平面向量的数量积(一轮复习)

合集下载

平面向量的数量积课件-2025届高三数学一轮复习

平面向量的数量积课件-2025届高三数学一轮复习

平面向量数量积的概念及运算,与长度、夹角、平行、垂直有关的问
预测 题以及平面向量数量积的综合应用仍是考查的热点,会以选择题或填
空题的形式出现.
必备知识·逐点夯实
知识梳理·归纳
1.向量的夹角
∠AOB
已知两个非零向量a和b,作=a,=b,则________叫做a与b的夹角
定义
范围
0≤θ≤π
设θ是a与b的夹角,则θ的取值范围是_______
道夹角和模的不共线向量为基底来表示要求的向量,再结合运算律展开求解;
(2)当已知向量的坐标或可通过建立平面直角坐标系表示向量的坐标时,可利用
坐标法求解;
(3)利用向量数量积的几何意义求解.
对点训练
1.(2022·全国乙卷)已知向量a,b满足|a|=1,|b|= 3,|a-2b|=3,则a·b=(
A.-2
24 1
θ=
=
= ,
|||| 12×8 4
所以向量a在向量b上的投影向量为|a|cos

1 1 3
θ· =12× × b= b.
||
4 8 8
3
b
8
.
2.(2023·衡阳模拟)平面向量a⊥b,已知a=(6,-8), =5,且b与向量(1,0)的夹角是钝
角.则b在向量(1,0)上的投影向量为(
(4)向量a与b夹角为θ,a在b上的投影向量为(|a|cos

θ) .(
||

)
2.(必修第二册P36练习T1·
变条件)已知a=(-1,t-1),b=(3,2),且 2 + =3,则t=(
A. 2
B. 3
C.± 2
D.±
2
2

高考理科第一轮复习课件(4.3平面向量的数量积)

高考理科第一轮复习课件(4.3平面向量的数量积)

【规范解答】(1)选A.由|a·b|=|a||b|知,a∥b. 所以sin 2x=2sin2x,即2sinxcosx=2sin2x,而x∈(0,π), 所以sin x=cos x,即 x= ,故tan x=1.
4
(2)选A.由题意得,BQ AQ AB 1 AC AB,
5.平面向量数量积的坐标表示 设向量a=(x1,y1),b=(x2,y2),向量a与b的夹角为θ ,则
数量积
x1x2+y1y2 a·b=_________
2 2 x1+y1 ①|a|=_______

②若A(x1,y1),B(x2,y2),
2 2 (x1-x 2) +(y1-y2) 则 | AB| =____________________
3.平面向量数量积的性质
设a,b都是非零向量,e是单位向量,θ 为a与b(或e)的夹
角.则
(1)e·a=a·e=|a|cos
a·b=0 (2)a⊥b⇔_______.
θ .
(3)当a与b同向时,a·b=|a|·|b|.
当a与b反向时,a·b=-|a|·|b|, |a|2 a a 特别地,a·a=____或者|a|=____.
第三节 平面向量的数量积
1.两个向量的夹角 定义 范围 向量夹角θ 的范围是 0°≤θ ≤180° _______________, 0°或180° 当θ = ___________时,两向 量共线; 90° 当θ = _____时,两向量垂直, 记作a⊥b(规定零向量可与任 一向量垂直)
非零 已知两个_____向量a,b, 作 OA a,OB b, ∠AOB=θ 叫作向量a与b的 夹角(如图).
又∵a,b为两个不共线的单位向量,

高三数学一轮复习基础过关5.3平面向量的数量积PPT课件

高三数学一轮复习基础过关5.3平面向量的数量积PPT课件

5 ,|a|cos
θ
=|a|
ab |a ||b |
2 (4) 3 7 13 65 .
(4)2 72
65 5
2.若|a|=2cos 15°,|b|=4sin 15°,a,b的夹角为
30°,则a·b等于
( B)
A. 3
B. 3
C. 2 3
D. 1
2
2
解析 a b | a || b | cos 30
§5.3 平面向量的数量积
基础知识 自主学习
要点梳理
1.平面向量的数量积 已知两个非零向量a和b,它们的夹角为θ ,则数量 |a |·|b|cos θ 叫做a与b的数量积(或内积),记 作a ·b=|a ||b|·cos θ .
规定:零向量与任一向量的数量积为 0 . 两个非零向量a与b垂直的充要条件是 a ·b=0 ,两非 零向量a与b平行的充要条件是 a ·b=±|a ||b| .
4.一般地,(a·b)c≠(b·c)a即乘法的结合律不成 立.因a·b是一个数量,所以(a·b)c表示一个与c 共线的向量,同理右边(b·c)a表示一个与a共线 的向量,而a与c不一定共线,故一般情况下(a·b)c ≠(b·c)a.
失误与防范
1. 零 向 量 :(1)0 与 实 数 0 的 区 别 , 不 可 写 错 : 0a=0≠0,a+(-a)=0≠0,a·0=0≠0;(2)0的方向是任 意的,并非没有方向,0与任何向量平行,我们只 定义了非零向量的垂直关系.
·sin(
π -θ )=sin
θ cos
2 θ -sin θ
cosθ =0.
∴a⊥b. 2
(2)解 由x⊥y得x·y=0,
即[a+(t2+3)b]·(-ka+tb)=0,

2014高考数学一轮复习课件4.3平面向量的数量积

2014高考数学一轮复习课件4.3平面向量的数量积

【尝试解答】 (1)a+c=(1,2m)+(2,m)=(3, 3m). ∵(a+c)⊥b,∴(a+c)· b=(3,3m)· (m+1,1)=6m+3 =0, 1 ∴m=- . 2 ∴a=(1,-1),∴|a|= 2. (2)∵a与b是不共线的单位向量,∴|a|=|b|=1. 又ka-b与a+b垂直, ∴(a+b)· (ka-b)=0, 即ka2+ka· b-a· 2=0. b-b ∴k-1+ka· b-a· b=0.
4.(2013· 深圳质检)若平面向量α,β满足|α|=1, 1 |β|≤1,且以向量α,β为邻边的平行四边形的面积为 ,则α 2 与β的夹角θ的取值范围是________. 1 【解析】 由题意知S=|α||β|sin θ= ≤sin θ, 2 π 5 ∵θ∈[0,π],∴θ∈[ , π]. 6 6
•第三节 平面向量的数量积
•1.平面向量的数量积 •(1)定义:已知两个非零向量a和b,它们的夹 角为θ,则数量_______________叫做a与b |a|·|b|cos_θ 的数量积(或内积).规定:零向量与任一向量 0 的数量积为______. •(2)几何意义:数量积a·b等于a的长度|a|与b |b|cos θ 在a方向上的投影_t,-1)· (1,0)=t.且0≤t≤1. → → ∴DE·DC的最大值为1.
•【答案】 (1)-16 (2)1 1
1.平面向量的数量积的运算有两种形式,一是依据长 度与夹角,二是利用坐标来计算. 2.(1)要有“基底”意识,关键用基向量表示题目中所 → → → → 求相关向量,如本题(1)中用AM 、MB 表示AB 、AC 等.(2) 注意向量夹角的大小,以及夹角θ=0°,90°,180°三种 特殊情形. 3.应当注意:(1)向量数量积a· b中的“· ”既不能省略,也 不能写成“³”;(2)向量的数量积满足“交换律”、“分 配律”,但不满足“结合律”.

数学一轮复习课后限时集训34平面向量的数量积与平面向量应用举例含解析

数学一轮复习课后限时集训34平面向量的数量积与平面向量应用举例含解析

课后限时集训(三十四)平面向量的数量积与平面向量应用举例建议用时:40分钟一、选择题1.(2018·全国卷Ⅱ)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=() A.4B.3C.2D.0B[a·(2a-b)=2a2-a·b=2-(-1)=3,故选B。

]2.已知平面向量a=(-2,3),b=(1,2),向量λa+b与b 垂直,则实数λ的值为()A.错误!B.-错误!C.错误!D.-错误!D[∵a=(-2,3),b=(1,2),∴λa+b=(-2λ+1,3λ+2).∵λa+b与b垂直,∴(λa+b)·b=0,∴(-2λ+1,3λ+2)·(1,2)=0,即-2λ+1+6λ+4=0,解得λ=-错误!.]3.(多选)已知向量a=(1,-1),b=(2,x),设a与b的夹角为α,则()A.若a∥b,则x=-2B.若x=1,则|b-a|=5C.若x=-1,则a与b的夹角为60°D.若a+2b与a垂直,则x=3ABD[由a∥b可得x=-2,故A正确;若x=1,则b=(2,1),|b-a|=|(2,1)-(1,-1)|=错误!=错误!,故B正确;当x=-1时,cos〈a,b>=a·b|a||b|=错误!=错误!≠错误!,故C错误;a+2b=(5,-1+2x),由5+(-1)(-1+2x)=0,解得x=3,故D 正确.]4.(2020·武汉模拟)已知向量|a|=2,向量a与b夹角为错误!,且a·b=-1,则|a-b|=()A.错误!B.2C.错误!D.4A[由平面向量数量积的定义可知,a·b=|a|·|b|·cos 错误!=错误!·|b|·错误!=-1,∴|b|=1,∴|a-b|=|a-b|2=错误!=错误!=错误!。

故选A。

]5.若O为△ABC所在平面内任意一点,且满足(错误!-错误!)·(错误!+错误!-2错误!)=0,则△ABC的形状为()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形A[∵(错误!-错误!)·(错误!+错误!-2错误!)=0,∴错误!·[(错误!-错误!)+(错误!-错误!)]=错误!·(错误!+错误!)=0。

新高考一轮复习人教版6.2 平面向量的数量积及其应用作业2

新高考一轮复习人教版6.2 平面向量的数量积及其应用作业2

6.2 平面向量的数量积及其应用基础篇 固本夯基考点一 平面向量的数量积1.(2019课标Ⅱ理,3,5分)已知AB ⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗ =(3,t),|BC ⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗ ·BC⃗⃗⃗⃗ =( ) A.-3 B.-2 C.2 D.3 答案 C2. (2022届山东日照开学校际联考,2)如图,AB 是单位圆O 的直径,C,D 是半圆弧AB 上的两个三等分点,则AC⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗ =( )A.1B.√32C.32D.√3答案 C3.(2022届江苏淮安车桥中学入学调研,7)已知△ABC 的外心为O,2AO ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ,|AO ⃗⃗⃗⃗ |=|AB ⃗⃗⃗⃗ |=2,则AO ⃗⃗⃗⃗ ·AC⃗⃗⃗⃗ 的值是( ) A.√3 B.32C.2√3D.6 答案 D4.(多选)(2020山东省实验中学诊断二,11)关于平面向量a,b,c,下列说法中不正确...的是( ) A.若a ∥b 且b ∥c,则a ∥c B.(a+b)·c=a ·c+b ·c C.若a ·b=a ·c,且a ≠0,则b=c D.(a ·b)·c=a ·(b ·c) 答案 ACD5.(2022届河北邢台“五岳联盟”10月联考,13)设向量a,b 均为单位向量,且a ⊥b,则(a+2b)·(3a-5b)= .? 答案 -76.(2022届湖南三湘名校、五市十校联考,14)已知点P(-2,0),AB 是圆x 2+y 2=1的直径,则PA⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗ = .? 答案 37.(2021新高考Ⅱ,15,5分)已知向量a+b+c=0,|a|=1,|b|=|c|=2,a ·b+b ·c+c ·a= .? 答案 -928.(2020湖南永州祁阳二模,8)已知平面向量a,b,e,|e|=1,a ·e=1,b ·e=-2,且|2a+b|=2,则a ·b 的最大值是 .? 答案 -32考点二 平面向量数量积的应用1.(2021石家庄一模,2)设向量a=(1,2),b=(m,-1),且(a+b)⊥a,则实数m=( ) A.-3 B.32C.-2D.-32答案 A2.(2020课标Ⅱ文,5,5分)已知单位向量a,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A.a+2b B.2a+b C.a-2b D.2a-b 答案 D3.(2022届百师联盟9月一轮复习联考一,11)已知在△ABC 中,AB=AC=2,BC=3,点E 是边BC 上的动点,则当EA ⃗⃗⃗⃗ ·EB ⃗⃗⃗⃗ 取得最小值时,|EA⃗⃗⃗⃗ |=( ) A.√374B.√372C.√102D.√142答案 A4.(多选)(2022届辽宁六校期初联考,11)给出下列命题,其中正确的有( ) A.非零向量a,b 满足|a|=|b|=|a-b|,则a 与a+b 的夹角为30°B.若(AB⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗ =0,则△ABC 为等腰三角形 C.等边△ABC 的边长为2,则AB⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗ =2 D.已知向量a=(1,-2),b=(k,1)且a ⊥(a+b),则k=0 答案 AB5.(多选)(2022届河北神州智达省级联测,9)设0<θ<π,非零向量a=(sin2θ,cos θ),b=(cos θ,1),则( ) A.若tan θ=12,则a ∥b B.若θ=3π4,则a ⊥b C.存在θ,使2a=b D.若a ∥b,则tan θ=12答案 ABD6.(多选)(2022届辽宁名校联盟9月联考,9)已知向量a=(2,0),b=(1,1),则( ) A.|a|=|b| B.a 与b 的夹角为π4C.(a-b)⊥bD.和b 同向的单位向量是(12,12) 答案 BC7.(多选)(2022届广东深圳福田外国语高级中学调研二,10)已知向量a+b=(1,1),a-b=(-3,1),c=(1,1),设a,b 的夹角为θ,则( )A.|a|=|b|B.a ⊥cC.b ∥cD.θ=135° 答案 BD8.(2021全国甲理,14,5分)已知向量a=(3,1),b=(1,0),c=a+kb.若a ⊥c,则k= .? 答案 -1039.(2020课标Ⅱ理,13,5分)已知单位向量a,b 的夹角为45°,ka-b 与a 垂直,则k= .? 答案√2210.(2020课标Ⅰ文,14,5分)设向量a=(1,-1),b=(m+1,2m-4),若a ⊥b,则m= .? 答案 5综合篇 知能转换考法一 求平面向量模的方法1.(2022届福建南平10月联考,6)已知单位向量e 1,e 2的夹角为2π3,则|e 1-λe 2|的最小值为( ) A.√22B.12C.√32D.34答案 C2.(2022届湖北九师联盟10月质量检测,5)已知向量a,b 满足|a|=2√2,|b|=1,|a-b|=√6,则|a+2b|=( ) A.2√3 B.3√2 C.4√2 D.3√3 答案 B3.(多选)(2021新高考Ⅰ,10,5分)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A(1,0),则( )A.|OP 1⃗⃗⃗⃗⃗⃗ |=|OP 2⃗⃗⃗⃗⃗⃗ |B.|AP 1⃗⃗⃗⃗⃗⃗ |=|AP 2⃗⃗⃗⃗⃗⃗ |C.OA ⃗⃗⃗⃗ ·OP 3⃗⃗⃗⃗⃗⃗ =OP 1⃗⃗⃗⃗⃗⃗ ·OP 2⃗⃗⃗⃗⃗⃗D.OA ⃗⃗⃗⃗ ·OP 1⃗⃗⃗⃗⃗⃗ =OP 2⃗⃗⃗⃗⃗⃗ ·OP 3⃗⃗⃗⃗⃗⃗答案 AC4.(2022届四省八校期中,14)已知向量a=(x,1),b=(1,-2),若a ∥b,则|a-2b|= .? 答案5√525.(2022届广东深圳福田外国语高级中学调研二,15)已知非零向量a,b 满足|a|=√7+1,|b|=√7-1,且|a-b|=4,则|a+b|= .? 答案 46.(2021全国甲文,13,5分)若向量a,b 满足|a|=3,|a-b|=5,a ·b=1,则|b|= .? 答案 3√27.(2020课标Ⅰ理,14,5分)设a,b 为单位向量,且|a+b|=1,则|a-b|= .? 答案√38.(2021河北衡水中学联考二,13)若向量a,b 满足a=(cos θ,sin θ)(θ∈R),|b|=2,则|2a-b|的取值范围为 .? 答案 [0,4]考法二 求平面向量夹角的方法1.(2022届山东烟台莱州一中开学考,4)已知|a|=√2,|b|=4,当b ⊥(4a-b)时,向量a 与b 的夹角为( ) A.π6B.π4C.2π3D.3π4答案 B2.(2020山东全真模拟,4)已知扇形AOB,∠AOB=θ,扇形半径为√3,C 是弧AB 上一点,若OC⃗⃗⃗⃗ =2√33OA ⃗⃗⃗⃗ +√33OB ⃗⃗⃗⃗ ,则θ=( ) A.π6B.π3C.π2D.2π3答案 D3.(2022届湖北部分重点中学开学联考,14)已知向量a,b 满足|a|=2,|b|=√2,且(2b-a)⊥a,则cos<a,b>= .? 答案√224.(2019课标Ⅲ理,13,5分)已知a,b 为单位向量,且a ·b=0,若c=2a-√5b,则cos<a,c>= .? 答案23应用篇 知行合一应用 向量在平面几何中的应用1.(多选)(2022届广东深圳六校联考二,9)已知平面向量AB⃗⃗⃗⃗ =(-1,k),AC ⃗⃗⃗⃗ =(2,1),若△ABC 是直角三角形,则k 的可能取值是( )A.-2B.2C.5D.7 答案 BD2.(2020新高考Ⅰ,7,5分)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP ⃗⃗⃗⃗ ·AB⃗⃗⃗⃗ 的取值范围是( ) A.(-2,6) B.(-6,2) C.(-2,4) D.(-4,6) 答案 A3.(2018天津理,8,5分)如图,在平面四边形ABCD 中,AB ⊥BC,AD ⊥CD,∠BAD=120°,AB=AD=1.若点E 为边CD 上的动点,则AE ⃗⃗⃗⃗ ·BE⃗⃗⃗⃗ 的最小值为( )A.2116 B.32 C.2516D.3 答案 A4.(2021山东烟台一模,6)平行四边形ABCD 中,AB=4,AD=3,∠BAD=60°,Q 为CD 的中点,点P 在对角线BD 上,且BP ⃗⃗⃗⃗ =λBD ⃗⃗⃗⃗ ,若AP ⃗⃗⃗⃗ ⊥BQ ⃗⃗⃗⃗ ,则λ=( )A.14B.12C.23D.34答案 A5. (2020天津,15,5分)如图,在四边形ABCD 中,∠B=60°,AB=3,BC=6,且AD ⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗ =-32,则实数λ的值为 ,若M,N 是线段BC 上的动点,且|MN ⃗⃗⃗⃗⃗ |=1,则DM ⃗⃗⃗⃗⃗ ·DN⃗⃗⃗⃗⃗ 的最小值为 .?答案16;1326.(2020北京,13,5分)已知正方形ABCD 的边长为2,点P 满足AP⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),则|PD ⃗⃗⃗⃗ |= ;PB ⃗⃗⃗⃗ ·PD ⃗⃗⃗⃗ = .? 答案√5;-1答案185或0 8.(2019天津,14,5分)在四边形ABCD 中,AD ∥BC,AB=2√3,AD=5,∠A=30°,点E 在线段CB 的延长线上,且AE=BE,则BD⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗ = .?答案 -19.(2022届江苏如皋11月期中,19)如图,在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知c=4,b=2,sin2C=sinB,且D 为BC 的中点,点E 满足AE⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗ . (1)求a 的值; (2)求cos ∠DAE 的值.解析 (1)由sin2C=sinB,得2sinCcosC=sinB,由正弦定理,得2ccosC=b.又b=2,c=4,所以cosC=b 2c =14.在△ABC 中,根据余弦定理的推论得cosC=a 2+b 2−c 22ab =14,解得a=4(舍负).(2)由(1)知,a=c=4,所以∠BAC=C,cos ∠BAC=cosC=14.记AB⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗ =b,则|a|=4,|b|=2. 因为AE⃗⃗⃗⃗ =13a+23b,AD ⃗⃗⃗⃗ =12a+12b,所以AE ⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗ =(13a +23b )·(12a +12b )=16a 2+12a ·b+13b 2=16×42+12×4×2×14+13×22=5,|AE⃗⃗⃗⃗ |=√(13a +23b )2=√19a 2+49a ·b +49b 2=√19×42+49×4×2×14+49×22=2√103, |AD⃗⃗⃗⃗ |=√(12a +12b )2=√14a 2+12a ·b +14b 2=√14×42+12×4×2×14+14×22=√6, 故cos ∠DAE=AE ⃗⃗⃗⃗⃗ ·AD⃗⃗⃗⃗⃗⃗ |AE ⃗⃗⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗⃗ |=2√103×=√154.创新篇 守正出奇创新 利用解析几何思维解决向量问题1.(2022届湖北金太阳11月联考,8设问创新)已知四边形ABCD 是半径为√2的圆O 的内接正方形,P 是圆O 上的任意一点,则PA⃗⃗⃗⃗ 2+PB ⃗⃗⃗⃗ 2+PC ⃗⃗⃗⃗ 2+PD ⃗⃗⃗⃗ 2的值为( ) A.8 B.16 C.32 D.与P 的位置有关 答案 B2.(2022届湖北九师联盟10月质量检测,7素材创新)将一条线段AB 分割成两条线段AP 、BP(AP>BP),若PB AP =AP AB =√5−12,则称这种分割为黄金分割P 为黄金分割点,√5−12为黄金分割比.黄金分割不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用.在△ABC 中,点D 为线段BC 的黄金分割点(BD>DC),AB=2,AC=3,∠BAC=60°,则AD⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗ =( ) A.7√5−92 B.9−7√52 C.9√5−72 D.7−9√52答案 A3.(2022届山东烟台莱州一中开学考,6设问创新)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP ⃗⃗⃗⃗ =OA⃗⃗⃗⃗ +λ(AB⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的( ) A.外心 B.内心 C.重心 D.垂心 答案 C3. (2018天津文,8,5分|解法创新)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,BM⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗ ,则BC ⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗ 的值为( )A.-15B.-9C.-6D.0 答案 C5.(2018浙江,9,4分|解法创新)已知a,b,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b+3=0,则|a-b|的最小值是( ) A.-√31 B.√3+1 C.2 D.2-√3 答案 A。

平面向量的数量积-高三新高考一轮复习(人教A版)

平面向量的数量积-高三新高考一轮复习(人教A版)
(3)向量的夹角
已知两个_非_零__向量 a 和 b,作O→A=a,O→B=b,则∠AOB
=θ(0°≤θ≤180°)叫作向量 a 与 b 的夹角.如果向量 a 与
b 的夹角是 90°,我们说 a 与 b 垂直,记作_a_⊥__b_.
2.平面向量数量积的运算律 已知向量 a,b,c 和实数 λ.
①交换律:__a·_b_=__b_·a__; ②数乘结合律:(λa)·b=_λ_(_a_·b_)_=_a_·_(λ_b_)_(λ∈R); ③分配律:(a+b)·c=_a_·c_+__b_·_c .
解析 (1)因为|a|=|b|=1,向量 a 与 b 的夹角为 45°, 所以(a+2b)·a=a2+2a·b=|a|2+2|a|·|b|cos 45°=1+ 2. (2)如图,由 AD∥BC,AE=BE,得∠BAD=∠ABE= ∠EAB=30°.又 AB=2 3,
所以 AE=BE=2.因为B→D=A→D-A→B, 所以A→E·B→D=A→E·(A→D-A→B)=A→E·A→D-A→E·A→B =2×5×cos 60°-2×2 3×cos 30°=-1.
解析 根据物理中力的平衡原理有 F3+F1+F2=0, ∴|F3|2=|F1|2+|F2|2+2F1·F2 =12+( 2)2+2×1× 2×cos 45°=5. ∴|F3|= 5 N.
◇考题再现
4.已知向量 a,b 满足|a|=1,a·b=-1,则 a·(2a-b)
=( B )
A.4
B.3
C.2
a·b
④cos θ=_|_a_||b_|_. ⑤|a·b|_≤__|a||b|.
4.平面向量数量积的有关结论
已知两个非零向量 a=(x1,y1),b=(x2,y2).
向量表示

平面向量的数量积(一轮复习)

平面向量的数量积(一轮复习)

=________;特殊地|,a|a|·ba|=|a|2 或|a|= a·a.
C D (4)cos θ=________.
(5)|a·b|≤|a|·|b|.
B
A 3.向量数量积的运算律
(1)交换律:a·b=b·a.
(2)分配律:(a+b)·c=________.
(3)数乘结合律:(λa)·b=λ(a·b)=a·(λb).
2、(2016 年浙江高考)已知向量 a、b, |a| =1,|b| =2,若对任意单位向量
1
题型五:平面向量的范围问题 e,均有 |a·e|+|b·e| 6 ,则 a·b 的最大值是
.【答案】 2
3、(2016 年上海高考)在平面直角坐标系中,已知 A(1,0),B(0,-1),P 是
曲线 y 1 x2 上一个动点,则 BP BA 的取值范围是
01
平面向课量堂总向结量:的模
02
、转化为坐标
向量的夹角 cos 0 3 a b
ab
转化思想、数形结合
1 、( 2013 年 高 考 四 川 卷 ) 在 ABC 中 , 角 A, B, C 的 对 边 分 别 为 a,b,c , 且
2 cos2
A B cos B sin( A B)sin B cos( A C) 2
(2)已知单位向量 e1,e2 的夹角为 α,且 cos α=13.若向量
a=3e1-2e2,则题|a|=型__二___:___平. 面向量的[答模案] 3
变式练习 (1) [2014·全国卷] 若向量 a, b 满足:| a | 1, (a b) a ,
(2a b) b ,则 | b | ( )
单击此处添加标题
单击此处添加标题

数学复习:平面向量数量积的计算

数学复习:平面向量数量积的计算

数学复习:平面向量数量积的计算一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .19352.基底法计算例2-1.已知平面向量,a b 满足a =,)(21R e e b ∈+=λλ ,其中21,e e 为不共线的单位向量,若对符合上述条件的任意向量,a b ,恒有4a b +≥ ,则21,e e 夹角的最小值是()A .6πB .π4C .π3D .π2例2-2.已知菱形ABCD 的边长为2,120BAD ︒∠=,点E 在边BC 上,3BC BE =,若G 为线段DC 上的动点,则AG AE ⋅的最大值为()A .2B .83C .103D .43.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P,则PA PB PA PC ⋅+⋅的最小值为()6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC =,则()AO AB AC ⋅+= ()A .10B .9C .8D .6平面向量数量积的计算答案一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .1935【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b+=,因此,()1919cos,5735a a ba a ba a b⋅+<+>===⨯⋅+.2.基底法计算例2-1.已知平面向量,a b满足4a=,)(21Reeb∈+=λλ,其中21,ee为不共线的单位向量,若对符合上述条件的任意向量,a b,恒有4a b+≥,则21,ee夹角的最小值是()A.6πB.π4C.π3D.π2【解析】因a=221()||cos,0||cos,8a b a b b b a b b a b+⇔+≥⇔〈〉≥⇔≥〈〉,依题意,||2b≥恒成立,而21eebλ+=,21,ee为不共线的单位向量,即有2221,cos21be=++λλ,于是得21,cos221,cos21221221++⇔≥++λλλλeee恒成立,则02,cos4212≤-=∆ee,即有22,cos2221≤≤-e,又π≤≤21,0ee,解得43,421ππ≤≤ee,所以21,ee夹角的最小值是π4.例2-2.已知菱形ABCD的边长为2,120BAD︒∠=,点E在边BC上,3BC BE=,若G为线段DC上的动点,则AG AE⋅的最大值为()A.2B.83C.103D.4【答案】B【解析】由题意可知,如图所示因为菱形ABCD 的边长为2,120BAD ︒∠=,所以2AB AD == ,1cos1202222AB AD AB AD ︒⎛⎫⋅==⨯⨯-=- ⎪⎝⎭,设[],0,1DG DC λλ=∈ ,则AG AD DG AD DC AD AB λλ=+=+=+ ,因为3BC BE =,所以1133BE BC AD ==,13AE AB BE AB AD =+=+ ,()2211(1333AG AE AD AB AB AD AD AB AD ABλλλ⎛⎫⋅=+⋅+=+++⋅ ⎪⎝⎭ ()22110222123333λλλ⎛⎫=⨯+⨯++⨯-=- ⎪⎝⎭,当1λ=时,AG AE ⋅ 的最大值为83.3.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]【答案】D【解析】在ABC ∆中,3AC =,4BC =,90C ∠=︒,以C 为坐标原点,CA ,CB 所在的直线为x 轴,y 轴建立平面直角坐标系,如图:则(3,0)A ,(0,4)B ,(0,0)C ,设(,)P x y ,因为1PC =,所以221x y +=,又(3,)PA x y =-- ,(,4)PB x y =--,所以22(3)(4)34341PA PB x x y y x y x y x y ⋅=----=+--=--+,设cos x θ=,sin y θ=,所以(3cos 4sin )15sin()1PA PB θθθϕ⋅=-++=-++ ,其中3tan 4ϕ=,当sin()1θϕ+=时,PA PB ⋅有最小值为4-,当sin()1θϕ+=-时,PA PB ⋅有最大值为6,所以[4PA PB ⋅∈- ,6].变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.【答案】98-【解析】建立平面直角坐标系如下,则(2,0)B ,(0,2)C ,(1,0)M ,直线BC 的方程为122x y+=,即2x y +=,点P 在直线上,设(,2)P x x -,∴(1,2)MP x x =-- ,(,)CP x x =-,∴22399(1)(2)232()488MP CP x x x x x x x ⋅=---=-=--- ,∴MP CP ⋅ 的最小值为98-.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]【解析】由cos ,AP AB AB AP AP AB ⋅=⋅ ,可得AP AB ⋅ 为AB 与AP 在AB方向上的投影之积.正六边形ABCDEF 中,以D 为圆心的圆Q 与DE 交于M ,过M 作MM AB '⊥于M ',设以C 为圆心的圆Q 与AB 垂直的,切线与圆Q 切于点N 与AB 延长线交点为N ',则AP 在AB方向上的投影最小值为AM ',最大值为AN ',又1AM '=,cos 6014AN AB BC '=++=,则248AP AB ⋅≤⨯= ,212AP AB ⋅≥⨯= ,则AP AB ⋅ 的取值范围是[2,8].5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-【解析】(方法1.几何法)设点M 为BC 中点,可得→→→=+PM PC PB 2,再设AM 中点为N ,这样用极化恒等式可知:22212→→→→-=⋅AM PN PM P A ,在等边三角形ABC ∆中,3=AM ,故→→⋅PM P A 取最小值当且仅当2322-=⋅→→→PN PM P A 取最小,即0||=→PN ,故23)(min -=⋅→→PM P A .(方法2.坐标法)以BC 中点为坐标原点,由于(0A ,()10B -,,()10C ,.设()P x y ,,()PA x y =- ,()1PB x y =--- ,,()1PC x y =--,,故()2222PA PB PC x y ⋅+=-+ 2233224x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦,则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,32y =.例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P ,则PA PB PA PC ⋅+⋅ 的最小值为()A .14B .10C .8D .2【解析】(法1.极化恒等式)根据题干特征,共起点的数量积范围问题,我们尝试往恒等式方向走.记BC 中点为M ,AM 中点为N .由于→→→→→⋅=+⋅PM P A PC PB P A 2)(,而)41(2222→→→→-=⋅AM PN PM P A .由于ABC ∆为等边三角形,则M O A ,,三点共线,且由于O 是外心,也是重心,故32=⇒=AM OA .则→→→→⇔+⋅min min ||)]([PN PC PB P A ,显然,由P 在圆外,且N O ,共线(AM 中点为N ),则25||||||min =-=→→→ON OP PN .综上所述,8212)]([22min min =⋅-=+⋅→→→→→AM PN PC PB P A .(法2.基底法)()()()()PA PB PA PC PO OA PO OB PO OA PO OC ⋅+⋅=+++++ 22()()PO PO OA OB OA OB PO PO OA OC OA OC=+++⋅++++⋅ 22()PO PO OA OB OA OC OA OB OA OC =+++++⋅+⋅ ,因为等边ABC ∆的三个顶点均在圆224x y +=上,因此1cos 22()22OA OB OA OB AOB ⋅=⋅⋅∠=⨯⨯-=- ,3OP == ,因为等边ABC ∆的三个顶点均在圆224x y +=上,所以原点O 是等边ABC ∆的重心,因此0OA OB OC ++= ,所以有:18221414cos PA PB PA PC PO OA OP OA OP OA AOP⋅+⋅=+⋅--=-⋅=-⋅⋅∠ 146cos AOP =-∠,当0AOP ∠=时,即,OP OA 同向时,PA PB PA PC ⋅+⋅ 有最小值,最小值为1468-=.6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8【解析】如图,点O 在AB 、AC 上的射影是点D 、E ,它们分别为AB 、AC 的中点.由数量积的几何意义,可得21182BO BA BA BD AB ⋅=⋅== ,23212BC BO BC BE BC ⋅=⋅== .又2π3B =,所以1cos 68242BA BC BA BC B ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,又BO xBA yBC =+ ,所以()2362418BO BA xBA yBC BA BA C x y BA x B y =+⋅⋅=+⋅=-= ,即1286x y -=.同理()2246432BO BC xBA yBC BC C y x B BC y BA x ⋅⋅=++⋅=+==- ,即384x y -+=,解得1091112x y ⎧=⎪⎪⎨⎪=⎪⎩.所以710113434912x y +=⨯+=⨯.例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC = ,则()AO AB AC ⋅+= ()A .10B .9C .8D .6【解析】如图,O 为ABC ∆的外心,设,D E 为,AB AC 的中点,则,OD AB OE AC ⊥⊥,故()AO AB AC AO AB AO AC ⋅+=+⋅⋅ ||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅ ||||||||AD AB AE AC +=⋅⋅ 2222111||41||2222210AB AC +=+⨯⋅== .。

高考数学一轮复习3 第3讲 平面向量的数量积及应用举例

高考数学一轮复习3 第3讲 平面向量的数量积及应用举例

第3讲平面向量的数量积及应用举例最新考纲考向预测1.通过物理中的功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.命题趋势平面向量数量积的概念及运算,与长度、夹角、平行、垂直有关的问题,平面向量数量积的综合应用仍是高考考查的热点,题型仍是选择题与填空题.核心素养数学运算、逻辑推理1.向量的夹角(1)条件:平移两个非零向量a和b至同一起点,结论:∠AOB=θ(0°≤θ≤180°)叫做a与b的夹角.(2)范围:0°≤θ≤180°.特殊情况:当θ=0°时,a与b共线同向.当θ=180°时,a与b共线反向.当θ=90°时,a与b互相垂直.2.向量的数量积(1)条件:两个向量a与b,夹角θ,结论:数量|a||b|cos_θ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos_θ.(2)数量积的几何意义条件:a的长度|a|,b在a方向上的投影|b|cos_θ(或b的长度|b|,a在b方向上的投影|a|cos_θ),结论:数量积a·b等于|a|与|b|cos_θ的乘积(或|b|与|a|cos_θ的乘积).3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),θ=a,b.结论几何表示坐标表示向量的模|a|=a·a |a|=x21+y21夹角余弦cos θ=a·b|a||b|cos θ=x1x2+y1y2x21+y21x2+y2a⊥b充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤x21+y21x22+y2常用结论1.求平面向量的模的公式(1)a2=a·a=|a|2或|a|=a·a=a2;(2)|a±b|=(a±b)2=a2±2a·b+b2;(3)若a=(x,y),则|a|=x2+y2.2.有关向量夹角的两个结论(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立);(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).常见误区1.投影和两向量的数量积都是数量,不是向量.2.向量a在向量b方向上的投影与向量b在向量a方向上的投影不是一个概念,要加以区别.3.向量数量积的运算不满足乘法结合律,即(a·b)·c不一定等于a·(b·c),这是由于(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.1.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )·c =a ·(b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33D .3解析:选B.a ·b =|a ||b |cos 135°=-122,所以|b |=-1224×⎝ ⎛⎭⎪⎫-22=6.3.(多选)已知向量a =(1,-2),b =(-2,4),则( ) A .a ∥b B .(a +b )·a =-5 C .b ⊥(a -b )D .2|a |=|b |解析:选ABD.因为1×4=-2×(-2),所以a ∥b ,又a +b =(-1,2),所以(a +b )·a =-5.a -b =(3,-6),b ·(a -b )≠0,所以C 错误,|a |=5,|b |=25,2|a |=|b |,故选ABD.4.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ=________. 解析:cos θ=a·b |a||b|=-632×6=-32,又因为0≤θ≤π,所以θ=5π6. 答案:5π65.已知向量a 与b 的夹角为π3,|a |=|b |=1,且a ⊥(a -λb ),则实数λ=________.解析:由题意,得a ·b =|a ||b |cos π3=12,因为a ⊥(a -λb ),所以a ·(a -λb )=|a |2-λa ·b =1-λ2=0,所以λ=2.答案:2平面向量数量积的运算(1)(2021·内蒙古赤峰二中、呼市二中月考)已知向量a ,b 的夹角为π3,若c =a |a|,d =b |b|,则c ·d =( ) A.14B .12 C.32 D .34(2)(多选)已知△ABC 的外接圆的圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB→|,下列结论正确的是( ) A.CA→在CB →方向上的投影长为- 3 B.OA →·AB →=OA →·AC →C.CA→在CB →方向上的投影长为 3 D.OB →·AB →=OC →·AC→ 【解析】 (1)c ·d =a |a|·b |b|=|a||b|cos a ,b |a||b|=cos π3=12.故选B.(2)由OA→+AB →+AC →=0得OB →=-AC →=CA →,所以四边形OBAC 为平行四边形.又O 为△ABC 外接圆的圆心,所以|OB→|=|OA →|,又|OA →|=|AB →|,所以△OAB 为正三角形.因为△ABC 的外接圆半径为2,所以四边形OBAC 是边长为2的菱形,所以∠ACB =π6,所以CA →在CB →上的投影为|CA →|cos π6=2×32=3,故C 正确.因为OA →·AB→=OA →·AC →=-2,OB →·AB →=OC →·AC→=2,故B ,D 正确.【答案】 (1)B (2)BCD计算向量数量积的三个角度(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.1.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55 B .-55 C .-255D .-355解析:选D.由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2,所以a ·b =-3,所以向量b 在a 方向上的投影为a·b |a|=-355.故选D.2.(2020·重庆第一中学月考)已知非零向量a ,b ,c 满足a +b +c =0,a ,b 的夹角为120°,且|b |=2|a |,则向量a ,c 的数量积为( )A .0B .-2a 2C .2a 2D .-a 2解析:选A.由非零向量a ,b ,c 满足a +b +c =0,可得c =-(a +b ),所以a ·c =a ·[-(a +b )]=-a 2-a ·b =-a 2-|a |·|b |·cosa ,b.由于a ,b 的夹角为120°,且|b |=2|a |,所以a ·c =-a 2-|a |·|b |cos 120°=-|a |2-2|a |2×⎝ ⎛⎭⎪⎫-12=0.故选A.3.(一题多解)(2020·武昌区高三调研)在等腰直角三角形ABC 中,∠ACB =π2,AC =BC =2,点P 是斜边AB 上一点,且BP =2P A ,那么CP →·CA →+CP →·CB→=( ) A .-4 B .-2 C .2D .4解析:选D.通解:由已知得|CA →|=|CB →|=2,CA →·CB→=0,AP →=13(CB →-CA →),所以CP →·CA →+CP →·CB →=(CA →+AP →)·CA →+(CA →+AP →)·CB →=|CA →|2+AP →·CA →+CA →·CB →+AP →·CB →=|CA →|2+13(CB →-CA →)·(CB→+CA →)=|CA →|2+13|CB →|2-13|CA →|2=22+13×22-13×22=4. 优解:由已知,建立如图所示的平面直角坐标系,则C (0,0),A (2,0),B (0,2),设P (x ,y ).因为BP =2P A ,所以BP →=2P A →,所以(x ,y -2)=2(2-x ,-y ),所以⎩⎪⎨⎪⎧x =43y =23,所以CP →·CA →+CP →·CB →=(43,23)·(2,0)+(43,23)·(0,2)=4.故选D.平面向量数量积的应用角度一 求两平面向量的夹角(1)(2020·高考全国卷Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos〈a ,a +b 〉=( )A .-3135B .-1935 C.1735D .1935(2)(2021·普通高等学校招生全国统一考试模拟)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉=( )A.73 B .23 C.79D .29【解析】 (1)由题意,得a ·(a +b )=a 2+a ·b =25-6=19,|a +b |=a2+2a·b +b2=25-12+36=7,所以cosa ,a +b=a·(a +b )|a||a +b|=195×7=1935,故选D.(2)因为a ,b 是单位向量,所以|a |=|b |=1.又因为a ·b =0,c =7a +2b ,所以|c |=(7a +2b )2=3,a ·c =a ·(7a +2b )=7, 所以cos 〈a ,c 〉=a·c |a||c|=73.因为〈a ,c 〉∈[0,π],所以sin 〈a ,c 〉=23.故选B. 【答案】 (1)D (2)B求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系.(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x1x2+y1y2x21+y 21·x 2+y 2.角度二 求平面向量的模(2020·四川双流中学诊断)如图,在△ABC 中,M 为BC 的中点,若AB =1,AC =3,AB →与AC →的夹角为60°,则|MA→|=________.【解析】 因为M 为BC 的中点,所以AM→=12(AB →+AC →),所以|MA→|2=14(AB →+AC →)2 =14(|AB →|2+|AC →|2+2AB →·AC →) =14(1+9+2×1×3cos 60°)=134, 所以|MA→|=132. 【答案】 132求向量的模或其范围的方法(1)定义法:|a |=a2=a·a ,|a ±b |=(a±b )2=a2±2a·b +b2. (2)坐标法:设a =(x ,y ),则|a |=x2+y2.(3)几何法:利用向量加减法的平行四边形法则或三角形法则作出向量,再利用解三角形的相关知识求解.[提醒] (1)求形如m a +n b 的向量的模,可通过平方,转化为数量的运算. (2)用定义法和坐标法求模的范围时,一般把它表示成某个变量的函数,再利用函数的有关知识求解;用几何法求模的范围时,注意数形结合的思想,常用三角不等式进行最值的求解.角度三 两平面向量垂直问题已知向量AB →与AC →的夹角为120°,且|AB→|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为________.【解析】 因为AP →⊥BC →,所以AP →·BC →=0.又AP→=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0, 所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0.解得λ=712.【答案】 712有关平面向量垂直的两类题型根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.1.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|a +2b |=( ) A .22 B .25 C.17D .15解析:选 C.因为a -b =(3,2),所以|a -b |=5,所以|a -b |2=|a |2-2a ·b +|b |2=5-2a ·b =5,则a ·b =0,所以|a +2b |2=|a |2+4a ·b +4|b |2=17,所以|a +2b |=17.故选C.2.(多选)设a ,b 是两个非零向量,则下列命题为假命题的是( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 解析:选ABD.对于A ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |,得a ·b =-|a ||b |≠0,a 与b 不垂直,所以A 为假命题;对于B ,由A 解析可知,若a ⊥b ,则|a +b |≠|a |-|b |,所以B 为假命题; 对于C ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |, 得a ·b =-|a ||b |,则cos θ=-1,则a 与b 反向,因此存在实数λ,使得b =λa ,所以C 为真命题. 对于D ,若存在实数λ,使得b =λa ,则a ·b =λ|a |2,-|a ||b |=λ|a |2,由于λ不能等于0, 因此a ·b ≠-|a ||b |,则|a +b |≠|a |-|b |, 所以D 不正确. 故选ABD.3.(一题多解)已知正方形ABCD ,点E 在边BC 上,且满足2BE →=BC →,设向量AE→,BD →的夹角为θ,则cos θ=________. 解析:方法一:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,则|AE →|=5,|BD →|=22,AE →·BD →=⎝ ⎛⎭⎪⎫AB →+12AD →·(AD →-AB →)=12|AD →|2-|AB →|2+12AD →·AB →=12×22-22=-2,所以cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.方法二:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,建立如图所示的平面直角坐标系xAy ,则点A (0,0),B (2,0),D (0,2),E (2,1),所以AE →=(2,1),BD →=(-2,2),所以AE →·BD →=2×(-2)+1×2=-2,故cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.答案:-1010向量数量积的综合应用在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.【解】 (1)由m·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理a sin A =b sin B ,得sin B =bsin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. K在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0.(1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积.解:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0,sin A =2sin A cos C ,又sin A ≠0,所以cos C =12,而∠C ∈(0,π),所以∠C =π3. (2)由AD→=DB →知,CD →-CA →=CB →-CD →, 所以2CD→=CA →+CB →, 两边平方得4|CD→|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.①又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.②由①②得ab =8,所以S △ABC =12ab sin ∠ACB =23.核心素养系列4 逻辑推理——平面向量与三角形的“四心”三角形的“四心”:设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A . (2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔a OA→+b OB →+c OC →=0. 类型一 平面向量与三角形的“重心”问题已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC→],λ∈R ,则点P 的轨迹一定经过( )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点【解析】 取AB 的中点D ,则2OD→=OA →+OB →, 因为OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], 所以OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,所以P ,C ,D 三点共线,所以点P 的轨迹一定经过△ABC 的重心. 【答案】 C类型二 平面向量与三角形的“内心”问题在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463 C .43D .62【解析】 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 【答案】 B类型三 平面向量与三角形的“垂心”问题已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( )A .重心B .垂心C .外心D .内心【解析】 因为OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C ,所以AP →=OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C =λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.【答案】 B类型四 平面向量与三角形的“外心”问题已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO→=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝⎛⎭⎪⎫45,35 B .⎝⎛⎭⎪⎫35,45C.⎝⎛⎭⎪⎫-45,35 D .⎝⎛⎭⎪⎫-35,45【解析】 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC→, OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-x AB →-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-y AC →-xAB→. 由OM →⊥AB →,得⎝⎛⎭⎪⎫12-x AB →2-yAC →·AB→=0,①由ON →⊥AC →,得⎝ ⎛⎭⎪⎫12-y AC →2-xAC →·AB→=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB2→, 所以AC →·AB →=AC →2+AB →2-BC →22=-12,③把③代入①,②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝ ⎛⎭⎪⎫45,35.【答案】 A[A 级 基础练]1.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D .32解析:选A.c =a +k b =(1,2)+k (1,1)=(1+k ,2+k ),因为b ⊥c ,所以b ·c =0,b ·c =(1,1)·(1+k ,2+k )=1+k +2+k =3+2k =0,所以k =-32.2.若向量OF1→=(1,1),OF2→=(-3,-2)分别表示两个力F 1,F 2,则|F 1+F 2|为( )A.10 B .25 C.5D .15解析:选 C.由于F 1+F 2=(1,1)+(-3,-2)=(-2,-1),所以|F 1+F 2|=(-2)2+(-1)2=5.3.(2020·贵阳市第一学期监测考试)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.109 B .259 C.269D .89解析:选A.方法一:因为|AB→+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即∠BAC =90°.所以AE →·AF →=⎣⎢⎡⎦⎥⎤AB →+13(AC →-AB →)·⎣⎢⎡⎦⎥⎤AC →-13(AC →-AB →)=⎝ ⎛⎭⎪⎫23AB→+13AC →·(23AC →+13AB →)=29AB →2+29AC →2=109,故选A.方法二:因为|AB →+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即AB→⊥AC →,以A 为坐标原点,AB ,AC 所在的直线分别为x 轴、y 轴建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (0,1),E (23,23),F (43,13),所以AE →·AF →=(23,23)·(43,13)=89+29=109,故选A.4.(多选)在△ABC 中,下列命题正确的是( ) A.AB→-AC →=BC →B.AB→+BC →+CA →=0 C .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形D .若AC→·AB →>0,则△ABC 为锐角三角形 解析:选BC.由向量的运算法则知AB →-AC →=CB →;AB →+BC →+CA →=0,故A 错,B对;因为(AB →+AC →)·(AB →-AC →)=|AB →|2-|AC →|2=0, 所以|AB→|2=|AC →|2,即AB =AC , 所以△ABC 为等腰三角形,故C 对;因为AC →·AB →>0,所以角A 为锐角,但三角形不一定是锐角三角形.故选BC. 5.(2020·安徽示范高中名校月考)已知a ,b ,c 均为单位向量,a 与b 的夹角为60°,则(c +a )·(c -2b )的最大值为( )A.32 B .3 C .2D .3解析:选B.设c 与a -2b 的夹角为θ.因为|a -2b |2=a 2-4a ·b +4b 2=3,所以|a -2b |=3,所以(c +a )·(c -2b )=c 2+c ·(a -2b )-2a ·b =1+|c ||a -2b |cos θ-1=3cos θ,所以(c +a )·(c -2b )的最大值为3,此时cos θ=1.故选B.6.(2020·湖南、河南、江西3月联考)设非零向量a ,b 满足|a |=3|b |,cos a ,b=13,a ·(a -b )=16,则|b |=________. 解析:因为|a |=3|b |,cos a ,b=13,所以a ·(a -b )=9|b |2-|b |2=8|b |2=16,所以|b |=2.答案:27.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 解析:因为|a |=|a +2b |, 所以|a |2=|a |2+4a ·b +4|b |2, 所以a ·b =-|b |2, 令a 与b 的夹角为θ.所以cos θ=a·b |a||b|=-|b|23|b||b|=-13. 答案:-138.(2020·新高考卷改编)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB→的取值范围是________. 解析:AP →·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP →|cos ∠P AB 表示AP →在AB →方向上的投影,所以结合图形可知,当P 与C 重合时投影最大,当P 与F 重合时投影最小.又AC →·AB →=23×2×cos 30°=6,AF →·AB →=2×2×cos 120°=-2,故当点P 在正六边形ABCDEF 内部运动时,AP →·AB→∈(-2,6).答案:(-2,6)9.已知向量a =(2,-1),b =(1,x ). (1)若a ⊥(a +b ),求|b |的值;(2)若a +2b =(4,-7),求向量a 与b 夹角的大小. 解:(1)由题意得a +b =(3,-1+x ). 由a ⊥(a +b ),可得6+1-x =0, 解得x =7,即b =(1,7), 所以|b |=50=52.(2)由题意得,a +2b =(4,2x -1)=(4,-7), 故x =-3,所以b =(1,-3),所以cos 〈a ,b 〉=a·b |a||b|=(2,-1)·(1,-3)5×10=22,因为〈a ,b 〉∈[0,π], 所以a 与b 的夹角是π4.10.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC→=0,求t 的值.解:(1)由题设知,AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB→+AC →|=210,|AB →-AC →|=42. 故所求的两条对角线的长分别为42,210.(2)方法一:由题设知,OC→=(-2,-1),AB →-tOC →=(3+2t ,5+t ).由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11, 所以t =-115.方法二:AB →·OC →=tOC →2,AB →=(3,5),t =AB →·OC →|OC →|2=-115. [B 级 综合练]11.(多选)(2020·山东九校联考)已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE→+OC →=0 C .|OA→+OB →+OC →|=32 D.ED→在BC →方向上的投影为76 解析:选BCD.由题意知E 为AB 的中点,则CE ⊥AB ,以E 为原点,EA ,EC 所在直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO→=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233,因为BO →∥DO →,所以y -233=-13y , 解得y =32,即O 是CE 的中点,则OE→+OC →=0,所以选项B 正确;|OA→+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确; 因为CE ⊥AB ,所以AB →·CE →=0,所以选项A 错误;ED→=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3). 故ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.故选BCD.12.(2020·山东济宁一中月考)如图,在△ABC 中,∠BAC =π3,AD →=2DB →,P 为CD 上一点,且满足AP→=m AC →+12AB →,若△ABC 的面积为23,则|AP →|的最小值为( )A. 2 B .43 C .3D . 3解析:选 D.令CP→=k CD →(0<k <1),则AP →=AC →+CP →=AC →+k CD →=AC →+k (AD →-AC →)=AC →+k ⎝ ⎛⎭⎪⎫23AB →-AC →=2k 3AB →+(1-k )AC→=m AC →+12AB →,所以1-k =m ,2k 3=12,所以m =14,因为△ABC 的面积为23,所以12|AC →|·|AB →|·32=23,所以|AC →|·|AB→|=8,所以|AP →|=116|AC →|2+14|AB →|2+18|AC →||AB →|=1+116|AC →|2+16|AC →|2≥3,当且仅当|AC→|=4时取“=”,所以|AP →|的最小值为 3.故选D.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝ ⎛⎭⎪⎫0≤θ≤π2.(1)若AB→⊥a ,且|AB →|=5|OA →|,求向量OB →; (2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解:(1)由题设知AB→=(n -8,t ), 因为AB→⊥a ,所以8-n +2t =0. 又因为5|OA →|=|AB →|,所以5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, 所以OB→=(24,8)或OB →=(-8,-8). (2)由题设知AC→=(k sin θ-8,t ),因为AC→与a 共线,所以t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ=-2k ⎝ ⎛⎭⎪⎫sin θ-4k 2+32k . 因为k >4,所以0<4k <1,所以当sin θ=4k 时,t sin θ取得最大值32k , 由32k =4,得k =8,此时θ=π6,OC →=(4,8), 所以OA →·OC →=(8,0)·(4,8)=32.14.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC→|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC→+OD →|的最小值;(2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1), 由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC→+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝⎛⎭⎪⎫t -222+12(0≤t ≤1),所以当t =22时,|OC→+OD →|有最小值,最小值为22.(2)由题意得C (cos θ,sin θ),m =BC→=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4,因为θ∈⎣⎢⎡⎦⎥⎤0,π2,所以π4≤2θ+π4≤5π4,所以当2θ+π4=π2,即θ=π8时,sin ⎝ ⎛⎭⎪⎫2θ+π4取得最大值1. 所以当θ=π8时,m ·n 取得最小值,为1-2.[C 级 创新练]15.在Rt △ABC 中,∠C 是直角,CA =4,CB =3,△ABC 的内切圆与CA ,CB分别切于点D ,E ,点P 是图中阴影区域内的一点(不包含边界).若CP →=xCD →+yCE →,则x +y 的值可以是( )A .1B .2C .4D .8解析:选 B.设△ABC 内切圆的圆心为O ,半径为r ,连接OD ,OE ,则OD ⊥AC ,OE ⊥BC ,所以3-r +4-r =5,解得r =1,故CD =CE =1,连接DE ,则当x +y =1时,P 在线段DE 上,但线段DE 均不在阴影区域内,排除A ;在AC 上取点M ,在CB 上取点N ,使得CM =2CD ,CN =2CE ,连接MN ,所以CP→=x 2CM →+y2CN→,则当点P 在线段MN 上时,x 2+y 2=1,故x +y =2.同理,当x +y =4或x +y =8时,点P 不在△ABC 内部,排除C ,D ,故选B.16.定义两个平面向量的一种运算a ⊗b =|a |·|b |sin a ,b,则关于平面向量上述运算的以下结论中,①a ⊗b =b ⊗a ; ②λ(a ⊗b )=(λa )⊗b ; ③若a =λb ,则a ⊗b =0;④若a =λb 且λ>0,则(a +b )⊗c =(a ⊗c )+(b ⊗c ). 正确的序号是________.解析:①恒成立,②λ(a ⊗b )=λ|a |·|b |sin a ,b,(λa )⊗b =|λa |·|b |sina ,b,当λ<0时,λ(a ⊗b )=(λa )⊗b 不成立,③a =λb ,则sin a ,b=0,故a ⊗b =0恒成立,④a =λb ,且λ>0,则a+b=(1+λ)b,(a+b)⊗c=|1+λ||b|·|c|sin b,c,(a⊗c)+(b⊗c)=|λb|·|c|sin b,c+|b|·|c|sin b,c=|1+λ||b|·|c|sin b,c,故(a+b)⊗c=(a⊗c)+(b⊗c)恒成立.答案:①③④。

高三数学一轮复习平面向量的数量积及应用教案

高三数学一轮复习平面向量的数量积及应用教案
命题走向
本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。
平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。
预测2017年高考:
(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。
法二: · = ·( + )
= ·( + + )
=2 · + ·
=2| |·| |·cos ,
=2×| |·| |·
=2×| |2=2×32=18.
(1)C (2) 18
由题悟法
平面向量数量积问题的类型及求法
(1)已知向量a,b的模及夹角θ,利用公式a·b=|a||b|·cosθ求解;
(2)已知向量a,b的坐标,利用数量积的坐标形式求解.
以题试法
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)的一个充分不必要条件是( )
A.x=0或2 B.x=2
C.x=1 D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),向量d如图所示,则( )
A.存在λ>0,使得向量c与向量d垂直
B.存在λ>0,使得向量c与向量d夹角为60°
2.向量的应用
(1)向量在几何中的应用;
(2)向量在物理中的应用。
二.典例分析
(1)若向量a=(1, 1),b=(2,5),c=(3,x)满足条件(8a-b)·c=30,则x=( )
A.6B.5
C.4D.3
(2) (2012·湖南高考)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则 · =________.

高考数学《平面向量的数量积》一轮复习练习题(含答案)

高考数学《平面向量的数量积》一轮复习练习题(含答案)

高考数学《平面向量的数量积》一轮复习练习题(含答案)一、单选题1.已知向量()()1,1,2,1a b ==-,则a 在b 上的投影向量为( ) A .42(,)55-B .21(,)55-C .42(,)55-D .21(,)55-2.已知3a =,23b =,3a b ⋅=-,则a 与b 的夹角是( ) A .30°B .60°C .120°D .150°3.已知向量()1,2a =,()2,2b =,则向量a 在向量b 上的投影向量为( ) A .33,22⎛⎫ ⎪⎝⎭B .33,44⎛⎫ ⎪⎝⎭C .()2,2D .22,22⎛⎫ ⎪ ⎪⎝⎭4.设e →为单位向量,||2a →=,当a e →→,的夹角为3π时,a →在e →上的投影向量为( ) A .-12e →B .e →C .12e →D .32e →5.已知直角三角形ABC 中,90A ∠=︒,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB PC ⋅的最大值为( )A 16165+B 1685+ C .165D .5656.在ABC 中,已知5AB =,3BC =,4CA =,则AB BC ⋅=( ) A .16B .9C .-9D .-167.窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP 的取值范围是( )A .[]22-,B .22,22⎡⎤⎣⎦-C .32,32⎡⎤-⎣⎦D .[]4,4-8.如图,AB 为半圆的直径,点C 为AB 的中点,点M 为线段AB 上的一点(含端点A ,B ),若2AB =,则AC MB +的取值范围是( )A .[]1,3B .2,3⎡⎤⎣⎦C .10⎡⎣D .2,10⎡⎣9.已知圆M :()()22114x y -+-=.设P 是直线l :3480x y ++=上的动点,PA 是圆M 的切线,A 为切点,则PA PM ⋅的最小值为( ) A 3B 5C .3D .510.在三棱锥D ABC -中,DA ⊥平面,,ABC AB BC DA AB BC ⊥==;记直线DB 与直线AC 所成的角为α,直线DC 与平面ABD 所成的角为β,二面角D BC A --的平面角为γ,则( ) A .βγα<< B .γβα<< C .βαγ<<D .αγβ<<11.已知2OA OB ==,点C 在线段AB 上,且OC 的最小值为3OA tOB +(t ∈R )的最小值为( ) A 2B 3C .2D 512.如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥BD ,△BCD 为边长为23形,点P 为边BD 上一动点,则AP CP ⋅的取值范围为( )A .[]6,0-B .25,04⎡⎤-⎢⎥⎣⎦C .27,04⎡⎤-⎢⎥⎣⎦D .[]7,0-二、填空题13.已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.14.已知在ABC 中,90C ∠=︒,4CA =,3CB =,D 为BC 的中点,2AE EB =,CE 交AD 于F ,则CE AD ⋅=_______15.已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______. 16.已知,a b 是两个单位向量,2c a b =+,且b c ⊥,则()a ab ⋅+=__________. 三、解答题(17.已知()1,2a =,()2,3b =-,c a b λ=+. (1)当1λ=-时,求a c ⋅的值; (2)若()a b c +⊥,求实数λ的值.18.在①()cos2cos A B C =+,②sin 3cos a C c A =这两个条件中任选一个作为已知条件,然后解答问题.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,______. (1)求角A ;(2)若2b =,4c =,求ABC 的BC 边上的中线AD 的长.19.已知()1,2,2a m m =-,()3,21,1b n =-. (1)若a b ∥,求m 与n 的值; (2)若()3,,3c m =-且a c ⊥,求a .20.已知2,1a b ==,(3)()3a b a b -⋅+= (1)求a b +的值; (2)求a 与2a b -的夹角.21.已知()1,2a =,(1,1)b =-. (1)若2a b +与ka b -垂直,求k 的值; (2)若θ为2a b +与a b -的夹角,求θ的值.22.已知ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,若2a =,且满足2c s 2o c aB b-=. (1)求角A ;(2)求BA BC ⋅的取值范围.23.已知向量()()32,,1,=-=a b x . (1)若()()22a b a b +⊥-,求实数x 的值;(2)若()()8,1,//=--+c a b c ,求向量a 与b 的夹角θ.24.在直角梯形ABCD 中,已知//AB CD ,90DAB ∠=︒,224AB AD CD ===,点F 是BC 边上的中点,点E 是CD 边上一个动点.(1)若12DE DC =,求AC EF ⋅的值; (2)求EA EF ⋅的取值范围。

高三数学第一轮复习 平面向量的数量积(或内积)教案(学生)

高三数学第一轮复习  平面向量的数量积(或内积)教案(学生)

城东蜊市阳光实验学校教案51平面向量的数量积〔或者者内积〕一、课前检测1.(东城区08年高三)Rt△ABC 的斜边BC=5,那么AB CA CA BC BC AB ⋅+⋅+⋅的 值等于.2.(08届上期末)如图,在△ABC 中,→→=DC 21BD ,→→=ED 3AE ,假设→→=a AB , →→=b AC ,那么=→BE 〔〕A .1133a b +B .1124a b -+ C .1124a b +D .1133a b -+ 二、知识梳理1.向量的夹角:2.数量积的定义:3.数量积的几何意义:4.数量积的性质:5.数量积的运算法那么〔运算律〕三、典型例题分析例1|a |=4,|b |=5,且a 与b 的夹角为60°,求:(2a +3b )·(3a -2b ). 变式训练1|a |=3,|b |=4,|a +b |=5,求|2a -3b |的值.变式训练2假设向量a 与b 的夹角为60°,|b|=4,〔a+2b 〕·〔a -3b 〕=-72,那么向量a 的模是〔〕A.2B.4C.6D.12小结与拓展:例2如图,在等腰直角ΔABC 中,∠C=90°,|AB|=22.求〔1〕AB AC ⋅的值;〔2〕AB CA ⋅的值;〔3〕).(AB CA BC +⋅变式训练3在ABC ∆中,︒===60,8,5C b a,那么CA BC ⋅的值是() A.20B.20- C.320 D.320-变式训练4ABC BC AB ABC ∆>⋅∆→→则中,0为〔〕A.锐角三角形B.直角三角形C.钝角三角形D.不能确定小结与拓展:例3|→a |=2,|→b |=3,→a 和→b 夹角为450,求当向量→a +λ→b 与λ→a +→b 夹角为锐角时,λ的取值范围。

变式训练5|a|=10,|b|=12,且〔3a 〕·〔51b 〕=-36,那么a 与b 的夹角是〔〕 A.60°B.120°C.135°D.150° 变式训练6.假设向量c 垂直于向量a 和b ,d=λa+μb〔λ、μ∈R,且λμ≠0〕,那么〔〕A.c∥dB.c⊥dC.c 不平行于d ,也不垂直于dD.以上三种情况均有可能小结与拓展:四、归纳与总结〔以学生为主,师生一一共同完成〕1.知识:2.思想与方法:3.易错点:4.教学反思〔缺乏并查漏〕。

平面向量的数量积课件-——2025届高三数学一轮复习

平面向量的数量积课件-——2025届高三数学一轮复习

则 AB • AC 16
(二)以 AB、AC 作为基向量
AB
AD
1 2
BC

AC
AD
1 2
BC

AB• AC (AD 1 BC) • (AD 1 BC)
2
2
2
AD
1
2
BC
4
16
合作探究
【变式练习】
已知正三角形
ABC
的边长为
2,点 M
满足 CM
1 CA 3
3 2
CB
,则 MA MB
的值为(
cos
1 cos 2 1 sin 2 1 2 sin(2 )
2
2
22
4

0 ,则
4Leabharlann 4244,
∴当
2
4
4
时,
PA • PD有最大值1
合作探究
【变式练习】
圆 C 的方程为 (x 3)2 y2 2 , AB 是圆 C 的任意一条直径, M 是抛物线 y2 4x 上的 动点,则 MA MB 的最小值是
【解析】
2
2
2
2a b 4a 4a •b b
16 4 a b cos 9
25 24cos
2a b 49
max
2a b 1
m in
2a b 1,49
回归思教考材辨析 人教A版第二册第24页第21题
2.已知 ABC 的外接圆圆心为O ,且2 AO AB AC , OA AB ,则向 量 BA 在向量 BC 上的投影向量为( )
回归思教考材辨析 人教A版第二册第23页第10题
1.若 a ,b 满足 a 2, b 3 ,则 a b 的最大值为

2024届新高考一轮复习北师大版 第5章 第3节 平面向量的数量积及平面向量应用举例 课件(64张)

2024届新高考一轮复习北师大版 第5章 第3节 平面向量的数量积及平面向量应用举例 课件(64张)

B.-1
C.-6
D.-18
D
由题意知 cos
〈a,b〉=sin
17π 3
=sin
6π-π3
=-sin
π 3


3 2
,所以 a·b=|a||b|cos 〈a,b〉=1×2
3
×-
3
2
=-3,b·(2a-b)
=2a·b-b2=-18.故选 D.
返回导航
3.在 Rt△ABC 中,∠ABC=60°,∠BAC=90°,则向量B→A 在向量
返回导航
[常用结论] 1.平面向量数量积运算的常用公式 ①(a+b)·(a-b)=a2-b2;②(a±b)2=a2±2a·b+b2; ③a2+b2=0⇒a=b=0. 2.有关向量夹角的两个结论 ①两个向量 a 与 b 的夹角为锐角,则有 a·b>0,反之不成立(因为夹角 为 0 时不成立).
返回导航
规定 零向量与任一向量的数量积为 0
返回导航
(2)当 0°≤〈a,b〉<90°时,a·b>0;当〈a,b〉=90°时,a·b=0; 当 90°<〈a,b〉≤180°时,a·b<0;当〈a,b〉=0°时,a·b=|a||b|;当 〈a,b〉=180°时,a·b=-|a||b|.
返回导航
(3)投影向量
大一轮复习讲义 数学(BSD)
第五章 平面向量、复数 第三节 平面向量的数量积及平面向量应用举例
内 夯实·主干知识 容 探究·核心考点 索 引 课时精练
返回导航
【考试要求】 1.理解平面向量数量积的含义及其物理意义.2.了解平 面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平 面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判 断两个平面向量的垂直关系.5.会用向量方法解决某其他一些实际问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的动点,则D→E·C→B的值为________,D→E·D→C的最大值
为________.
[答案] (1)D (2)1 1
总结:1、转化思想
平面向量的基本定理,
转化为用已知角已知模的向量表示未知向量
2、有直角可考虑建系简化问题
CHENLI
12
• 探究1 求平面向量数量积的步骤是: (1)①求a与b的夹角θ,θ∈[0°,180°];
2
.
(I)若 a b .求x的值; (II)设函数 f x a b,求f x的最大值.
CHENLI
6
基础要点整合 [要点梳理]
一、两个向量的夹角
定义
范围
已知两个_非__零__向量 a,b,作O→A 向量夹角 θ 的范围是
=a,O→B=b,则∠AOB=θ 叫做 _[_0_,π_]_,当 θ=__0_或__π_
②分别求|a|和|b|; ③求数量积,即a·b=|a||b|cosθ, (2)知道向量的坐标a=(x1,y1),b=(x2,y2), 则求数量积时用公式a·b=x1x2+y1y2计算. (3)利用图形建立直角坐标系,转化为坐标运算
转化思想、数形结合
CHENLI
13
题型二:平面向量的模(先平方,再展开运算)
第3课时 平面向量的数量积
CHENLI
1
考试说明
1.理解平面向量数量积的含义及其物理意义. 2.了解平面向量的数量积与向量投影的关系. 3.掌握数量积的坐标表达式,会进行平面向量数量积的 运算. 4.能运用数量积表示两个向量的夹角,会用数量积判断 两个平面向量的垂直关系. 5.会用向量方法解决某些简单的平面几何问题. 6.会用向量方法解决简单的力学问题与其他一些实际问 题.
若点P的坐标为 (2, 0) ,则 PA PB PC 的最大值为( ). 范围问题
A.6 B.7 C.8
D.9
怎么考? 选择题、填空题
向量数量积的运算
考什么? 向向量量的的夹模角
向量垂直、平行
范围问题 CHENLI
5
1 、( 2013 年 高 考 四 川 卷 ) 在 ABC 中 , 角 A, B, C 的 对 边 分 别 为 a,b,c , 且
时,两向量共线,当
向量 a 与 b 的夹角(如图)
θ=_ _π _ _ _ 时,两
2
向量垂直,记作 a⊥
b.
CHENLI
7
二、平面向量数量积的定义
1.a,b是两个非零向量,它们的夹角为 θ,则数|a|·|b|·cos θ叫做a与b的数量积.记 作a·b,即a·b=__________|a_||_b|_·.cos θ
CHENLI
2
怎么考?考什么?
平面向量数量积的运算
向量的模
CHENLI
3
平面向量的夹角
4
垂直、平行的向量
CHENLI
4
3、(2016 年上海高考)在平面直角坐标系中,已知 A(1,0),B(0,-1),
P 是曲线 y 1 x2 上一个动点,则 BP BA 的取值范围是
.
4、【2015 高考湖南,理 8】已知点 A ,B ,C 在圆 x2 y2 1上运动,且 AB BC ,
(2)已知单位向量 e1 与 e2 的夹角为 α,且 cos α=13,
8 向量 a=3e1-2e2,b=3e1-e2,则 a b ________.
CHENLI
11
例 2 (1)在 Rt△ABC 中,∠C=90°,AC=4,则
A→B·A→C等于( )
A.-16 B.-8
C.8
D.16
(2)已知正方形 ABCD 的边长为 1,点 E 是 AB 边上
(2)a⊥b⇔a·b=____0 ____.
(3)当 a 与 b 同向时,a·b=___|a_|_|b_|__;当 a 与 b 反向时,a·b
=___-__|a_|_|b_|;特殊地,a·a=|a|2 或|a|= a·a.
(4)cos θ=________. (5)|a·b|≤|a|·|b|.
3.向量数量积的运算律 (1)交换律:a·b=b·a. (2)分配律:(a+b)·c=_a_·_c+__b_·_c_.
例 3.(1)设向量 a,b 满足|a|=|b|=1,a·b=-12,则|a+2b|
=________.
答案 3
(2)已知单位向量 e1,e2 的夹角为 α,且 cos α=13.若向量
a=3e1-2e2,则|a|=________.
[答案] 3
变式练习 (1) [2014·全国卷] 若向量 a, b 满足:| a | 1, (a b) a ,
(2a b) b ,则 | b | ( )
[答案] (1) B
A.2
2 cos2
A B cos B sin( A B)sin B cos( A C) 2
3 5
.
(Ⅰ)求 cos A的值;
(Ⅱ)若 a 4 2 , b 5 ,求向量 BA 在 BC 方向上的投影.
a
2、(2013 年辽宁)设向量
3 sin x,sin x
,b
cos
x,
sinx
,
x
0,
夹角为 θ,则 cos θ=a|a·||bb|= x21+x1xy122·+y1xy222+y22.
CHENLI
10
题型一 平面向量的数量积的运算
• 例1 (1)已知|a|=2,|b|=5,若:①a∥b; ②a⊥b;③a与b的夹角为30°, 分别求a·b.
【答案】 ①±10 ②0 ③5 3
练习(1)已知a,b的夹角为120°,且|a|=4, |b|=2,求:(a-2b)·(a+b); 【答案】 12
(3)数乘结合律:(λa)·b=λ(a·b)=a·(λb).
CHENLI
9
4.平面向量数量积的坐标表示 (1)若非零向量 a=(x1,y1),b=(x2,y2),则
a·b=x1x2+y1y2,故 a⊥b⇔x1x2+y1y2=0.
(2)设 a=(x,y),则|a|=________. (3)若两个非零向量 a=(x1,y1)与向量 b=(x2,y2)的
规定0·a=0. 当a⊥b时,θ=90°,这时a·b=0. 2.a·b的几何意义 a·b等于 a的长度|a|与 b在 a的方向上的 ___投__影_的__乘_积___.
3. a在b的方向上的投影为 |a|cos<a,b&.向量数量积的性质 设 a,b 都是非零向量,e 是单位向量,θ 是 a 与 b 的夹角. (1)e·a=a·e.
相关文档
最新文档