驻极体话筒结构原理及应用电路设计

合集下载

驻极体话筒原理知识

驻极体话筒原理知识

驻极体话筒1、概述驻极体话筒具有体积小、结构简单、电声性能好、价格低的特点,广泛用于盒式录音机、无线话筒及声控等电路中。

属于最常用的电容话筒。

由于输入和输出阻抗很高,所以要在这种话筒外壳内设置一个场效应管作为阻抗转换器,为此驻极体电容式话筒在工作时需要直流工作电压。

2、构造与原理驻极体话筒由声电转换和阻抗变换两部分组成。

声电转换的关键元件是驻极体振动膜。

它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜。

然后再经过高压电场驻极后,两面分别驻有异性电荷。

膜片的蒸金面向外,与金属外壳相连通。

膜片的另一面与金属极板之间用薄的绝缘衬圈隔离开。

这样,蒸金膜与金属极板之间就形成一个电容。

当驻极体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。

驻极体膜片与金属极板之间的电容量比较小,一般为几十pF。

因而它的输出阻抗值很高(Xc=1/2~tfc),约几十兆欧以上。

这样高的阻抗是不能直接与音频放大器相匹配的。

所以在话筒内接入一只结型场效应晶体三极管来进行阻抗变换。

场效应管的特点是输入阻抗极高、噪声系数低。

普通场效应管有源极(S)、栅极(G)和漏极(D)三个极。

这里使用的是在内部源极和栅极间再复合一只二极管的专用场效应管。

接二极管的目的是在场效应管受强信号冲击时起保护作用。

场效应管的栅极接金属极板。

这样,驻极体话筒的输出线便有三根。

即源极S,一般用蓝色塑线,漏极D,一般用红色塑料线和连接金属外壳的编织屏蔽线。

3、驻极体话筒与电路的接法有两种:源极输出与漏极输出。

源极输出类似晶体三极管的射极输出。

需用三根引出线。

漏极D接电源正极。

源极S与地之间接一电阻Rs来提供源极电压,信号由源极经电容C输出。

编织线接地起屏蔽作用。

源极输出的输出阻抗小于2k,电路比较稳定,动态范围大。

但输出信号比漏极输出小。

漏极输出类似晶体三极管的共发射极放入。

只需两根引出线。

漏极D与电源正极间接一漏极电阻RD,信号由漏极D经电容C输出。

MIC应用指南

MIC应用指南
它的单位是:dB V/Pa,有时也用dB V/μBar。
Pascal & ubar的换算关系如下:
例如:-60dB(0dB=1V/ubar)=-40dB (0dB=1V/pa)
2、输出阻抗
麦克风有一项最重要的特性是输出阻抗,这是一种回流至麦克风的AC阻抗的计算。 一般来说,麦克风可分为低阻抗(50~1,000ohms),中阻抗(5,000~15,000ohms)及高阻抗(20,000ohms以上)。
对于一个驻极体传声器内部存在一个由振膜垫片和极板组成的电容器因为膜片上充有电荷并且是一个塑料膜因此当膜片受到声压强的作用膜片要产生振动从而改变了膜片与极板之间的距离从而改变了电容器两个极板之间的距离产生了一个的变化因此由公式可知必然要产生一个的变化充电电荷又是固定不变的因此必然产生一个的变化
手机MIC应用指南
C)从极化方式上分:振膜式、背极式、前极式。
D)从结构上分:栅极点焊式、栅极压接式、极环连接式等
2、驻极体MIC的结构:
以全向MIC,振膜式极环连接式为例
1、防尘网:保护传声器,防止灰尘落到振膜上,防止外部物体刺破振膜,还有短时间的防水作用。
2、外壳:整个传声器的支撑件,其它件封装在外壳之中,是传声器的接地点,还可以起到电磁屏蔽的作用。
VSD,即FET的S与D之间的电压降
VS为标准工作电压
总的要求100μA〈ID〈500μA
4、频范围:
全向:50~12000Hz 20~16000Hz
单向:100~12000Hz 100~16000Hz
双向:100~10000Hz
5、S/N信噪比:信号与麦克风本体所产生的杂音之比
6、最大声压级:是指MIC的失真在3%时的声压级,声压级定义:20μpa=0dBSPL

驻极体话筒驱动电路设计

驻极体话筒驱动电路设计

1.驻极体话筒驱动电路设计上图为一驻极体话筒驱动电路,当有声音时,LED会亮。

1)认识图中向关元器件。

2)分析其工作原理。

3)在万能板上搭建该电路。

4)用示波器观察测试有声音和无声音时该电路A,B,C,D,E五点的波形,记录下来。

5)比较一下电路的灵敏性,怎样提高电路的灵敏度?2.DC-DC电源模块1)认识图中相关元器件。

2)阅读芯片LM2576的文档,分析其工作原理。

3)在万能板上搭建该电路。

4)输入9V时,调整电位器R2,测量输出电压范围,并记录。

5)测试电压调整率:查阅模拟电路相关书籍和资料,了解电压调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V增大输入电压,测量输出电压,记录数据6)测试负载调整率:查阅模拟电路相关书籍和资料,了解负载调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至最大)。

调整功率电位器,减小负载电阻,测量输出电压,记录数据(注意,电阻值不可过小)7)测试纹波电压:查阅模拟电路相关书籍和资料,了解纹波电压的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至2欧姆)。

用示波器AC/5mV测量输出电压,记录波形最大值,可以调节功率电位器,观察输出波形8)效率测试:查阅模拟电路相关书籍和资料,了解效率的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至2欧姆)。

测量输如电压和电流。

计算效率。

3.线性电源模块D21)认识图中相关元器件。

2)阅读芯片LM317的文档,分析其工作原理。

3)在万能板上搭建该电路。

4)输入9V时,调整电位器R2,测量输出电压范围,并记录。

5)测试电压调整率:查阅模拟电路相关书籍和资料,了解电压调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V增大输入电压,测量输出电压,记录数据6)测试负载调整率:查阅模拟电路相关书籍和资料,了解负载调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

驻极体话筒

驻极体话筒

驻极体话筒1. 简介驻极体话筒(Electret Microphone),也称为电容式话筒,是一种常见的音频传感器。

它利用了驻极体元件的特性,将声音转化为电信号,然后经过放大和处理后输出给音频设备。

驻极体话筒具有体积小、重量轻、价格低廉等优点,广泛应用于通信、音频采集、语音识别等领域。

在本文中,我们将介绍驻极体话筒的原理、结构和工作原理,并介绍一些常见的应用场景。

2. 原理驻极体话筒的原理基于电容器的原理。

它由驻极体电容器和放大电路组成。

2.1 驻极体电容器驻极体电容器是驻极体话筒的核心组件,它由两个金属片组成,中间被一层电介质隔开。

其中一个金属片固定不动,称为固定极板;另一个金属片可以振动,称为振动极板。

当振动极板受到声波震动时,驻极体电容器的电容值也会随之发生变化。

驻极体电容器内部有一个永久的静电荷,在生产过程中被注入进去,这就是所谓的驻极体。

这个静电荷会在电容器的两个极板之间形成电场,并与外界的电荷相互作用。

由于驻极体电容器的驻极体是永久性的,所以驻极体电容器不需要外界电源来维持电荷。

驻极体电容器的输出信号非常微弱,需要经过放大电路进行放大。

放大电路一般由一个FET(场效应晶体管)和其他电子组件构成。

当声波作用在驻极体电容器上时,驻极体电容器的电容值发生变化,改变了与其连接的FET的栅极电势,从而使FET的通道电阻也发生变化。

这个变化通过放大电路进行放大,最终输出一个可以被音频设备接受并处理的电信号。

3. 结构驻极体话筒的结构相对简单,一般由以下几个主要组件组成:3.1 振动极板振动极板是驻极体话筒中可以振动的部分,它的振动受到外界声波的影响。

当声波作用于振动极板时,振动极板会产生微小的位移。

3.2 固定极板固定极板是驻极体话筒中的固定部分,它不会移动。

固定极板与振动极板之间的距离决定了驻极体电容器的电容值。

3.3 驻极体电容器驻极体电容器由振动极板和固定极板组成,它们之间的空气间隙形成一个电容器。

驻极体话筒的基本原理

驻极体话筒的基本原理

驻极体话筒的基本原理驻极体话筒是一种常见的麦克风类型,它利用了电磁感应的原理来将声音转换成电信号。

它的基本原理可以概括为声音震动引起电磁感应,进而产生电信号。

下面将详细介绍驻极体话筒的基本原理和工作过程。

驻极体话筒由震动系统和电磁感应系统两部分组成。

震动系统包括膜片、振动线圈和磁体,而电磁感应系统则包括磁体和感应线圈。

当声音波传播到驻极体话筒时,声音的震动会使得膜片产生相应的震动。

膜片与振动线圈连接在一起,振动线圈则位于磁体的磁场中。

当膜片振动时,振动线圈也会随之振动。

这样,膜片和振动线圈的振动就会相互作用,进而改变磁体的磁场强度。

磁体和感应线圈也相互作用。

由于磁体的磁场强度发生变化,感应线圈中就会产生感应电流。

这个感应电流的大小和方向与膜片和振动线圈的振动有关。

感应线圈将这个感应电流转换成电信号输出。

这样,驻极体话筒就实现了将声音转换成电信号的功能。

电信号可以通过连接到话筒的电缆传输到其他设备中进行处理,比如放大、录制或实时传输。

驻极体话筒的工作过程可以用以下步骤来描述:1. 声音波传播到话筒时,声音的震动使得膜片产生相应的振动。

2. 膜片与振动线圈连接在一起,振动线圈位于磁体的磁场中。

3. 膜片和振动线圈的振动相互作用,改变磁体的磁场强度。

4. 磁体和感应线圈相互作用,感应线圈中产生感应电流。

5. 感应线圈将感应电流转换成电信号输出。

6. 电信号可以传输到其他设备中进行处理或记录。

驻极体话筒的基本原理是利用声音的振动引起磁体的磁场强度变化,从而产生感应电流。

这个原理不仅适用于驻极体话筒,也广泛应用于其他类型的麦克风。

这些麦克风通过不同的结构和技术来实现声音到电信号的转换,但基本原理都是利用声音的振动引起电磁感应。

总结一下,驻极体话筒的基本原理是利用声音的振动引起磁体的磁场强度变化,从而产生感应电流。

这个原理使得驻极体话筒可以将声音转换成电信号,并实现音频的录制、放大和传输等功能。

驻极体话筒在音频行业中有着广泛的应用,成为人们进行音频处理和传输的重要工具。

驻极体麦克风

驻极体麦克风

声音传感器的应用
2、工作原理
耳机麦克风里面有一个对声音敏感的驻极体。

声波使驻极体薄膜振动,导致电容发生变化,而产生与之对应变化的微小电压。

这个电压随后被转化成0-5V的电压,经过A/D转换再被数据采集器接收,最后传送给计算机。

工作原理如下图所示:
3、工作过程
驻极体式耳机麦克风的主要元件是驻极体振动膜,它的作用相当于一个电容。

当驻极体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声
波变化而变化的交变电压。

由于交变电压的值太小,所以在话筒内接入一只结型场效应晶体三极管来进行阻抗变换,变成了相对较大的电信号。

最后经过A/D 转换被数据采集器接收,形成可传输的数字,并传送给计算机。

4、驻极体式耳机麦克风的简单展示
视频链接: /v_show/id_XMTM2NTc2NTc2.html
给话筒串联4.7k欧姆的电阻,并接上电源。

这是对着话筒讲话时,示波器接收到的输出波形。

驻极体话筒放大电路要点

驻极体话筒放大电路要点

驻极体话筒放大电路要点一.设计思路1、语音放大器的基本构成根据要求,输出功率P=2W,电阻R=4Ω,由功率公式可得U=2.8V,对TDA2030输入100mv电压时,可达到设计要求。

另外,由于语音通过话筒输入信号为5mv,放大后要求达到100mv,放大倍数需在20倍以上,由电路设计要求得知,该放大器由三级组成,其总的电压增益AUf=AUf1AUf2AUf3。

应根据放大器所需的总增益AU,来合理分配各级电压增益(AUf1.AUf3)。

为了提高信噪比S/N,前置放大器的增益要适当取大。

为了使输出波形不致产生饱和失真,输出信号的幅值应小于电源电压。

2、性能指标(1)集成直流稳压电源①同时输出12V的电压②输出纹波电压小于5mV(2) 前置放大器①输入信号:Uid.10mV②输入阻抗:Ri=100k.③设定增益Auf1=30(3) 有源带通滤波器①带通频率范围:300Hz~3kHz②增益:Au=1(4) 功率放大器①最大不失真输出功率:Pmax>=2W②负载阻抗:RL=4Ω③电源电压:+12V,-12V(5) 输出功率连续可调①直流输出电压:.50mV(输出开路时)②静态电源电流:.100mA(输出短路时)3、要求(1)选取单元电路及元件根据设计要求和已知条件,确定集成直流稳压电源、前置放大电路、有源带通滤波器电路、功率放大电路的方案,计算和选取单元电路的元件参数。

(2)前置放大电路的组装与调试测量前置放大电路的电压增益AUd、输入电阻Ri等各项技术指标,并与设计要求值进行比较。

(3)有源带通滤波器的组装与调试测量有源带通滤波电路的电压增益AUd、带宽BW,并与设计要求值进行比较。

(4)功率放大电路的组装与调试测量功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出功率.、直流输出电压、静态电源电流等技术指标。

(5)整体电路的调试与试听(6)应用Multisim软件对电路进行仿真。

驻极体话筒结构原理及应用电路设计

驻极体话筒结构原理及应用电路设计

(3) JFET旳特征曲线
转移特征 输出特征
iD f (u ) GS uDS const.
iD
IDSS (1
uGS UGS (off
)
)2
iD f (u ) DS uGS const.
饱和漏极电流: IDSS
(UGS(off ) uGS 0)
体现式
转移特 征曲线
预夹断 线
满足: uGD=UGS(off)
驻极体话筒构造原理 及应用电路设计
一、驻极体话筒旳工作原理与构造
驻极体话筒具有体积小、构造简朴、电声性能好、价 格低旳特点,广泛用于盒式录音机、无线话筒及声控等电 路中。
驻极体话筒由声电转换和阻抗变换两部分构成。声电 转换旳关键元件是驻极体振动膜。
1、驻极体极头旳构造与工作原理
驻极体极头旳基本构造由一片单面涂有金属旳驻极体薄 膜与一种上面有若干小孔旳金属电极(称为背电极)构成 以及它们中间旳几十μm厚旳尼龙隔离垫构成,如图一所示。
2、简朴旳AGC电路
AGC环是闭环电子电路,它能够提成增益受控放大电路 和控制电压形成电路两部分。增益受控放大电路位于正向 放大通路,其增益随控制电压而变化。
控制电压形成电路旳基本部件是AGC检波器和低通平滑滤 波器。
放大电路旳输出信号u0 经检波并经滤波器滤除高频调制 分量和噪声后,产生用以控制增益受控放大器旳电压uc 。 当输入信号ui增大时,u0和uc亦随之增大。 uc增大使放大 电路旳增益下降,从而使输出信号旳变化量明显不大于输入 信号旳变化量,到达自动增益控制旳目旳。
3、驻极体话筒旳接法
话筒有两根引出线,漏极D与电源正极之间接一漏极电阻 R,信号由漏极经一隔直电容输出,这种接法有一定旳电压增 益,话筒旳敏捷度比较高,但动态范围比较小。

自制9014麦克风电路图(驻极体话筒-高灵敏度麦克风)

自制9014麦克风电路图(驻极体话筒-高灵敏度麦克风)

自制9014麦克风电路图(驻极体话筒/高灵敏度麦克风)自制9014麦克风电路图设计一驻极体话筒工作原理:当驻极体膜片遇到声波振动时,就会引起与金属极板间距离的变化,也就是驻极体振动膜片与金属极板之间的电容随着声波变化,进而引起电容两端固有的电场发生变化(U=Q/C),从而产生随声波变化而变化的交变电压。

由于驻极体膜片与金属极板之间所形成的电容容量比较小(一般为几十波法),因而它的输出阻抗值(XC=1/2fC)很高,约在几十兆欧以上。

这样高的阻抗是不能直接与一般音频放大器的输入端相匹配的,所以在话筒内接入了一只结型场效应晶体三极管来进行阻抗变换。

通过输入阻抗非常高的场效应管将电容两端的电压取出来,并同时进行放大,就得到了和声波相对应的输出电压信号。

驻极体话筒内部的场效应管为低噪声专用管,它的栅极G和源极S之间复合有二极管VD,参见图1(b)所示,主要起抗阻塞作用。

由于场效应管必须工作在合适的外加直流电压下,所以驻极体话筒属于有源器件,即在使用时必须给驻极体话筒加上合适的直流偏置电压,才能保证它正常工作,这是有别于一般普通动圈式、压电陶瓷式话筒之处。

外形和种类:常用驻极体话筒的外形分机装型(即内置式)和外置型两种。

机装型驻极体话筒适合于在各种电子设备内部安装使用。

常见的机装型驻极体话筒形状多为圆柱形,其直径有6mm、9.7mm、10mm、10.5mm、11.5mm、12mm、13mm多种规格;引脚电极数分两端式和三端式两种,引脚形式有可直接在电路板上插焊的直插式、带软屏蔽电线的引线式和不带引线的焊脚式3种。

如按体积大小分类,有普通型和微型两种。

工作电压:Uds1.5~12V,常用的有1.5V,3V,4.5V三种工作电流:Ids0.1~1mA之间输出阻抗:一般小于2K(欧姆)灵敏度:单位:伏/帕,国产的分为4档,红点(灵敏度最高)黄点,蓝点,白点(灵敏度最低)频率响应:一般较为平坦。

驻极体话筒的基本原理

驻极体话筒的基本原理

驻极体话筒的基本原理
驻极体话筒是一种常见的电容式麦克风,其基本原理是利用电容的变
化来转换声音信号。

驻极体话筒的结构由一个金属膜和一个金属网格
组成,金属网格与金属膜之间的空气形成一个电容器。

当声波通过金
属网格时,它会使金属网格振动,进而改变电容器的电容值。

这种电
容值的变化会导致电荷的流动,从而产生电流,这个电流就是声音信号。

驻极体话筒的优点是灵敏度高、频率响应范围广、失真小、噪声低等。

因此,它被广泛应用于录音、广播、电视、音乐等领域。

驻极体话筒的工作原理可以用以下步骤来描述:
1.声波进入话筒:声波是一种机械波,它通过空气传播。

当声波进入驻极体话筒时,它会使金属网格振动。

2.电容值的变化:金属网格与金属膜之间的空气形成一个电容器。

当金属网格振动时,它会改变电容器的电容值。

这种电容值的变化会导致
电荷的流动,从而产生电流。

3.电流转换为声音信号:产生的电流就是声音信号。

这个信号可以被放
大、录制、传输或播放。

驻极体话筒的灵敏度取决于金属网格和金属膜之间的距离,距离越小,灵敏度越高。

因此,在制造驻极体话筒时,需要精确控制金属网格和
金属膜之间的距离。

此外,驻极体话筒还有一些特殊的设计,例如双向话筒、心形话筒等。

这些设计可以使话筒在不同的应用场景中发挥更好的效果。

总之,驻极体话筒是一种常见的电容式麦克风,其基本原理是利用电
容的变化来转换声音信号。

它具有灵敏度高、频率响应范围广、失真小、噪声低等优点,被广泛应用于录音、广播、电视、音乐等领域。

驻极体话筒放大电路

驻极体话筒放大电路

一.设计思路1、语音放大器的基本构成根据要求,输出功率P=2W,电阻R=4Ω,由功率公式可得U=2.8V,对TDA2030输入100mv电压时,可达到设计要求。

另外,由于语音通过话筒输入信号为5mv,放大后要求达到100mv,放大倍数需在20倍以上,由电路设计要求得知,该放大器由三级组成,其总的电压增益AUf=AUf1AUf2AUf3。

应根据放大器所需的总增益AU,来合理分配各级电压增益(AUf1.AUf3)。

为了提高信噪比S/N,前置放大器的增益要适当取大。

为了使输出波形不致产生饱和失真,输出信号的幅值应小于电源电压。

2、性能指标(1)集成直流稳压电源①同时输出12V的电压②输出纹波电压小于5mV(2) 前置放大器①输入信号:Uid.10mV②输入阻抗:Ri=100k.③设定增益Auf1=30(3) 有源带通滤波器①带通频率范围:300Hz~3kHz②增益:Au=1(4) 功率放大器①最大不失真输出功率:Pmax>=2W②负载阻抗:RL=4Ω③电源电压:+12V,-12V(5) 输出功率连续可调①直流输出电压:.50mV(输出开路时)②静态电源电流:.100mA(输出短路时)3、要求(1)选取单元电路及元件根据设计要求和已知条件,确定集成直流稳压电源、前置放大电路、有源带通滤波器电路、功率放大电路的方案,计算和选取单元电路的元件参数。

(2)前置放大电路的组装与调试测量前置放大电路的电压增益AUd、输入电阻Ri等各项技术指标,并与设计要求值进行比较。

(3)有源带通滤波器的组装与调试测量有源带通滤波电路的电压增益AUd、带宽BW,并与设计要求值进行比较。

(4)功率放大电路的组装与调试测量功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出功率.、直流输出电压、静态电源电流等技术指标。

(5)整体电路的调试与试听(6)应用Multisim软件对电路进行仿真。

分析一下内容:前置放大器差模电压增益、共模电压增益、差模输入电阻、共模抑制比、有源带通滤波器的幅频响应。

驻极式电容麦克风构造与原理介绍

驻极式电容麦克风构造与原理介绍

04 驻极式电容麦克风性能指 标
灵敏度
总结词
灵敏度是衡量麦克风将声音转换成电信号 的能力,单位为伏特/帕斯卡(V/Pa)。灵 敏度越高,麦克风对声音的捕捉能力越强。
VS
详细描述
驻极式电容麦克风的灵敏度通常在-40~60dBFS之间,这个范围表示麦克风能够 将微弱的声音信号转换为电信号。高灵敏 度的麦克风能够更好地捕捉声音细节,但 同时也更容易受到环境噪声的干扰。
录音棚
用于录制高质量的声音,如音 乐、演讲等。
语音识别系统
作为语音输入设备,用于语音 助手、智能家居等。
会议系统
用于远程会议、视频通话等场 合,提供清晰的声音传输。
公共广播系统
用于学校、商场、车站等公共 场所的广播和通知。
02 驻极式电容麦克风构造
电容极头
极头是驻极式电容麦克风的核心部分,由两片平行金属膜片(通常为铝膜 片)构成,膜片间距非常小,通常在几微米到几十微米之间。
驻极式电容麦克风构 造与原理介绍
目录
CONTENTS
• 驻极式电容麦克风概述 • 驻极式电容麦克风构造 • 驻极式电容麦克风工作原理 • 驻极式电容麦克风性能指标 • 驻极式电容麦克风使用注意事项
01 驻极式电容麦克风概述
定义与特点
定义
驻极式电容麦克风是一种利用电 容原理将声音转换成电信号的麦 克风。
感谢您的观看
THANKS
使用环境与条件
温度
驻极式电容麦克风应在-20℃至40℃的温度范围内使 用,以确保其正常工作。
湿度
相对湿度应保持在30%至80%之间,以防止麦克风受 潮或结露。
防尘
避免在多尘的环境中使用,以免灰尘影响麦克风的性 能。

驻极体话筒驱动电路设计

驻极体话筒驱动电路设计

1.驻极体话筒驱动电路设计上图为一驻极体话筒驱动电路,当有声音时,LED会亮。

1)认识图中向关元器件。

2)分析其工作原理。

3)在万能板上搭建该电路。

4)用示波器观察测试有声音和无声音时该电路A,B,C,D,E五点的波形,记录下来。

5)比较一下电路的灵敏性,怎样提高电路的灵敏度?2.DC-DC电源模块1)认识图中相关元器件。

2)阅读芯片LM2576的文档,分析其工作原理。

3)在万能板上搭建该电路。

4)输入9V时,调整电位器R2,测量输出电压范围,并记录。

5)测试电压调整率:查阅模拟电路相关书籍和资料,了解电压调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V增大输入电压,测量输出电压,记录数据6)测试负载调整率:查阅模拟电路相关书籍和资料,了解负载调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至最大)。

调整功率电位器,减小负载电阻,测量输出电压,记录数据(注意,电阻值不可过小)7)测试纹波电压:查阅模拟电路相关书籍和资料,了解纹波电压的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至2欧姆)。

用示波器AC/5mV测量输出电压,记录波形最大值,可以调节功率电位器,观察输出波形8)效率测试:查阅模拟电路相关书籍和资料,了解效率的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至2欧姆)。

测量输如电压和电流。

计算效率。

3.线性电源模块D21)认识图中相关元器件。

2)阅读芯片LM317的文档,分析其工作原理。

3)在万能板上搭建该电路。

4)输入9V时,调整电位器R2,测量输出电压范围,并记录。

5)测试电压调整率:查阅模拟电路相关书籍和资料,了解电压调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V增大输入电压,测量输出电压,记录数据6)测试负载调整率:查阅模拟电路相关书籍和资料,了解负载调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

驻极体话筒结构原理及应用电路

驻极体话筒结构原理及应用电路

频率响应
总结词
频率响应是指驻极体话筒对不同频率声音的响应能力,直接影响声音采集的音色和清晰度。
详细描述
频率响应范围越宽,话筒能够捕捉的声音频率范围越广,输出的声音音色更丰富、更自然。常见的频率响应范围 在20Hz-20kHz之间,其中全频驻极体话筒的频率响应更接近人耳听觉范围。
输出阻抗
总结词
输出阻抗是衡量驻极体话筒输出信号的 电阻值,对电路设计和信号处理有重要 影响。
VS
详细描述
低输出阻抗的话筒便于与各种音频设备连 接,能够减小信号损失和噪声干扰。常见 的输出阻抗有几十欧姆到几百欧姆不等, 选择合适阻抗的话筒对于保证信号质量和 稳定性至关重要。
噪声电平
总结词
噪声电平是指驻极体话筒在无声音输 入时输出的电信号强度,反映了话筒 的背景噪声水平。
详细描述
低噪声话筒能够在安静环境下提供更 纯净的声音采集效果,适用于需要高 清晰度录音的场合。噪声电平越低, 背景噪声越小,输出的声音质量越高。
工作原理简介
原理
当声音引起话筒振膜振动时,会导致电容器两极板间的距离发生变化,从而引 起电容量变化,产生随声音变化的电信号。
过程
声能 → 机械振动 → 电容量变化 → 电信号
分类与用途
分类
按极性可分为单极型和双极型;按输出阻抗可分为低阻型和 高阻型。
用途
广泛应用于录音机、手机、电脑、无线麦克风等音频设备中 。
03 驻极体话筒的应用电路
前置放大器电路
01
信号放大
前置放大器电路用于放大驻极体 话筒输出的微弱信号,使其足够 驱动后续电路。
阻抗匹配
02
03
噪声抑制
通过前置放大器,实现与话筒输 出阻抗的匹配,提高信号传输效 率。

驻极体话筒结构原理及应用电路设计

驻极体话筒结构原理及应用电路设计

驻极体话筒结构原理及应用电路设计驻极体话筒的结构主要由振动膜片、驻极板和输出电路组成。

振动膜片通常由金属或塑料材料制成,用于接收声压波并产生振动。

驻极板与振动膜片之间存在电容,当振动膜片受到声波的作用时,电容发生变化,导致电信号的产生。

输出电路将产生的电信号放大,并输出为声音信号。

首先是驻极体话筒的电容放大电路设计。

电容放大电路是驻极体话筒的核心部分,用于将微弱的电信号转化为可用的声音信号。

在设计电容放大电路时,需要选择合适的放大倍数和频率响应,以提高音质和减少噪音。

其次是供电电路的设计。

驻极体话筒通常需要直流电源供电,因此需要设计一个合适的供电电路,以提供稳定的电压和电流。

供电电路还需要考虑防止干扰和噪音的设计,以保证音质的清晰度和信号的稳定性。

另外,为了进一步提高声音质量,还可以在驻极体话筒的输出电路中添加滤波电路。

滤波电路可以减少声音中的杂音和失真,并根据需要调整音频的频率范围。

此外,驻极体话筒的应用电路设计还需要考虑信号传输和接收的问题。

一般情况下,驻极体话筒的信号需要通过电缆或无线方式传输给其他设备,因此需要设计合适的信号传输电路和接收电路。

这些电路可以保证信号的稳定传输和准确接收,以及防止干扰和干扰。

最后,驻极体话筒的应用电路设计还需要考虑功耗和体积的问题。

随着现代电子设备的迅速发展,人们对功耗和体积的要求越来越高。

因此,在设计驻极体话筒的应用电路时,需要尽量选择低功耗和小尺寸的元件和模块,以满足现代设备的需求。

总之,驻极体话筒的结构原理及应用电路设计是一个复杂而重要的课题。

只有深入理解其工作原理,并根据实际需求进行合理的电路设计,才能实现高质量的声音采集和放大。

驻极体话筒结构原理及应用电路设计图文

驻极体话筒结构原理及应用电路设计图文
由于驻极体薄膜上分布有极化电荷。当声波引起驻极体 薄膜振动而产生位移时;改变了电容两极版之间的距离,从 而引起电容发生变化,由于驻极体上的电荷量恒定,根据公 式Q=CU可知 :当C变化时必然引起电容器两端电压U的变化, 从而输出电信号,实现声--电的变换。
2、阻抗变换电路
驻极体膜片与金属极板之间的电容量比较小,一般为 几十pF。因而它的输出阻抗值很高,约几十兆欧以上。因此, 它不能直接与放大电路相连接,必须连接阻抗变换器。通常 用一个专用的场效应管和一个二极管复合组成阻抗变换器。 内部电气原理如图。
2、 工作电流I
I 是指话筒静态时流过话筒的电流,它就等于场效应管的 IDS.与工作电压类似,工作电流的离散性也较大,通常在 0.1~1mA 之间。
3、最大工作电压U
最大工作电压UMDS是指场效应管漏源极两端能够承受的 最大电压。超过该电压时场效应管会被击穿造成永久损坏。
4、输出阻抗
话筒输出的交流负载阻抗。由于驻极体话筒经过场效应 管的变换,输出阻抗较小,一般小于2k。
2、灵敏度的选择
灵敏度的选择是使用中一个比较关键的问题,究竟选择 灵敏度高好还是低好应根据实际情况而定。
在要求动态范围较大的场合应选用灵敏度低一些,这样 录制的节目背景噪声较小、信噪比较高,声音听起来比较 干净、清晰,但对电路的增益相对就要求高的些;
在简易系统中可选用灵敏度高一点的产品,以减轻后级 放大电路增益的压力。
• uGS < 0 时 , 耗 尽 层 增 厚 , 导 电 沟 道 变 薄 。 当
uGS=UGS(off) (<0)时,沟道开始夹断。
UGS(off) :夹断电压 ,(<0)
B. uGS=Const, uDS (>0)变化 (见p36)

驻极体麦克风(ECM)电路设计总结

驻极体麦克风(ECM)电路设计总结

驻极体麦克风(ECM)电路设计总结1. ECM原理ECM是指驻极体电容式麦克风,与MEMS硅麦不同,其内部结构如图1所示。

MIC内部有一个充有一定电荷的膜片电容,电容其中一个极板与FET连接,由于FET的基极输入阻抗很高,可以认为电容的电荷不会消失。

膜片随着外部声压振动,使得电容两个极板之间距离发生变化,从而导致电容发生变化,从电容公式可以知道,电荷一定的情况下,当电容值发生改变时,电压也会发生变化,即FET的GS电压改变导致DS电流发生变化,电流的变化导致外部偏置电阻上的电压发生变化,从而使得MIC输出端DS电压发生变化,其电压变化量和偏置电阻的电压变化量相等。

图1上述的工作原理其实就是三极管(或MOSFET)的放大用法,在实际工作中,我们使用三极管(或MOSFET)多数是开关作用居多,我在之前的一篇文章《三极管放大区静态工作点设置》,就简单讲述过三极管放大区的静态工作点设置方法,其本质与MIC内部FET的工作原理相同,使FET工作于饱和区(对应三极管的线性放大区)。

2. ECM参数规格根据上述参考文章的讲解,要想MIC输出电压的动态范围最大,需要合适的偏置电阻将正极+输出电压设置在Vs的一半。

根据MIC规格书中的电气参数可知(图2),静态电流为500uA,因此RL=(Vs-V+)/Idss=(2-1)V/500uA=2K,实际选择了2.2K,相差不大。

这也是多数MIC推荐的工作条件:2V偏置电压、2.2K偏置电阻。

在此条件下,可以计算得出MIC两端的静态电压Vbias=2-2.2K*500uA=0.9V。

图2设定好偏置电阻后,我们需要确定MIC输出的交流电压,因为真正有用的声音信息包含在交流电压信号中。

根据模电MOSFET交流等效模型可得,MIC的交流等效电路如图3所示。

由于FET的rgs很大,所以膜片电容上的电荷基本不会放电消失;由于rd相对RL很大,并联之后可以忽略rd,因此MIC的交流输出电压V=gmVgs*RL,由此可知,要想获得较大的有效交流输出信号,可以增大偏置电阻RL。

驻极体话筒的基本原理

驻极体话筒的基本原理

驻极体话筒的基本原理一、驻极体话筒的概述驻极体话筒是一种广泛应用于音频采集和录音领域的电声传感器。

它采用了一种特殊的工作原理,能够将声音转化为电信号,并具有高灵敏度、宽频响和低噪声等优秀性能特点。

二、电动驻极体话筒的原理驻极体话筒主要由振膜、极板和前置放大器等组成。

其工作原理可以分为机械振动、电荷转换和电信号放大三个过程。

2.1 机械振动过程驻极体话筒的振膜是其感受声音振动的部分,一般采用金属或聚合物薄膜材料制成。

当声波作用于振膜时,振膜会产生相应的机械振动。

2.2 电荷转换过程振膜与极板之间存在间隙,形成一个电容器。

当振膜振动时,间隙的电容值会发生变化,从而引起极板上的电荷发生变化。

这个过程类似于电容麦克风的工作原理,所以驻极体话筒也被称为电容式话筒。

2.3 电信号放大过程在电荷转换过程中,极板上的电荷变化会被前置放大器放大并转化为电压信号。

这个电信号经过后续电路的处理,最后被输出为模拟音频信号或数字信号。

三、结构类型与特点根据驻极体话筒的结构特点,可以将其分为平板式和柱式两种类型。

3.1 平板式驻极体话筒平板式驻极体话筒的振膜和极板呈平行排列。

它具有频响平坦、快速响应和精确传递等优点,常用于专业录音和演出领域。

3.2 柱式驻极体话筒柱式驻极体话筒的振膜和极板呈一定的角度排列,形成一个圆柱体结构。

它具有较高的灵敏度和动态范围,常用于广播、录音室等场合。

四、驻极体话筒的应用领域驻极体话筒由于其优秀的声音采集特性,在音频领域得到了广泛的应用。

4.1 录音和演出驻极体话筒可用于录音室、演唱会、乐器录制等场合,能够准确记录声音的细节和动态。

4.2 电视和广播驻极体话筒在电视和广播中扮演着重要的角色,能够捕捉到主持人、演员和嘉宾的声音,确保音频质量清晰和逼真。

4.3 会议和讲座驻极体话筒在会议和讲座中广泛应用,能够将发言者的声音传递给听众,提供良好的语音清晰度。

4.4 语音识别驻极体话筒也在语音识别领域有着重要的应用,能够准确捕捉说话者的语音信号,提供高质量的输入数据。

驻极体话筒的基本原理

驻极体话筒的基本原理

驻极体话筒的基本原理驻极体话筒是一种常见的电声转换器,它通过将声音信号转换为电信号,实现声音的录制和放大。

驻极体话筒的基本原理是利用了声音对声波的敏感性以及电磁感应的原理。

驻极体话筒的核心部件是一个由金属薄膜组成的振动膜片,膜片上覆盖着一层绝缘材料。

当有声波通过话筒时,声波会使得膜片产生微小的振动。

这种振动会导致膜片上的电荷分布发生变化,进而改变电容。

这样,声波的振动就被转化为电信号。

在驻极体话筒内部,有一对金属板,它们分别位于振动膜片的前后。

这对金属板中的一面是驻极板,它与振动膜片的绝缘层相连,起到了固定振动膜片的作用。

另一面是极板,它与振动膜片的金属层相连,起到了电荷收集和电信号输出的作用。

当振动膜片发生振动时,驻极板上的电荷分布也会改变。

这种电荷变化会影响驻极板与极板之间的电场分布,从而改变了电容。

电容的变化会导致电荷在电路中的流动,产生微弱的电流。

这个电流就是根据声音信号而产生的电信号,可以被放大器放大,进而用于录音或放音。

驻极体话筒的工作原理可以用以下步骤来概括:1. 声音信号进入驻极体话筒,使得振动膜片发生微小振动。

2. 振动膜片的振动导致驻极板上的电荷分布发生变化。

3. 电荷分布的变化影响了电场分布,导致电容发生变化。

4. 电容的变化引起了电流的流动,产生了与声音信号相对应的电信号。

5. 电信号经过放大器放大后,可以被用于录制或放音。

驻极体话筒具有灵敏度高、频率响应范围宽等优点,因此在音乐录制、广播电视、舞台演出等领域被广泛应用。

它可以准确地捕捉到声音的细微变化,并将其转化为电信号,让人们能够听到真实而清晰的声音。

驻极体话筒通过将声音信号转换为电信号,实现了声音的录制和放大。

它的基本原理是利用了声音对声波的敏感性以及电磁感应的原理。

驻极体话筒的工作过程可以概括为声音信号进入话筒,使得振动膜片发生振动,进而改变电容,产生电信号。

这种电信号可以被放大器放大,用于录音或放音。

驻极体话筒的应用广泛,可以捕捉到真实而清晰的声音,为人们的音乐和娱乐生活增添了乐趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
驻极体话筒结构原理 及应用电路设计
一、驻极体话筒的工作原理与结构
驻极体话筒具有体积小、结构简单、电声性能好、价 格低的特点,广泛用于盒式录音机、无线话筒及声控等电 路中。 驻极体话筒由声电转换和阻抗变换两部分组成。声电 转换的关键元件是驻极体振动膜。
1、驻极体极头的结构与工作原理
驻极体极头的基本结构由一片单面涂有金属的驻极体薄 膜与一个上面有若干小孔的金属电极(称为背电极)构成 以及它们中间的几十μm厚的尼龙隔离垫组成,如图一所示。 驻极体薄膜实际上是一种很薄的特氟隆膜。当此种膜经 过高压极化处理之后,在其上面可以长期保留住一定数量 的负电荷。
② 饱和漏极电流IDSS: UGS=0时对应的漏极电流。 ③ 低频跨导gm:低频跨导反映了uGS对iD的控制作用。gm可以在转移特 性曲线上求得,单位是mS(毫西门子)。 u 2 I DSS (1 GS ) iD U GS(off) gm U DS gm U GS(off) uGS 0时) (当 uGS U GS(off)
二、驻极体话筒的特性参数
1、 工作电压U
U 是指话筒正常工作时, 所加在话筒两端的最小电压。 视型号不同而不同,即使同一种型号也有较大的离散性,通 常在1.5~12V 之间。
2、 工作电流I
I 是指话筒静态时流过话筒的电流,它就等于场效应 管的IDS.与工作电压类似,工作电流的离散性也较大,通常 在0.1~1mA 之间。
控制电压形成电路的基本部件是AGC检波器和低通平滑 滤波器。 放大电路的输出信号u0 经检波并经滤波器滤除高频调制 分量和噪声后,产生用以控制增益受ቤተ መጻሕፍቲ ባይዱ放大器的电压uc 。 当输入信号ui增大时,u0和uc亦随之增大。 uc增大使放大电 路的增益下降,从而使输出信号的变化量显著小于输入信号 的变化量,达到自动增益控制的目的。 放大电路增益的控制方法: ①改变晶体管的直流工作状态,以改变晶体管的电流放 大系数β。 ②在放大器各级间插入电控衰减器。 ③用电控可变电阻作放大器负载等。
2、灵敏度的选择
灵敏度的选择是使用中一个比较关键的问题,究竟选 择灵敏度高好还是低好应根据实际情况而定。 在要求动态范围较大的场合应选用灵敏度低一些,这 样录制的节目背景噪声较小、信噪比较高,声音听起来比 较干净、清晰,但对电路的增益相对就要求高的些; 在简易系统中可选用灵敏度高一点的产品,以减轻后 级放大电路增益的压力。
6、频率响应
一般指自由场频率响应,它是指话筒的灵敏度级和频 率的关系,用曲线来表示。驻极体话筒的频率响应一般较 为平坦。
7、指向性
话筒的灵敏度随声波入射方向而变化的特性。驻极体 话筒通常为全向性话筒。
8、等效噪声级
由固有噪声引起的等效声压级。一般小于35分贝。
三、驻极体话筒的使用要点
驻极体话筒性能表现的好坏很大程度上取决于话筒在电 路中的状态。话筒的状态又决定了内置场效应管的工作状态。 因此场效应管在电路中的状态不仅决定了话筒能否正常工作, 而且决定了话筒工作性能的好坏。
3、最大工作电压U
最大工作电压UMDS是指场效应管漏源极两端能够承受的 最大电压。超过该电压时场效应管会被击穿造成永久损坏。
4、输出阻抗
话筒输出的交流负载阻抗。由于驻极体话筒经过场效应 管的变换,输出阻抗较小,一般小于2k。
5、 灵敏度
话筒在自由场中、在外界的声压作用下,输出端开路时 所输出的电动势,单位是伏/帕,可用毫伏/帕表示。国产 的驻极体话筒根据灵敏度不同分为4档,分别以红、黄、蓝、 白四种不同色点标记, 红点灵敏度最高,白点最低。
2、阻抗变换电路
驻极体膜片与金属极板之间的电容量比较小,一般为 几十pF。因而它的输出阻抗值很高,约几十兆欧以上。因 此,它不能直接与放大电路相连接,必须连接阻抗变换器。 通常用一个专用的场效应管和一个二极管复合组成阻抗变 换器。内部电气原理如图。
3、驻极体话筒的接法
话筒有两根引出线,漏极D与电源正极之间接一漏极电 阻R,信号由漏极经一隔直电容输出,这种接法有一定的电 压增益,话筒的灵敏度比较高,但动态范围比较小。 目前市售的驻极体话筒大多是这种方式连接。
B. uGS=Const, uDS (>0)变化 (见p36) uDS=小时,耗尽层变化不
大,N型沟道=>R。 uDS=中等时,
uDS 沟道 R I D恒流
uDS=很高时,DG结击穿。
(3) JFET的特性曲线 iD f ( uGS ) uDS const. 转移特性
④ 直流输入电阻RGS:对于结型场效应三极管,反偏时RGS约大于107Ω。
JFET正常工作时,PN结必须反偏,如对N沟道JFET,要求uGS≤0。 JFET通过uGS来控制iD,是电压控制电流器件; JFET的RGS有时还不够大、随温度变化,正偏时变得很小;
2、简单的AGC电路
1、负载电阻R的选择
场效应管的电路状态取决于负载电阻R和电源电压U的 大小。R的大小可由下式算得:
UDS必须大于话筒的工作电压,小于最大工作电压。U太 小时将影响话筒的动态范围。一般应取电源电压的1/2 较为 合适。
应保证RL的阻值要始终大于话筒输出阻抗的3~5倍才能 使话筒处于良好的匹配状态。由于话筒的输出阻抗在2k左 右,因此RL至少要在10k以上才能满足要求。
2、 结型场效应管(JFET)
(1)结构与符号
N沟道
P沟道
(2)工作原理 (以N沟道为例)
A. uDS=0, uGS变化 (见p35) uGS=0时,存在N型导电沟道(N型区)。 uGS < 0 时 , 耗 尽 层 增 厚 , 导 电 沟 道 变 薄 。 当
uGS=UGS(off) (<0)时,沟道开始夹断。 UGS(off) :夹断电压 ,(<0)
四、自动增益控制放大电路
AGC电路广泛用于各种接收机、 录音机和测量仪器中, 它常被用来使系统的输出电平保持在一定范围内,因而也称 自动电平控制; 用于话音放大器或收音机时,称为自动音量 控制。
1、AGC电路的基本概念
自动增益控制:使放大电路的增益自动地随信号强度而 调整的自动控制方法。实现这种功能的电路简称AGC环。 AGC环是闭环电子电路,它可以分成增益受控放大电路 和控制电压形成电路两部分。增益受控放大电路位于正向 放大通路,其增益随控制电压而改变。
饱和漏极电流: IDSS
iD I DSS (1

uGS U GS ( off )
)2
(U GS ( off ) uGS 0)
输出特性
iD f ( uDS ) uGS const.
表达式 转移特 性曲线
预夹断 线
满足: uGD=UGS(off)
UGS(off)
夹断区
(4) 主要参数 ① 夹断电压UGS(off):漏极电流约为零时的UGS值 。
因为在振膜的 正面是负电荷,在 其感应作用,在具 有金属镀层的背面 和金属极板上,同 时感应出等量的正 电荷。
驻极体面与背电极相对,中间有一个极小的空气隙,形 成一个以空气隙和驻极体作绝缘介质,以背电极和驻极体上 的金属层作为两个电极构成一个平板电容器。电容的两极之 间有输出电极。 由于驻极体薄膜上分布有极化电荷。当声波引起驻极体 薄膜振动而产生位移时;改变了电容两极版之间的距离,从 而引起电容发生变化,由于驻极体上的电荷量恒定,根据公 式Q=CU可知 :当C变化时必然引起电容器两端电压U的变化, 从而输出电信号,实现声--电的变换。
相关文档
最新文档