求解平面向量数量积的三种方法
平面向量数量积问题的三种解法
平面向量的数量积问题侧重于考查平面向量的加法、减法、数乘运算法则,数量积公式和向量的模的公式.平面向量的数量积问题的常见命题形式是:根据已知图形、向量及其关系,求两个向量的数量积或其范围.本文主要谈一谈解答平面向量的数量积问题的三种方法.一、公式法已知两个非零向量a 和b ,它们的夹角为θ,则数量||||||a →||||||b →cos θ称为a 和b 的数量积,即a ⋅b =||||||a →||||||b →cos θ.运用公式法解答平面向量的数量积问题主要就是利用平面向量的数量积公式,求出||||||a →、||||||b →及两个向量a →和b →的夹角的余弦值,即可求得两个平面向量a 和b 的数量积.特别要注意的是,在求两个向量的夹角θ时,需要使a 和b共起点.例1.在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),求 AD ⋅AE .解:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2= BD 2+ AB 2-2 BD ∙ AB ∙cos 60°=æèöø132+12-2×13×1×12=79,即AD .同理可得AE ,在△ADE 中,由余弦定理可得cos ∠DAE = AD 2+ AE 2- DE 22 AD ⋅ AE 7979æö132=1314,所以 AD ⋅ AE =|| AD |AE cos ∠DAE =×1314=1318.对于本题,需要先用余弦定理求出两个向量的夹角的余弦值,再利用向量数量积的公式求解.当题目中两个向量的夹角或向量的模未知时,可以先利用解三角形知识求出它们的夹角或者向量的模,再将其代入数量积公式,运用公式法求解.二、基底法运用基底法求解平面向量的数量积问题,首先要确定一组基底,将题目中涉及的向量分别用这组基底表示出来,将问题转化为基底间的运算问题,通过向量运算求得问题的答案.此方法通常适用于向量的模或夹角不明确,无法用公式直接求出的题目.例2.如图1所示,已知正方形ABCD 的边长为1,E 是AB 边上的动点,则 DE ⋅ CB 的值为_____; DE ⋅ DC的最大值为_______.解:因为 DE = AE -AD ,所以 DE ⋅ CB =( AE - AD )⋅ CB = AE ⋅ CB - AD ⋅CB =1;DE ⋅ DC =( AE - AD )⋅ DC = AE ⋅ DC - AD ⋅ DC =|| AE ⋅|| DC ≤|| DC 2,所以() DE ⋅ DC max =|| DC max=1.解答本题,需以 AD 、AE 为基底,运用基底法求解.运用基底法求解向量的数量积问题,关键是根据已知条件选取恰当的基底,将所求向量用基底来表示,从而将问题简化.三、坐标法坐标法是指通过建立平面直角坐标系,用坐标的形式来表示各个向量,通过坐标运算求得问题的答案.运用坐标法解答平面向量的数量积问题,关键是根据题意或已知图形建立合适的平面直角坐标系.通常可以矩形的两条相邻的边为坐标轴;以直角三角形的两条直角边为坐标轴;正三角形的中线和底边为坐标轴来建立平面直角坐标系.例3.如图2,在直角△ABC 中,∠A =90°,D 为斜边BC 的中点,AB =2,AC =4,求 AD ⋅AB .解:建立如图2所示的平面直角坐标系,由题意可得 AD =(2,1), AB =(0,2),所以 AD ⋅AB =(2,1)⋅(0,2)=2.该三角形为直角三角形,于是以该直角三角形的两条直角边为坐标轴建立平面直角坐标系,便可通过向量坐标运算求解.总之,在求解平面向量的数量积问题时,同学们要根据题意和图形,灵活选用合适的方法进行求解,这样才能简化运算过程,达到快速解题的目的.(作者单位:江苏省如东县马塘中学)图1图2考点透视36。
平面向量的数量积和向量积推导
平面向量的数量积和向量积推导平面向量的数量积和向量积是向量运算中常用的两个操作。
它们在几何学、物理学等领域中有广泛的应用。
本文将对平面向量的数量积和向量积进行推导和说明。
一、平面向量的数量积数量积(也称为点积或内积)是两个向量的乘积的数量表示。
设有两个平面向量a和b,它们的数量积为:a ·b = |a| * |b| * cosθ其中,|a|和|b|分别表示向量a和b的模长,θ表示a和b之间的夹角。
由此可见,数量积的结果是一个实数。
它有以下几个性质:1. 交换律:a · b = b · a2. 分配律:(a + b) · c = a · c + b · c3. 数乘结合律:(k * a) · b = k * (a · b) = a · (k * b)二、平面向量的向量积向量积(也称为叉积或外积)是两个向量的乘积的向量表示。
设有两个平面向量a和b,它们的向量积为:a ×b = |a| * |b| * sinθ * n其中,|a|和|b|分别表示向量a和b的模长,θ表示a和b之间的夹角,n表示与a和b均垂直的单位向量。
向量积的结果是一个向量,它的方向垂直于平面,由右手法则确定。
由此可见,向量积具有以下几个性质:1. 反交换律:a × b = - (b × a)2. 分配律:(a + b) × c = a × c + b × c3. 数乘结合律:(k * a) × b = k * (a × b) = a × (k * b)三、数量积和向量积之间的关系数量积和向量积之间存在一个重要的关系,即向量积的模长等于数量积的模长和夹角的正弦值的乘积:|a × b| = |a| * |b| * sinθ此外,还可以通过向量积来求得两个向量之间的夹角θ:cosθ = (a · b) / (|a| * |b|)四、应用举例1. 面积计算:对于平行四边形,以两边为相邻边的一条对角线为底,可以使用向量积求得其面积。
平面向量的数量积与向量积的运算
平面向量的数量积与向量积的运算平面向量的数量积与向量积是向量的两种重要运算。
它们在物理、几何和工程学等领域中有着广泛的应用。
本文将详细介绍平面向量的数量积和向量积的定义、性质和计算方法。
一、平面向量的数量积平面向量的数量积也叫点积或内积,用符号“·”表示。
给定向量A和向量B,在平面直角坐标系中,它们的数量积定义为:A·B = |A| |B| cosθ其中,|A|和|B|分别表示向量A和向量B的模,θ表示向量A与向量B的夹角。
数量积的性质如下:1. 交换律:A·B = B·A2. 分配律:(kA)·B = k(A·B),A·(kB) = k(A·B),其中k为实数3. 结合律:(A+B)·C = A·C + B·C利用数量积,我们可以计算向量的夹角、向量的模、判断两个向量是否垂直等。
此外,数量积还有一种重要的几何意义,即两个向量的数量积等于它们的模与它们夹角的余弦的乘积。
二、平面向量的向量积平面向量的向量积也叫叉积或外积,用符号“×”表示。
给定向量A 和向量B,在平面直角坐标系中,它们的向量积定义为:A×B = |A| |B| sinθ n其中,|A|和|B|分别表示向量A和向量B的模,θ表示向量A与向量B的夹角,n为垂直于平面的单位向量,其方向由右手定则确定。
向量积的性质如下:1. 反交换律:A×B = -B×A2. 分配律:(kA)×B = k(A×B),A×(kB) = k(A×B),其中k为实数3. 结合律:(A+B)×C = A×C + B×C向量积具有一些重要的几何意义。
首先,向量积的模等于以向量A 和向量B为邻边的平行四边形的面积。
其次,向量A和向量B的向量积的方向垂直于二者所在的平面,并符合右手定则。
平面向量数量积求解的三种途径
饲 8 在 苷唾I角 三角形 4 且: 中. A C -口 c 一1 .点 ^ f、N舟 别是 口、 c的中 点, 点
P 是枷
c( 包 蛞边界 )内f 王 一 点,求 面
MP的碉 一
分析虽然
=- f.瞧
、 鸿 帜 角不暴辅 .由于6 ^ 胛 是哪 聃 三
示啊
角形.故 可建立平 面直角坐 标系.{ 每 点^EC , M. Ⅳ用 坐融 ■ 以 c为坐标 雨点. C A 所在 的I蛙 为 轴 . ∞ 所在童 墁 为 轴 .
平面 向量数量积求解的三 种途径
7 1 7 6 0 0 陕 西省延 安 市吴起 高级 中学 高 学聪 杜成 海
平面 向量数量积 是平面 向量 一章中 的重 要内容,是 高中数学三角 函数、 平面几何 、解析 几何等 章节知识的交汇点 ,也是高考萤 点考查 的知识.许多学 生在解此类题 时感 觉困难,究其原因,就是学生对数量积 的概念 理解 不透彻. 下面就求解方法归纳如下 : 定义法
善骨 的营养,使骨长得更粗壮、坚固。也能使骨骼肌获得更多的营养,使肌 肉 的工 作能力提高。从而帮助学生形成 自学参与体育锻炼的意识。通过 “ 收集 、 分析 药品标签中的信息”的活动,知道防御一般感 冒所需要方法,了解一些家 庭常备 的内服 药和外用药 ,并做到安全 、科学用药的生活习惯 。 三、帮助学生彝成 自觉健囊生活 生物学教学要 指导学生如何创建 健康的生活环 境。人类 的活动离不 开环 境,良好环 境是健康 不可缺少的条件。在生物学教学中,要不断渗透科学的生 活方式 ,引导学生 自 觉创 建 良好的生活环境 。如日常 生活 中,要经常开启 门窗, 保持 空气清 新,采用湿 式扫地等。要渗透美化环境的意识,如在教室、寝 室等 生活 的空 间里适 当养花 ,以净化室 内空气 。 生 物学教学要把 生命教育列为重 要教学 内容 。生物 教师要帮助学生树立 珍爱生命 的人生观 。通 过生物教学,让学生正确认识传染病传 播的三个途径 , 理解预 防传染病的措旌 。 生物教师要纠正一些错误的生命观, 如纠正学生对 “ 艾 滋病 ” 的错误认识 , 学会关爱艾滋病患者 。 生物教师还可设计 一些课外科技活动, 渗透生命教育 。如组织 学生开展 “ 关于预防 甲型 H I N 1 流感 ”的科技实践活动 , 为学生体验生命意义搭建平 台,创造机会。 实践证 明, 教育 学生要注重方法 , 符合认知规律 , 仅凭一些“ 大道理” 或“ 强 制 ”的方法 ,难 以收到好 的教学效果。作为生物 教师,要利用 自身的优势,积 极参与学校 的健康教育 教学工作 ,利用 生物学知识对学生进行健康 教育,帮助 学生形成健康生活的思想和行为方式,具有深远 意义 。
平面向量的数量积及其性质
平面向量的数量积及其性质平面向量是数学中的一个重要概念,数量积则是描述平面向量之间的一种运算。
本文将介绍平面向量的数量积以及它的性质。
1. 数量积的定义及计算方法数量积,也称为点乘或内积,是两个向量之间的一种运算。
对于平面上的向量A和B,它们的数量积记为A·B,计算方法如下:A·B = |A| |B| cosθ其中,|A|和|B|分别是向量A和B的模,θ是A和B之间的夹角。
2. 数量积的几何意义数量积具有几何意义,它表示一个向量在另一个向量上的投影长度乘以另一个向量的模。
具体来说,如果向量A的方向与向量B的夹角θ为锐角或直角,则A·B大于0;如果θ为钝角,则A·B小于0;如果θ为180度,则A·B等于0。
3. 数量积的性质(1)交换律:A·B = B·A数量积满足交换律,即向量的数量积与它们的顺序无关。
(2)分配律:(A + B)·C = A·C + B·C数量积满足分配律,即两个向量之和与另一个向量的数量积等于它们分别与该向量的数量积之和。
(3)数量积与夹角的关系:A·B = 0 当且仅当 A 和 B 垂直当两个向量的数量积为0时,它们相互垂直。
(4)数量积与向量模的关系:A·A = |A|^2向量A的数量积等于它的模的平方。
4. 应用举例(1)判断向量的大小关系根据向量的数量积性质,可以通过比较两个向量的数量积来判断它们的大小关系。
若A·B > 0,则表示向量A的模大于向量B的模;若A·B < 0,则表示向量A的模小于向量B的模。
(2)计算向量的夹角利用数量积的定义,可以通过求解方程cosθ = A·B / (|A| |B|)来计算两个向量的夹角θ。
(3)求解平面向量的模根据数量积的性质,可以利用向量的数量积来求解向量的模。
若已知向量A与另一个向量B垂直,且知道A·B的值,那么可以通过方程A·B = |A| |B| cos90° = 0求解出向量A的模。
平面向量的数量积与投影
平面向量的数量积与投影平面向量的数量积和投影是向量运算中的重要概念,在数学和物理学中具有广泛的应用。
本文将介绍平面向量的数量积和投影的概念、计算方法以及其在几何和物理中的应用。
一、平面向量的数量积平面向量的数量积(也称为内积、点乘)是指将两个向量的对应分量相乘后求和所得到的数值。
若有向量a=(a₁,a₂)和b=(b₁,b₂),则它们的数量积用符号表示为a·b,计算公式为:a·b=a₁b₁+a₂b₂。
数量积具有以下性质:1. 交换律:a·b=b·a2. 分配律:a·(b+c)=a·b+a·c3. 数乘结合律:(k·a)·b=k·(a·b)数量积的几何意义在于它可以用来计算两个向量之间的夹角。
设夹角为θ,则cosθ=(a·b)/(||a||*||b||),其中||a||和||b||分别为向量a和b的模。
根据这个公式,我们可以判断向量之间的夹角大小以及它们之间的相对方向。
二、平面向量的投影平面向量的投影是指一个向量在另一个向量上的影子长度,它是向量运算中的一种重要应用。
设有向量a和b,投影表示为proj_b a,计算公式为:proj_b a=(a·b)/||b|| * (b/||b||),其中(||b||)为向量b的模。
投影有以下性质:1. 投影为零向量当且仅当向量a与向量b垂直,即a⊥b。
2. 投影的方向与向量b相同或相反,具体取决于向量a与向量b的夹角。
当0°≤θ≤90°时,投影方向与b相同;当90°<θ≤180°时,投影方向与b相反。
投影的几何意义在于它可以帮助我们分析向量之间的关系,特别是在解决几何问题时,投影的计算能够简化向量的运算过程。
三、平面向量的数量积与投影的应用1. 几何应用:平面向量的数量积和投影在几何学中有广泛的应用。
例析平面向量数量积的三种处理方法
D
P
c
2 )= (>O 关于直线 )+( +2 r )
z + +2 对称. =0
( )求 同 C 的 方 程 : 2 】 f )话 0 同 卜的 一 个 动
J
点, 求 .
的最小值.
解 :1 ()略. C的方程 圆
。
一
 ̄I1,0 ) (,) P, I ,N , ,丢 1, (, A o ( M 设 z) () 专 j ,
.
f C s z一 O0 所 以. 《 ,
÷
— —’ —
— —+
因为 AB NAC不共 线 , 以AB, 所 AC
【一 s v i
从 而 P ・MQ 一, cs + s 0 一 2— 2i Q / o0 i ) g( n s n
( 4) 2 , 且所 给平 面 图 形方便 建立 直角 坐标 系 , 容 易写 出各涉 及 点 坐标 并
( )以 A为坐标原点 , B为 X轴建立 如 图所 示 2 A
的直角坐标 系,
解得 志 一± , 以直 线 z 所 的方程 为 : 一±
( z十 2 )
则 (OB ,' , ) (0 AO) (OD 2 2 , 1) ,,2) ( M ,
l
点评: 当题 中已知 口 b的模 或夹 角 时 , 向量 的 , 将
数量积用定 义式 来转 化 , 比较简 洁.
二 、坐 标 法
D
P
l
设 n一 ( , 1 , 1 Y ) b= ( , 2 , 口 ・b— 2 Y ) 则
A 肘
B
/
X X - 1 2 12 Yy. q
例 3 ( ) 图 ( )在 等腰 直 角 三 角 形 AB 中 , 1如 4, C
平面向量的数量积
题型三 平面向量与三角函数 例 3 (2020·陕西部分学校摸底)在△ABC 中,设 A,B,C 的对边分别为 a,b,c, 向量 m=(cosA,sinA),n=( 2-sinA,cosA),且|m+n|=2. (1)求角 A 的大小; (2)若 b=4 2,c= 2a,求△ABC 的面积.
解:(1)∵m+n=( 2+cosA-sinA,cosA+sinA), ∴|m+n|= 2+cosA-sinA2+cosA+sinA2 = 4-4sinA-π4. ∵|m+n|=2,∴sinA-π4=0, 又 0<A<π,∴-π4<A-π4<34π,∴A-π4=0, 即 A=π4.
(2)∵c= 2a,A=π4,∴ac=ssiinnCA= 2, ∴sinC=1,又 0<C<π,∴C=π2. ∴△ABC 为等腰直角三角形,S△ABC=12×(4 2)2=16.
【思维升华】 平面向量与三角函数的综合问题的解题思路 (1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式 成立等,得到三角函数的关系式,然后求解. (2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形 式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域 等.
【思维升华】 平面向量数量积的三种运算方法 (1)当已知向量的模和夹角时,可利用定义法求解,即 a·b=|a||b|cos〈a,b〉. (2)当已知向量的坐标时,可利用坐标法求解,即若 a=(x1,y1),b=(x2,y2),则 a·b=x1x2+y1y2. (3)利用数量积的几何意义求解.
题型二 平面向量数量积的应用 命题点 1 求向量的模 例 1 (1)(2020·永州模拟)在△ABC 中,∠BAC=60°,AB=5,AC=6,D 是 AB 上一点,且A→B·C→D=-5,则|B→D|等于( )
平面向量的数量积
平面向量的数量积平面向量的数量积,也叫点积或内积,是向量运算中的一种重要操作。
它与向量的夹角以及向量的长度有着密切的关系。
在本文中,我们将详细介绍平面向量的数量积的概念、计算方法以及一些应用。
一、概念平面向量的数量积是指将两个向量的对应分量相乘,并将所得乘积相加而得到的数值。
设有两个平面向量A和A,它们的数量积记作A·A,计算公式为:A·A = AAAA + AAAA其中,AA和AA分别是向量A在A轴和A轴上的分量,AA和AA分别是向量A在A轴和A轴上的分量。
二、计算方法要计算平面向量的数量积,需要先求出两个向量在A轴和A轴上的分量,然后按照数量积的计算公式进行计算。
假设有两个向量A = (A, A)和A = (A, A),它们的数量积为A·A,计算步骤如下:1. 计算A和A在A轴上的分量AA和AA,分别为A和A;2. 计算A和A在A轴上的分量AA和AA,分别为A和A;3. 将AA和AA、AA和AA进行相乘得到AA和AA;4. 将AA和AA相加,得到平面向量的数量积A·A。
三、性质平面向量的数量积具有以下性质:1. 交换律:A·A = A·A2. 数乘结合律:(AA)·A = A(A·A) = A·(AA)3. 分配律:(A + A)·A = A·A + A·A其中,A为任意实数,A、A和A为任意向量。
四、夹角与数量积的关系两个非零向量A和A的数量积A·A与它们夹角A的余弦函数之间存在着如下关系:A·A = ‖A‖‖A‖cosA其中,‖A‖和‖A‖分别为向量A和A的长度。
五、应用平面向量的数量积在几何和物理学中有着广泛的应用。
以下是一些常见的应用:1. 判断两个向量是否垂直:如果两个向量的数量积为零,即A·A = 0,那么它们是垂直的。
2. 计算向量的模:根据数量积的性质,向量的模可以通过向量与自身的数量积来计算。
求平面向量数量积的5种方法
求平面向量数量积的5种方法平面向量的数量积(也称为内积、点积或标量积)是两个向量的乘积,结果是一个标量(即一个数),代表了两个向量之间的相似度。
平面向量数量积可以通过多种方法进行计算。
本文将介绍五种常用方法,包括点乘法、分量法、向量夹角法、模长法和运算法。
一、点乘法点乘法是最常用的计算平面向量数量积的方法。
给定两个向量A=(a1,a2)和B=(b1,b2),则它们的数量积记作A·B,计算公式如下:A·B=a1*b1+a2*b2二、分量法分量法是另一种常用的计算平面向量数量积的方法。
当向量A=(a1,a2)和B=(b1,b2)的夹角为θ时,它们的数量积可以用以下公式表示:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。
三、向量夹角法向量夹角法是通过向量夹角公式直接计算平面向量数量积的方法。
若向量A与向量B之间的夹角为θ,则它们的数量积可以计算如下:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。
四、模长法模长法是一种通过计算向量的模长与夹角的余弦值来求解平面向量数量积的方法。
若向量A的模长为,A,向量B的模长为,B,向量A与向量B之间的夹角为θ,则它们的数量积可以计算如下:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。
五、运算法运算法是一种通过平面向量的加、减、乘、除等运算求解数量积的方法。
根据数量积的性质,有以下运算法则:-若A·B=0,则向量A与向量B相互垂直。
-若A·B>0,则向量A与向量B夹角小于90度,即为锐角。
-若A·B<0,则向量A与向量B夹角大于90度,即为钝角。
解答平面向量数量积问题的三种途径
平面向量的数量积问题侧重于考查平面向量的数量积公式、向量的模的公式、数乘运算法则、加减法的几何意义、基本定理、共线定理的应用.解答这类问题常用的途径有利用坐标法、定义法、数形结合法.下面结合实例来进行介绍.一、利用坐标法坐标法是指通过建立平面直角坐标系,将问题转化为坐标运算问题来求解.运用坐标法解答平面向量数量积问题,需根据几何图形的特点,寻找或构造垂直关系,建立合适的平面直角坐标系,熟练掌握并灵活运用向量的坐标运算法,如a ∙b=()x 1,y 1∙()x 2,y 2=x 1x 2+y 1y 2、||a =x 12+y 12、a +b =()x 1+x 2,y 1+y 2、a -b=()x 1-x 2,y 1-y 2.例1.已知P 是半径为1,圆心角为23π的一段圆弧AB 上的一点,若 AC =2 CB ,则 PA ∙PC 的取值范围是_____.解:以O 为原点、OB 为x 轴,建立如图1所示的平面直角坐标系.图1可得O ()0,0,B ()1,0,A æèçø-12,过点C 作CD ⊥OB ,垂足为D ,∵|| OA =||OB =1,∠AOB =2π3,∴|| A B =3,∵ AC =2CB ,∴|| CB =13|| A B =,在Rt△CDB 中,∠CBD =π6,∴|| CD =12|| CB,|| DB =12,∴|| OB =12,∴C æèçø12,设P ()cos θ,sin θ,0≤θ≤2π3,∴ PC ∙ PA=æèçöø÷12-cos θ-sinθ∙æèçöø÷-12-cos θ-sin θ=cos 2θ-14+14-θ+sin 2θ=1-θ,∵0≤θ≤2π3,∴0≤sin θ≤1,∴1≤1θ≤1,∴ PA ∙PC 的取值范围是éëêùûú1-.首先根据圆弧的特点,以O 为原点建立平面直角坐标系;然后设出点P 的坐标,求得其他各点、各个向量的坐标,即可通过向量坐标运算,求得 PA ∙PC 的表达式;再根据三角函数的有界性求得问题的答案.二、采用定义法定义法是指根据平面向量数量积的定义:a ∙b=||a ∙||||b cos a ,b 解题.在解题时,要分别求得所求平面向量的模长、向量之间的夹角或其余弦值,即可根据平面向量数量积的定义求得答案.例2.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,求|c |的最大值.解:因为|a |=|b |=1,a ·b =0,则(a -c )·(b -c )=-c ·(a +b )+|c |2=-|c ||a +b |·cos θ+|c|2=0,其中θ为c 与a +b 的夹角,所以|c |=|a +b |cos θ=2cos θ≤2,47所以|c |的最大值是2.解答本题主要运用了定义法.我们先通过向量的数乘运算、加法运算、减法运算,根据已知关系式,将问题转化为求向量的模的平方以及向量的数量积;然后根据向量的数量积公式将问题转化为求c 与a +b 的夹角的余弦值以及|a +b |的乘积的最值,根据基本不等式求解,即可解题.例3.已知点P 是边长为1的正十二边形A 1A 2⋯A边上任意一点,则 AP ∙A 1A 2的最小值为().A.- B.- C.-3 D.-2解:如图2所示,延长A 10A 11、A 2A 1交于Q ,图2由题意可得A 10A 11⊥A 2A 1,过A 12分别作A 1Q 、A 11Q 的垂线,垂足分别为M 、N ,正十二边形A 1A 2⋯A 12的每个内角()12-2×180°12=150°,在Rt△A 12MA 1中,||A 1A 12,∠MA 1A 12=30°,则||A 1M =||A 1A 12cos 30°,在Rt△A 11NA 12中,||A 11A 12=1,∠NA 11A 12=30°,则||QM =||A 12N =||A 11A 12sin 30°=12,所以||A 1Q =||A 1M +||QM =,而 A 1P ∙ A 1A 2=|| A 1A 2∙|| A 1P cos θ,θ为 A 1P 、 A 1A 2的夹角,所以数量积 A 1P ∙ A 1A 2等于A 1P 在 A 1A 2方向上的投影||A 1P cos θ的乘积,当点P 在线段A 10A 11上时, A 1P ∙A 1A 2取最小值,可得 A 1P ∙ A 1A 2=|| A 1P ∙||A 1A 2cosθ=||A 1A 2()-|| A 1Q=.解答本题,首先要根据正十二边形的特征和向量数量积的几何意义找出 A 1P ∙A 1A 2取得最小值的情形:点P 在线段A 10A 11上;然后根据平面向量数量积的定义,求得向量 A 1P 、A 1A 2的模长及其夹角的大小,即可求得最小值.三、数形结合数形结合法是解答函数问题、向量问题的重要方法.在解题时,需先将向量的模看作线段的长,根据三角形法则、平行四边形法则构造几何图形,添加辅助线;然后将两个向量的夹角看作三角形、平行四边形的内角,利用三角形的性质、平行四边形的性质、圆的性质解题.例4.如图3,AB是圆O 的一条直径,且||AB =4,点C 、D 是圆O 上任意两点,点P 在线段CD 上,则PA ∙PB 的取值范围为______.图3图4解:如图4所示,连接OP ,则 PA ∙ PB =() PO + OA ∙()PO + OB = PO 2+ PO ∙()OA + OB + OA ∙ OB =|| PO 2-4,而P 在线段CD 上,且||CD =2,则圆心到直线CD 的距离d =22-12=3,所以3≤|| PO 2≤4,可得-1≤|| PO 2-4≤0,故 PA ∙PB 的取值范围为[]-1,0.解答本题,要先根据三角形法则和向量运算,将求 PA ∙PB 转化为求|| PO 2的最值;然后根据弦心距、圆的半径、弦之间的关系建立关系式,求得圆心到直线CD 的距离,该值即为|| PO 的最小值,||PO 的最大值为圆的半径,这样便确定了求|| PO 2的最值,从而求得问题的答案.上述三种方法都是解答平面向量数量积问题的重要方法.其中坐标法、定义法较为简单,数形结合法具有较强的灵活性,需根据题意构造出合适的几何图形,并将问题与平面几何、解析几何知识关联起来.(作者单位:云南省会泽县大成高级中学)48。
向量数量积的五种求法
向量的数量积的五种求解策略方法一:定义法利用向量数量积的概念,即:a ·b=∣a ∣·∣b ∣cos θ。
根据向量的数量积的公式可知,在求解两个向量的数量积时,需要先确认两个向量的模以及它们的夹角,在判断向量的夹角时,要特别注意它们是否为“共起点“,如果不是”共起点“的需要先转化为”共起点“的向量再进行求解。
定义法也是求向量数量积的最常见的方法。
例题1:在▲ABC 中,M 是BC 的中点,AM=1,点P 在AM 上,且满足AP=2PM ,则PA ·(PB+PC)=解:∵ M 是BC 的中点,AM=1,且AP=2PM 可得:PB+PC=2PM 又AP=23∴ PA ·(PB+PC)=PA ·AP=-49例题2:在▲ABC 中,角A ,B ,C 所对的边分别是a ,b ,c 且满足ccosB+bcosC=4acosA ,S ▲ABC =√15,则AB ·AC= 解:由射影定理可得:a=ccosB+bcosC=4acosA , ∴ cosA=14,可得:sinA=√154PMABC·又 S ▲ABC =12∣AB ∣··∣AC ∣·sinA可得:∣AB ∣··∣AC ∣=8∴ AB ·AC=∣AB ∣··∣AC ∣·cosA=2 方法二:数量积的几何意义a ·b 的几何意义为: a 的模∣a ∣和b 在a 方向上的投影∣b ∣cos θ的乘积。
当两个向量的夹角θ未知时,有时可以根据题目条件,利用其几何意义迅速解决向量的数量积问题。
例题1:如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,AP=3,试求AP ·AC 的数量积。
解: ∵ AC=2AO ∵ AP ⊥BD∴ 可知AO 在AP 方向上的投影为∣AP ∣ ∴ AC 在AP 方向上的投影为2∣AP ∣ ∴ AP ·AC=∣AP ∣·2∣AP ∣=18例题2:点P 是▲ABC 的外心,且∣AC ∣=4,∣AB ∣=2,求AP ·(AC-AB)的数量积。
专题83平面向量的数量积(精讲精析篇)-新高考高中数学核心知识点全透视
专题8.3 平面向量的数量积(精讲精析篇)一、核心素养1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养.6.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.二、考试要求1.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.三、主干知识梳理(一)两个向量的夹角1.定义已知两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角.2.范围向量夹角θ的范围是0°≤θ≤180°a与b同向时,夹角θ=0°;a与b反向时,夹角θ=180°.3.向量垂直如果向量a与b的夹角是90°,则a与b垂直,记作a⊥b.(二)平面向量的数量积1.已知两个非零向量a与b,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b,即a·b=|a||b|cos θ,其中θ是a 与b 的夹角.规定0·a =0.当a ⊥b 时,θ=90°,这时a ·b =0.2.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.(三)数量积的运算律1.交换律:a ·b =b ·a .2.分配律:(a +b )·c =a ·c +b ·c .3.对λ∈R ,λ(a ·b )=(λa )·b =a ·(λb ).(四)平面向量的数量积与向量垂直的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2).设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则有下表: 设A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12 1.如果e 是单位向量,则a ·e =e ·a .2.a ⊥b ⇔a ·b =0.3.a ·a =|a |2,|a 4.cos θ=||||⋅a b a b .(θ为a 与b 的夹角) 5.|a ·b |≤|a ||b |.(七)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则:1.a ·b =a 1b 1+a 2b 2.2.a ⊥b ⇔a 1b 1+a 2b 2=0.3.|a |=a 21+a 22.4.cos θ=||||⋅a b a b =112222221212a b a b a a b b +++.(θ为a 与b 的夹角) (八)平面向量的应用1.向量与平面几何综合问题的解法(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.2.向量在解析几何中的作用(解析几何专题中详讲)(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别是向量垂直、平行的坐标表示在解决解析几何中的垂直、平行问题时经常用到. 3.向量与三角的综合应用解决这类问题的关键是应用向量知识将问题准确转化为三角问题,再利用三角知识进行求解.4.平面向量在物理中的应用一、命题规律(1)数量积、夹角及模的计算问题;(2)以平面图形为载体,借助于平面向量研究平面几何平行、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.二、真题展示1.(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP =,2||(cos 1OP=,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin |2AP α===,同理2||(cos 2|sin |2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+ ()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC2.(2021·天津·高考真题)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.【答案】11120 【分析】设BE x =,由222(2)44BE DF BE BE DF DF +=+⋅+可求出;将()DE DF DA +⋅化为关于x 的关系式即可求出最值.【详解】设BE x =,10,2x ⎛⎫∈ ⎪⎝⎭,ABC 为边长为1的等边三角形,DE AB ⊥,30,2,,12BDE BD x DE DC x ∠∴====-,//DF AB ,DFC ∴为边长为12x -的等边三角形,DE DF ⊥,22222(2)4444(12)cos0(12)1BE DF BE BE DF DF x x x x ∴+=+⋅+=+-⨯+-=,|2|1BE DF +∴=, 2()()()DE DF DA DE DF DE EA DE DF EA +⋅=+⋅+=+⋅222311(3)(12)(1)53151020x x x x x x ⎛⎫=+-⨯-=-+=-+ ⎪⎝⎭, 所以当310x =时,()DE DF DA +⋅的最小值为1120. 故答案为:1;1120.考点01 平面向量数量积的运算【典例1】(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====-,当AB OC ⊥时,a b -与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b =时,0a b -=,∴()00a b c c -⋅=⋅=,∴成立,∴是a b =的必要条件, 综上,“”是“”的必要不充分条件故选:B.【典例2】(2019·全国高考真题(理))已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( )A .3B .2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,221(3)1BC t =+-=,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【典例3】(2021·北京·高考真题)已知向量,,a b c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ________;=a b ⋅________.【答案】0 3【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】以,a b 交点为坐标原点,建立直角坐标系如图所示:则(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+=,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.【典例4】(2020·全国高考真题(文))设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________.【答案】5【解析】由a b ⊥可得0a b ⋅=,又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=,即5m =,故答案为:5.【典例5】(2020·天津高考真题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】16 132 【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭, 解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭, ∵又∵16AD BC =,则5332D ⎛ ⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,22DM x ⎛=-- ⎝⎭,333,22DN x ⎛=-- ⎝⎭,()222532113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.2.总结提升:(1).公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解.(2)已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.考点02 平面向量的模、夹角【典例6】(2021·天津·南开大学附属中学高三月考)已知平面向量a ,b ,满足2a =,5b =,53a b ⋅=,则a ,b 的夹角是( )A .6πB .3πC .4πD .23π 【答案】A【分析】 直接利用向量的数量积转化求解向量的夹角即可.【详解】解:平面向量a ,b ,满足2a =,5b =,53a b ⋅=,设a ,b 的夹角是θ,可得53cos 25a b a b θ⋅===⨯[]0,θπ∈,所以a ,b 的夹角是:6π. 故选:A . 【典例7】(2020·全国高考真题(理))已知向量ab a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D【解析】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=. ()2222257a b a b a a b b +=+=+⋅+=-=, 因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+. 故选:D. 【典例8】(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【典例9】(2020·全国高考真题(理))设,ab 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【总结提升】1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法 (1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解. 3.平面向量垂直问题的类型及求解方法 (1)判断两向量垂直第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. (2)已知两向量垂直求参数根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.考点03 平面向量的综合应用【典例10】(2020·山东海南省高考真题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A 【解析】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.【典例11】(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .B .C .2D .【答案】A 【解析】 设,则由得, 由得因此的最小值为圆心到直线的距离减去半径1,为选A.【思路点拨】 先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【典例12】(2021·浙江·高考真题)已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅=.记向量d在,a b 方向上的投影分别为x ,y ,d a -在c 方向上的投影为z ,则222x y z ++的最小值为___________. 【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得252x y z +-=,再结合柯西不等式即可得解. 【详解】由题意,设(1,0),(02),(,)a b c m n ===,, 则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b 方向上的投影分别为x ,y ,所以(),d x y =, 所以d a -在c 方向上的投影()221()22||5m x ny d a c x yz c m n-+-⋅-+===±+, 即252x y z +=,所以()()()22222222221122152510105x y z x y z x yz⎡⎤++=++±++≥+=⎢⎥⎣⎦, 当且仅当215252x y z x y z ⎧==⎪⎨⎪+=⎩即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【典例13】(2020·重庆高一期末)如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .0【答案】B 【解析】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+, [0,6],716x PE PF ∈∴≤⋅≤,∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-, 22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+,06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B.【典例14】(2020·吉林长春·一模(理))长江流域内某地南北两岸平行,如图所示已知游船在静水中的航行速度1v 的大小1||10km/h v =,水流的速度2v 的大小2||4km/h v =,设1v 和2v 所成角为 (0)θθπ<<,若游船要从A 航行到正北方向上位于北岸的码头B 处,则cos θ等于( )A .215-B .25-C .35D .45-【答案】B 【解析】由题意知()2120,v v v +⋅=有2212||c ||os 0,v v v θ+=即2104cos 40,θ⨯+=所以2cos 5θ=-, 故选:B .【典例15】(2020·上海高三专题练习)用向量的方法证明:三角形ABC 中 (1)正弦定理:sin sin sin a b cA B C==; (2)余弦定理:2222cos a b c bc A =+-. 【答案】(1)证明见解析;(2)证明见解析【解析】(1)如图(a )所示,过顶点A 作对边BC 的高AH ,则0()AH BC AH AC AB =⋅=⋅-,即0AH AC AH AB ⋅-⋅=. ∴()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-. 如图(b )所示,如果B 为钝角,有()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-∴sin sin b C c B =.上述关系对直角三角形显然成立[图(c )] ∴sin sin sin a b cA B C==. (2)在ABC 中,BC AC AB =-.∴2222()()2BC AC AB AC AB AC AB =-=+-⋅. 即2222cos a b c bc A =+-.巩固提升1.(2020·全国高考真题(文))已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b + B .2a b +C .2a b -D .2a b -【答案】D 【解析】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意.故选:D.2.(2020·福建省福州格致中学期末)已知两个不相等的非零向量a b ,,满足2b =,且b 与b a -的夹角为45°,则a 的取值范围是( ) A .(02⎤⎦,B .)22⎡⎣,C .(0,2]D .)2∞⎡+⎣,【答案】D 【解析】如图所示,设AB b =,AC a =,∠CAB =45°,由图可知,当BC ⊥AC 时,a 的取值最小,此时,则2a =, 而a 没有最大值,故a 的取值范围为)2,⎡+∞⎣. 故选:D.3.(2019·全国高考真题(文))已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6【答案】B 【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B .4.(2021·全国·高考真题(文))若向量,a b 满足3,5,1a a b a b =-=⋅=,则b =_________.【答案】【分析】根据题目条件,利用a b -模的平方可以得出答案 【详解】 ∵5a b -=∴222229225a b a b a b b -=+-⋅=+-= ∴32b =.故答案为:5.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】2【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:20k a a b k →→→⨯-⋅==,解得:k =.故答案为:2. 6.(2020·浙江省高考真题)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.【答案】2829【解析】12|2|2e e -≤, 124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 7.(2019·江苏高考真题)如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【答案】3. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=8.(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>=22133a c a c ⋅==⨯⋅. 9. (2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】3 【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.10.(2019·天津高考真题(理)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-.【解析】建立如图所示的直角坐标系,则B,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE(3y x =-, 直线AE的斜率为-y x =.由3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)122BD AE =-=-.。
求平面向量数量积的5种方法
平面向量数量积的5种方法一、定义:(与物理中功的定义一致,两向量通过数量积运算以后是标量或实数。
)(亦称内积)是两向量乘法运算中的一种,2121y y x x b a ⋅+⋅==⋅θ,叫做向量a 与b 的数量积。
θ为向量a 与b 的夹角,注意:求两向量的夹角应把向量的起点移到同一点,注意不能理解成两条直线的夹角,[]0,θπ∈。
二、几何意义为:b a ⋅等于a (或b )与b (或a )在a (或b )方向上的投影cos b θ(θcos a)的乘积。
三、运算率:①交换率:a b b a ⋅=⋅;②分配率:()c b c a c b a ⋅+⋅=⋅+;③不满足结合率:()()c b a c b a ⋅⋅≠⋅⋅,因为前面表示与c 共线的向量,后面表示与a 共线的向量。
四、三种方法:1.定义法:代入到数量积的公式中,对于较简单题(已知两向量的模与夹角),用此法计算。
2.绕法:当两向量的模与夹角不易求时,把两向量通过平行四边形或三角形绕成用已知向量(已知模与夹角的向量)表示,然后代入到数量积公式中。
3.坐标法:如果给出两向量所在图形存在垂直关系(易建系时)时,适当建立直角坐标系,代入坐标计算。
4.投影法:当一个向量在另一个向量上的投影易求时,用此法计算。
5.特殊图形法:如果图形形状不确定,则可取特殊图形,然后利用建系或投影计算。
1、利用定义计算(简单)。
1.(2010年辽宁卷)平面上,,O A B 三点不共线,设,OA a OB b ==,则OAB ∆的面积等于 ( ) 222()a b a b -⋅ 222()a b a b +⋅C.12222()a b a b -⋅ D.()22221ba b a ⋅+2.(2016年新课标全国卷II3)已知向量()()2,3,,1-==b m a 且()b b a ⊥+,则m = ( ) A.-8 B.-6 C.6 D.83.(2012年辽宁卷)已知向量)1,1(-=a ,),2(x b =,若1=⋅b a ,则x = ( ) A.—1 B.—12 C.12D.1 4.(2016年新课标全国卷II4)已知向量b a ,满足1,1-=⋅=b a a ,则()b a a -⋅2= ( ) A.4B.3C.2D.05.(高考题)已知a 是平面内的单位向量,若向量b 满足()0b a b ⋅-=,则||b 的取值范围是 。
平面向量的数量积
平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。
平面向量向量的数量积与向量积的计算方法
平面向量向量的数量积与向量积的计算方法平面向量的数量积与向量积的计算方法平面向量是数学中常见的概念,它有两个基本运算:数量积和向量积。
数量积也称为点积或内积,而向量积也称为叉积或外积。
这两个运算在向量的计算和几何问题中起着重要的作用。
本文将详细介绍平面向量的数量积和向量积的计算方法。
一、数量积数量积是两个向量之间的一种运算,表示为A·B,其中A和B是两个向量。
数量积的计算方法是相同位置的两个分量相乘,再将结果相加。
设A和B是两个平面向量,其坐标表示分别为A=(x₁,y₁)和B=(x₂,y₂),则数量积的计算公式如下:A·B = x₁x₂ + y₁y₂这个公式表示了数量积的定义和计算方法。
数量积的结果是一个实数,它可以用于计算向量的模长、夹角和投影等问题。
二、向量积向量积是两个向量之间的一种运算,表示为A×B,其中A和B是两个向量。
向量积的计算方法是利用行列式的形式进行计算。
设A和B是两个平面向量,其坐标表示分别为A=(x₁,y₁)和B=(x₂,y₂),则向量积的计算公式如下:A×B = det | i j || x₁ y₁ || x₂ y₂ |其中,i和j分别表示x轴和y轴的单位向量。
行列式的计算方法是先计算主对角线上的乘积,再减去副对角线上的乘积。
即:A×B = (x₁y₂ - y₁x₂)·k这个公式表示了向量积的定义和计算方法。
向量积的结果是一个向量,它的方向垂直于A和B所确定的平面,并符合右手定则。
向量积可以用于计算面积、判定向量的共面性和计算法向量等问题。
综上所述,平面向量的数量积和向量积是两个重要的运算方法。
数量积是两个向量的乘积的加和,结果为实数;向量积是两个向量的乘积的行列式形式,结果为向量。
这两个运算在解决代数问题和几何问题中起着重要的作用,可以高效地计算向量的性质和运算结果。
掌握数量积和向量积的计算方法,对于理解和解决相关问题具有重要意义。
例谈高考中平面向量数量积的三种探求思路
解 法 探 究
2 0 1 3 年 1 2月
例谈 高考 中平面 向量数量积 的三种探 求思路
⑧ 江 苏 省 启 东 市 汇龙 中 学 施 伟 琛
平面 向量是高 中数学 的核心 知识 . 把平 面向量 ( 高 中
一 —
l
— 一
X—
1 —
= — 一
、 / 1 0 .
内容 ) 与平面几何 ( 初中内容 ) 融合命题 , 并 以选择题或填 空题 的形式呈现 ,这已形成新 高考试题 中的一道靓丽风
所 以 ・ 百 = 4 + 0 — 2 : 2 .
点评 : 由平面向量的基本定理知 , 同一 平 面 内的 任 一
( 3 ) 本 题设计科学 合理 , 语 言 自然 简洁 , 图形 简明直
观. 以平 面 向量为背 景 , 通过求 平面 向量 的数量积 , 入口
较宽, 解法 灵活 , 有效考查 了平 面 向量 的核心知 识. 上面
所 以由余弦定理得
B D 2 + B I a - DF e
C 0S = — — — — 一 : ———
准备 : ( 1 ) 数量 积的定义 : 已知两个非零向量a 与b , 它
们的夹角为0 , 则口 ・ 6 = I a l ・ J I c o s O . 其中J b I c o s 0 称为向量
、 /
1 0 : 2 .
1 U
景. 而平面向量 的数量 积则是高考重点考查 的内容. { 2 0 1 3 年普通高等 学校招生全 国统一考试 大纲》 ( 文科数 学 ・ 课
程标准实验 版 ) 要求 : 掌握数量积 的坐标表 达式 , 会进行 平面 向量数量积 的运算. 可见 , 这 已是较高要求. 那如何求 平面 向量 的数量积 呢? 高考 中常有 三种不 同的探 求思路. 下面 以一道高考试题 为例谈谈具体的探求过程 ,以期 对 大家有一定的启发. 题目 ( 2 0 1 3 年高考课标 Ⅱ卷理 1 3 文1 4 ) 已知正方形
第五章 5.3平面向量的数量积
1.两个向量的夹角 (1)定义已知两个非零向量a ,b ,作OA →=a ,OB →=b ,则∠AOB 称作向量a 和向量b 的夹角,记作〈a ,b 〉. (2)范围向量夹角〈a ,b 〉的范围是[0,π],且〈a ,b 〉=〈b ,a 〉. (3)向量垂直如果〈a ,b 〉=π2,则a 与b 垂直,记作a ⊥b .2.向量在轴上的正射影已知向量a 和轴l (如图),作OA →=a ,过点O ,A 分别作轴l 的垂线,垂足分别为O 1,A 1,则向量O 1A 1→叫做向量a 在轴l 上的正射影(简称射影),该射影在轴l 上的坐标,称作a 在轴l 上的数量或在轴l 的方向上的数量.OA →=a 在轴l 上正射影的坐标记作a l ,向量a 的方向与轴l 的正向所成的角为θ,则由三角函数中的余弦定义有a l =|a |cos θ. 3.向量的数量积(1)平面向量的数量积的定义|a||b |cos 〈a ,b 〉叫做向量a 和b 的数量积(或内积),记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)向量数量积的性质①如果e 是单位向量,则a·e =e·a =|a |cos 〈a ,e 〉; ②a ⊥b ⇔a·b =0; ③a·a =|a |2,|a |=a·a ;④cos 〈a ,b 〉=a·b |a||b |(|a||b |≠0);⑤|a·b |__≤__|a||b |. (3)数量积的运算律 ①交换律:a·b =b·a .②对λ∈R ,λ(a·b )=(λa )·b =a ·(λb ). ③分配律:(a +b )·c =a·c +b·c . (4)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则 ①a·b =a 1b 1+a 2b 2; ②a ⊥b ⇔a 1b 1+a 2b 2=0;③|a |=a 21+a 22;④cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22·b 21+b 22.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (2)向量在另一个向量方向上的正射影为数量,而不是向量.( × )(3)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形.( × ) (4)两个向量的夹角的范围是[0,π2].( × )(5)由a ·b =0可得a =0或b =0.( × ) (6)(a ·b )c =a (b ·c ).( × )1.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于( ) A.150° B.90° C.60° D.30°答案 D解析 设向量a 与向量a +2b 的夹角为θ. ∵|a +2b |2=4+4+4a ·b =8+8cos 60°=12, ∴|a +2b |=23, a ·(a +2b )=|a |·|a +2b |·cos θ =2×23cos θ=43cos θ,又a ·(a +2b )=a 2+2a ·b =4+4cos 60°=6, ∴43cos θ=6,cos θ=32, ∵θ∈[0°,180°],∴θ=30°,故选D.2.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 答案 D解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝⎛⎭⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.3.已知单位向量e 1,e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=________.答案 3解析 ∵|a |2=a ·a =(3e 1-2e 2)·(3e 1-2e 2)=9|e 1|2-12e 1·e 2+4|e 2|2=9-12×1×1×13+4=9.∴|a |=3.4.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案 90°解析 由AO →=12(AB →+AC →)可知点O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以∠BAC =90°,所以AB →与AC →的夹角为90°.5.(教材改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的正射影的数量为________. 答案 -2解析 由数量积的定义知,b 在a 方向上的正射影的数量为|b |cos θ=4×cos 120°=-2.题型一 平面向量数量积的运算例1 (1)(2015·四川)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A.20B.15C.9D.6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.答案 (1)C (2)1 1 解析 (1)AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9, 故选C.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1. 因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的正射影都是CB →, ∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的正射影的数量最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.思维升华 (1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用向量的正射影.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP→=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2解析 (1)由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD→-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.(2)由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →) =(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.题型二 用数量积求向量的模、夹角 命题点1 求向量的模例2 (1)已知向量a ,b 均为单位向量,它们的夹角为π3,则|a +b |等于( )A.1B. 2C. 3D.2(2)(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案 (1)C (2)7+1解析 (1)因为向量a ,b 均为单位向量,它们的夹角为π3,所以|a +b |=(a +b )2=a 2+2a ·b +b 2=1+2cos π3+1= 3.(2)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)的距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1. 命题点2 求向量的夹角例3 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D.π(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________________________________________________________________________. 答案 (1)A (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3 解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ, 即3|a |2-|a |·|b |·cos θ-2|b |2=0,∴83|b |2-223|b |2·cos θ-2|b |2=0,∴cos θ=22.又∵0≤θ≤π,∴θ=π4.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0, ∴4k -6-6<0, ∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3. 思维升华 (1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B.2 C. 6D.6答案 (1)223 (2)C解析 (1)∵|a |= (3e 1-2e 2)2=9+4-12×1×1×13=3,|b |=(3e 1-e 2)2=9+1-6×1×1×13=22,∴a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22 =9-9×1×1×13+2=8,∴cos β=83×22=223.(2)∵AB →·AC →=-1, ∴|AB →|·|AC →|·cos 120°=-1,即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.题型三 平面向量与三角函数例4 (2015·广东)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1. (2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12, 因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) A.-43B.-45C.45D.34答案 A解析 由题意知6sin 2α+cos α·(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0,上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎫3π2,2π,则tan α<0,解得tan α=-43,故选A.7.向量夹角范围不清致误典例 (12分)若两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2所成的角为60°,若向量2t e 1+7e 2与向量e 1+t e 2所成的角为钝角,求实数t 的取值范围.易错分析 两个向量所成角的范围是[0,π],两个向量所成的角为钝角,容易误认为所成角π为钝角,导致所求的结果范围扩大. 规范解答解 设向量2t e 1+7e 2与向量e 1+t e 2的夹角为θ,由θ为钝角,知cos θ<0,故 (2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7<0,解得-7<t <-12.[5分] 再设向量2t e 1+7e 2与向量e 1+t e 2反向, 则2t e 1+7e 2=k (e 1+t e 2)(k <0),[7分]从而⎩⎪⎨⎪⎧2t =k ,7=tk ,且k <0,解得⎩⎪⎨⎪⎧t =-142,k =-14,即当t =-142时,两向量所成的角为π.[10分] 所以t 的取值范围是(-7,-142)∪(-142,-12).[12分] 温馨提醒 (1)两个非零向量的夹角范围为[0,π],解题时要注意挖掘题中隐含条件.(2)利用数量积的符号判断两向量的夹角取值范围时,应该注意向量夹角的取值范围,不要忽视两向量共线的情况.若a ·b <0,则〈a ,b 〉∈(π2,π];若a ·b >0,则〈a ,b 〉∈[0,π2).[方法与技巧]1.计算数量积的三种方法:定义法、坐标运算、数量积的几何意义,解题要灵活选用恰当的方法,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. [失误与防范]1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.A 组 专项基础训练 (时间:35分钟)1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A.22+ 3 B.2 3 C.4 D.12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos 60°=4+4+2×2×2×12=12,|a +b |=2 3.2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.- 3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( ) A.32 B.22 C.52D.72 答案 A解析 设e 1,e 2的夹角为θ,则由以向量e 1,e 2为邻边的三角形的面积为12,得12×1×1×sin θ=12,得sin θ=1,所以θ=90°,所以e 1·e 2=0.从而对e 3=12e 1+k e 2两边同时平方得1=14+k 2,解得k =32或-32(舍去).4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A.正三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0,∵AB →-AC →=CB →, 所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269 答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝⎛⎭⎫AC →+13CB →·⎝⎛⎭⎫AB →+13BC →=⎝⎛⎭⎫23AC →+13AB →·⎝⎛⎭⎫13AC →+23AB →=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则P A →·(PB →+PC →)的值为________. 答案 -4解析 由题意得,AP =2,PM =1, 所以P A →·(PB →+PC →)=P A →·2PM → =2×2×1×cos 180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________. 答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132. 8.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”). 答案 垂心解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0, ∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心.9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12, 又∵0≤θ≤π,∴θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3, ∴∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的正射影的数量.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35. 因为0<A <π,所以sin A =1-cos 2 A = 1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =b sin B,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,则B =π4. 由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,故向量BA →在BC →方向上的正射影的数量为|BA →|cos B =c cos B =1×22=22. B 组 专项能力提升(时间:25分钟)11.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC→|的最大值为( )A.6B.7C.8D.9答案 B解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,所以AC 为圆直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37,所以x =-1时有最大值49=7,故选B.12.在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( )A.13B.23C.43D.2 答案 B解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB →2=4(λ-1)-λ=3λ-4=-2,即λ=23. 13.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在CD 上,若AB →·AF→=2,则AE →·BF →的值是( )A. 2B.2C.0D.1答案 A解析 依题意得AE →·BF →=(AB →+BE →)·(AF →-AB →)=AB →·AF →-AB →2+BE →·AF →-BE →·AB →=2-2+1×2-0=2,故选A.14.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动,Q 是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.答案 ⎣⎡⎦⎤-12,12 解析 设Q (c ,d ),由新的运算可得OQ →=m ⊗OP →+n =(2x ,12sin x )+(π3,0) =(2x +π3,12sin x ), 由⎩⎨⎧ c =2x +π3,d =12sin x ,消去x 得d =12sin(12c -π6), 所以y =f (x )=12sin(12x -π6), 易知y =f (x )的值域是⎣⎡⎦⎤-12,12. 15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=1.(1)判断△ABC 的形状;(2)求边长c 的值;(3)若|AB →+AC →|=22,求△ABC 的面积.解 (1)由AB →·AC →=BA →·BC →=1,得bc ·cos A =ac ·cos B ,由正弦定理,得sin B cos A =sin A cos B ,∴sin(A -B )=0,∴A =B ,即△ABC 是等腰三角形.(2)由AB →·AC →=1,得bc ·cos A =1,又bc ·b 2+c 2-a 22bc=1,则b 2+c 2-a 2=2, 又a =b ,∴c 2=2,即c = 2.(3)由|AB →+AC →|=22,得2+b 2+2=8,∴b =2,又c =2,∴cos A =24,sin A =144, ∴S △ABC =12bc ·sin A =12×2×2×144=72.。
平面向量的数量积和向量积
平面向量的数量积和向量积平面向量是高中数学中的一个重要概念,它具有方向和大小,并且是可以进行运算的。
在平面向量的运算中,数量积和向量积是两个常见且重要的运算。
一、数量积1. 定义数量积又称为点积、内积或标量积,用符号"·"表示。
对于平面内两个向量A(x₁, y₁)和B(x₂, y₂),它们的数量积为:A·B = x₁x₂ + y₁y₂其中,x₁、x₂为A和B的横坐标,y₁、y₂为A和B的纵坐标。
2. 计算方法根据数量积的定义,计算方法简单直接。
对于任意两个向量A和B,只需将它们的横纵坐标带入公式即可。
例如,对于向量A(3,2)和向量B(4,-1),它们的数量积为:A·B = 3*4 + 2*(-1) = 12 - 2 = 103. 特性数量积具有以下几个重要的特性:- 结果为标量:数量积的结果是一个数,即标量,没有方向。
- 交换律:A·B = B·A,即数量积满足交换律。
若夹角为θ,则A·B = |A||B|cosθ,其中|A|和|B|为向量的长度。
二、向量积1. 定义向量积又称为叉积、外积或矢量积,用符号"×"表示。
对于平面内两个向量A(x₁, y₁)和B(x₂, y₂),它们的向量积为:A×B = (0, 0, x₁y₂ - x₂y₁)其中,向量积是一个垂直于平面的向量,其大小为由A和B所张成的平行四边形的面积。
2. 计算方法根据向量积的定义,计算方法稍微复杂一些。
对于任意两个向量A 和B,只需将它们的横纵坐标带入公式,得到一个新的向量。
例如,对于向量A(3,2)和向量B(4,-1),它们的向量积为:A×B = (0, 0, 3*(-1) - 4*2) = (0, 0, -11)3. 特性向量积具有以下几个重要的特性:- 结果为向量:向量积的结果是一个向量,具有方向和大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙源期刊网
求解平面向量数量积的三种方法
作者:谢伟杰
来源:《读写算》2018年第34期
摘要梅州市高一数学质量抽测题第11题是一道关于平面向量数量积的考题,这道考题引起了笔者的注意。
此题很好地考察了学生对数量积概念的理解,也能很好地考察学生对求解平面向量数量积的方法是否掌握到位。
关键词平面向量数量积;解法
中图分类号:O241.7 文献标识码:A 文章编号:1002-7661(2018) 34-0211-01
做题中的“少运算”是建立在对基本概念理解的基础之上的,学生只有对相关的概念、性质有深刻的理解,而不是纯粹的记公式或套方法,才能在做题中真正实现“多思考,少运算”。
教师在教学中,要帮助学生去认识相关知识点的核心及实质,而不是认为学生只要能记住相关的公式或会套用某类方法解题就行,否则,在具体的问题情境中,学生极容易在公式与计算中迷失,从而找不到解决问题的有效途径。
一、原题呈现
已知是边长为的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则
的值为()
二、解法展示与对比
解法一:如图1,
解法二:如图2,以点为坐标原点,为轴正方向,建立如图所示的直角坐标系。
则,,
解法三:如图3,点在上的投影为点,作點在上的投影,则在是的投影为,由向量数量积的含义可知,易得与相似,所以,又,所以,即 . 故
作为选择题,解法三有明显的优点,即我们只需将在上的投影作出,对图中线段的长度作大致估计,就可迅速判断只有选项才是合理的。
笔者认为这样并不是投机取巧,恰恰相
反,在考场上会做这样的思考,并采取此策略的学生,说明该生对数量积的概念有更深刻的理解,并有更好的思维能力。
这与高考命题中所提倡的“多思考,少运算”的理念也是一致的。