随机信号处理实验
随机信号处理的编程实现
实验二 随机信号处理的编程实现一、实验目的1、了解随机信号处理的常见调用函数;2、掌握一些比较复杂的信号处理的编程过程。
二、实验原理1、 滤波器的种类很多,从功能上可以分为低通、高通、带通和带阻滤波器,上述每种滤波器又可以分为模拟滤波器和数字滤波器。
这里根据窗函数设计了FIR 滤波器。
分为三个步骤。
(1)变换。
对给定的理想的频率响应进行傅里叶变换,即在-pi 到pi 的一个周期内,在给定的通带上对实矩形函数积分,之后得到的是一个以n=0为对称中心的无限长序列,用hd(n)来表示。
(2)移位。
如果所要求的滤波器冲击响应的长度为N (可以是基数亦可以是偶数),则将n)向右移位N-1/2,于是得到一个以N-1/2为对称中心的无限长序列,用h(n)来表示,即有h(n)= hd(n-(N-1/2)).此时频率响应Hd(jw e )不再是实函数,这是因为θ(w)=- N-1/2)*w 不等于0;而幅度H (w )仍然是理想的矩形函数。
(3)加窗。
加窗的作用是通过把理想滤波器的无限长脉冲响应hd(n)乘以窗函数w(n)来产生一个被截断的脉冲响应,即h(n)= hd(n)w(n),并且对频率响应进行平滑。
由于h ’(n)和w (n )的对称中心都在N-1/2,于是就得到了长度为N ,对称中心在N-1/2的序列h(n),这就是所要求的线性相位fir 滤波器的冲击响应。
2、功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。
谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。
3、从概率论和统计学的角度而言,韦伯分布连续性的概率分布,其概率密度为()()0,,;/1≥⎪⎭⎫ ⎝⎛=--x e x k k x f kk x k λλλ 其中,x 是随机变量,λ>0是比例参数,k >0是形状参数。
显然,它的累积分布函数是扩展的指数分布函数,而且,韦伯分布与很多分布都有关系。
随机信号分析实验报告
随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。
随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。
实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。
实验原理:随机信号可以分为离散随机信号和连续随机信号。
离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。
常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。
实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。
实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。
2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。
3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。
4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。
5.计算统计特性:计算随机信号的均值、方差等统计特性。
6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。
实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。
通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。
通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。
通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。
结论:本实验通过对随机信号的分析,加深了对随机信号的理解。
通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。
2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。
《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码
《随机信号分析与处理》实验报告指导教师:班级:学号:姓名:实验一 熟悉MA TLAB 的随机信号处理相关命令一、实验目的1、熟悉GUI 格式的编程及使用。
2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。
[N1 N2]表示读取从N1点到N2点的值。
2,均匀分布白噪声在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。
3、均值随机变量X 的均值也称为数学期望,它定义为对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为则均值定义为上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。
4、方差定义为随机过程的方差。
方差通常也记为D 【X (t )】 ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。
5、自相关函数设任意两个时刻1t ,2t ,定义为随机过程X (t )的自相关函数,简称为相关函数。
自相关函数可正,可负,其绝对值越大表示相关性越强。
6.哈明(hamming)窗(10.100)121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰(10.101)B = 1.3Δf,A = -43dB,D= -6dB/oct.哈明窗本质上和汉宁窗是一样的,只是系数不同。
哈明窗比汉宁窗消除旁瓣的效果好一些而且主瓣稍窄,但是旁瓣衰减较慢是不利的方面。
随机信号分析实验报告
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
-随机信号分析实验报告
-随机信号分析实验报告H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:随机信号分析院系:电⼦与信息⼯程学院班级:姓名:学号:指导教师:实验时间:实验⼀、各种分布随机数的产⽣(⼀)实验原理1.均匀分布随机数的产⽣原理产⽣伪随机数的⼀种实⽤⽅法是同余法,它利⽤同余运算递推产⽣伪随机数序列。
最简单的⽅法是加同余法)(mod 1M c y y n n +=+My x n n 11++= 为了保证产⽣的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。
加同余法虽然简单,但产⽣的伪随机数效果不好。
另⼀种同余法为乘同余法,它需要两次乘法才能产⽣⼀个[0,1]上均匀分布的随机数)(mod 1M ay y n n =+ My x n n 11++= 式中,a 为正整数。
⽤加法和乘法完成递推运算的称为混合同余法,即 )(mod 1M c ay y n n +=+ M y x n n 11++=⽤混合同余法产⽣的伪随机数具有较好的特性,⼀些程序库中都有成熟的程序供选择。
常⽤的计算语⾔如Basic 、C 和Matlab 都有产⽣均匀分布随机数的函数可以调⽤,只是⽤各种编程语⾔对应的函数产⽣的均匀分布随机数的范围不同,有的函数可能还需要提供种⼦或初始化。
Matlab 提供的函数rand()可以产⽣⼀个在[0,1]区间分布的随机数,rand(2,4)则可以产⽣⼀个在[0,1]区间分布的随机数矩阵,矩阵为2⾏4列。
Matlab 提供的另⼀个产⽣随机数的函数是random('unif',a,b,N,M),unif 表⽰均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的⾏和列。
2.随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系⽤显式表达,那么就可以利⽤⼀种分布的随机变量通过变换得到另⼀种分布的随机变量。
随机信号分析实验报告
实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。
二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。
随机信号分析 MATLAB实验1
随机信号分析与处理实验报告1实验一熟悉MATLAB的随机信号处理相关命令一、实验目的1、熟悉GUI格式的编程及使用。
2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程二、实验原理1、语音的录入与打开在MATLAB中,[y,fs,bits]=wavread('11',[N1 N2]);用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。
[N1 N2]表示读取从N1点到N2点的值。
2、幅值对于随机信号的频域描述,常使用功率谱,它是表征信号的能量随着频率的分布情况。
当然,功率谱也可用于周期信号和瞬变信号的频域描述。
周期函数的幅值谱:一般周期信号均由一个直流分量、一个基波(正弦波)和无限个谐波(正弦波)所组成,各次谐波的频率是基波频率的整数倍,基波、各次谐波的幅值Ao和初相角是各不相同的,将幅值与频率的函数关系成为幅值谱。
3、语音信号自相关性三、实验结果与分析1、信号原始波形2、FFT变换利用fft变换,对语音信号进行进行分析,可以看出所能发出的音调应该是稳定的或是在一定的范围内浮动3、语音信号相位通过相位处理,将语音信号的声门激励信息及声道响应分别离开来4、自相关函数2004006008001000120014001600180000.51自相关函数根据自相关函数可以看出语音信号的周期。
自相关函数检测出淹没在随机噪声干扰中的信号,随机信号的自功率谱等于它的自相关函数的傅里叶变换。
自相关函数是描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
从图中可以看出,当t1=t2=900时,信号的自相关性最强。
5、语音自协方差函数从图中原始信号的自协方差函数与原始信号的自相关函数在波形上相差不大,原因是121212(,)(,)()()X X X X K t t R t t m t m t =-,此时12t t =,通过计算,可以得到1()X m t ,2()X m t 的值很小,所以得到的自协方差函数波形是正确的。
随机信号实验报告(模板)(1)
随机信号实验报告学院通信工程学院专业信息工程班级 1401051班制作人文杰制作人晓鹏一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。
二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值表示集合平均值或数学期望值。
基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。
② 随机过程的均方值:信号x(t)的均方值,或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。
③ 随机信号的方差: 信号x(t)的方差定义为:描述了信号的静态量,方差反映了信号绕均值的波动程度。
在已知均值和均方值的前提下,方差就很容易求得了。
④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。
对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。
在离散情况下,信号x(n)和y(n)的相关函数定义为:τ,t=0,1,2,……N-1。
⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)从另一个角度来了解信号的特征。
时域信号x(t)的傅氏变换为:⑥随机过程的功率谱密度:随机信号的功率普密度是随机信号的各个样本在单位频带的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。
随机信号处理实验报告
随机信号处理实验报告院系名称学生姓名学号指导教师目录一、实验要求: (3)二、实验原理: (3)2.1 随机信号的分析方法 (3)2.2 随机过程的频谱 (3)2.3 随机过程的相关函数和功率谱 (4)(1)随机信号的相关函数: (4)(2)随机信号的功率谱 (4)三、实验步骤与分析 (5)3.1实验方案 (5)3.2实验步骤与分析 (5)任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)任务二:(s1 变量)求噪声下正弦信号的相位 (8)任务三:(s1 变量)求信号自相关函数和功率谱 (11)任务四:(s变量)求噪声下信号的振幅和频率 (14)任务五:(s变量)求信号的自相关函数和功率谱 (17)3.3实验结果与误差分析 (19)(1)实验结果 (19)(2)结果验证 (19)(3)误差分析 (21)四、实验总结和感悟 (22)1、实验总结 (22)2、实验感悟 (23)五、附低通滤波器的Matlab程序 (23)一、实验要求:(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。
第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。
二、实验原理:2.1 随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。
其中随机信号无确定的变化规律,需要用统计特新进行分析。
这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。
但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
随机信号分析实验报告
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随机信号处理作业南理工有程序
随机信号处理作业南理工有程序文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)《随机信号处理》上机实验仿真报告学院:电子工程与光电技术学院指导老师:顾红日期:2014年11月10日题目1: <问题>线性调频脉冲信号,时宽10us ,带宽543MHz,对该信号进行匹配滤波后,即脉压处理,处理增益为多少脉压后的脉冲宽度为多少并用图说明脉压后的脉冲宽度,内差点看3dB 带宽,以该带宽说明距离分辨率与带宽的对应关系。
建议补充:比较矩形视频脉冲信号、矩形包络单个中频脉冲信号、线性调频矩形脉冲信号匹配滤波,说明脉压后的脉冲3dB 宽度变化,与原脉冲的宽度比较得出压缩比即增益。
另外,通过仿真加噪声0dB 信噪比来看脉压后信噪比有没有提升。
<理论分析>:(1)线性调频信号(LFM )是雷达中常用的信号,其数学表达式为:212()2()()c j f t kt t s t rect e Tπ+= 式中c f 为载波频率,t rect T ⎛⎫ ⎪⎝⎭为矩形信号: 11()0,t t rect T T elsewise ⎧ , ≤⎪=⎨⎪ ⎩当TB>1时,LFM 信号特征表达式如下:(2)在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器。
线性调频信号叠加上噪声其表达式为:2()j kt t t S rect e Tπ= ()(,10)t S t awgn S =白噪声条件下,匹配滤波器的脉冲响应:*()()o h t ks t t =-<仿真程序>:B=543e6; %带宽(这里设置带宽为学号后三位),程序段①从这行开始fs=10*B; %采样频率ts=1/fs;T=10e-6; %脉宽10μsN=T/ts; %采样点数t=linspace(-T/2,T/2,N);K=B/T;a=1; %这里调频信号幅值假设为1%% 线性调频信号si=a*exp(j*pi*K*t.^2);figure(1)plot(t*1e6,si);xlabel('t/μs');ylabel('si');title('线性调频信号时域波形图');grid on;sfft=fft(si);f=(0:length(sfft)-1)*fs/length(sfft)-fs/2;%f=linspace(-fs/2,fs/2,N);figure(2)plot(f*1e-6,fftshift(abs(sfft)));xlabel('f/MHz');ylabel('sfft');title('线性调频信号频域波形图');grid on;axis([-300,300,-inf,inf]); %程序段①到这行结束%% 叠加高斯白噪声ni=rand(1,N);disp('输入信噪比为:');SNRi=10*log10(a^2/var(ni)/2)xi=ni+si;figure(3)plot(t*1e6,real(xi));xlabel('t/us');ylabel('xi');title('叠加噪声后实际信号时域波形图');x1fft=fft(xi); %输入信号频谱f=(0:length(x1fft)-1)*fs/length(x1fft)-fs/2;figure(4)plot(f*1e-6,fftshift(abs(x1fft)));xlabel('f/MHz');ylabel('x1fft');title('叠加噪声后实际信号频谱图');grid on;%% 匹配滤波器ht=exp(-j*pi*K*t.^2);x2=conv(ht,xi);L=2*N-1;ti=linspace(-T,T,L);ti=ti*B; %换算为B的倍数X2=abs(x2)/max(abs(x2));figure(5)plot(ti,20*log10(X2+1e-6));xlabel('t/B');ylabel('匹配滤波幅度');title('匹配滤波结果图');grid on;axis([-3,3,-4,inf]);%% 计算信噪比X22=abs(x2);%实际信号n2=conv(ht,ni);%噪声n22=abs(n2);s2=conv(ht,si);%信号s22=abs(s2);SNRo=(max(s22)^2)/(var(n2))/2;disp('输出信噪比为:');SNRo=10*log10(SNRo)disp('信噪比增益为:');disp(SNRo-SNRi)%% 匹配滤波器的幅频特性hw=fft(ht);f2=(0:length(hw)-1)*fs/length(hw)-fs/2;f2=f2/B;hw1=abs(hw);hw1=hw1./max(hw1);plot(f2,fftshift(20*log(hw1+1e-6)));xlabel('f/B');ylabel('幅度');title('匹配滤波器的幅频特性图'); %% 匹配滤波器处理后的信号Sot=conv(si,ht);subplot(211)L=2*N-1;t1=linspace(-T,T,L);Z=abs(Sot);Z=Z/max(Z);Z=20*log10(Z+1e-6);Z1=abs(sinc(B.*t1));Z1=20*log10(Z1+1e-6);t1=t1*B;plot(t1,Z,t1,Z1,'r.');axis([-15,15,-50,inf]);grid on;legend('emulational','sinc');xlabel('Time in sec \times\itB');ylabel('Amplitude,dB');title('匹配滤波器处理后信号');subplot(212)N0=3*fs/B;t2=-N0*ts:ts:N0*ts;t2=B*t2;plot(t2,Z(N-N0:N+N0),t2,Z1(N-N0:N+N0),'r.');axis([-inf,inf,-50,inf]);grid on;set(gca,'Ytick',[,-4,0],'Xtick',[-3,-2,-1,,0,,1,2,3]); xlabel('Time in sec \times\itB');ylabel('Amplitude,dB');title('匹配滤波器处理后信号(放大)');%% 输出频谱xfft=fft(x2);f3=(0:length(xfft)-1)*fs/length(xfft)-fs/2;xfft1=abs(xfft);xfft1=xfft1./max(xfft1);figure(7)plot(f3/B,fftshift(20*log(xfft1+1e-6)));xlabel('f/B');ylabel('幅度');title('输出信号频谱图'); <仿真结果与分析>:对于一个理想的脉冲压缩系统,要求发射信号具有非线性的相位谱,并使其包络接近矩形;其中)(t S 就是信号s(t)的复包络。
北京理工大学随机信号分析实验报告
北京理工大学随机信号分析实验报告本科实验报告实验名称:随机信号分析实验实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=Ny x n n /=序列{}nx 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
南京理工大学随机信号处理实验报告
题目:雷达线性调频信号的脉冲压缩处理线性调频脉冲信号,时宽10us,带宽40MHz,对该信号进行匹配滤波后,即脉压处理,处理增益为多少,脉压后的脉冲宽度为多少?用图说明脉压后的脉冲宽度,内差点看4dB带宽,以该带宽说明距离分辨率与带宽的对应关系。
1.程序为:T=10e-6;B=112e6;Rmin=8500;Rmax=11500;R=[9000,10000,10020];RCS=[1 1 1 ];C=3e8;K=B/T;Rwid=Rmax-Rmin;Twid=2*Rwid/C;Fs=10*B;Ts=1/Fs;Nwid=ceil(Twid/Ts);t=linspace(2*Rmin/C,2*Rmax/C,Nwid); M=length(R);td=ones(M,1)*t-2*R'/C*ones(1,Nwid);Srt1=RCS*(exp(1i*pi*K*td.^2).*(abs(td)<T/2));Srt=Srt1;Nchirp=ceil(T/Ts);Nfft=2^nextpow2(Nwid+Nwid-1); Srw=fft(Srt,Nfft);Srw1=fft(Srt1,Nfft);t0=linspace(-T/2,T/2,Nchirp);St=exp(1i*pi*K*t0.^2);Sw=fft(St,Nfft);Sot=fftshift(ifft(Srw.*conj(Sw)));Sot1=fftshift(ifft(Srw1.*conj(Sw)));N0=Nfft/2-Nchirp/2;Z=abs(Sot(N0:N0+Nwid-1));Z=Z/max(Z);Z=20*log10(Z+1e-6);figuresubplot(211)plot(t*1e6,real(Srt));axis tight;xlabel('us');ylabel('幅度')title(['线性信号压缩前']);subplot(212)plot(t*C/2,Z)xlabel('Range in meters');ylabel('幅度 ')title(['线性信号压缩后']);选取0.9*10^4HZ 的一个脉冲进行放大分析(调整Y 轴与X 轴的范围)58606264666870727476us幅度线性调频信号压缩前0.850.90.9511.05 1.1 1.15x 104-150-100-5050Range in meters 幅度 线性调频信号压缩后选取主瓣调整:大致可以看出压缩后的带宽为0.1hz理论上分析处理增益为:D=10*10e -6*112*10e6=1120D=112/B1=1120.B1=0.1HZ2.分辩率。
随机信号实验报告微弱信号的提取
实验十微弱信号的检测提取及分析1.实验目的⑴了解随机信号分析理论如安在实践中应用。
⑵了解随机信号自身的特性,包括均值(数学期望)、方差、概率密度、相关函数、频谱及功率谱密度等。
⑶把握随机信号的检测及分析方式。
⒉实验原理⑴随机信号的分析方式在信号系统中,咱们能够把信号分成两大类——确知信号和随机信号。
确知信号具有必然的转变规律,因此容易分析,而随机信号无确知的转变规律,需要用统计特性进行分析。
咱们在那个地址引入了随机进程的概念。
所谓随机进程,确实是随机变量的集合,每一个随机变量都是随机进程的一个取样序列。
随机进程可分为平稳的和非平稳的、遍历的和非遍历的。
若是随机信号的统计特性不随时刻的推移而转变,那么随机信号是平稳的。
若是一个平稳的随机进程它的任意一个样本都具有相同的统计特性,那么随机进程是遍历的。
咱们下面讨论的随机进程都以为是平稳的遍历的随机进程,因此,咱们能够取随机进程的一个样本来描述随机进程的统计特性。
随机进程的统计特性一样采纳随机进程的散布函数和概率密度来描述,它们能够对随机进程作完整的描述。
可是由于在实践中难以求得,在工程技术中,一样采纳描述随机进程的要紧平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
以下算法都是一种估量算法,条件是N要足够大。
⑵微弱随机信号的检测及提取方式因为噪声老是会阻碍信号检测的结果,因此信号检测是信号处置的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下微弱信号的提取又是信号检测的难点,其目的确实是排除噪声,将有效的信号从强噪声背景中提掏出来,或用一些新技术和新方式来提高检测系统输出信号的信噪比。
噪声要紧来自于检测系统本身的电子电路和系统外的空间高频电磁场干扰等,通常从两种不同的途径来解决:① 降低系统的噪声,使被测信号功率大于噪声功率,达到信噪比S /N > 1 。
② 采纳相关接收技术,能够保证在被测信号功率< 噪声功率的情形下,仍能检测出信号。
实验二、随机信号处理的计算机仿真
实验二、随机信号的计算机仿真实验目的:1、掌握计算机仿真的概念。
2、学习利用计算机仿真对随机问题进行求解。
3、MATLAB的巩固与学习。
实验内容:1.问题1(1)有r个人在一楼进入电梯,楼上共有n层。
设每个游客在任何一层楼的概率相同,试建立一个概率模型,求直到电梯中的人下完为止,电梯需停次数的数学期望。
对r=10,n=8(如西一楼)进行计算机模拟验证。
(2)考虑更为实际的场景,若电梯的最大载客量m=10,设电梯中已有的客人数服从0~10之间的均匀分布,且电梯中的每一个客人在任意一层下的概率相同,若你处在第3层需要乘坐电梯到达第7层,电梯处在第1层,且在每一层等电梯到达他们的目的楼层的客人在0~3人之间服从均匀分布(若这些客人是乘坐电梯到达更高的楼层,则目的地址是当前楼层以上的各楼层的概率相同。
若这些客人是乘坐电梯到达下面的楼层,则目的地址是当前楼层以下的各楼层的概率相同)。
此时我们对电梯的运行加上一条限制,电梯中若有客人未达到目的地,电梯不会改变运行方向,或者说客人按下当前楼层以下的任意楼层的指示键都是无效的(换而言之,我们建立了这样的规则:若电梯中即使只有一位客人要到7楼,而5楼有3位客人想到1楼,那么这3位客人也不能上。
只有当电梯把最后一位客人送到7楼以后,并且在6楼和7楼没有客人要到达8楼时,电梯才会下来。
否则你只好等待电梯完成所有的向上运行的任务时,才会往下。
这里似乎又多了一条限制,同等情况上优先。
)求直到你到达第7层的为止,电梯需停次数的数学期望。
并进行计算机模拟验证.。
2.问题2国王招来100个囚犯,对他们说:你们犯的是死罪,本应该将你们统统杀掉,但我慈悲为怀,给你们一次求生的机会。
15分钟以后,你们将被关进一个有100间隔离牢房的监狱里,每人一间牢房,都与外界隔绝,什么也听不见、看不到,连时间都没法计算,更别说获得外界的任何信息。
(送饭除外,但也是不规律的送)这所监狱有一个院子,每天会随机(注意是完全随机)打开一间牢房的门,让那个囚犯到院子里来放风。
随机信号实验报告
班级:姓名:学号:指导老师:时间:一、信号基本参数1.均值及方差由上图可以看出,该语音信号的能量不是很大,因其均值在0.12左右,方差在0.02左右,故波动不是很大;当加入信噪比为5的白噪声后,其均值明显增大,在0.48左右,说明噪声的能量远大于信号的能量,其方差在0.13左右,故波动很大。
由此看出,白噪声携带能量加大,且波动加大。
2.正态概率分布函数上图为语音信号各点的幅度的概率分布,它与语音信号分布差不多,它放映的是语音信号在各点的能量大小。
当语音信号在某时刻幅值越大,则其概率越大,反之,则越小。
3.自相关上图可以看出,该语音信号的自相关不是很大,因此该语音信号前后相关性不是很大,因此,在信号处理及通信中对信号处理要求不是很高;当加入噪声后,可以看出自相关有明显减小的痕迹,所以白噪声的自相关不大。
4.互相关上图为两个不同的语音信号的互相关,可以看出在前半段完全没有相关性,而在后半段有一定的相关性;当加入白噪声后,互相关增强,且前半段也没有相关性,说明有一语音信号前半段没有信号。
由两图比较可得,高斯白噪声的互相关较大。
二、信号加噪及提取5.信号加入确定噪声后加入确定噪声sin(17500*t)后,时域图上可以看出,振幅较小的语音信号完全被噪声淹没,从回放的声音中可以听到刺耳的噪声信号,从频谱图中也可以看出,在1800Hz左右,有明显的高峰,所含的能量远大于语音信号。
因此,可以用带阻滤波器滤除该噪声信号。
6.去除确定噪声信号sin()从上面两图可以看出,去噪后的频谱中没有高峰突起,确实去掉了噪声信号,从回放的声音中,也听不到刺耳的声音,是比较清晰地声音。
从频谱图中可以明显看到有凹下去的部分,是因为不是理想滤波器,必定会滤掉临近的很小的一部分信号,但并不会语音信号造成太大的影响。
采用的是巴特沃斯带阻滤波器,fp=1700Hz,fs=100Hz,当增大fs后,可以明显看到凹下去的部分增大;而改变fp后,就不能滤掉噪声信号。
随机信号模块实验报告(一)
随机信号实验报告(一)学号: 姓名:熟悉Matlab 的随机信号处理相关命令(一)一、实验目的:1、掌握随机信号的简单分析方法。
2、熟悉语音信号的简单变换的分析方法及其编程 。
二、实验原理:1、声音的录入与读取在matlb 中实现对语音信号的读取可以用wavread 函数,如b=wavread('211.wav');括号中为语音信号的存储路径。
还可用sound 函数对录入的声音信号进行发声;用plot 函数把声音信号图谱绘制下来。
这是对声音信号的最基本处理。
2、时域与频域的简单分析语音信号是个随机信号,在matlab 中对随机信号可以有以下分析。
如概率密度分布,如果F X (x,t )对x 的一阶导数存在,则定义xt x F t x f X x ∂∂=),(),( 为随机过程X (t )的一维概率密度。
3、相关性与功率谱自相关估计,同一序列在不同时刻的取值之间的相关程度,自相关函数和功率谱密度函数是一对傅里叶变换。
互相关估计则是两个函数在同一时刻的不同取值之间的相关程度。
互相关函数是两个随机过程联合统计特性中重要的数字特征,它的定义为dxdy t t y x xyft Y t X E t t R xyXY ),,,()]()([),(212121⎰⎰∞∞-∞∞-==在频域要先对信号进行傅里叶变换,然后分析其频谱特性、相位等三、实验内容:对语音信号的读取,此为时域波形这是一个随机信号,横轴为时间t ,范围在0~350000 s 纵轴为声音幅度,范围在-0.25~0.25。
波形是关于x 轴对称的。
此图没有定义范围,是把录入的语音信号全程显示出来。
语音信号的相位分布进行了4096点傅里叶变换,横轴为采样点数,纵轴为信号在此点的相位。
范围集中于-3~3之间。
变换采样点数不一样,波形就会不一样。
概率密度分布直方图信号的概率密度类似正态分布,定义了-3~3之间的概率密度,密度最大在0附近可达450。
随机信号处理计算机作业
计算机作业1题目要求设有AR(2)模型X(n)=-0.3X(n-1)-0.5X(n-2)+W(n),W(n)是零均值正态白噪声,方差为4。
(1)用MATLAB模拟产生X(n)的500观测点的样本函数,并绘出波形;(2)用产生的500个观测点估计X(n)的均值和方差;(3)画出理论的功率谱;(4)估计X(n)的相关函数和功率谱。
实验目的通过本实验,加深对信号均值,方差,相关函数和功率谱估计的理解。
实验程序代码(在matlab的环境下)%%%AR(2)模型%%产生样本函数wn=2.*randn(1,500);n=1:500;xn(1)=1;xn(2)=2;for i=3:500xn(i)=-0.3*xn(i-1)-0.5*xn(i-2)+wn(i);endfigure;plot(xn);title('离散信号样本函数原始波形');%%%估计x(n)的均值和方差m_xn=mean(xn);m_xnvar_xn=var(xn);var_xn%%%画出理论的功率谱figure;Rxx=xcorr(xn)/25000;Pww=fft(Rxx);f=(0:length(Pww)-1)*1000/length(Pww); plot(f,10*log10(abs(Pww)));title('信号理论功率谱');%%%画出估计的相关函数和功率谱figure;subplot(211);R=xcorr(xn);plot(R);title('信号估计相关函数');[P,w]=periodogram(xn,(hamming(500))'); subplot(212);plot(P);title('信号估计功率谱');实验结果1.离散信号原始样本函数波形2.估计xn的均值(m_xn)和方差(var_xn)m_xn = -0.0933var_xn =5.71413.信号的理论功率谱4.信号估计的相关函数和功率谱计算机作业2题目要求1、模拟一个均匀分布的白噪声通过一个低通滤波器,观测输出信号的概率密度。
随机信号分析与处理实验报告
随机信号分析与处理实验题目:对音频信号的随机处理班级:0312412姓名:肖文洲学号:031241217指导老师:钱楷时间:2014年11月25日实验目的:1、学会利用MATLAB模拟产生各类随机序列。
2、熟悉和掌握随机信号数字特征估计的基本方法。
3、熟悉掌握MATLAB的函数及函数调用、使用方法。
4、学会在MATLAB中创建GUI文件。
实验内容:1、选用任意一个音频信号作为实验对象,进行各种操作并画出信号和波形。
2、操作类型:(1)、概率密度;(2)、希尔伯特变换;(3)、误差函数;(4)、randn;(5)、原始信号频谱;(6)、axis;(7)、原始信号;(8)、normpdf;(9)、unifpdf;(10)、unifcdf;(11)、raylpdf;(12)、raylcdf;(13)、exppdf;(14)、截取声音信号的频谱;(15)、expcdf;(16)、periodogram;(17)、weibrnd;(18)、rand;(19)、自相关函数;(20)、截取信号的均方值。
实验步骤:1、打开MATLAB软件,然后输入guide创建一个GUI文件。
2、在已经创建好的GUI文件里面穿件所需要的.fig面板(以学号姓名格式命名)。
入下图所示:图为已经创建好的.fig面板3、右击“概率密度”,查看回调,然后点击“callback”.在相应的位置输入程序。
然后点击运行,出现下图:4、依次对后续操作方式进行类似的操作。
5、当完成所有按键的“callback”后,出现的均为上图。
实验程序:function varargout = xiaowenzhou(varargin)% XIAOWENZHOU M-file for xiaowenzhou.fig% XIAOWENZHOU, by itself, creates a new XIAOWENZHOU or raises the existing% singleton*.%% H = XIAOWENZHOU returns the handle to a new XIAOWENZHOU or the handle to% the existing singleton*.%% XIAOWENZHOU('CALLBACK',hObject,eventData,handles,...) calls the local% function named CALLBACK in XIAOWENZHOU.M with the given input arguments.%% XIAOWENZHOU('Property','Value',...) creates a new XIAOWENZHOU or raises the% existing singleton*. Starting from the left, property value pairs are% applied to the GUI before xiaowenzhou_OpeningFunction gets called. An% unrecognized property name or invalid value makes property application% stop. All inputs are passed to xiaowenzhou_OpeningFcn via varargin.%% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one% instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help xiaowenzhou% Last Modified by GUIDE v2.5 02-Dec-2014 23:14:41% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @xiaowenzhou_OpeningFcn, ...'gui_OutputFcn', @xiaowenzhou_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []);if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1});endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});elsegui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before xiaowenzhou is made visible.function xiaowenzhou_OpeningFcn(hObject, eventdata, handles, varargin)% This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% varargin command line arguments to xiaowenzhou (see VARARGIN)% Choose default command line output for xiaowenzhouhandles.output = hObject;% Update handles structureguidata(hObject, handles);% UIWAIT makes xiaowenzhou wait for user response (see UIRESUME)% uiwait(handles.figure1);% --- Outputs from this function are returned to the command line. function varargout = xiaowenzhou_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT);% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = handles.output;% --- Executes on button press in pushbutton1.function pushbutton1_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:5000);N=length(y);i=1:N;[f,i]=ksdensity(y);plot(i,f);grid;xlabel('x');ylabel('f(x)');axis();title('¸ÅÂÊÃܶÈ');% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton2.function pushbutton2_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=x(20000:40000);y=hilbert(x);y=real(y);plot(x);% hObject handle to pushbutton2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton3.function pushbutton3_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=randn(500,1);plot(x);% hObject handle to pushbutton3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton4.function pushbutton4_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');y=erf(x);plot(y);% hObject handle to pushbutton4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton5.function pushbutton5_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');plot(x);axis([0 5000 -0.01 0.01]);% hObject handle to pushbutton5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton6.x=wavread('Íõ·Æ.wav');x=x(20000:40000);plot(x);% hObject handle to pushbutton6 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton7.function pushbutton7_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=-6:0.01:7;y=normpdf(x,1,2);plot(y);% hObject handle to pushbutton7 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton8.function pushbutton8_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:5;y=unifpdf(x,1,30);plot(y);% hObject handle to pushbutton8 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton9.function pushbutton9_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:5;y=unifcdf(x,1,5);plot(y);% hObject handle to pushbutton9 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton10.x=wavread('Íõ·Æ.wav');x=0:0.1:3;y=raylpdf(x,2);plot(y);% hObject handle to pushbutton10 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton11.function pushbutton11_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:3;y=raylcdf(x,10);plot(y);% hObject handle to pushbutton11 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton12.function pushbutton12_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;y=exppdf(x,1);plot(y);% hObject handle to pushbutton12 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton13.function pushbutton13_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;y=expcdf(x,1);plot(y);% hObject handle to pushbutton13 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton14.[y,Fs,bits]=wavread('Íõ·Æ.wav');y1=y(1:1000);t=0:1/Fs:1;y1=periodogram(y1,[],1000,Fs);plot(y1);% hObject handle to pushbutton14 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton15.function pushbutton15_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;x=weibrnd(1,1.5,100,1);plot(x);% hObject handle to pushbutton15 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton16.function pushbutton16_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=rand(200,1);plot(x);% hObject handle to pushbutton16 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton17.function pushbutton17_Callback(hObject, eventdata, handles)[x,Fs,bits]=wavread ('Íõ·Æ.wav');x=x (:,1);X=fft (x,4096);magX=abs (X);angX=angle (X);plot (X); title ('Ô-ʼÐźÅƵÆ×');% hObject handle to pushbutton17 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton18.function pushbutton18_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(500:1000);h=[ones(1,20) zeros(1,20)];y2=conv(h,y);stem(y2,'.');grid;title('½ØÈ¡ÉùÒôÐźŵľí»ý');% hObject handle to pushbutton18 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton19.function pushbutton19_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:5000);R=xcorr(y);plot(R);grid;title('×ÔÏà¹Øº¯Êý');% hObject handle to pushbutton19 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton20.function pushbutton20_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:1000);n=length(y);x=randn(50,n);square=zeros(1,50);for i=1:50for j=1:1000square(i)=square(i)+x(i,j).^2;endsquare(i)=square(i)/1000;endRMS=sum(square)/30;plot(square);grid;title('½ØÈ¡ÉùÒôÐźŵľù·½Öµ');% hObject handle to pushbutton20 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes during object creation, after setting all properties. function pushbutton1_CreateFcn(hObject, eventdata, handles)% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called 实验结果:(1)概率密度(2)希尔伯特变换(3)randn(4)误差函数(5)axis(6)原始信号(7)normpdfd(8)unifpdf(9)unifcdf(10)raylpdf(11)raylcdf(12)exppdf(13)截取声音信号的卷积(14)expcdf(15)periodogram(16)weibrnd(17)rand(18)原始信号频谱(19)自相关函数(20)截取信号的均方值实验总结:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础课,是目标检测、估计、滤波等信号处理理论的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号处理实验专业:电子信息科学与技术班级:学号:学生姓名:指导教师:钱楷一、实验目的1、熟悉GUI 格式的编程及使用。
2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 3、熟悉各种随机信号分析及处理方法。
4、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法二、实验原理1、语音的录入与打开在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。
[N1 N2]表示读取从N1点到N2点的值。
2、高斯白噪声白噪声信号是一个均值为零的随机过程,任一时刻是均值为零的随机变量,而服从高斯分布的白噪声即称为高斯白噪声。
在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。
3、均值随机变量X 的均值也称为数学期望,它定义为:,对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为,则均值定义为E(X)=,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。
4、方差定义为随机过程x(t)的方差。
方差通常也记为 D[X (t )] ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。
5、协方差设两个随机变量X 和Y ,定义:为X 和Y 的协方差。
其相关函数为:⎰⎰+∞∞-+∞∞-==dxdy t t y x xyf t Y t X E t t R XY XY ),,,()}()({),(212121 由此可见协方差的相关性与X 和Y 是密切相关的,表征两个函数变化的相似性。
5、协方差 设任意两个时刻1t,2t ,定义:为随机过程X (t )的自相关函数,简称为相关函数。
自相关函数可正,可负,其绝对值越大表示相关性越强。
7、互相关 互相关函数定义为: 如果X (t )与Y (t )是相互独立的,则一定是不相关的。
反之则不一定成立。
它是两个随机过程联合统计特性中重要的数字特征。
8、平滑滤波平滑滤波可以与中值滤波结合使用,对应的线性平滑器可以仅仅用低阶的低通滤波器(如果采用高阶的系统,则将抹掉信号中应该保存的不连续性)。
121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰⎰⎰+∞∞-+∞∞-==dxdy t t y x xyf t Y t X E t t R XY XY ),,,()}()({),(2121219、IIR 数字滤波器设计原理利用双线性变换设计IIR 滤波器,首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。
10、最大似然法最大似然法(Maximum Likelihood ,ML )也称为最大概似估计,也叫极大似然估计,是一种具有理论性的点估计法,此方法的基本思想是:当从模型总体随机抽取n 组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n 组样本观测值的概率最大,而不是像最小二乘估计法旨在得到使得模型能最好地拟合样本数据的参数估计量。
11、FFT 变换FFT 即为快速傅里叶变换,是离散傅里叶变换的快速算法,它是根据离散傅里叶变换的奇、偶、虚、实等特性,对离散傅里叶变换的算法进行改进获得的。
在MATLAB 的信号处理工具箱中函数FFT 的一种调用格式为y=fft(x) 其中X 是序列,Y 是序列的FFT 。
12、希尔伯特变换及性质x(t) 的希尔伯特变换为x(t) 与1/πt 的卷积,即○X (1/πt)因此,对x (t ) 的希尔伯特变换可以看作为x (t ) 通过一个冲击响应为1/πt 的线性滤波器。
希尔伯特变换器在整个频域上具有恒为1 的幅频特性,为全通网络,在相位上则引入−π/2 和π/2的相移。
13、功率谱密度估计定义为随机信号的功率谱,它表示单位频带类信号的频率分量消耗在单位电阻上的平均功率的统计平均值,14、瑞利分布概率密度函数使用方法:Y=raylpdf(x,b),参数为b 的瑞利分布在x 处的概率密度函数。
15、瑞利分布概率分布函数使用方法:Y=raylcdf(x,b),参数为b 的瑞利分布在x 处的概率分布函数值 16、直方图法估计随机序列概率密度的估计使用方法:hist(y,x),画出用矢量y 表示的随机序列的直方图,参数x 表示计算直方图划分的单元,也是用矢量表示。
17、概率密度如果),(t x F Y 的一阶导数存在,则定义 为随机过程 X(t) 的一维概率密度。
如果知道了随机过程的一维概率密度,那么也就知道了随机过程在所有时刻上随机变量的一维概率密度。
三、实验结果分析1、GUI界面2、语言信号3、加入均匀分布的白噪声后的信号由图知:两个信号的叠加在幅度上叠加4、求均值上图所示为对语音信号求均值的图形,在求均值时需要对信号加窗处理,否则出现的就是一个点不便于分析,所以上图是对信号加汉宁窗求均值的图形,由原理知道当采样点数达到足够大时均值是一个常数。
5、求方差6、自相关函数由图可知:自相关函数可正,可负,其绝对值越大表示相关性越强。
7、平滑滤波由图知,经过平滑滤波后,原始信号的峰值变化减小了,信号的频谱变得平滑了很多。
说明平滑滤波对信号具有很好的平滑效果。
8、IIR低通滤波由图分析,可知经过低通滤波后信号的波形变化很大,说明原始信号主要分布在高频不分,低频占据很少。
9、IIR高通滤波由图可知:经过滤波后基本不改变原始信号的波形幅值及频谱,说明该语言信号高频部分占据很多。
10、最大似然估计由图可知:语音信号的最大似然估计满足由0到0.083变化,呈直线变化。
11、互相关由图可知:相关性可正课负,在以0为基准上下改变。
大约在125的时候达到最大值,此后向两边多趋于平稳,接近于0.12、协方差由图可知:协方差反映了两个之间的相关程度,又图可知两个的差别变化很大。
在大约2的时候两个的曲线相交于0点,此时两者的几乎不相关,在此之外两者的差值约大,说明相关性越大。
13、FFT变换由图可知:随机信号的FFT图形在高低频率的变化量很大,而在中频率段很下几乎一条直线,说明对应的不同频率是对应的量差别很大,在两边分布广,中间的少。
14、指数分布概率密度15、希尔伯特变换上图所示是对原始的语音信号进行一次的希尔伯特变换的实轴和虚轴的变化图形,希尔伯特变换序列具有和原序列相同的幅值和频率成分,也包含了原序列的相位信息,由图可以看出,对信号进行一次变换后实轴和虚轴的图形相差了π/2,即相移了π/2,而原来的幅值和频率都保持不变,所以,对信号作希尔伯特变换就相当于对原始信号进行每次正负π/2的相移。
16、功率谱上图所示为原始信号与加噪信号的功率谱密度的比较图形,上述两个图形中功率谱都大于或等于0。
开始的值比较高,逐渐而降低。
17、瑞利分布概率密度18、瑞利分布概率分布19、直方图20、概率密度的估计由图可知:语音信号的变化规律大致呈正太分布,与我们熟知的正太分布基本相同呈现出:中间的多(高),两边逐渐减少。
21、指数分布概率分布四、实验心得通过这次实验,我发现了许多我们不懂不知道的知识以及要点,真正懂得了查找资料的重要性以及和同学之间的协作,有许多问题在我们不懂、不知道的时候,经过大家猜一起的讨论,相互帮助、提醒使的一个个地克服了很多专业上的困难,学到了很多随机信号处理方面的知识。
但是,自己也清楚的明白现自己所了解的,所掌握的还只是一点皮毛而已,还有很多的更深,更难得知识不知道、没掌握,所以今后会在这方面付出更多的努力,花费更多的时间。
同时,也感谢指导老师的耐心教导与指导。
=实验一、语音信号y=wavread('xl.wav');%原始语音信号读入(语音信号,格式为wav)plot(y,'b');title('原始信号');xlabel('取值范围');ylabel('信号幅值变化');实验二、加入均匀分布的白噪声后的信号y=wavread('xl.wav');y=y(1:100000);x1=randn(100000,1);%产生标准100000个均匀分布的白噪声序列h1=x1+y;plot(h1,'b');title('原信号加入均匀白噪声');实验三、求均值[y,fs,bits]=wavread('xl.wav',[1,100000]);x=hamming(32)/32;%32的汉宁窗函数s=abs(y);%求幅值h=conv(s,x);%进行卷积和多项式的乘积plot(h,'b');title('均值');xlabel('取值范围');ylabel('变化情况');实验四、求方差[y,fs,bits]=wavread('xl.wav',[1,100000]);x=hamming(32)/32;%32窗函数s1=y.^2;h2=conv(s1,x);%进行卷积和多项式的乘积plot(1:100000,h2(1:100000),'b');title('方差');xlabel('取值范围');ylabel('变化情况');实验五、自相关函数y=wavread('xl.wav');x=xcorr(y);%自相关函数plot(x,'b');title('自相关');xlabel('取值范围');ylabel('变化情况');实验六、平滑滤波y=wavread('xl.wav',[1,100000]);m=smooth(y,10);%平滑滤波plot(m,'b');title('平滑滤波');xlabel('取值范围');ylabel('变化情况');实验七、IIR低通滤波y=wavread('xl.wav',[1,100000]);x=fft(y,100000);N=20;wc=0.2;[b,a]=butter(N,wc);h=filter(b,a,y);%IIR低通滤波plot(h,'b');title('IIR低通滤波');xlabel('取值范围');ylabel('变化情况');实验八、IIR高通滤波[y,fs,bits]=wavread('xl.wav',[1,100000]);N=2;wc=0.6;[b,a]=butter(N,wc);%IIR高通滤波参数x=filter(b,a,y);%滤波函数m=fft(x,10000);%fft转换n=fft(y,10000);%fft转换plot(1:10000,m(1:10000),'r',1:10000,n(1:10000),'b');title('IIR高通滤波');xlabel('取值范围');ylabel('变化情况'); legend('IIR高通滤波后信号波形','滤波前信号波形');实验九、最大似然估计y=wavread('xl.wav');x=mle(y);%最大似然估计plot(x,'b');title('最大似然估计');xlabel('取值范围');ylabel('变化情况');实验十、互相关y=wavread('xl.wav',[1,100000]);x=randn(100000,1);%产生标准100000个正态分布的白噪声序列m=xcorr(x,y);plot(m,'b');title('互相关');xlabel('取值范围');ylabel('信号幅值变化');实验十一、协方差y=wavread('xl.wav',[1,100000]);x=weibrnd(1,1.2,100000,1);%韦伯分布参数为A=1,B=1.2,的100000个韦伯噪声序列h=cov(x,y);%协方差plot(h,'b');title('两者的协方差');xlabel('取值范围');ylabel('信号幅值变化');实验十二、FFT变换[y,fs,bits]=wavread('xl.wav');N=3000000;n=0:N-1;t=n/fs;x=fft(y,N);%fft函数h=abs(x);plot(h,'b');title('fft转换信号');xlabel('取值范围');ylabel('变化情况');axis([-50000,3100000,0,300]);实验十三、指数分布概率密度y=wavread('zk.wav',[1,100000]);x=exppdf(y,2);%指数分布概率密度plot(x,'b');title('指数分布概率密度');xlabel('n的值');ylabel('信号幅值变化');实验十四、希尔伯特变换[y,fs,bits]=wavread('xl.wav',[1,100000]);N=length(y)-1;t=0:1/fs:N/fs;x=hilbert(y);%希尔伯特变换plot(t(1:100000),real(x(1:100000)),'g',t(1:100000),imag(x(1:100000)),'b'); title('希尔伯特变换');xlabel('取值范围');ylabel('变化情况');legend('实轴','虚轴');实验十五、功率谱[y,fs,bits]=wavread('xl.wav',[1,100000]);x=xcorr(y);%求自相关函数m=fft(x,100000);h=abs(m);n=0:round(100000/2-1);%i=n*fs/100000;p=10*log10(h(n+1));plot(i,p,'b');title('功率谱');xlabel('取值范围');ylabel('变化情况');实验十六、瑞利分布概率密度y=wavread('xl.wav',[1,100000]);x=raylpdf(y,2);%瑞利分布概率密度函数plot(x,'b');title('瑞利分布概率密度');xlabel('取值范围');ylabel('变化情况');实验十七、瑞利分布概率分布y=wavread('xl.wav',[1,100000]);x=raylcdf(y,2);%瑞利分布概率分布函数plot(x,'b');title('瑞利分布概率分布');xlabel('取值范围');ylabel('变化情况');实验十八、直方图y=wavread('xl.wav',[1,100000]);n=-0.2:0.05:0.2;hist(y,n);%序列的分布直方图title('直方分布图');xlabel('取值范围');ylabel('分布情况');实验十九、概率密度的估计[y,fs,bits]=wavread('xl.wav',[1,100000]);[f,xi]=ksdensity(y);%随机序列概率密度的估计plot(xi,f,'b');title('概率密度');xlabel('x');ylabel('f(x)');axis([-0.1,0.1,0,60]);实验二十、指数分布概率分布y=wavread('xl.wav',[1,100000]);x=expcdf(y,2);%指数分布概率分布plot(x,'b');title('指数分布概率分布');xlabel('n的值');ylabel('信号幅值变化');。