC .sin 2θD .cos 2θ【答案】C 【解析】表示出第二象限角的范围,求出2θ和2θ所在象限,确定函数值的符号.【详解】因为θ是第二象限角,所以22,2k k k Z ππθππ+<<+∈,则4242,k k k Z ππθππ+<<+∈,所以2θ为第三或第四象限角或终边在y 轴负半轴上,,所以sin 2θ<0.而,422k k k Z πθπππ+<<+∈,2θ是第一象限或第三象限角,正弦余弦值不一定是负数.故选:C .例10.(2022·全国·高三专题练习)已知角α第二象限角,且cos cos22αα=-,则角2α是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】【分析】由α是第二象限角,知2α在第一象限或在第三象限,再由coscos22αα=-,知cos02α≤,由此能判断出2α所在象限.【详解】因为角α第二象限角,所以()90360180360Z k k k α+⋅<<+⋅∈,所以()4518090180Z 2k k k α+⋅<<+⋅∈,当k 是偶数时,设()2Z k n n =∈,则()4536090360Z 2n n n α+⋅<<+⋅∈,此时2α为第一象限角;当k 是奇数时,设()21Z k n n =+∈,则()225360270360Z 2n n n α+⋅<<+⋅∈,此时2α为第三象限角.;综上所述:2α为第一象限角或第三象限角,因为coscos22αα=-,所以cos02α≤,所以2α为第三象限角.故选:C .【方法技巧与总结】先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示.题型三:弧长与扇形面积公式的计算例11.(2022·浙江·镇海中学模拟预测)《九章算术》是中国古代的数学名著,其中《方田》章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 及其所对弦AB 围成的图形.若弧田的弦AB 长是2,弧所在圆心角的弧度数也是2,则弧田的弧AB 长为_______,弧田的面积为_________.【答案】2sin1;211sin 1tan1-.【解析】【分析】(1)利用弧长公式解决,那么需要算出半径和圆心角;(2)用扇形的面积减去三角形的面积即可.【详解】由题意可知:111,,sin1sin1tan1tan1======AC BC BC AC AO OC ,所以弧AB 长122sin1sin1=⨯=,弧田的面积22111111222sin12tan1sin 1tan1⎛⎫=-=⨯⨯-⨯⨯=- ⎪⎝⎭扇形AOB AOB S S ,故答案为:2sin1;211sin 1tan1-.例12.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在 AB 上,CD AB ⊥.“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CDs AB OA=+.当2,60OA AOB =∠=︒时,s =()A B C D 【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线,即2OD OA OB ===,又60AOB ∠=︒,所以2AB OA OB ===,则OC =2CD =所以()22222CD s AB OA =+=+=故选:B.例13.(2022·全国·高三专题练习)中国传统扇文化有着极其深厚的底蕴.按如下方法剪裁,扇面形状较为美观.从半径为r 的圆面中剪下扇形OAB ,使剪下扇形OAB,再从扇形OAB 中剪下扇环形ABDC 制作扇面,使扇环形ABDC 的面积与扇形OAB.则一个按上述方法制作的扇环形装饰品(如图)的面积与圆面积的比值为()ABCD2-【答案】D 【解析】【分析】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,根据扇形面积公式,弧长公式,以及题中条件,即可计算出结果.【详解】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,由题意可得,2112S r α=,21S S =2S r π=,所以()122124S Srαππ==,因为剪下扇形OAB ,所以22r r r παπ-=(3απ=,所以()()()2113244S S απππ====.故选:D.例14.(2022·浙江·赫威斯育才高中模拟预测)“圆材埋壁”是我国古代的数学著作《九章算术》中的一个问题,现有一个“圆材埋壁”的模型,其截面如图所示,若圆柱形材料的底面半径为1,截面圆圆心为O ,墙壁截面ABCD 为矩形,且1AD =,则扇形OAD 的面积是__________.【答案】6π##16π【解析】【分析】计算AOD ∠,再利用扇形的面积公式求解.【详解】由题意可知,圆O 的半径为1,即1OA OD ==,又1AD =,所以OAD △为正三角形,∴3AOD π∠=,所以扇形OAD 的面积是221112236S r AOD ππ=⨯⨯∠=⨯⨯=.故答案为:6π例15.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π【解析】【分析】设扇形ABC 的半径为r cm ,弧长为l cm ,根据扇形ABC 的面积S 为22225cm π,由212252rl π=得到rl ,然后由纸叠扇的周长2C r l =+,利用基本不等式求解.【详解】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =.由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长260C r l π=+≥==,当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立,所以()15BD DA cm π+=.又2BD DA =,所以()1152BD BD cm π+=,所以()3152BD cm π=,故()10BD cm π=.故答案为:10π例16.(2022·全国·高三专题练习)已知扇形的周长为4cm ,当它的半径为________cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________cm 2.【答案】121【解析】【详解】24l r +=,则()21142222S lr r r r r ==-=-+,则1,2r l ==时,面积最大为1,此时圆心角2lrα ,所以答案为1;2;1.【方法技巧与总结】(1)熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2)掌握简单三角形,特别是直角三角形的解法题型四:三角函数定义题例17.(2022·广东·深圳市光明区高级中学模拟预测)已知角θ的终边过点()1,1A -,则sin()6πθ-=()ABCD【答案】D 【解析】【分析】由任意三角形的定义求出sin ,cos θθ,由两角差的正弦公式代入即可求出sin()6πθ-.【详解】因为角θ的终边过点()1,1A -,由任意三角形的定义知:sin θθ==sin()sin cos cos sin 666πππθθθ-=-=故选:D.例18.(2022·河北衡水·高三阶段练习)已知角α的终边经过点(-,则()tan sin 232πααπ⎛⎫++-= ⎪⎝⎭()A .32B .34-C.D【答案】D 【解析】【分析】利用三角函数的定义、诱导公式、二倍角公式以及弦化切可求得所求代数式的值.【详解】依题意,由三角函数的定义可知tan α=()22sin cos 2sin cos 2tan sin 23sin 22sin sin cos cos 2παπαααααπαπαααα⎛⎫+ ⎪⎛⎫⎝⎭++-=-=-- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭22212sin cos 2tan tan sin cos tan 1ααααααα=--===++故选:D.例19.(2022·湖北武汉·模拟预测)已知角α的始边与x 轴非负半轴重合,终边上一点()sin 3,cos3P ,若02απ≤≤,则α=()A .3B .32π-C .532π-D .32π-【答案】C【分析】根据三角函数的定义求出tan α,结合诱导公式即可得解,注意角所在的象限.【详解】解:因为角α的终边上一点()sin 3,cos3P ,所以cos31tan 0sin 3tan 3α==<,又cos 30,sin 30<>,所以α为第四象限角,所以23,Z 2k k παπ=+-∈,又因02απ≤≤,所以532πα=-.故选:C.例20.(2022·北京·二模)已知角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin 2α=()A .2425-B .725-C .725D .2425【答案】A 【解析】【分析】根据终边上的点确定角的正余弦值,再由二倍角正弦公式求sin 2α.【详解】由题设43sin ,cos 55αα==-,而4324sin 22sin cos 2()5525ααα==⨯⨯-=-.故选:A【方法技巧与总结】(1)任意角的正弦、余弦、正切的定义;题型五:象限符号与坐标轴角的三角函数值例21.(2022·全国·高三专题练习)如果cos 0θ<,且tan 0θ<,则sin cos cos θθθ-+的化简为_____.【答案】sin θ【解析】【分析】由cos 0θ<,且tan 0θ<,得到θ是第二象限角,由此能化简sin cos cos θθθ-+.解:∵cos 0θ<,且tan 0θ<,∴θ是第二象限角,∴sin cos cos sin cos cos sin θθθθθθθ-+=-+=.故答案为:sin θ.例22.(2022·河北·石家庄二中模拟预测)若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】根据sin cos 0αα⋅<可知α是第二或第四象限角;根据第二或第四象限角正余弦的符号可确定结果.【详解】sin cos 0αα⋅< ,α 是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<;当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意;综上所述:α是第二象限角.故选:B.例23.(2022·浙江·模拟预测)已知R θ∈,则“cos 0θ>”是“角θ为第一或第四象限角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要【答案】B 【解析】【分析】利用定义法进行判断.【详解】充分性:当cos 0θ>时,不妨取cos 1,0θθ==时轴线角不成立.故充分性不满足;必要性:角θ为第一或第四象限角,则cos 0θ>,显然成立.故选:B.例24.(2022·重庆·高三开学考试)若tan 0θ>,则下列三角函数值为正值的是()A .sin θB .cos θC .sin 2θD .cos 2θ【答案】C 【解析】【分析】结合诱导公式、二倍角公式判断出正确选项.【详解】sin tan 0sin cos 0sin 22sin cos 0cos θθθθθθθθ=>⇒⋅>⇒=>,所以C 选项正确.当5π4θ=时,5ππtan 0,sin 0,cos 0,cos 2coscos 022θθθθ><<===,所以ABD 选项错误.故选:C例25.(2022·全国·高三专题练习(理))我们知道,在直角坐标系中,角的终边在第几象限,这个角就是第几象限角.已知点()cos ,tan P αα在第三象限,则角α的终边在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】本题首先可以根据题意得出cos 0α<、tan 0α<,然后得出sin 0α>,即可得出结果.【详解】因为点()cos ,tan P αα在第三象限,所以cos 0α<,tan 0α<,则sin 0α>,角α的终边在第二象限,故选:B.例26.(2022·全国·高三专题练习(理))已知sin 0,cos 0αα><,则()A .sin 20α>B .cos20α<C .tan02α>D .sin2α<【答案】C 【解析】【分析】由条件得到角α所在的象限,从而得到2α所在的象限,这样就可以得到答案.【详解】由sin 0,cos 0αα><知,α为第二象限角,所以2α为第一或第三象限角,所以tan02α>.故选:C.例27.(2022·江西南昌·三模(文))若角α的终边不在坐标轴上,且sin 2cos 2αα+=,则tan α=()A .43B .34C .23D .32【答案】A 【解析】【分析】结合易知条件和同角三角函数的平方关系即可求出cos α,从而求出sin α,根据sin tan cos ααα=即可求得结果.【详解】22sin cos 13cos 5sin 2cos 2ααααα⎧+=⇒=⎨+=⎩或cos 1α=,∵α的终边不在坐标轴上,∴3cos 5α=,∴34sin 2255α=-⨯=,∴sin 4tan cos 3ααα==.故选:A .例28.(2022·全国·高三专题练习(理))若α是第二象限角,则下列不等式正确的是()A .()cos 0α->B .tan02α>C .sin 20α>D .()sin 0α->【答案】B 【解析】【分析】根据α是第二象限角,分别求出四个选项中角所在的象限,再判断三角函数的符号,即可求解.【详解】对于A :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()cos 0α-<,故选项A 不正确;对于B :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππππZ 422k k k α+<<+∈,当()2Z k n n =∈时,()ππ2π2πZ 422n n n α+<<+∈,此时2α是第一象限角,当()21Z k n n =+∈时,()5π3π2π2πZ 422n n n α+<<+∈,此时2α是第三象限角,所以2α是第一或第三象限角,所以tan02α>,故选项B 正确;对于C :因为()π2ππ2πZ 2k k k α+<<+∈,所以()π4π22π4πZ k k k α+<<+∈,所以2α是第三或第四象限角或终边落在y 轴非正半轴,所以sin 20α<,故选项C 不正确;对于D :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()sin 0α-<,故选项D 不正确;故选:B.【方法技巧与总结】正弦函数值在第一、二象限为正,第三、四象限为负;.余弦函数值在第一、四象限为正,第二、三象限为负;.正切函数值在第一、三象限为正,第二、四象限为负.题型六:同角求值—条件中出现的角和结论中出现的角是相同的例29.(2022·安徽·合肥市第八中学模拟预测(文))若tan 2θ=-,则2sin 2cos 1θθ+的值为___________.【答案】23-【解析】【分析】利用二倍角公式和同角三角函数平方关系可构造正余弦齐次式,分子分母同除2cos θ,代入tan θ即可得到结果.【详解】2222sin 22sin cos 2tan 42cos 12cos sin 2tan 243θθθθθθθθ===-=-++++.故答案为:23-.例30.(2022·河北·沧县中学模拟预测)已知tan 3α=,则22sin 22sin cos2cos -=-αααα___________.【答案】43【解析】【分析】根据二倍角公式,结合同角三角函数齐次式关系求解即可.【详解】解:22222222sin 22sin 2sin cos 2sin 2tan 2tan 23234cos2cos sin tan 33---⨯-⨯====----ααααααααααα.故答案为:43例31.(2022·广东惠州·一模)已知tan 2α=,32παπ<<,则cos sin αα-=()A B .C D .【答案】A 【解析】【分析】由sin tan 2cos ααα==及22sin cos 1αα+=解出sin α与cos α即可求解.【详解】因为sin tan 2cos ααα==,且22sin cos 1αα+=,32παπ<<,所以sin α=cos α=,所以cos sin αα⎛-== ⎝⎭.故选:A.例32.(2022·全国·模拟预测)已知0πA <<,1sin cos 5A A +=,则1sin 21cos 2AA-=+()A .132B .118C .4918D .4932【答案】C 【解析】【分析】结合同角的平方关系以及二倍角公式即可求出结果.【详解】由1sin cos 5A A +=及22sin cos 1A A +=,解得4sin 5A =,3cos 5A =-或4cos 5A =,3sin 5A =-.因为sin 0A >,所以4sin 5A =,3cos 5A =-,所以24sin 22sin cos 25A A A ==-,227cos 2cos sin 25A A A =-=-,所以2411sin 2492571cos 218125A A +-==+-,故选:C.例33.(2022·海南·模拟预测)已知角α为第二象限角,tan 3α=-,则cos α=()A.BC.D【答案】A 【解析】【分析】由角所在的象限及同角三角函数的平方关系、商数关系求cos α即可.【详解】因为α是第二象限角,所以sin 0α>,cos 0α<,由sin tan 3cos ααα==-,22sin cos 1αα+=,可得:cos α=故选:A.例34.(2022·全国·高三专题练习)已知(,22ππα∈-,且212sin 5cos 9αα-=,则cos 2=α()A .13B .79-C .34-D .18【答案】B 【解析】【分析】利用同角公式化正弦为余弦,求出cos α的值,再利用二倍角的余弦公式求解即得.【详解】依题意,原等式化为:212(1cos )5cos 9αα--=,整理得:(4cos 3)(3cos 1)0αα+-=,因(,)22ππα∈-,则cos 0α>,解得:1cos 3α=,所以2217cos 22cos 12139αα⎛⎫=-=⨯-=- ⎪⎝⎭.故选:B例35.(2022·全国·高三阶段练习(理))若sin cos 2sin cos θθθθ+=-,则sin (1sin 2)sin cos θθθθ+=+()A .65-B .25-C .65D .25【答案】C 【解析】【分析】由已知得sin 3cos θθ=,从而sin ,cos θθ同号,即sin cos 0>θθ,然后由平方关系求得22cos ,sin θθ,进而求得sin cos θθ,求值式应用二倍角公式和平方关系变形后可得结论.【详解】因为sin cos 2sin cos θθθθ+=-,所以sin 3cos θθ=,所以sin ,cos θθ同号,即sin cos 0>θθ,22222sin cos 9cos cos 10cos 1θθθθθ+=+==,21cos 10θ=,从而29sin 10θ=,229sin cos 100θθ=,所以3sin cos 10θθ=,22sin (1sin 2)sin (sin cos 2sin cos )sin (sin cos )sin cos sin cos θθθθθθθθθθθθθθ+++==+++2936sin sin cos 10105θθθ=+=+=.故选:C .例36.(2022·广东广州·三模)已知sin cos x x +=()0,πx ∈,则cos2x 的值为()A .12B C .12-D .【答案】D 【解析】【分析】将sin cos x x +=2sin x cos x =-12<0,结合sin cos x x +=求出x 的范围,再利用22cos 2sin 21x x +=求解即可.【详解】解:将sin cos x x +=2sin x cos x =-12<0,所以π(,π)2x ∈,又因为sin cos x x +=0,所以π3π(,24x ∈,2x 3π(π,)2∈,又因为sin2x =-12,所以cos2x 故选:D.例37.(2022·湖北武汉·模拟预测)已知1sin cos 5θθ+=-,(0,)θπ∈,则sin cos θθ-=()A .15B .15-C .75D .75-【答案】C 【解析】【分析】利用平方关系,结合同角三角函数关系式,即可求解.【详解】()21sin cos 12sin cos 25θθθθ+=+=,242sin cos 025θθ=-<,()0,θπ∈ ,,2πθπ⎛⎫∴∈ ⎪⎝⎭,sin cos θθ>,()249sin cos 12sin cos 25θθθθ-=-=,所以7sin cos 5θθ-=.故选:C例38.(2022·山西晋中·模拟预测(理))若tan 1θ=-,则()cos 1sin 2sin cos θθθθ--等于()A .12B .2C .1-D .13-【答案】C 【解析】【分析】化简原式为2tan 1tan 1θθ-+即得解.【详解】解:原式()222cos sin 2sin cos cos cos (sin cos )=sin cos sin cos θθθθθθθθθθθθ-⋅+-=--22cos (sin cos )sin cos θθθθθ-=+2tan 12=1tan 12θθ--==-+.故选:C例39.(2022·湖北·模拟预测)已知()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,则3sin sin sin 2ααπα-=⎛⎫+ ⎪⎝⎭()A .35B .35C .310D .310-【答案】D 【解析】【分析】根据题意求出tan α,再将原式化简为:32sin sin tan tan 1sin 2αααπαα-=+⎛⎫+ ⎪⎝⎭,求解即可.【详解】因为()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,所以sin 3cos 0αα--=,所以tan 3α=-()232sin 1sin sin sin tan 3sin cos cos tan 110sin 2αααααααπααα--====-+⎛⎫+ ⎪⎝⎭.故选:D.【方法技巧与总结】(1)若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2)若无象限条件,一般“弦化切”.题型七:诱导求值与变形例40.(2022·贵州·贵阳一中高三阶段练习(理))若π1sin 63α⎛⎫-= ⎪⎝⎭,则2πcos 23α⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】D 【解析】【分析】由三角函数的二倍角的余弦公式,结合诱导公式,即可求得答案.【详解】由题意得:2222πππππ27cos 22cos 12cos 12sin 113326699αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=---=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选:D .例41.(2022·贵州·贵阳一中模拟预测(文))若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】B 【解析】【分析】利用诱导公式计算可得;【详解】解:因为1sin 63a π⎛⎫+= ⎪⎝⎭,所以21cos cos sin 32663ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选:B.例42.(2022·青海·海东市教育研究室一模(理))()tan 165-︒=()A .2-B .2-+C .2D .2【答案】C 【解析】【分析】先利用诱导公式可得()tan 165tan15-︒=︒,在运用正切两角差公式()tan15tan 4530︒=︒-︒计算.【详解】()()()tan 165tan 18015tan15tan 4530-︒=-︒+︒=︒=︒-︒1tan 45tan 3021tan 45tan 30︒-︒===+︒︒故选:C .例43.(2022·安徽·合肥市第八中学模拟预测(文))已知2cos sin 022a ππα⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则()tan -=πα()A .2B .—2C .12D .12-【答案】C 【解析】【分析】根据诱导公式五、六可得2sin cos 0αα+=,由同角三角函数的关系可得1tan 2α=-,结合诱导公式二计算即可.【详解】由已知得2sin cos 0αα+=,12sin cos tan 2ααα∴=-∴=-,,∴1tan()tan 2παα-=-=.故选:C【方法技巧与总结】(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数.(2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化【过关测试】一、单选题1.(2022·宁夏·银川一中模拟预测(理))中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分)现有一个如图所示的曲池,1AA 垂直于底面,13AA =,底面扇环所对的圆心角为2π,弧AD 长度是弧BC 长度的3倍,2CD =,则该曲池的体积为()A .92πB .5πC .112πD .6π【答案】D 【解析】【分析】利用柱体体积公式求体积.【详解】不妨设弧AD 所在圆的半径为R ,弧BC 所在圆的半径为r ,由弧AD 长度为弧BC 长度的3倍可知3R r =,22CD R r r =-==,所以1r =,3R =.故该曲池的体积22()364V R r ππ=⨯-⨯=.故选:D.2.(2022·海南中学高三阶段练习)二十四节气是中华民族上古农耕文明的产物,是中国农历中表示李节变迁的24个特定节令.如图,每个节气对应地球在黄道上运动15︒所到达的一个位置.根据描述,从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为()A .π3-B .π2C .5π12D .π3【答案】B【解析】【分析】根据条件得到运行度数为6×15°,化为弧度即可得解.【详解】根据题意,立春是立冬后的第六个节气,故从立冬到立春相应于地球在黄道上逆时针运行了61590︒⨯=︒,所以从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为π2.故选:B3.(2022·河北·模拟预测)已知圆锥的母线长为2,其侧面展开图是圆心角等于23π的扇形,则该圆锥的体积为()A B .1627πC D .1681π【答案】C 【解析】【分析】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,从而可求出半径r ,再求出h ,进而可求出其体积【详解】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,解得23r =,所以h ===所以圆锥的体积为22112333V r h ππ⎛⎫==⨯=⎪⎝⎭故选:C4.(2022·福建省福州格致中学模拟预测)已知角θ的大小如图所示,则1sin 2cos 2θθ+=()A .5-B .5C .15-D .15【答案】A 【解析】【分析】由图中的信息可知tan 54πθ⎛⎫+=- ⎪⎝⎭,化简1sin 2cos 2θθ+即可.【详解】由图可知,tan 54πθ⎛⎫+=- ⎪⎝⎭,()()()22222cos sin 1sin 2sin cos 2sin cos cos sin cos 2cos sin cos sin cos sin cos sin θθθθθθθθθθθθθθθθθθ+++++===--+-tantan 1tan 4tan 51tan 41tan tan 4πθθπθπθθ++⎛⎫===+=- ⎪-⎝⎭-;故选:A.5.(2022·江西·临川一中模拟预测(文))tan195︒=()A.2-B.2-+C .2D .2【答案】C 【解析】【分析】利用诱导公式及两角差的正切公式计算可得;【详解】解:()()tan195tan 18015tan15tan 4530︒=︒+︒=︒=︒-︒tan 45tan 301tan 45tan 30︒-︒=+︒︒12==故选:C6.(2022·江苏·南京市天印高级中学模拟预测)若21sin2512sin αα+=-,则tan α=()A .23-B .32-C .23D .32【答案】C 【解析】【分析】通过“1”的替换,齐次化,然后得到关于tan α的方程,解方程即可【详解】22221sin 2(cos sin )cos sin 1tan 512sin cos sin cos sin 1tan αααααααααααα++++====----,解得2tan 3α=故选:C7.(2022·四川成都·模拟预测(文))已知向量(3cos 2,sin )a αα= ,(2,cos 5sin )b αα=+ ,π0,2α⎛⎫∈ ⎪⎝⎭,若a b ⊥ ,则tan α=()A .2B .-2C .3D .34【答案】C 【解析】【分析】由a b ⊥可得向量的数量积等于0,化简可得6cos 2sin (cos 5sin )0αααα++=,结合二倍角公式以及同角的三角函数关系式化为226tan tan n 10ta ααα-++=,可求得答案.【详解】由题意a b ⊥可得0a b ⋅= ,即6cos 2sin (cos 5sin )0αααα++=,即2226(cos sin )sin cos 5sin 0ααααα-++=,故22226cos sin sin c sin os 0cos αααααα-++=,即226tan tan n 10ta ααα-++=,由于π0,2α⎛⎫∈ ⎪⎝⎭,故tan 3,tan 2αα==-(舍去),故选:C8.(2022·黑龙江·哈九中模拟预测(文))数学家华罗庚倡导的“0.618优选法”在各领域都应用广泛,0.618就是黄金分割比m =2sin18︒).A .4B 1+C .2D 1【答案】A 【解析】【分析】根据2sin18m ︒=,结合三角函数的基本关系式,诱导公式和倍角公式,即可求解.【详解】根据题意,可得2sin182cos72m =︒=︒,4sin144cos54︒==︒()4sin 90544cos544cos54cos54︒+︒︒===︒︒.故选:A .二、多选题9.(2022·全国·高三专题练习)下列说法正确的有()A .经过30分钟,钟表的分针转过π弧度B .1801radπ︒=C .若sin 0θ>,cos 0θ<,则θ为第二象限角D .若θ为第二象限角,则2θ为第一或第三象限角【答案】CD 【解析】【分析】对于A ,利用正负角的定义判断;对于B ,利用角度与弧度的互化公式判断;对于C ,由sin 0θ>求出θ的范围,由cos 0θ<求出θ的范围,然后求交集即可;对于D ,由θ是第二象限角,可得222k k ππθππ+<<+,k Z ∈,然后求2θ的范围可得答案【详解】对于A ,经过30分钟,钟表的分针转过π-弧度,不是π弧度,所以A 错;对于B ,1︒化成弧度是rad 180π,所以B 错误;对于C ,由sin 0θ>,可得θ为第一、第二及y 轴正半轴上的角;由cos 0θ<,可得θ为第二、第三及x 轴负半轴上的角.取交集可得θ是第二象限角,故C 正确;对于D :若θ是第二象限角,所以222k k ππθππ+<<+,则()422k k k Z πθπππ+<<+∈,当2()k n n Z 时,则22()422n n n Z πθπππ+<<+∈,所以2θ为第一象限的角,当21()k n n Z =+∈时,5322()422n n n Z πθπππ+<<+∈,所以2θ为第三象限的角,综上,2θ为第一或第三象限角,故选项D 正确.故选:CD.10.(2022·全国·高三专题练习)中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形(如图)的面积为1S ,圆心角为1α,圆面中剩余部分的面积为2S ,圆心角为2α,当1S 与2S0.618≈(黄金分割比)时,折扇看上去较为美观,那么()A .1127.5α=︒B .1137.5α=︒C.21)απ=D.12αα=【答案】BCD 【解析】【分析】利用扇形的面积公式以及角度制与弧度制的互化即可求解.【详解】设扇形的半径为R,由211122221212R S S R αααα===,故D 正确;由122ααπ+=,。
基本事实与定理高一知识点
基本事实与定理高一知识点基本事实与定理:高一知识点在高中数学的学习中,我们经常接触到各种基本事实与定理,它们是我们学习数学的基石。
掌握了这些基本事实与定理,我们就能更好地理解数学知识的本质,提高解题能力。
本文将介绍几个高一阶段的基本事实与定理。
一、角的概念及基本性质角是数学中一个基本的概念,它是由两条射线(或称为半直线)共享一个公共端点形成的。
根据角的大小,可以分为锐角、直角、钝角和平角。
锐角的角度小于90°,直角的角度等于90°,钝角的角度大于90°,而平角的角度等于180°。
在角的基本性质中,我们常用到的有垂直角、对顶角和余角等。
垂直角是两条相交直线之间的角,它们的角度相等。
对顶角是两条平行直线被一条横切线所切割而形成的内角,它们的角度相等。
余角是与给定角相加等于90°的角,即互为余角的两个角的和等于90°。
二、三角形与相似三角形三角形是由三条线段(也称为边)所围成的一个封闭平面图形。
根据三条边的长短关系,三角形可以分为等边三角形、等腰三角形和普通三角形。
等边三角形的三条边长度相等,等腰三角形的两条边长度相等,而普通三角形的三条边长度都不相等。
相似三角形是指具有相似形状的三角形。
相似三角形有一个重要的性质:对应角相等。
也就是说,如果两个三角形的对应角度相等,则它们是相似的。
利用相似三角形的性质,我们可以解决很多实际问题,例如测量高楼的高度、测量无法直接到达的距离等。
三、平行线与比例定理在平面几何中,平行线是指在同一个平面上永远不会相交的两条直线。
在平行线的研究中,我们常用到两条平行线之间的夹角、平行线与横切线之间的关系等。
平行线的比例定理是指当有两组平行线与一条横切线相交时,各对应线段之间的比例相等。
我们可以利用这个定理求解各种实际问题,例如测量高楼的高度、计算图形的面积等。
四、勾股定理及其应用勾股定理是三角形中一个经典的定理,它描述了一个直角三角形的边的关系。
高中数学-三角函数知识点总结
三角函数知识点一、三角函数知识点 1.角的定义:(1)00~0360角的定义:从一点O 出发的两条射线OB OA ,所形成的图形叫做角,这点O 叫做角的顶点,射线OB OA ,叫做角的两边(2)任意角的定义:角可以看成是平面内一条射线绕着它的端点从一个位置OA 旋转到另一个位置OB 所形成的图形,端点O 叫做角的顶点,射线OA 叫做角的始边,射线OB 叫做角的终边2.规定:(1)正角:按逆时针方向旋转形成的角叫正角 (2)负角:按顺时针方向旋转形成的角叫负角 (3)零角:一条射线不作任何旋转形成的角叫零角这样,我们就把角的概念推广到了任意角,包括正角,负角,零角 注:角的度量需注意:既要考虑旋转方向,又要考虑旋转量3.终边相同的角:所有与α终边相同的角连同α在内组成的集合{}Z k k S ∈⋅+==,3600αββ 4.象限角和轴线角:将角放在直角坐标系中,让角的顶点与原点重合,角的始边与x 轴非负半轴重合,则(1)象限角:角的终边落在第几象限,则称该角为第几象限角 (2)轴线角:角的终边落在坐标轴上,则称该角为轴线角 5.1º的角的定义:规定周角的3601为1度的角,记作:01,这种用度作为单位来度量角的单位制叫做角度制6.1弧度角的定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1rad ,读作:1弧度,这种以弧度为单位来度量角的制度叫做弧度制7.弧度数(1)我们规定,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 (2)半径为R 的圆的圆心角α所对的弧长为l ,则角α的弧度数为Rl=α,角α的正负由α终边的旋转方向决定注:弧度制与角度制区别:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制,1弧度≠1度(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是周角的3601所对的圆心角的大小(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制; (4)以弧度和度为单位的角,都是一个与半径无关的定值 8.弧度制与角度制的换算(1)弧度制与角度制下的一些特殊角①角度制下零度的角:00,弧度制下零度的角:0rad , 区别数值相同,单位不同 ②角度制下平角:0180,弧度制下平角:πrad ③角度制下周角:0360,弧度制下平角:2πrad (2)弧度制与角度制的换算①角度化成弧度:=0360 π2 ,0180 π2 ,01 01745.0 ②弧度化成角度:π2 0360 ,π 0180 ,rad 1 '01857 注:角度和弧度互化9.扇形的弧长公式和面积公式(1)角度制下扇形的弧长公式:180Rn l π=;扇形的面积公式:3602R n S π=(2)弧度制下扇形的弧长公式:R l α=;扇形的面积公式:Rl R S 21212==α10.角度制下和弧度制下轴线角和象限角的集合 (1)轴线角的集合①终边在x 轴的非负半轴上{}Z k k x x ∈⋅=,3600={}Z k k x x ∈=,2π②终边在x 轴的非正半轴上{}Z k k x x ∈+⋅=,18036000={}Z k k x x ∈+=,2ππ ③终边在x 轴上{}Z k k x x ∈⋅=,1800={}Z k k x x ∈=,π④终边在y 轴的非负半轴上{}Z k k x x ∈+⋅=,9036000={}Z k k x x ∈=,2π ⑤终边在y 轴的非正半轴上{}Z k k x x ∈-⋅=,9036000={}Z k k x x ∈+=,2ππ⑥终边在y 轴上{}Z k k x x ∈+⋅=,9018000=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ⑦终边在坐标轴上{}Z k k x x ∈⋅=,900=⎭⎬⎫⎩⎨⎧∈=Z k k x x ,2π (2)象限角的集合①第一象限角的集合{}Z k k x k x ∈+⋅<<⋅,90360360000=⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ②第二象限角的集合{}Z k k x k x ∈+⋅<<+⋅,180360903600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,222ππππ③第三象限角的集合{}Z k k x k x ∈+⋅<<+⋅,2703601803600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ④第四象限角的集合{}Z k k x k x ∈+⋅<<+⋅,3603602703600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,22232ππππ ={}Z k k x k x ∈⋅<<-⋅,36090360000=⎭⎬⎫⎩⎨⎧∈<<-Z k k x k x ,222πππ11.两角的终边对称结论(1)α与β的终边关于x 轴对称Z k k ∈=+,2πβα (2)α与β的终边关于y 轴对称Z k k ∈+=+,2ππβα (3)α与β的终边关于原点轴对称Z k k ∈++=,2ππβα (4)α与β的终边共线Z k k ∈+=,πβα(5)α与β的终边关于直线x y =对称Z k k ∈+=+,22ππβα(6)α与β的终边关于直线x y -=对称Z k k ∈+=+,232ππβα (7)α与β的终边互相垂直Z k k ∈++=,2ππβα12.三角函数定义:(1)任意角的三角函数定义1:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边上任意一点P 的坐标为),(y x ,它到原点的距离022>+=y x r ,则 ①比值r y 叫做角α的正弦,记作αsin ,即=αsin r y ②比值r x 叫做角α的余弦,记作αcos ,即=αcos r x ③比值x y 叫做角α的正切,记作αtan ,即=αtan x y ④比值y x 叫做角α的余切,记作αcot ,即=αcot yx (2)任意角的三角函数定义2:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边与单位圆的交点为P ),(y x ,则 ①=αsin y ②αcos x ③=αtan xy④=αcot y x三角函数都是以角为自变量,以比值为函数值的函数,又由于角与实数是一一对应的,所以三角函数也可以看作是以实数为自变量的函数13.三角函数的定义域和值域三角函数定义域值域αsin =yR ]1,1[- αcos =y R]1,1[-αtan =y⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππR αcot =y{}Z k k x x ∈≠,πR14.三角函数值在各象限的符号αsin αcos αtan记法1:正弦上正,余弦右正,正切一三正 记法2:一全正,二正弦,三正切,四余弦 15.诱导公式:公式一:终边相同的角的同一三角函数值相等角度制下 弧度制下=+⋅)360sin(0αk αsin =+)2sin(απk αsin =+⋅)360cos(0αk αcos =+)2cos(απk αcos =+⋅)360tan(0αk αtan =+)2tan(απk αtan =+⋅)360cot(0αk αcot =+)2cot(απk αcot公式二:角度制下 弧度制下=+)180sin(0ααsin - =+)sin(απαsin - =+)180cos(0ααcos - =+)cos(απαcos - =+)180tan(0ααtan =+)tan(απαtan =+)180cot(0ααcot =+)cot(απαcot公式三:角度制下 弧度制下=-)180sin(0ααsin =-)sin(απαsin =-)180cos(0ααcos - =-)cos(απαcos - =-)180tan(0ααtan - =-)tan(απαtan - =-)180cot(0ααcot - =-)cot(απαcot -公式四:角度制下 弧度制下=-)sin(ααsin - =-)sin(ααsin - =-)cos(ααcos =-)cos(ααcos =-)tan(ααtan - =-)tan(ααtan - =-)cot(ααcot - =-)cot(ααcot -公式五:角度制下 弧度制下=-)90sin(0ααcos =-)2sin(απαcos=-)90cos(0ααsin =-)2cos(απαsin-)90tan(0ααcot =-)2tan(απαcot=-)90cot(0ααtan =-)2cot(απαtan公式六:角度制下 弧度制下=+)90sin(0ααcos =+)2sin(απαcos=+)90cos(0ααsin - =+)2cos(απαsin -=+)90tan(0ααtan - =+)2tan(απαtan -=+)90cot(0ααcot - =+)2cot(απαcot -公式七:角度制下 弧度制下=+)270sin(0ααcos - =+)23sin(απαcos -=+)270cos(0ααsin =+)23cos(απαsin=+)270tan(0ααcot - =+)23tan(απαcot -=+)270cot(0ααtan - =+)23cot(απαtan -公式八:角度制下 弧度制下=-)270sin(0ααcos - =-)23sin(απαcos -=-)270cos(0ααsin - =-)23cos(απαsin -=-)270tan(0ααcot =-)23tan(απαcot=-)270cot(0ααtan - =-)23cot(απαtan -记忆口诀:奇变偶不变符号看象限 16.部分特殊角的三角函数:αcos21 22 23 1αtan/3-1-33- 017.三角函数线:(1)有向线段:当角α的终边不在坐标轴上时,我们把MP 、OM 、AT 都看成带有方向的线段,这种带方向的线段叫有向线段规定:与坐标轴相同的方向为正方向(2)这几条与单位圆有关的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线注:(1)正弦线、余弦线、正切线分别解释了正弦函数x y sin =,余弦函数x y cos =、正切函数x y tan =的几何意义(2)正弦线、余弦线、正切线的方向与坐标轴正方向相同时,对应的三角函数值为正,与坐标轴正方向相反时,对应的三角函数值为负 18.同角三角函数的关系:(1)平方关系:1cos sin 22=+αα (2)商数关系:=αtan ααcos sin 、=αcot ααsin cos (3)倒数关系:1cot tan =αα 注意公式的变形:(1)1cos sin 22=+x x ⇒x x 22cos 1sin -=、x x 22sin 1cos -= (2)⇒=αααcos sin tan =αsin ααcos tan 、⇒=αααsin cos cot =αcos ααsin cot (3)ααααααcos sin ,cos sin ,cos sin -+的关系:①=+2)cos (sin ααααcos sin 21+ ②=-2)cos (sin ααααcos sin 21- ③=-++22)cos (sin )cos (sin αααα219.正弦函数x y sin =、余弦函数x y cos =、正切函数x y tan =的图像和性质 函数x y sin = x y cos = x y tan =图形定义域 RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ值域]1,1[-]1,1[-R最值当Z k k x ∈+=,22ππ时,有最大值当Z k k x ∈-=,22ππ时,有最大值当Z k k x ∈=,2π时,有最大值当Z k k x ∈+=,22ππ时,有最大值无最大值无最小值单调性在Zk k k ∈+-],22,22[ππππ上递增在Zk k k ∈++],232,22[ππππ上递减在Z k k k ∈-],2,2[πππ上递增在Z k k k ∈+],2,2[πππ上递减在Zk k k ∈+-),2,2(ππππ上递增奇偶性 奇函数偶函数奇函数周期性π2=Tπ2=Tπ=T 对称性关于Z k k x ∈+=,2ππ对称关于点Z k k ∈),0,(π中心对称关于Z k k x ∈=,π对称 关于点Zk k ∈+),0,2(ππ中心对称关于点Z k k ∈),0,2(π中心对称20.三角函数周期结论(1)函数B x A y ++=)sin(ϕω(其中0,≠ωA )的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,≠ωA )的周期=T ωπ2函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (2)函数)sin(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)cos(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (3)函数B x A y ++=)sin(ϕω(其中0,,≠B A ω)的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,,≠B A ω)的周期=T ωπ221.函数B x A y ++=)sin(ϕω)0,0(>>ωA 的图像的作法(1)图像变换法:函数B x A y ++=)sin(ϕω的图像可由正弦函数x y sin =经过一系列的变换得到:①先平移变换,再周期变换:x y sin =———————————→)sin(ϕ+=x y —————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω ②先周期变换,再平移变换:x y sin =———————————→)sin(x y ω=——————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω (2)五点作图法:函数B x A y ++=)sin(ϕω的图像画法:一个周期内起关键作用的五个点的横坐标可由=+ϕωx ππππ2,23,,2,0得到 22.函数变换结论: (1)平移变换01左右平移:①将函数)(x f y =的图象向左移a 个单位得函数)(a x f y +=的图象 ②将函数)(x f y ω=的图象向左移a 个单位得函数))((a x f y +=ω的图象02上下平移:将函数)(x f y =的图象向上移b 个单位得函数b x f y +=)(的图象(2)伸缩变换①函数)(x f y ω=的图象可由函数)(x f y =的图象上每一点的纵坐标不变,横坐标变为原来的ω1倍得到 ②函数)(x Af y =的图象可由函数)(x f y =的图象上每一点的横坐标不变,纵坐标变为原来的A 倍得到 (3)翻折变换①函数)(x f y =的图象可将函数)(x f y =的图像y 轴右侧的图像保留,y 轴左侧的图像由y 轴右侧的图像沿y 轴翻折得到②函数)(x f y =的图象可将函数)(x f y =的图像在x 轴上方的图像保留,x 轴下方的图像沿x 轴翻折到x 轴上方得到 23.两个函数的对称性结论(1)函数)(x f y -=与)(x f y =的图象关于x 轴对称 (2)函数)(x f y -=与)(x f y =的图象关于y 轴对称 (3)函数)(x f y --=与)(x f y =的图象关于原点对称 (4)函数)(1x fy -=与)(x f y =的图象关于x y =对称(5)函数)2(x a f y -=与)(x f y =的图象关于a x =对称(6)函数)2(x a f y --=与)(x f y =的图象关于点)0,(a 对称24.函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y )0,0(>>ωA 的奇偶性结论 (1)函数)sin(ϕω+=x A y 为奇函数⇔Z k k ∈=,πϕ(2)函数)sin(ϕω+=x A y 为偶函数⇔Z k k ∈+=,2ππϕ(3)函数)cos(ϕω+=x A y 为奇函数⇔Z k k ∈+=,2ππϕ(4)函数)cos(ϕω+=x A y 为偶函数⇔Z k k ∈=,πϕ 二、三角变换25.两角和与差的正弦余弦正切公式:(1)=+)sin(βαβαβαsin cos cos sin +,记作)(βα+ S (2)=-)sin(βαβαβαsin cos cos sin -,记作)(βα- S (3)=+)cos(βαβαβαsin sin cos cos -,记作)(βα+C (4)=-)cos(βαβαβαsin sin cos cos +,记作)(βα-C (5)=+)tan(βαβαβαtan tan 1tan tan -+,记作)(βα+T(6)=-)tan(βαβαβαtan tan 1tan tan +-,记作)(βα-T26.二倍角的正弦、余弦、正切公式 (1)=α2sin ααcos sin 2(2)=α2cos αα22sin cos -=1cos 22-α=α2sin 21-(3)=α2tan αα2tan 1tan 2- 注:二倍角公式的变形:(1)=+2)cos (sin ααααcos sin 21+;=-2)cos (sin ααααcos sin 21-(2)升幂缩角公式:=+αcos 12cos 22α;=-αcos 12sin 22α(3)降幂扩角公式:=α2sin 22cos 1α-;=α2cos 22cos 1α+ =α2sin 2α2cos 1-;=α2cos 2α2cos 1+27.半角公式:(1) =2sinα22cos 1α-±=2cosα22cos 1α+±=2tanααα2cos 12cos 1+-±(2)=2tanαααsin cos 1-=ααcos 1sin +28.辅助角公式: (1)=+θθcos sin b a )sin(22ϕ++x b a ,其中=ϕsin 22b a b +,=ϕcos 22b a a +(2)=+θθcos sin b a )cos(22ϕ-+x b a ,其中=ϕsin 22ba a +,=ϕcos 22ba b +29.万能公式=α2sin αα2tan 1tan 2+ =α2cos αα22tan 1tan 1+- =α2tan αα2tan 1tan 2- 30.积化和差公式=βαcos sin )]sin()[sin(21βαβα-++=βαsin cos )]sin()[sin(21βαβα--+ =βαcos cos )]cos()[cos(21βαβα-++ =βαsin sin )]cos()[cos(21βαβα--+-31.和差化积公式=+βαsin sin 2cos2sin2βαβα-+=-βαsin sin 2sin2cos2βαβα-+=+βαcos cos 2cos2cos2βαβα-+=-βαcos cos 2sin2sin2βαβα-+-。
(完整word版)高中数学三角函数基础知识点及答案(2),推举文档
(完整word版)高中数学三角函数基础知识点及答案(2),推举文档高中数学三角函数基础知识点及答案1、角的概念的推广:平面内一条射线绕着端点从一具位置旋转到另一具位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一具零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就讲那个角是第几象限的角。
假如角的终边在坐标轴上,就以为那个角别属于任何象限。
3. 终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k kαθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角别一定相等.如与角ο1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。
弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,所以,1弧度约为57.3°,即57°17'44.806'',1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度,直角为π/2弧度。
(答:25-o;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k kαθπ=+∈Z . (3)α终边与θ终边对于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边对于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边对于原点对称?2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈.如α的终边与6π的终边对于直线x y =对称,则α=____________。
专题44 高中数学任意角(原卷版)
专题44 任意角1.角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2.角的表示如图,(1)始边:射线的起始位置OA ,(2)终边:射线的终止位置OB ,(3)顶点:射线的端点O . 这时,图中的角α可记为“角α”或“∠α”或简记为“α”.3.角的分类按旋转方向,角可以分为三类:4.象限角把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.象限角的判定方法(1)根据图象判定.依据是终边相同的角的概念,因为0°~360°之间的角的终边与坐标系中过原点的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°范围内没有两个角终边是相同的. (3)nα所在象限的判断方法:确定nα终边所在的象限,先求出nα的范围,再直接转化为终边相同的角即可. (4)αn 所在象限的判断方法:已知角α所在象限,要确定角αn所在象限,有两种方法: ①用不等式表示出角αn 的范围,然后对k 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;…;被n除余n -1.从而得出结论.②作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域.从x 轴非负半轴起,按逆时针方向把这4n个区域依次循环标上1,2,3,4.α的终边在第几象限,则标号为几的区域,就是α的终边所n所在的象限就可以由标号区域所在的象限直观地看出.落在的区域.如此,αn5.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.(5)终边相同的角常用的三个结论①终边相同的角之间相差360°的整数倍;②终边在同一直线上的角之间相差180°的整数倍;③终边在相互垂直的两直线上的角之间相差90°的整数倍.提示:(1)关于x轴对称:若角α与β的终边关于x轴对称,则角α与β的关系是β=-α+k·360°,k∈Z.(2)关于y轴对称:若角α与β的终边关于y轴对称,则角α与β的关系是β=180°-α+k·360°,k∈Z.(3)关于原点对称:若角α与β的终边关于原点对称,则角α与β的关系是β=180°+α+k·360°,k∈Z.(4)关于直线y=x对称:若角α与β的终边关于直线y=x对称,则角α与β的关系是β=-α+90°+k·360°,k∈Z.题型一角的有关概念的判断1.下列说法正确的是()A.终边相同的角一定相等B.钝角一定是第二象限角C.第一象限角一定不是负角D.小于90°的角都是锐角2.给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).3.下列结论:①三角形的内角必是第一、二象限角;②始边相同而终边不同的角一定不相等;③钝角比第三象限角小;④小于180°的角是钝角、直角或锐角.其中正确的结论为________(填序号).4.下列说法正确的是()A.三角形的内角一定是第一、二象限角B.钝角不一定是第二象限角C.终边与始边重合的角是零角D.钟表的时针旋转而成的角是负角5.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是() A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C6.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有() A.B C A B.B A C C.D(A∩C) D.C∩D=B7.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有()A.1个B.2个C.3个D.4个8.下列说法正确的是()A.三角形的内角是第一象限角或第二象限角B.第四象限的角一定是负角C.60°角与600°角是终边相同的角D.将表的分针拨慢10分钟,则分针转过的角为60°9.下列命题正确的是()A.终边与始边重合的角是零角B.终边和始边都相同的两个角一定相等C.在90°≤β<180°范围内的角β不一定是钝角D.小于90°的角是锐角10.若将钟表拨慢10分钟,则时针转了______度,分针转了________度.11.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°.②855°.③-510°.题型二终边相同的角的表示及应用1.50°角的始边与x轴的非负半轴重合,把终边按顺时针方向旋转2周,所得角是________.2.下列各个角中与2 019°终边相同的是()A.-149°B.679°C.319°D.219°3.下面与-850°12′终边相同的角是()A.230°12′B.229°48′C.129°48′D.130°12′4.已知0°≤α<360°,且α与600°角终边相同,则α=________,它是第________象限角.5.角-870°的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.在-360°~0°范围内与角1 250°终边相同的角是()A.170°B.190°C.-190°D.-170°7.与600°角终边相同的角可表示为()A.k·360°+220°(k∈Z) B.k·360°+240°(k∈Z)C.k·360°+60°(k∈Z) D.k·360°+260°(k∈Z)8.已知角α=-3000°,则与角α终边相同的最小正角是________.9.与2019°角的终边相同的最小正角是________,绝对值最小的角是________.10.若α,β两角的终边互为反向延长线,且α=-120°,则β=________.11.写出与α=-1910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.12.在-360°~360°之间找出所有与下列各角终边相同的角,并判断各角所在的象限.①790°;②-20°.13.在0°到360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角:(1)-120°;(2)640°.14.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-120°;(2)660°;(3)-950°08′.15.已知角α=2020°.(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.16.在与角1030°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角.17.在与530°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720°到-360°的角.18.在与角10 030°终边相同的角中,求满足下列条件的角β.(1)最大的负角和最小的正角;(2)[360°,720°)内的角.19.已知角β为以O为顶点,x轴为始边,逆时针旋转60°所成的角.(1)写出角β的集合S;(2)写出S中适合不等式-360°<β<720°的元素.20.在角的集合{α|α=k·90°+45°,k∈Z}中,(1)有几种终边不相同的角?(2)若-360°<α<360°,则集合中的α共有多少个?21.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M有几类终边不相同的角?(2)集合M中大于-360°且小于360°的角是哪几个?(3)写出集合M中的第二象限角β的一般表达式.22.若角α与β的终边在一条直线上,则α与β的关系是__________.23.若角α,β的终边相同,则α-β的终边在()A.x轴的非负半轴B.y轴的非负半轴C.x轴的非正半轴D.y轴的非正半轴24.已知角α的终边与角-690°的终边关于y轴对称,则角α=___________.25.角α与角β的终边关于y轴对称,则α与β的关系为()A.α+β=k·360°,k∈Z B.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈Z D.α-β=k·360°,k∈Z26.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=________.27.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.28.终边在第一或第三象限的角的集合是________.29.终边在直线y=-x上的所有角的集合是()A.{α|α=k·360°+135°,k∈Z} B.{α|α=k·360°-45°,k∈Z}C.{α|α=k·180°+225°,k∈Z} D.{α|α=k·180°-45°,k∈Z}30.终边落在直线y=3x上的角的集合为________.31. 一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,两只蚂蚁均从点A(1,0)同时逆时针匀速爬动,红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0°<α<β<180°),如果两只蚂蚁都在第14 s时回到A 点,并且在第2 s时均位于第二象限,求α,β的值.题型三象限角的判定(任意角终边位置的确定和表示)1.若α是第一象限角,则下列各角中属于第四象限角的是()A.90°-αB.90°+αC.360°-αD.180°+α2.已知α是第二象限的角,则180°-α是第________象限的角.3.若角α的终边在y轴的负半轴上,则角α-150°的终边在()A.第一象限B.第二象限C.y轴的正半轴上D.x轴的负半轴上4.若α=k·180°+45°,k∈Z,则α所在象限是()A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限5.若β是第二象限角,则270°+β是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角6.若α是第二象限角,则2α,α2分别是第几象限的角?7.已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限8.若α是第一象限角,则2α,α2分别是第几象限角?9.(1)若α为第三象限角,试判断90°-α的终边所在的象限;(2)若α为第四象限角,试判断α2的终边所在的象限.10.若α是第一象限角,则-α2是( )A .第一象限角B .第一、四象限角C .第二象限角D .第二、四象限角11.已知角2α的终边在x 轴的上方,那么α是( )A .第一象限角B .第一、二象限角C .第一、三象限角D .第一、四象限角12.已知θ为第二象限角,那么θ3是( )A .第一或第二象限角B .第一或第四象限角C .第二或第四象限角D .第一、二或第四象限角13.已知α是第一象限角,则角α3的终边可能落在________.(填写所有正确的序号)①第一象限 ②第二象限 ③第三象限 ④第四象限题型四 区域角的表示1.已知,如图所示.分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.2.已知角α的终边在如图阴影表示的范围内(不包含边界),那么角α的集合是________.3.已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.4.如图,终边落在阴影部分的角的集合是( ) A .{α|-45°≤α≤120°} B .{α|120°≤α≤315°}C .{α|k ·360°-45°≤α≤k ·360°+120°,k ∈Z}D .{α|k ·360°+120°≤α≤k ·360°+315°,k ∈Z}5.写出终边落在阴影部分的角的集合.6.写出角的终边在图中阴影区域的角的集合(包括边界).7.写出终边落在图中阴影区域内(不包括边界)的角的集合.8.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).9.如图,α,β分别是终边落在OA,OB位置上的两个角,且α=60°,β=315°.(1)求终边落在阴影部分(不包括边界)的角γ的集合;(2)求终边落在阴影部分(不包括边界),且在0°~360°范围内的角的集合.10.已知集合A={α|k·180°+45°<α<k·180°+60°,k∈Z},集合B={β|k·360°-55°<β<k·360°+55°,k∈Z}.(1)在平面直角坐标系中,表示出角α终边所在区域;(2)在平面直角坐标系中,表示出角β终边所在区域;(3)求A∩B.。
高中数学三角函数专题:象限角
高中数学三角函数专题:象限角第一部分:角的基本概念知识点一:初中数学中角的定义。
角的定义:有共同端点的两条射线组成的图形。
如下图所示:知识点二:高中数学中角的定义。
角的定义:一条射线起始的位置定义为始边,这条射线在端点不动的情况进行旋转(可以逆时针和顺时针两个方向旋转),最终射线所在的位置定义为终边,始边和终边组成的图像为角。
如下图所示:正负角的定义:①顺时针旋转为负角;②逆时针旋转为正角。
如下图所示:-逆时针旋转为正角:α顺时针旋转为负角:α知识点三:象限角的定义。
象限角的规定:在平面直角坐标系xoy中:①以坐标原点为角的顶点;②以x轴的非负半轴为始边;③终边所在的象限为角的象限。
如下图所示:α是第一象限角α是第四象限角α是第三象限角α是第二象限角知识点四:与α角终边相同的角。
(Ⅰ)终边比α逆时针多旋转k 圈:k 0360+α;(Ⅱ)终边比α顺时针多旋转k 圈:k 0360-α。
结论:与α角终边相同的角:k 0360+α,其中Z k ∈。
知识点五:象限的划分。
按照正角划分:如下图所示:象限角的范围第一象限)36090,3600(0000k k ++,其中Z k ∈第二象限)360180,36090(0000k k ++,其中Z k ∈第三象限)360270,360180(0000k k ++,其中Z k ∈第四象限)360360,360270(0000k k ++,其中Zk ∈按照负角划分:如下图所示:象限角的范围第一象限)360270,360360(0000k k +-+-,其中Z k ∈第二象限)360180,360270(0000k k +-+-,其中Z k ∈第三象限)36090,360180(0000k k +-+-,其中Z k ∈第四象限)3600,36090(0000k k ++-,其中Zk ∈第二部分:角的基本概念题型题型一:判断角的象限。
模型一:已知角α为正角,判断角α的象限。
高中数学弧度制知识点
高中数学弧度制知识点任意角与弧度制知识梳理:一、任意角和弧度制1、角的概念的推广定义:一条射线OA由原来的位置,绕着它的端点O按一定的方向旋转到另一位置OB,就形成了角,记作:角或可以简记成。
注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于轴正半轴(3)“正角”与“负角”——这是由旋转的方向所决定的。
例1、若,求和的范围。
(0,45)(180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。
可以将角分为正角、零角和负角。
正角:按照逆时针方向转定的角。
零角:没有发生任何旋转的角。
负角:按照顺时针方向旋转的角。
例2、(1)时针走过2小时40分,则分针转过的角度是-960(2)将分针拨快10分钟,则分针转过的弧度数是.3、“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于轴的正半轴。
角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。
例1、30?;390?;?330?是第象限角300?60是第象限角585?1180?是第象限角2000是第象限角。
例2、(1)A={小于90°的角},B={第一象限的角},则A∩B=④(填序号).①{小于90°的角}②{0°~90°的角}③{第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是(B)A.B=A∩CB.B∪C=CC.ACD.A=B=C例3、写出各个象限角的集合:例4、若是第二象限的角,试分别确定2,的终边所在位置.解∵是第二象限的角。
∴k·360°+90°<<k·360°+180°(k∈Z).(1)∵2k·360°+180°<2<2k·360°+360°(k∈Z)。
高中数学1.1.1任意角讲义苏教版必修4
1.1.1 任意角一、任意角的概念1.角的概念:一个角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.2.角的分类:按旋转方向可将角分为如下三类:[提示]不一定,若角的终边未作旋转,则这个角是零角.若角的终边作了旋转,则这个角就不是零角.二、象限角与轴线角1.象限角:以角的顶点为坐标原点,角的始边为x轴正半轴建立平面直角坐标系.这样,角的终边(除端点外)在第几象限,就说这个角是第几象限角.2.轴线角:终边在坐标轴上的角.三、终边相同的角与角α终边相同的角的集合为{β|β=k·360°+α,k∈Z}.思考2:终边相同的角一定相等吗?其表示法唯一吗?[提示]终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角的表示方法不唯一.1.思考辨析(1)180°是第二象限角.( )(2)-30°是第四象限角.( )(3)第一象限内的角都小于第二象限内的角.( )[解析](1)×.180°是轴线角.(2)√.(3)×.如375°>120°,而375°和120°分别是第一、二象限内的角.[答案](1)×(2)√(3)×2.如图,则α=________,β=________.240°-120°[α是按逆时针方向旋转的,为240°,β是按顺时针方向旋转的,为-120°.]3.与-215°角终边相同的角的集合可表示为________.{β|β=k·360°-215°,k∈Z}[由终边相同角的表示可知与-215°角终边相同的角的集合是{β|β=k·360°-215°,k∈Z}.]4.将-885°化成k·360°+α(0°≤α<360°,k∈Z)的形式是________.(-3)×360°+195°[设-885°=k·360°+α,易得-885°=(-3)×360°+195°.]角的概念辨析【例1】(1)下列结论:①第一象限角是锐角;②锐角是第一象限角;③始边和终边重合的角是零角;④钝角是第二象限角;⑤小于90°的角是锐角;⑥第一象限角一定不是负角.其中正确的结论是________(填序号).(2)将35°角的终边按顺时针方向旋转60°所得的角度数为________,将35°角的终边按逆时针方向旋转一周后的角度数为________.思路点拨:(1)根据任意角、象限角的概念进行判断,正确区分第一象限角、锐角和小于90°的角.(2)由正负角的概念可得角的大小.(1)②④(2)-25°395°[(1)①400°角是第一象限角,但不是锐角,故①不正确;②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,②正确;③不正确,因为360°角的始边和终边也重合;④钝角是大于90°且小于180°的角,终边落在第二象限,故是第二象限角,④正确;⑤0°角是小于90°的角,但不是锐角,故⑤不正确;⑥-300°角是第一象限角,但-300°角是负角,故⑥不正确.(2)由角的定义可知,将35°角的终边按顺时针方向旋转60°所得的角度数为35°-60°=-25°,将35°角的终边按逆时针方向旋转一周后的角度数为35°+360°=395°.]1.解决此类问题的关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,严格辨析它们之间的联系与区别.2.判断结论正确与否时,若结论正确,需要严格的推理论证,若要说明结论错误,只需举出反例即可.1.时钟走了3小时20分,则时针所转过的角的度数为________,分针转过的角的度数为________.-100° -1 200° [时针每小时转30°,分针每小时转360°,由于旋转方向均为顺时针方向,故转过的角度均为负值,又3小时20分等于313小时,故时针转过的角度为-313×30°=-100°;分针转过的角度为-313×360°=-1 200°.]终边相同的角与象限角【例2】 已知α=-1 910°.(1)把α写成β+k ·360°(k ∈Z,0°≤β<360°)的形式,并指出它是第几象限的角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.思路点拨:(1)把α写成β+k ·360°(k ∈Z,0°≤β<360°)的形式后,判断β所在的象限即可.(2)将θ写成θ=β+k ·360°(k ∈Z,0°≤β<360°)的形式,用观察法验证k 的不同取值即可.[解] (1)法一:∵-1 910°=-6×360°+250°,∴-1 910°角与250°角终边相同,∴α=-6×360°+250°,它是第三象限的角.法二:设α=β+k ·360°(k ∈Z ),则β=-1 910°-k ·360°(k ∈Z ).令-1 910°-k ·360°≥0,解得k ≤-1 910360=-51136. k 的最大整数解为k =-6,相应的β=250°,于是α=250°-6×360°,它是第三象限的角.(2)由(1)知令θ=250°+k ·360°(k ∈Z ),取k =-1,-2就得到符合-720°≤θ<0°的角:250°-360°=-110°,250°-720°=-470°.故θ=-110°或-470°.1.把任意角化为k·360°+α(k∈Z且0°≤α<360°)的形式,关键是确定k,可以用观察法(α的绝对值较小),也可用除法.2.要求适合某种条件且与已知角终边相同的角时,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值.3.终边相同的角常用的三个结论:(1)终边相同的角之间相差360°的整数倍.(2)终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.提醒:k∈Z,即k为整数这一条件不可少.2.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.[解](1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.区域角的表示[探究问题]1.第一象限内的角的集合能否用{α|0°<α<90°}表示?为什么?提示:不能,第一象限内的角未必是(0°,90°)的角,也可能是负角,也可能是大于360°的角,其表示为{α|k·360°<α<90°+k·360°,k∈Z}.2.终边落在x轴上的角如何表示?提示:{α|α=k·180°,k∈Z}.3.若角α,β满足β=α+k·180°,k∈Z,则角α,β的终边存在怎样的关系?提示:角α,β的终边落在同一条直线上.【例3】写出终边落在如图所示阴影部分的角的集合.思路点拨:法一:先写出与30°及105°终边相同角的集合,再写出其对称区域内角的集合,最后合并便可.法二:分别写出与30°及105°的终边在同一直线上的角的集合,合并求解便可.[解]法一:设终边落在阴影部分的角为α,角α的集合由两部分组成:①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z},∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.法二:与30°角终边在同一条直线上的角的集合为{α|α=k·180°+30°,k∈Z}.与180°-75°=105°角终边在同一条直线上的角的集合为{α|α=k·180°+105°,k∈Z},结合图形可知,阴影部分的角的集合为{α|k·180°+30°≤α<k·180°+105°,k∈Z}.解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简形式.提醒:求解这类问题要注意实线边界与虚线边界的差异.教师独具1.本节课的重点是象限角的判断、终边相同角及区域角的表示,难点是n α及αn所在象限的判定.2.本节课要重点掌握以下规律方法(1)求终边相同的角及区域角的表示.(2)象限角及n α、αn所在象限的判断. 3.本节课的易错点有以下几点(1)对于角的理解,要明确该角是按顺时针方向还是逆时针方向旋转形成的,按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角.(2)把任意角化为α+k ·360°(k ∈Z ,且0°≤α<360°)的形式,关键是确定k ,可以用观察法(α的绝对值较小),也可以用除法.(3)已知角的终边范围,求角的集合时,先写出边界对应的角,再写出0°~360°内符合条件的角的范围,最后都加上k ·360°,得到所求.1.-210°角的终边所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限B [-210°=(-1)×360°+150°,∵150°是第二象限角,∴-210°也是第二象限角.]2.已知-990°<α<-630°,且角α与120°角的终边相同,则α=________. -960° [∵角α与120°角的终边相同,∴α=k ·360°+120°,k ∈Z .又∵-990°<α<-630°,∴-990°<k ·360°+120°<-630°,k ∈Z ,即-1110°<k ·360°<-750°,k ∈Z ,∴k =-3.当k =-3时,α=(-3)×360°+120°=-960°.]3.如图,射线OA 先绕端点O 逆时针方向旋转60°到OB 处,再按顺时针方向旋转820°至OC 处,则β=________.-40° [∠AOC =60°+(-820°)=-760°,β=-(760°-720°)=-40°.]4.已知角β的终边在直线3x -y =0上.(1)写出角β的集合S ;(2)写出S 中适合不等式-360°≤β<720°的元素.[解] (1)如图,直线3x -y =0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA 上的角是60°,终边落在射线OB 上的角是240°,所以以射线OA ,OB 为终边的角的集合为:S 1={β|β=k ·360°+60°,k ∈Z },S 2={β|β=k ·360°+240°,k ∈Z },所以,角β的集合S =S 1∪S 2={β|β=k ·360°+60°,k ∈Z }∪{β|β=60°+180°+k ·360°,k ∈Z }={β|β=2k ·180°+60°,k ∈Z }∪{β|β=(2k +1)·180°+60°,k ∈Z }={β|β=n ·180°+60°,n ∈Z }.(2)由于-360°≤β<720°,即-360°≤60°+n ·180°<720°,n ∈Z ,解得-73≤n <113,n ∈Z , 所以n =-2,-1,0,1,2,3.所以S 中适合不等式-360°≤β<720°的元素为:-2×180°+60°=-300°;-1×180°+60°=-120°;0×180°+60°=60°;1×180°+60°=240°;2×180°+60°=420°;3×180°+60°=600°.。
高一数学必修一任意角知识点
高一数学必修一任意角知识点数学是一门抽象而又实用的学科,对于高中生来说,数学的学习也是必不可少的一部分。
高一数学必修一中,一个重要的知识点就是任意角。
1. 任意角的定义任意角是指角的度数可以是任意实数的角。
在数轴上,我们可以将角的初始边和终边表示出来,并且角的顶点可以位于坐标系的任意位置。
这种角被称为任意角。
2. 任意角的度数我们知道,角度的度数是以度(°)为单位来衡量的。
对于任意角而言,它的度数可以是正数、负数或者是大于360°的数。
例如,一个角度为-45°,它的终边在数轴上逆时针旋转45°。
又例如,一个角度为420°,它的终边在数轴上顺时针旋转360°再继续旋转60°。
3. 任意角的弧度在数学中,角度的另一种衡量单位是弧度(rad)。
任意角的弧度可以是正数、负数或者是大于2π的数。
我们知道,一个完整的圆的周长是2π,而弧度就是以圆的半径为单位来衡量角度的单位。
一个角度为60°的任意角转换成弧度表示就是π/3,一个角度为-π/4的任意角即为逆时针旋转π/4。
4. 任意角的初标准位置对于任意角,我们可以将它们的终边旋转到一个特定的位置,这个位置称为初标准位置。
在初标准位置下,任意角的终边与坐标轴正向的夹角范围是0到360°或者0到2π弧度。
我们可以利用初标准位置来计算任意角的三角函数值,从而解决一些实际问题。
5. 任意角的三角函数在数学中,三角函数是任意角的重要属性之一。
任意角的三角函数包括正弦、余弦、正切、余切等。
我们可以通过观察任意角在坐标轴上的投影来计算这些三角函数值。
例如,对于角度为30°的任意角,它的正弦值是1/2,余弦值是√3/2,正切值是√3/3。
6. 任意角的三角函数的周期性三角函数在数轴上是周期性的。
对于正弦函数和余弦函数而言,它们的周期是2π。
对于正切函数和余切函数而言,它们的周期是π。
高中数学专题 角的概念的推广 弧度制
1. 主要内容:角的概念的推广,弧度制2. 知识点:①角的定义:初中:是从一点出发的两条射线形成的几何图形。
现在:角是一条射线绕其端点旋转而成的。
规定按逆时针方向旋转形成的角叫正角;按顺时针方向旋转形成的角叫负角;如果一条射线没有作任何旋转,称它形成的角叫做零角。
②象限角:在直角坐标系中讨论角时,使角的顶点与坐标原点重合、角的始边与x轴非负半轴重合,这时角的终边(端点除外)在第几象限,就说这个角是第几象限角,如果角的终边在坐标轴上,则认为此角不在任何象限。
③终边在x轴非负半轴上角的集合是{α|α=k·360°,k∈Z},终边在x轴上角的集合是{α|α=kπ,k∈Z},终边在第一象限的角的集合是:④若α是锐角,则角α终边在第一象限,角180°-α终边在第二象限,角180°+α终边在第三象限,角360°-α终边在第四象限。
⑤弧度制:把弧长等于半径的弧所对的圆心角叫做1弧度的角。
(其中α为圆心角的弧度数)【典型例题】例1. 写出与-1840°终边相同的角的集合M(2)把-1840°的角写成k·360°+α(0°≤α<360°)的形式。
(3)若角α∈M,且α∈[-360°,360°],求角α解:小结:在0°到360°角范围内找与任意一个角终边相同的角时,可根据实数的带余除法进行,因为任意一个角α均可写成k·360°+α1(0°≤α1<360°)形式,所以与α终边相同的角的集合也可写成{β|β=k·360°+α1,k∈Z},如本题M={β|β=k·360°+320°,k∈Z},由此确定[-360°,360°]范围内的角时,只需令k=-1和0即可。
高一 三角比知识点
高一三角比知识点三角比是高一数学学习内容的重要组成部分,它是解决三角形相关问题的基础。
学好三角比,对于高中数学的学习和理解三角函数、解三角形等后续知识都具有重要的意义。
本文将对高一三角比的一些重要知识点进行探讨。
一、角的概念在开始学习三角比之前,我们首先需要了解角的概念。
角是由两条射线共同确定的图形部分,其中一条射线称为角的边,另一条射线称为角的腿。
角可以按大小分为锐角、直角、钝角和周角四种类型。
二、弧度制与度数制在三角比的学习中,我们通常会用到两种角度的计量单位:弧度制和度数制。
弧度制是以角所对圆的弧长来衡量角的大小,而度数制是以一个完整的圆表示为360度来衡量角的大小。
在解决三角函数和弧长等问题时,我们需要熟练运用这两种计量单位。
三、三角比的定义三角比包括正弦、余弦和正切三个重要的比值关系。
这三个比值关系可以通过直角三角形中的三个边的比值得到。
1. 正弦比(sin):在直角三角形中,正弦比等于斜边与对边的比值,即sinθ = 对边/斜边。
2. 余弦比(cos):在直角三角形中,余弦比等于斜边与邻边的比值,即cosθ = 邻边/斜边。
3. 正切比(tan):在直角三角形中,正切比等于对边与邻边的比值,即tanθ = 对边/邻边。
四、三角恒等式三角恒等式是指具有普遍性的等式,在解决三角函数运算时经常会用到。
其中一些常见的三角恒等式包括:1. 余弦的平方加正弦的平方等于1:cos²θ + sin²θ = 1。
2. 正切等于正弦与余弦的比值:tanθ = sinθ/cosθ。
3. 正切的倒数等于余切:1/tanθ = cotθ。
五、解三角形三角比的学习不仅仅是理论知识的掌握,还需要能够应用于实际问题中。
解三角形是运用三角比解决实际问题的一种常见方法。
通过已知的角度和边长,利用三角比的关系可以求解未知的角度和边长。
在解三角形的过程中,我们可以运用正弦定理和余弦定理等重要定理来推导出解题的步骤和方法。
高中数学必修一(人教版)《5.1.1 任意角》课件
2.射线OA绕端点O顺时针旋转80°到OB位置,接着逆时针旋转250°到OC位置, 然后再顺时针旋转270°到OD位置,则∠AOD=________. 解析:如图,∠AOD=∠AOB+∠BOC+∠COD =(-80°)+250°+(-270°) =-100°. 答案:-100°
题型二 终边相同的角的表示及应用 【学透用活】
对终边相同的角的说明 所有与角α终边相同的角,连同角α在内(而且只有这样的角),可以用式子α +k·360°,k∈Z表示.在运用时,需注意以下几点: (1)k是整数,这个条件不能漏掉. (2)α是任意角. (3)k·360°与α之间用“+”号连接,如k·360°-30°应看成k·360°+(- 30°)(k∈Z). (4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无 数个,它们相差周角的整数倍.
【对点练清】
1.给出下列说法:
①终边在y轴非负半轴上的角是直角;
②始边相同而终边不同的角一定不相等;
③三角形的内角必是第一、二象限角;
④第四象限角一定是负角;
⑤{α|α=k·180°,k∈Z}={0°,180°,360°}.
其中正确说法的个数是
A.1
B.2
C.3
D.4
()
解析:①错误.-270°是终边在 y 轴非负半轴上的角但不是直角. ②正确.相等的角始边相同则终边必相同,所以始边相同而终边不同的角一定 不相等. ③错误.三角形的内角可以是直角,它既不是第一象限角,也不是第二象限角. ④错误.如 271°是第四象限角,但不是负角. ⑤错误.{0°,180°,360°} {α|α=k·180°,k∈Z }. 答案:A
第四象限角 {_x_|_2_7_0_°__+__k_·3_6_0_°__<__x_<__3_6_0_°__+__k_·_3_6_0_°__,__k_∈__Z_}_
高中数学新人教A版必修一三角函数的概念课件34张
【跟踪训练 3】 若角α的终边与直线 y=3x 重合,且 sin α<0,又 P(m,n)是角α终边
上一点,且|OP|= 10 ,则 m-n=
.
解析:由题,所以n=3m, 又m2+n2=10, 所以m2=1. 又sin α<0,所以m=-1,所以n=-3. 故m-n=2.
答案:2
考查角度2:三角函数值的符号 【例4】 (2018·石家庄质检)已知sin α<0,tan α>0. (1)求角α的集合;
(A) 4 5
(B)- 4 (C) 3
5
5
(D)- 3 5
解析:因为点 A 的纵坐标 yA= 4 ,且点 A 在第二象限,又因为圆 O 为单位圆,所以 A 5
点的横坐标 xA=- 3 ,由三角函数的定义可得 cos α=- 3 .故选 D.
5
5
【例2】 若角θ的终边过点P(-4a,3a)(a≠0). (1)求sin θ+cos θ的值;
(A)1 (B)-1 (C)±1 (D)±2
解析:sin α= 2 = 2 ,x=2,tan α= y = 2 =1.故选 A.
x2 22 x
x2
4.(教材改编题)若sin α<0且tan α<0,则α是( D ) (A)第一象限角 (B)第二象限角 (C)第三象限角 (D)第四象限角
解析:由sin α<0,得α在第三或第四象限;由tan α<0,得α在第二或第四象 限,故α在第四象限.故选D.
2.弧度制
(1)定义 长度等于 (2)公式
半径长
角α的弧度数公式
角度与弧度的换算 弧长公式
扇形面积公式
的弧所对的圆心角叫做1弧度的角.弧度记作rad.
|α|= ①1°=
高中数学的角的概念教案
高中数学的角的概念教案
教学目标:
1. 了解角的定义及相关术语
2. 掌握角的度量和角的种类
3. 能够运用角的性质解题
教学重点:
1. 角的定义及相关术语的理解
2. 角的度量和角的种类
3. 角的性质应用
教学难点:
1. 角度量的理解和运用
2. 角的种类的辨别和分类
3. 角的性质的应用
教学过程:
一、导入
1. 角的概念引入:让学生看图,提问引导学生思考角的概念。
2. 角的定义:通过示意图和解释,让学生理解什么是角。
二、角的度量和种类
1. 角的度量法:介绍度量角的方法和单位。
2. 角的种类:讲解锐角、直角、钝角和平角的分类及特点。
三、角的性质
1. 角的性质:介绍相邻角、对顶角、余角等角的性质。
2. 角的性质应用:通过解决角的性质相关问题,让学生掌握角的性质的运用方法。
四、练习与巩固
1. 小组讨论练习:让学生分组进行练习,巩固所学知识。
2. 课堂练习:布置适量练习题,让学生在课堂上解答,加深理解。
五、作业布置
1. 布置课后作业:让学生自主练习,巩固所学知识。
2. 鼓励学生多做题目,加深对角的理解和应用。
教学反思:
本节课通过引入角的概念,让学生初步了解了角的定义和相关术语,通过讲解角的度量和种类,让学生对角的分类有了更深入的了解。
通过讲解角的性质和应用,能够让学生掌握角的基本性质和应用方法。
在练习和作业中,让学生巩固所学知识,提高解题能力。
希望学生通过本节课的学习,能够对角有更深刻的理解,提高数学学习的兴趣和能力。
高中数学三角函数知识点归纳及常考题型分析
高中数学三角函数知识点归纳及常考题型分析三角函数知识点归纳及常考题型分析角的概念及表示角是指由两条射线(或直线段)共同围成的图形,其中一个射线为始边,另一个射线为终边。
正角、负角和零角是角的三种分类。
终边相同的角可以表示为{β|β=k·360+α,k∈Z}。
象限角是指顶点在原点,始边与x轴非负半轴重合的角,其终边落在第几象限就称这个角是第几象限的角。
轴线角是指顶点在原点,始边与x轴非负半轴重合,终边落在坐标轴上的角。
区间角是指角的量数在某个确定的区间内,由若干个区间构成的集合称为区间角的集合。
角度制与弧度制角度制和弧度制是两种常见的角度量方式。
它们之间的互换关系是1rad=180°≈57.30°=57°18ˊ,1°≈0.(rad)。
弧长公式与扇形面积公式弧长公式是指l=|α|·r,其中α是角的量数,r是半径。
扇形面积公式是指s扇形=lr=|α|·r^2/2.三角函数的定义与符号设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y)。
P与原点的距离为r,则sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y,secα=r/x,cscα=r/y。
在各象限中,正弦函数和正切函数在第一象限和第二象限中为正,余弦函数在第一象限和第四象限中为正。
三角函数的图像及基本关系式正弦线是MP,余弦线是OM,正切线是AT。
同角三角函数的基本关系式是sin^2θ+cos^2θ=1,tanθ=sinθ/cosθ。
正弦、余弦的诱导公式正弦、余弦的诱导公式是奇变偶不变,符号看象限。
其中sin(±α)和cos(±α)的值与sinα和cosα的值有关,而sin(α+π)=-sinα,cos(α+π)=-cosα。
和角与差角公式和角与差角公式是sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ∓sinαsinβ,tan(α±β)=(tanα±tanβ)/(1∓tanαtanβ),sin(α+β)sin(α-β)=sin^2α-sin^2β,cos(α+β)cos(α-β)=cos^2α-sin^2β,asinα+bcosα=a^2+b^2sin(α+φ),其中辅助角φ所在象限由点(a,b)的象限决定,tanφ=b/a。
高中数学精品试题:角的概念
课题: 角的的概念的推广一、相关习题:1. 给出命题:①-880是第四象限角;②2560是第三象限角;③4800是第二象限角;④-3000是第一象限角.其中正确的有别 ( )(A)1个 (B)2个 (C)3个 (D)4个2.有下列四个角:⑴-2100,⑵-1900,⑶-6300,⑷12300其中第二象限的角为 ( )(A) ⑴⑷ (B) ⑴⑶⑷ (C) ⑴⑵⑷ (D)⑴⑵⑶⑷3.下列各组的两个角中,终边不重合的一组是 ( )(A) -210与6990 (B) 1800与-5400(C) 900与9900 (D) 1500与6900 4.下列各角终边与 750的终边相同的角 ( )(A ) 390 (B ) 30- (C ) 330 (D ) 4005.下列各角不是第二象限角的是 ( )(A ) 465 (B ) 210- (C ) 150- (D ) 1426.π619是 ( ) (A )第一象限角 (B )第二象限角 (C )第三象限角 (D )第四象限角7.已知0tan sin ,0cos sin <⋅>⋅αααα且,则α所在的象限是 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限8.若θ是第三象限的角,则角2θ所在象限是 ( ) .A 第二象限或第四象限 .B 第一象限或第三象限.C 第一象限或第二象限 .D 第一象限或第四象限9.下列各角中终边与60°的终边不相同的角为 ( )A .420°B .300-°C .120°D . 660-°10. 下列各角中属于第三象限的是 ( )A . 611πB .67π-C .49πD . 43π- 11.下列命题中,正确的是 ( )(A)第一象限角必是锐角 (B)终边相同的角必相等(C)相等的角终边位置必相同 (D)不相等的角终边位置必不相同12.以下四个命题:⑴小于900的角为锐角 ; ⑵钝角是第二象限角; ⑶第一象限角不一定是负角;⑷第二象限角必大于第一象限角.其中正确命题的个数是 ( )(A)1 (B)2 (C) 3 (D)413. 若0cos >α且0tan <α,则α所在的象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限0.1、与30度角终边相同的角的集合表示为: ;2、在60度、390度、负30度、负390度中,与30度角终边相同的角是 ;3.在平面直角坐标系中,作出下列各角,并指出它们是哪个象限的角.⑴ -3300; ⑵ -18300; ⑶ -6300; ⑷ 9900.4.写出下列角的集合:⑴终边在y 轴负半轴上的角;⑵终边在x 坐标轴上的角;(3)终边在第三象限的角;(4)终边在第四象限的角.5.在00~3600范围内,找出与下列各角终边相同的角,并判断它们是第几象限角或哪个轴上的角. ( )⑴ 6900; ⑵ 5400; ⑶ -2000; ⑷-450知识应用、解题思路小结。
高中数学必修一第五章讲义
5.1 任意角和弧度制知识点一 任意角 1.角的概念:角可以看成平面内一条 绕着它的端点 所成的 . 2.角的表示:如图所示:角α可记为“α”或“∠α”或“∠AOB ”,始边: ,终边: ,顶点 .3.角的分类:名称 定义图示正角一条射线绕其端点按 方向旋转形成的角负角 一条射线绕其端点按 方向旋转形成的角零角一条射线 做任何旋转形成的角设α,β是任意两个角, 为角α的相反角. (1)α+β:把角α的 旋转角β. (2)α-β:α-β= .知识点三 象限角把角放在平面直角坐标系中,使角的顶点与 重合,角的始边与x 轴的非负半轴重合,那么,角的 在第几象限,就说这个角是第几 ;如果角的终边在 ,就认为这个角不属于任何一个象限.知识点四 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∠Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 知识点五 度量角的两种制度角度制定义用度作为单位来度量角的单位制1度的角 1度的角等于周角的1360弧度制定义 以 作为单位来度量角的单位制 1弧度的角长度等于 的圆弧所对的圆心角知识点六 弧度数的计算 (1)弧度数正角的弧度数是一个 数. 负角的弧度数是一个 数. (2)零角的弧度数是 (3)弧度数的计算 公式:rl =α知识点七 角度与弧度的互化角度化弧度 弧度化角度 360°= rad 2π rad = 180°= rad π rad = 1°=π180 rad≈0.017 45 rad1 rad =⎝⎛⎭⎫180π°≈57.30° 度数×π180=弧度数弧度数×⎝⎛⎭⎫180π°=度数知识点八 弧度制下的弧长与扇形面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则 (1)弧长公式:l =αR .(2)扇形面积公式:S =12lR =12αR 2.1.与2022︒终边相同的角是( ) A .488-︒B .148-︒C .142︒D .222︒ 2.135-的角化为弧度制的结果为( ) A .32π-B .35π-C .34π-D .34π 3.下列说法正确的是( ) A .终边相同的角相等 B .相等的角终边相同 C .小于90︒的角是锐角 D .第一象限的角是正角4.如图所示的时钟显示的时刻为4:30,此时时针与分针的夹角为(0).ααπ<≤则α=( )A .2π B .4π C .8π D .16π 5.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 后的弧长的近似值s 的计算公式:2CD s AB OA=+,记实际弧长为l .当2OA =,60AOB ∠=︒时,l s -的值约为( )(参考数据: 3.14π≈3 1.73≈)A .0.01B .0.05C .0.13D .0.536.把375-︒表示成2πk θ+,k Z ∈的形式,则θ的值可以是( ) A .π12B .π12-C .5π12D .5π12-7.角76π所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限8.已知一扇形的周长为6(0)a a >,则当该扇形的面积取得最大时,圆心角大小为( ) A .6π B .4π C .1 D .2二、多选题9.若α是第二象限角,则( ) A .πα-是第一象限角 B .2α是第一或第三象限角 C .32πα+是第二象限角 D .α-是第三或第四象限角10.设扇形的圆心角为α,半径为r ,弧长为l ,面积为S ,周长为L ,则( ) A .若α,r 确定,则L ,S 唯一确定 B .若α,l 确定,则L ,S 唯一确定 C .若S ,L 确定,则α,r 唯一确定 D .若S ,l 确定,则α,r 唯一确定11.下列结论中正确的是( )A .终边经过点()(),0m m m >的角的集合是2,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭;B .将表的分针拨慢10分钟,则分针转过的角的弧度数是3π; C .若α是第三象限角,则2α是第二象限角,2α为第一或第二象限角; D .{}4590,M x x k k Z ==︒+⋅︒∈,{}9045,N y y k k Z ==︒+⋅︒∈,则M N ⊆12.已知A ={第一象限角},B ={锐角},C ={小于90︒的角},那么A 、B 、C 关系是( ) A .B A C =⋂ B .C C =B ∪ C .B A B = D .A B C ==三、填空题13.写出两个与6π终边相同的角______.14.半径为2cm ,中心角为30的扇形的弧长为______cm .15.如图,扇环ABCD 中,弧4AD =,弧2BC =,1AB CD ==,则扇环ABCD 的面积S =__________.16.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43___________.四、解答题17.已知1690α=.(1)把α表示成2k πβ+的形式,其中k ∈Z ,[)0,2βπ∈; (2)求θ,使θ与α的终边相同,且[)4,2θππ∈--.18.已知一扇形的圆心角为α,半径为R ,弧长为()0L α>. (1)已知扇形的周长为10cm ,面积是24cm ,求扇形的圆心角;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?并求此扇形的最大面积.19.已知1570α=-︒,2750α=︒,135rad πβ=,23rad πβ=-.(1)将1α,2α用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将1β,2β用角度制表示出来,并在{}720180ββ-︒≤≤-︒内找出与它们终边相同的所有角.5.2 三角函数的概念知识点一任意角的三角函数的定义条件如图,设α是一个任意角,α∠R,它的终边OP与单位圆交于点P(x,y)定义正弦点P的叫做α的正弦函数,记作sin α,即y=余弦点P的叫做α的余弦函数,记作cos α,即x=正切点P的纵坐标与横坐标的比值yx叫做α的正切,记作tan α,即yx=三角函数正弦函数y=sin x,x∠R余弦函数y=cos x,x∠R正切函数y=tan x,x≠π2+kπ,k∠Z知识点二正弦、余弦、正切函数值在各象限内的符号1.图示:2.口诀:“一全正,二正弦,三正切,四余弦”.知识点三公式一终边相同的角的同一三角函数的值.即=+)2sin(παk=+)2cos(παk=+)2tan(παk其中Zk∈知识点四 同角三角函数的基本关系关系式文字表述平方关系sin 2α+cos 2α= 同一个角α的正弦、余弦 的 等于 商数关系sin αcos α= ⎝⎛⎭⎫α≠π2+k π,k ∠Z同一个角α的正弦、余弦的商等于角α的一、单选题1.已知角α的终边与单位圆交于点132P ⎛- ⎝⎭,则sin α的值为( )A .3B .12-C 3D .122.已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( ) A .12B .1C .2D .523.已知()2,P y -是角θ终边上一点,且22sin θ=y 的值是( ) A .22B .225C .434D 4344.若12cos 13α=,且α为第四象限角,则tan α的值为( ) A .125B .125-C .512D .512-5.已知π,π2α⎛⎫∈ ⎪⎝⎭,且3tan 4α=-,则cos α=( )A .35B .35C .45-D .456.已知α为第二象限角,则( ) A .sin 0α<B .tan 0α>C .cos 0α<D .sin cos 0αα>7.已知P 是半径为3cm 的圆形砂轮边缘上的一个质点,它从初始位置0P 开始,按逆时针方向做匀速圆周运动,角速度为πrad/s 2.如图,以砂轮圆心为原点,建立平面直角坐标系xOy ,若0π3P Ox ∠=,则点P 到x轴的距离d 关于时间t (单位:s )的函数关系为( )A .π3sin 43d t ⎛⎫=+ ⎪⎝⎭B .ππ3sin 23d t ⎛⎫=+ ⎪⎝⎭C .π3sin 43d t ⎛⎫=- ⎪⎝⎭D .ππ3sin 23d t ⎛⎫=- ⎪⎝⎭8.在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P 与原点O 之间距离为r ,比值rx叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值xy叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=-;乙:5csc 3β=;丙:3tan 4β=-;丁:4cot 3β=. 如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙 C .丙 D .丁二、多选题9.下列说法错误的是( )A .将表的分针拨快5分钟,则分针转过的角度是6πB .若角2rad α=,则α角为第二象限角C .若角α为第一象限角,则角2α也是第一象限角 D .在区间ππ,22⎛⎫- ⎪⎝⎭内,函数tan y x =与sin y x =的图象有3个交点10.已知角α的终边与单位圆交于点3,55m P ⎛⎫⎪⎝⎭,则sin α的值可能是( )A .45B .35C .45-D .3511.已知角θ的终边经过点(2,3)--,且θ与α的终边关于x 轴对称,则( ) A .21sin 7θ=- B .α为钝角C .27cos 7α=-D .点(tan θ,tan α)在第四象限12.已知点()(),20P m m m -≠是角α终边上一点,则( ) A .tan 2α B .5cos 5α=C .sin cos 0αα<D .sin cos 0αα>三、填空题13.已知角α的终边经过点()1,2P ,sin 2cos sin cos αααα--+的值是____________.14.已知角2022α= , 则sin cos tan sin cos tan αααααα++= _______________________. 15.若π0,4θ⎛⎫∈ ⎪⎝⎭,记22cos sin P θθ=-,33cos sin Q θθ=-,44cos sin R θθ=-,则P 、Q 、R 的大小关系为_________.16.已知1sin cos 52παααπ⎛⎫+=-<< ⎪⎝⎭,则11sin cos αα-的值为___________.四、解答题17.已知第一象限角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过点()1P m m +,,且3cos 5α=. (1)求m 及tan α的值; (2)求()sin sin cos ααα+的值.18.已知tan 2α=,求下列各式的值. (1)1sin cos αα; (2)111sin 1sin αα+-+. 19.已知2212sin cos 2cos sin αααα+=-. (1)求tan α的值; (2)求222sin 3sin cos cos αααα+-的值.20.已知第二象限角α满足sin ,cos αα是关于x 的方程2255120x x --=的两个实根. (1)求1tan tan αα+的值; (2)求()22sin cos sin 2cos sin ααααα+-的值.5.3 诱导公式知识点一 公式二~四终边关系 图示公式公式二角π+α与角α的终边关于 对称sin(π+α)= , cos(π+α)= , tan(π+α)= 公式三角-α与角α的终边关于 轴对称sin(-α)= , cos(-α)= , tan(-α)= 公式四角π-α与角α的终边关于 轴对称sin(π-α)= , cos(π-α)= , tan(π-α)=知识点二 诱导公式五、六 (1)公式五=-)2sin(απ=-)2cos(απ(2)公式六=+)2sin(απ=+)2cos(απ一、单选题1.cos210︒的值等于( ) A .12 B .32C .32-D .22-2.已知5sin 5α=,则πcos 2α⎛⎫-= ⎪⎝⎭( )A .55B .55-C .255-D .2553.3cos()sin 2x x ππ⎛⎫-++= ⎪⎝⎭( ) A .2cos x -B .0C .2sin x -D .cos sin x x -4.已知()0,απ∈,()tan 3sin παα-=,则tan α=( ) A .22B 2C .2D .22-5.若()tan π3α-=,则sin 2cos sin cos αααα-=+( ) A .52B .52-C .14-D .146.若()1sin 2π3α+=,tan 0α<,则cos α=( )A .22B .13-C .13D 227.已知()113sin cos 2013cos 22ππαπαα⎛⎫⎛⎫-+-=-- ⎪ ⎪⎝⎭⎝⎭,则22sin sin cos ααα-=( ) A .2110 B .32C 3D .28.若α为任意角,则满足cos cos 2k παα⎛⎫+⋅=- ⎪⎝⎭的一个k 的值为( )A .1B .2C .3D .4二、多选题9.下列转化结果正确的有( ) A .171sin62π= B .113tan 6π⎛⎫-= ⎪⎝⎭C .150-化成弧度是76π-D .12π化成度是15 10.在∠ABC 中,下列关系式恒成立的有( ) A .()sin sin A B C += B .cos sin 22A B C +⎛⎫= ⎪⎝⎭C .()sin 22sin20A B C ++=D .()cos 22cos20A B C ++=11.在平面直角坐标系中,若α与β的终边关于y 轴对称,则下列等式恒成立的是( ) A .()sin sin απβ+= B .()sin sin απβ-= C .()sin 2sin παβ-=- D .()sin 2sin παβ+=12.下列说法正确的有( ) A .3sin 600tan 240︒+︒=B .若已知cos31m ︒=,则2sin 239tan1491m =-︒︒C .已知()1cos 753α︒+=,且18090α-︒<<-︒,则()22cos 15α︒-=D .函数()1f x ax =+在区间()1,1-上存在一个零点的充分必要条件是1a <-或1a > 三、填空题13.172053sin cos tan 636πππ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.14.()()cos585tan 585sin 570︒=-︒+-︒__________. 15.已知π3cos 64α⎛⎫+=- ⎪⎝⎭,则5ππcos sin 63αα⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭__________.16.若tan()2πα-=-,则3cos(2)2cos 2sin()sin 2ππααππαα⎛⎫-+- ⎪⎝⎭=⎛⎫---- ⎪⎝⎭__________.四、解答题17.已知()4cos 5πα+=,且tan 0α>. (1)求tan α的值; (2)()()()2sin sin 22ππααπ⎛⎫-+- ⎪⎝⎭'的值.18.已知角α终边上一点()43P ,-,求下列各式的值.(1)sin cos sin cos αααα+- (2)()cos sin 2119cos sin 22παπαππαα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭19.(1)已知()1sin 3πα-=,求()sin 3,cos 2ππαα⎛⎫+- ⎪⎝⎭的值.(2)化简()()sin 2cos 3sin cos 22παπαππαα-⋅+⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭.20.已知正弦三倍角公式:3sin 33sin 4sin x x x =-∠(1)试用公式∠推导余弦三倍角公式(仅用cos x 表示cos3x ); (2)若角α满足sin 33sin 2αα=,求cos3cos αα的值.5.4 三角函数的图象与性质知识点一正弦函数、余弦函数的图象函数y=sin x y=cos x图象图象画法五点法五点法关键五点,⎝⎛⎭⎫π2,1,,⎝⎛⎭⎫3π2,-1,(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1)正(余)弦曲线正(余)弦函数的叫做正(余)弦曲线知识点二函数的周期性1.函数的周期性一般地,设函数f(x)的定义域为D,如果存在一个,使得对每一个x∠D都有x+T∠D,且,那么函数f(x)就叫做周期函数.叫做这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个,那么这个最小正数叫做f(x)的最小正周期.知识点三正弦函数、余弦函数的周期性和奇偶性函数y=sin x y=cos x图象定义域R R周期2kπ(k∠Z且k≠0)2kπ(k∠Z且k≠0)最小正周期2π奇偶性知识点四正弦函数、余弦函数的单调性与最值正弦函数 余弦函数图象定义域 RR值域单调性在每一个闭区间⎣⎡⎦⎤2k π-π2,2k π+π2(k ∠Z )上都单调递增,在每一个闭区间⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∠Z )上都单调递减在每一个闭区间[2k π-π,2k π](k ∠Z )上都单调递增,在每一个闭区间[2k π,2k π+π] (k ∠Z )上都单调递减最值x =π2+2k π(k ∠Z )时,y max =1;x =-π2+2k π(k ∠Z )时,y min =-1x =2k π(k ∠Z )时,y max =1;x =2k π+π(k ∠Z )时,y min =-1知识点五 正切函数的图象与性质解析式y =tan x图象定义域 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π2+k π,k ∠Z 值域 R 最小正周期 π 奇偶性 奇函数单调性 在每一个区间⎝⎛⎭⎫-π2+k π,π2+k π(k ∠Z )上都单调递增 对称性对称中心⎝⎛⎭⎫k π2,0(k ∠Z )一、单选题1.下列关于函数tan 23y x π⎛⎫=-+ ⎪⎝⎭的说法正确的是( )A .最小正周期为πB .图像关于点5,012π⎛⎫⎪⎝⎭成中心对称C .在区间,312ππ⎛⎫-- ⎪⎝⎭上单调递增 D .图像关于直线12x π=-成轴对称2.与图中曲线对应的函数可能是( )A .sin y x =B .sin y x =C .sin y x =-D .sin y x =-3.函数sin(2)4y x π=-的单调减区间是( )A .3[,],(Z)88k k k ππππ-+∈ B .3[2,2],(Z)88k k k ππππ-+∈ C .37[2,2],(Z)88k k k ππππ++∈ D .37[,],(Z)88k k k ππππ++∈ 4.已知函数()sin()f x x ϕ=+为偶函数,则ϕ的取值可以为( ) A .π2-B .πC .π3D .05.已知函数()tan 24f x x π⎛⎫=- ⎪⎝⎭,下列说法正确的有( )∠函数()f x 最小正周期为2π; ∠定义域为|R,,Z 28k x x x k ππ⎧⎫∈≠+∈⎨⎬⎩⎭∠()f x 图象的所有对称中心为,0,Z 48k k ππ⎛⎫+∈⎪⎝⎭; ∠函数()f x 的单调递增区间为3,,Z 2828k k k ππππ⎛⎫-+∈ ⎪⎝⎭. A .1个 B .2个 C .3个 D .4个6.函数()()sin 2,0,6f x x x ππ⎛⎫=-∈ ⎪⎝⎭,若方程()2f x =的解为()1212,0x x x x π<<<,则()12sin x x -=( )A .23-B .33-C .73-D .26-7.记函数()sin()f x x ωϕ=+π0,02ωϕ⎛⎫><< ⎪⎝⎭的最小正周期为T ,若2()2f T =,3π4x =为()f x 的零点,则T的最大值为( ) A .πB .2πC .4πD .6π8.已知函数π()cos 22cos 2f x x x ⎛⎫=+- ⎪⎝⎭,给出下列结论:∠()f x 的最小正周期为2π: ∠()f x 是奇函数:∠()f x 的值域为33,2⎡⎤-⎢⎥⎣⎦; ∠()f x 在ππ,26⎡⎤-⎢⎥⎣⎦上单调递增.其中所有正确结论的序号是( ) A .∠∠ B .∠∠ C .∠∠∠ D .∠∠∠二、多选题9.下列函数以π02⎛⎫⎪⎝⎭,为对称中心的有( ) A .sin y x = B .tan y x = C .πsin 4y x ⎛⎫=+ ⎪⎝⎭D .sin 2y x =10.函数()π3sin 334g x x ⎛⎫=-- ⎪⎝⎭,则( )A .()g x 的最小正周期为6πB .()g x 的图像关于直线π4x =对称 C .()g x 的图像关于点5π,312⎛⎫- ⎪⎝⎭对称 D .()g x 在π0,3⎡⎤⎢⎥⎣⎦上单调递增11.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法错误的是( )A .函数()y f x =的图象关于点,06π⎛⎫- ⎪⎝⎭对称;B .函数()y f x =的图象关于直线512x π=-对称;C .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减; D .该图象向右平移3π个单位可得2sin2y x =的图象. 12.已知函数()sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,则下列命题正确的是( )A .若()f x 在[0,)π上有10个零点,则3943,44ω⎛⎤∈ ⎥⎝⎦B .若()f x 在[0,)π上有11条对称轴,则3943,44ω⎛⎤∈ ⎥⎝⎦C .若()f x 2在[0,)π上有12个解,则21,122ω⎛⎤∈ ⎥⎝⎦D .若()f x 在,32ππ⎛⎫⎪⎝⎭上单调递减,则35,42ω⎡⎤∈⎢⎥⎣⎦三、填空题13.函数()=sin2+1(0)f x x ωω>在ππ62⎡⎤⎢⎥⎣⎦,上单调递增,则ω取值范围为_____________14.已知函数()(25sin π,0,4f x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭,设方程(),(01)f x m m =<<的根从小到大依次为123,,x x x ,且2132x x x =,则m =___________.15.设函数2()|sin |2cos 1f x x x =+-,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是__________.16.设函数()()sin 03f x x πωω⎛⎫=-> ⎪⎝⎭,若()f x 在0,2π⎛⎫ ⎪⎝⎭上有且仅有2个零点,则实数ω的取值范围为______________.四、解答题17.已知函数()sin 62f x x π⎛⎫=+ ⎪⎝⎭.(1)求函数()f x 的单调递增区间;(2)求函数()f x 在区间[]0,2π上的所有零点之和.18.已知函数()sin()(R,0,0,0)2f x A x x A πωϕωϕ=+∈>><<的部分图象如图所示.(1)求()f x 的解析式; (2)求不等式()1f x >的解集.19.已知函数2π()sin(2)3f x x =+. (1)请用五点法做出()f x 一个周期内的图像;(2)若函数()()g x f x m =-在区间π[0,]2上有两个零点,请写出m 的取值范围,无需说明理由.20.已知函数()()2sin f x x ωϕ=+(0>ω,π<ϕ),其图象一条对称轴与相邻对称中心的横坐标相差π4,______;从以下两个条件中任选一个补充在空白横线中.∠函数()f x 向左平移π6个单位得到的图象关于y 轴对称且()00f <.∠函数()f x 的一条对称轴为π3x =-且()π16f f ⎛⎫< ⎪⎝⎭;(1)求函数()f x 的解析式;(2)若π17π,212x ⎡⎤∈⎢⎥⎣⎦,方程()()()2430f x a f x a +-+-=存在4个不相等的实数根,求实数a 的取值范围.勉,学习需坚持。
高中数学三角函数知识点归纳及常考题型分析
三角函数知识点归纳及常考题型分析【知识点回顾】1、角的概念、正角、负角、零角.2、角的表示:(1)终边相同的角:与α角终边相同的角的集合(连同α角在内),可以记为{ββ|=k ·360+α,k ∈Z }。
(2)象限角:顶点在原点,始边与x 轴非负半轴重合,则终边落在第几象限,就称这个角是第几象限的角。
请写出各象限角的集合。
(3)轴线角:顶点在原点,始边与x 轴非负半轴重合,则终边落在坐标轴上的角叫轴线角。
请写出各轴线角的集合。
(4)区间角、区间角的集合: 角的量数在某个确定的区间内(上),这角就叫做某确定区间的角.由若干个区间构成的集合称为区间角的集合.3、角度制、弧度制及互换: 1rad =π180°≈57.30°=57°18ˊ, 1°=180π≈0.01745(rad ) 4、弧长公式:r l ⋅=||α,扇形面积公式:211||22s lr r α==⋅扇形5、三角函数的定义:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则sin y r α=, cos x r α= ,tan y x α=,cot x y α=,sec rxα=,csc r y α=.6、三角函数在各象限的符号:(一全二正弦,三切四余弦)7、三角函数线正弦线:MP ;余弦线:OM ;正切线: AT 。
8、同角三角函数的基本关系式:22sin cos 1θθ+=,tan θ=θθcos sin ,tan cot θθ⋅= 9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)212(1)sin ,()sin()2(1)s ,()n n n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数,212(1)s ,()s()2(1)sin ,()n n co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数 10、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=;22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-;11、二倍角公式及降幂公式sin 2sin cos ααα=22tan 1tan αα=+;2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+ 22tan tan 21tan ααα=-;221cos 21cos 2sin ;cos 22αααα-+==。
1、微专题:任意角和角的度量-讲义-2021-2022学年高中数学沪教版(2020)必修第二册
【学生版】微专题:任意角和角的度量1、角的概念的推广(1)定义:角可以看成平面内的一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形; (2)任意角的分类:①按旋转方向不同分为正角、负角、零角;②按终边位置不同分为象限角和非象限角; (3)终边相同的角及其集合表示:所有与角α终边相同的角,连同角α在内,可构成一个集合 S ={β|β=k ·360°+α,k ∈Z }或S ={β|β=2kπ+α,k ∈Z } 【注意】两种度量制度不要混用; 2、角度制、弧度制的定义和相关公式 (1)定义:①把长度等于半径的圆弧所对的圆心角叫做1弧度的角,弧度记作rad ;②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr与所取的r 的大小无关,仅与角的大小有关.【说明】角度制:规定周角的360分之一为1度的角,用度作为单位来度量角的单位制叫做角度制。
注意“度”是单位,而非“1度”,因为单位的定义是计量事物标准量的名称。
(2)弧度与角度的换算:360°=2π弧度;180°=π弧度.(3)扇形弧长与面积:记扇形的半径为r ,圆心角为α弧度,弧长为l ,面积为S ,则有 由定义,在弧度制中,半径为r ,弧度数为rad α的弧长r l α=;在角度制中,半径为r 、圆心角为n 的弧长r n r n l 1802360ππ=⋅=; 在弧度制中,半径为r ,弧度数为rad α的扇形面积r l r r S 2121222==⋅=αππα;扇形中弦长公式2sin 2r α; 在角度制中,半径为r ,圆心角为n 的扇形面积22360360r n r n S ππ=⋅=; 【典例】考点1、对任意角概念的理解例1、下列说法正确的是( )(均指在平面直角坐标系中,角的始边在x 轴正半轴上)A .第一象限角一定是锐角B .终边相同的角一定相等C .小于90°的角一定是锐角D .钝角的终边在第二象限 【提示】【答案】 【解析】 【说明】考点2、象限角的判定例2、若角α是第二象限角,则α2是第________象限角考点3、区域角的表示 例3、集合{|,}42a k k k Z πππαπ+≤≤+∈中的角所表示的范围(阴影部分)是( )考点4、角度制与弧度制的运算例4、(1)把1480-写成2,k k Z απ+∈的形式,其中02απ≤≤;(2)若[]4,0βπ∈-,且β与(1)中α的终边相同,求:β;考点5、扇形面积、弧长公式的应用例5、【一题多变】(1)一扇形的圆心角α=π3,半径R =10 cm ,求该扇形的面积;(2)若(1)条件不变,求扇形的弧长及该弧所在弓形的面积;(3)若将(1)已知条件改为:“扇形周长为20 cm”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?考点6、对称性问题例6、已知角α的终边与120︒角的终边关于x 轴对称,求:α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研讨题二:
通过一个具体的数学题来进一步理解角的概念。
有一道初中数学关于角的探究题:
例1 探究:
(1) 如图a,若AB∥CD,则∠B,∠D,∠E的关系?
(2) 若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;
(43) 若将E点移至图c所示位置,情况又如何?
答案为:
(2)
(3)
我们的问题是:
(1)在初中阶段,我们要分成图a,图b,图c这三种情况来讨论,为什么?
(2)到了高中阶段,按照角的定义,若我们对∠B,∠D,∠E 新规定如下:
则这三种情况可以统一为如下等式:
∠B + ∠D = ∠E.
通过此例,请问你从中体会到了角的定义由初中阶段的发展到到高中的优越性及必要性吗?
(3) B, E, D 三点共线时, (2)的等式可以统一吗?。