复习题5 物质的跨膜运输与信号转导
第五章 物质的跨膜运输习题及答案
细胞生物学章节习题-第五章一、选择题1、物质进入细胞的过程,需消耗能量,但不需要载体的一项是(C )。
A. 根吸收矿质元素离子B. 红细胞保钾排钠C. 腺细胞分泌的酶排出细胞D. 小肠对Ca、P的吸收2、母鼠抗体从血液上皮细胞进入母乳,或者乳鼠的肠上皮细胞将抗体摄入体内,都涉及将胞吞和胞吐作用相结合。
这种跨膜转运方式称为(B )。
A. 吞噬作用B. 跨细胞转运C. 协同转运D. 胞吞作用3、既能执行主动运输,又能执行被动运输的膜转运蛋白是(A )。
A. 载体蛋白B. 通道蛋白C. 孔蛋白D. ABC转运蛋白4、动物细胞对葡萄糖或氨基酸等有机物的吸收依靠(B )。
A. 受体介导的胞吞作用B. Na+-K+泵工作行程的Na+电化学梯度驱动C. Na+-K+泵工作行程的K+电化学梯度驱动D. H+-ATPase行程的H+电化学梯度驱动5、有关动物细胞胞内体膜或溶酶体膜上的V型质子泵的描述,错误的是(B)。
A. V型质子泵利用ATP水解供能从细胞质基质中逆H+电化学梯度将H+泵入细胞器B. V型质子泵利用ATP水解供能从细胞器中逆H+电化学梯度将H+泵入细胞质基质C. V型质子泵可以维持细胞质基质pH中性D. V型质子泵有利于维持胞内体或溶酶体的pH酸性6、流感病毒进入细胞的方式为(C )。
A. 吞噬作用B. 胞膜窖蛋白依赖的胞吞作用C.网格蛋白依赖的胞吞作用D. 大型胞饮作用7、表皮生长因子及其受体通过胞吞作用进入细胞后(D)。
A. 将通过夸细胞转运到细胞的另一侧发挥作用B. 受体返回质膜,而表皮生长因子进入溶酶体降解C. 表皮生长因子被活化,刺激细胞生长D. 进入溶酶体被降解,从而导致细胞信号转导活性下降8、一种带电荷的小分子物质,其胞外浓度比细胞内浓度高。
那么,该物质进入细胞的可能方式为(A )。
A. 被动运输B. 简单扩散C. 主动运输D.以上都错9、对P型泵描述正确的是(D )。
A. 位于液泡膜上B. 位于线粒体和叶绿体上C. 其ATP结合位点位于质膜外侧D. 水解ATP使自身形成磷酸化的中间体二、填空题1、质膜中参与物质运输的P型泵在物质运输中有两个特点:其一是水解ATP 功能,其二是磷酸化和去磷酸化作用。
第五章物质的跨膜运输习题及答案
细胞生物学章节习题-第五章一、选择题1、物质进入细胞的过程,需消耗能量,但不需要载体的一项是C ;A. 根吸收矿质元素离子B. 红细胞保钾排钠C. 腺细胞分泌的酶排出细胞D. 小肠对Ca、P的吸收2、母鼠抗体从血液上皮细胞进入母乳,或者乳鼠的肠上皮细胞将抗体摄入体内,都涉及将胞吞和胞吐作用相结合;这种跨膜转运方式称为B ;A. 吞噬作用B. 跨细胞转运C. 协同转运D. 胞吞作用3、既能执行主动运输,又能执行被动运输的膜转运蛋白是A ;A. 载体蛋白B. 通道蛋白C. 孔蛋白D. ABC转运蛋白4、动物细胞对葡萄糖或氨基酸等有机物的吸收依靠B ;A. 受体介导的胞吞作用B. Na+-K+泵工作行程的Na+电化学梯度驱动C. Na+-K+泵工作行程的K+电化学梯度驱动D. H+-ATPase行程的H+电化学梯度驱动5、有关动物细胞胞内体膜或溶酶体膜上的V型质子泵的描述,错误的是B;A. V型质子泵利用ATP水解供能从细胞质基质中逆H+电化学梯度将H+泵入细胞器B. V型质子泵利用ATP水解供能从细胞器中逆H+电化学梯度将H+泵入细胞质基质C. V型质子泵可以维持细胞质基质pH中性D. V型质子泵有利于维持胞内体或溶酶体的pH酸性6、流感病毒进入细胞的方式为C ;A. 吞噬作用B. 胞膜窖蛋白依赖的胞吞作用C.网格蛋白依赖的胞吞作用D. 大型胞饮作用7、表皮生长因子及其受体通过胞吞作用进入细胞后D;A. 将通过夸细胞转运到细胞的另一侧发挥作用B. 受体返回质膜,而表皮生长因子进入溶酶体降解C. 表皮生长因子被活化,刺激细胞生长D. 进入溶酶体被降解,从而导致细胞信号转导活性下降8、一种带电荷的小分子物质,其胞外浓度比细胞内浓度高;那么,该物质进入细胞的可能方式为A ;A. 被动运输B. 简单扩散C. 主动运输D.以上都错9、对P型泵描述正确的是D ;A. 位于液泡膜上B. 位于线粒体和叶绿体上C. 其ATP结合位点位于质膜外侧D. 水解ATP使自身形成磷酸化的中间体二、填空题1、质膜中参与物质运输的P型泵在物质运输中有两个特点:其一是水解ATP 功能,其二是磷酸化和去磷酸化作用;2、离子通道有两个显著的特征:离子选择和门控性;3、多数动物病毒进入细胞的主要方式是细胞以内吞作用使病毒进入细胞;但有些有包膜的病毒,以其包膜与细胞膜融合的方式进入细胞;4、在大分子与颗粒性物质跨膜运输中,胞饮泡的形成需要网格格蛋白,而吞噬泡的形成需要微丝及其结合蛋白;三、判断题1、载体蛋白既能进行主动运输,又能进行被动运输,而通道蛋白只能进行被动运输;2、V型质子泵利用ATP水解供能从细胞质基质中将H+逆着电化学梯度泵入细胞器,以维持细胞质基质pH中性和细胞器内的pH酸性,而F型质子泵以相反的方式发挥其生理作用;3、所有胞吞的物质最终都会进入溶酶体被降解;x4、葡萄糖从小肠上皮细胞游离面进入细胞内,然后从基底面出细胞进入血液;动物细胞对葡萄糖的这种吸收过程就是一个典型的跨细胞转运过程;x5、抑制Na+-K+泵的功能,对动物细胞吸收营养没有影响; x6、若硝酸银浓度过大,则对细胞具有很强的毒性;若红细胞被硝酸银毒死后,其在低渗溶液中仍将溶血; x7、对于具有抗药性的肿瘤细胞或疟原虫,其质膜上的ABC转运蛋白比没有抗药性的细胞表达量要高; x8、主动运输都需要消耗能量,且都有ATP提供;x9、在受体介导的胞吞作用过程中,受体一旦被胞吞进入胞内体,最后都会在溶酶体中降解;x10、V型质子泵广泛存在于胞内体和溶酶体等细胞器的膜上,能利用ATP水解功能将质子从这些细胞器转运到细胞质基质;x四、名词解释1、协同运输symporter1、协同运输又称协同转运,是指一种物质的逆浓度梯度跨膜运输依赖于另一种物质的顺浓度梯度的跨膜运输的物质运输方式,不直接消耗能量但是需要间接地消耗能量;协同转运又可分为同向转运和反向转运;同向转运的物质运输方向和离子转移方向相同;2、ABC super family2、ABC超家族,是一类ATP驱动的膜转运蛋白,利用ATP水解释放的能量将多肽及多种小分子物质进行跨膜转运;ABC超家族包含有几百种不同的转运蛋白,广泛分布于从细菌到人类的各种生物中,所有ABC蛋白一般都含有4个核心结构域:两个跨膜结构域T,形成运输分子的跨膜通道;两个胞质测ATP结合域A,具有ATP酶活性3、P type proton pump & V type proton pump3、P型质子泵,是存在于植物细胞、真菌和细菌的细胞质膜上的H+转运通道,将H+泵出细胞,建立和维持跨膜的H+电化学梯度,并用力啊驱动转运溶质摄入细胞,例如,细菌对糖和氨基酸的摄入主要是由H+驱动的同向协同运输完成的;V型质子泵是存在于动物细胞的胞内体膜、溶酶体膜、破骨细胞和某些肾小管细胞的质膜,以及植物、酵母及其他真菌细胞的液泡膜上;转运H+中不形成磷酸化的中间体,其功能是从细胞质基质中泵出H+进入细胞器,保持特定的pH值;二者的关系P型质子泵和V型质子泵都只转运质子,且都属于ATP驱动泵,利用ATP水解释放的能量将H+进行跨膜转运4、载体蛋白carrier protein和通道蛋白channel protein4、二者转运机制不同;载体蛋白与特异底物结合,通过自身构象的改变实现对物质的跨膜转运,既能以被动运输方式又能以主动运输方式转运底物;而通道蛋白以被动运输方式,通过形成选择性或门控性亲水通道实现对特异溶质的跨膜转运;通道蛋白转运速率比载体蛋白高五、问答题1、将蛙卵和红细胞放到纯水中,红细胞将会涨破但蛙卵却能维持常态;两种细胞内有几乎相等的离子浓度,同样的渗透压作用于两者,为什么红细胞在水中破裂而蛙卵却不然1、红细胞在水中破裂而蛙卵细胞却不破裂的原因如下:1红细胞膜上有很多水孔蛋白;水孔蛋白是内在膜蛋白的一个家族,提供了水分子快速跨膜运动的通道;水孔蛋白能使红细胞适应所处环境中血浆渗透压力的变化,通过调节水的运输使红细胞表现为膨胀或皱缩;2红细胞细胞质膜上水孔蛋白的密度很高,每个红细胞表面有200000个水孔蛋白,因而纯水能够迅速进入红细胞而将其涨裂;蛙卵细胞表面很少水孔蛋白,纯水无法大量进入细胞,而使细胞维持原来大小;2、举例说明大分子物质通过受体介导的内吞作用进入细胞的过程;2、1受体介导的内吞作用大分子物质内吞首先同细胞膜上的特异性受体结合,然后内陷形成包被小窝,继而形成包被膜泡进入细胞;这种胞吞作用是高度特异性的,能使细胞摄入大量特定的分子,而不需要摄入很多细胞外液,具有浓缩的效果,提高了物质运输效率;2受体介导的内吞作用的过程举例如细胞对胆固醇的摄取;通常血中胆固醇与蛋白质结合,以低密度脂蛋白LDL的形式存在和运输;当细胞需要胆固醇时,LDL颗粒可与细胞膜上LDL受体特异结合,这种结合可诱使尚未结合的LDL受体向包被小窝处移动来与LDL结合,并引起包被小窝继续内陷,形成包被膜泡;这样与受体结合的LDL颗粒很快被摄入细胞,接着包被小泡迅速地脱去网格蛋白衣被,并与细胞内其他囊泡融合,形成胞内体;在胞内体内的LDL颗粒与受体分开,受体随转移囊泡返回到细胞膜,完成受体的再循环;LDL颗粒则被溶酶体酶水解为游离的胆固醇进入细胞质,用于合成新的细胞膜;。
细胞生物学5(3)
第五章物质的跨膜运输与信号传递所谓被动运输是通过 ca. 内吞与外排b. 受体介导的内吞作用c. 自由扩散或易化扩散d. 泵,例如钙泵影响物质在膜上自由扩散的因素有( )。
aa. 在油/水分配系数高的, 易扩散b. 电离度大的, 易扩散c. 水合度大的, 易扩散d. 水、氨基酸、Ca2+ 、Mg2+ 等小分子, 易扩散下列运输过程属于协助扩散的是()I. O2II. 甘油 III. 以缬氨霉素为载体的K+运输IV. 钙泵V. 以短菌杆肽为载体的运输A. I+IIB. I+II+IIIC. III+IVD. III+VE. IV+V下列分子中,不能通过无蛋白脂双层膜的是 da. 二氧化碳b. 乙醇c. 尿素d. 葡萄糖细胞膜上有些运输蛋白形成跨膜的水性通道,允许适当大小的带电荷溶质按以下哪种方式过膜 ba. 主动运输b. 协助扩散c. 简单扩散d. 协同运输小肠上皮细胞吸收葡萄糖是通过( )来实现的。
ba. Na+ -泵b. Na+ 通道c. Na+ -偶联运输d. Na+ 交换运输参与被动运输的重要运输蛋白有I. 载体蛋白( carrier protein ) II. 笼形蛋白 ( Clathrin ) III.通道蛋白( Channel protein ) IV. 边周蛋白( peripheral protein ) V. 门通道蛋白( Gated channel protein )a. I+II+IVb. I+II+IIIc. I+IV+Vd. I+III+V动物细胞质膜上特征性的酶是( )。
da. 琥珀酸脱氢酶b. 磷酸酶c. 苹果酸合成酶d. Na+ -K+ -ATPase。
下列哪种运输方式不消耗细胞内的ATP? ba. 胞吐b. 易化扩散c. 离子泵d. 次级主动运输以下哪些可作为细胞主动运输的直接能量来源 cI. 离子梯度 II. NADH III. ATP IV. NADPHa. IIIb. II+IVc. I+IIId. II+III下列哪些物质运输过程需消耗能量分子 cI. 伴随运输 II. 自由扩散 III. 协助扩散IV. 主动运输V Na+-K+泵a. I+IVb. IV+Vc. I+IV+Vd. I+III+V以下哪一种运输器或运输方式不消耗能量()A. 电位门通道B. 内吞(endocytosis)作用C. 外排(exocytosis)作用D. 协同运输E. 主动运输下列关于信息分子的描述中,不正确的一项是( )。
细胞生物学物质的跨膜运输试题
细胞生物学物质的跨膜运输试题以下是一些关于细胞生物学中跨膜运输的试题:1.请解释什么是细胞膜的跨膜运输?跨膜运输是指物质通过细胞膜从一个细胞内区域或环境进入另一个区域或环境的过程。
这个过程涉及到物质穿越细胞膜的疏水性内层,并与细胞膜上的载体蛋白或通道蛋白相互作用。
2.请列举细胞膜跨膜运输的两种主要机制,并简要描述它们。
-主动转运:主动转运是指物质在细胞膜跨膜运输时需要消耗能量(通常为三磷酸腺苷,ATP)。
这种机制可以使物质在浓度梯度之外被积累,如钠-钾泵。
-被动扩散:被动扩散是指物质在细胞膜跨膜运输时不需要消耗能量,遵循浓度梯度自发地从高浓度区域向低浓度区域移动。
这种机制包括简单扩散和载体介导的扩散。
3.请解释离子通道蛋白的功能以及如何实现离子选择性。
离子通道蛋白是一类跨膜蛋白,它们具有特定的结构域,形成一个通道,使特定类型的离子能够穿过细胞膜。
离子通道蛋白通过开启或关闭来调节离子的通行。
离子选择性是由离子通道蛋白中的氨基酸残基决定的。
通道蛋白的内部有特定位置的氨基酸残基,可以与特定大小、电荷和水合状态的离子相互作用。
这种相互作用使得只有特定类型的离子能够通过通道,其他离子则被阻挡在外。
4.请解释细胞膜上的载体蛋白如何实现物质的跨膜运输?细胞膜上的载体蛋白通过与物质结合并发生构象变化来实现物质的跨膜运输。
这些载体蛋白在细胞膜上形成一个通道或者运输器,物质结合到载体蛋白上后,载体蛋白会发生构象变化,使物质从一个细胞内区域转移到另一个区域。
载体蛋白的跨膜运输可以是被动的,遵循浓度梯度自发地将物质从高浓度区域向低浓度区域转移,也可以是主动的,需要消耗能量才能将物质从低浓度区域向高浓度区域转移。
细胞生物学之物质的跨膜运输与信号转导学习资料
受体
网格蛋白再循环
接合素蛋白
网格蛋白 有被小泡
GDP结合蛋白 dynamin
衣被蛋白循环
无被小泡
网格蛋白有被小窝
运输小泡
次级溶酶体消化
(分选)
穿胞运输
胞内体
受体同配体结合→启动内化作用,网格蛋白组装→在网格蛋白的作用下形成网格蛋白有被小泡→进入胞质,脱去衣被蛋白、网格蛋白等;蛋白再循环→胞内体分选→溶酶体消化或穿胞运输 。
Vs
Addition
*
学习资料
(四)、主动运输(active transport)
主动运输是物质逆浓度梯度或电化学梯度运输的跨膜运输方式。
特点: ①逆浓度梯度(逆化学梯度)运输; ②需要能量,与某种释放能量的过程相耦联; ③需要载体蛋白,具有选择性和特异性。
类型:
依据
主动运输
*
学习资料
三、胞吞作用与胞吐作用
主动运输能量来源的三种不同类型
ATP驱动泵 (通过水解ATP 获得能量 )
耦联转运蛋白 (协同运输中的 离子梯度动力 )
光驱动泵 (利用光能运输物质,见于细菌 )
*
学习资料
小亚基
*
学习资料
ATP分解, 酶被磷酸化
酶构象变化,与Na+结合部位转向膜外侧
磷酸化酶对Na+的亲和力低而膜外侧释放Na+;对K+的亲和力高而结合2个K+
特化的分泌细胞产生的分泌物(如激素、粘液或消化酶)储存在分泌泡内,当细胞在受到胞外信号刺激时,分泌泡与质膜融合并将内含物释放出去。
*
学习资料
胞吞作用和胞吐作用的动态过程 对质膜更新和维持细胞的生存与生长是必要的
细胞生物学-6物质的跨膜运输与信号传递
受体介导的胞吞作用
受体介导内吞的基本特点
①配体与受体的结合是特异的, 具有选择性; ②要形成特殊包被的内吞泡。将成纤维细胞
培养在加有转铁蛋白-铁标记的低密度脂蛋 白(LDL)的培养基中,可清楚地观察到这一 过程
基本过程
大致分为四个基本过程∶①配体与膜受体结 合形成一个小窝(pit); ② 小窝逐渐向内凹 陷,然后同质膜脱离形成一个被膜小泡;③ 被膜小泡的外被很快解聚, 形成无被小泡, 即初级内体;④ 初级内体与溶酶体融合,吞噬 的物质被溶酶体的酶水解
两个大亚基(α亚基)和两 个小亚基(β亚基)组成。 α亚基是跨膜蛋白,在 膜的内侧有ATP结合位 点;在α亚基上有Na+和 K+结合位点
Na+/K+ ATPase的结构
工作原理
Na+/K+ ATPase 工作原理示意图
ATPase Pumps—Ca2+ 泵 结构
ATPase Pumps—质子泵
协同作用
协同作用
在动物、植物细胞由载体蛋白 介导的协同运输异同点的比较
协同运输的方向
葡萄糖与Na+离子的协同运输
细菌的主动运输
细菌的主动运输—磷酸化运输
• 又称为基团转运。其机理是通过对被转运到细胞内的分子进 行共价修饰(主要是进行磷酸化)使其在细胞中始终维持"较 低"的浓度, 从而保证这种物质不断地沿浓度梯度从细胞外 向细胞内转运
胞饮作用与吞噬作用主要有三点区别
特征 胞饮作用
吞噬作用
内吞泡的大小 小于 150nm
大于 250nm。
转运方式 连续发生的过程
需受体介导的 信号触发过程
内吞泡形成机制 需要笼形蛋白形成包被
第五章物质的跨膜运输与细胞信号转导
信号通路
㈢细胞信号分子与靶细胞效应
1、信号分子(signal molecule) 2、受体(receptor) 3、第二信使(second messenger) 4、信号分子与靶细胞效应
1、信号分子
⑴亲脂性信号分子 ⑵亲水性信号分子 ⑶气体性信号分子(NO、CO、植 物中的乙烯)
2、受体(receptor)
物质逆浓度梯度或电ຫໍສະໝຸດ 学梯度由低浓度向高 浓度一侧进行跨膜转运的方式,需要细胞提供能 量,需要载体蛋白的参与。对保持细胞内的离子 成分并对输入一些细胞外比细胞内浓度低的溶质 是必不可少的。
㈠特点:运输方向、能量消耗、膜转运蛋白 ㈡类型:三种基本类型 1、由ATP直接提供能量的主动运输 2、协同运输(cotransport) 、 ( ) 3、物质的跨膜转运与膜电位 、
㈠ATP直接提供能量的主动运输 (ATP驱动泵)
这类泵本身就是一种载体蛋白,也是一种酶— ATP酶,它能催化ATP,由ATP水解提供能量,主动 运输Na+、K+、Ca2+等。根据泵蛋白的结构和功能特 性,ATP驱动泵分为4类: 1、P-型离子泵: 型离子泵: 2+ (1)钠钾泵(2)钙泵(Ca -ATP酶) ( ( ) 2、V-型质子泵 3、F-型质子泵 4、ABC超家族
㈠细胞通讯(cell communication)
1、细胞通讯与信号转导 2、细胞通讯的方式 3、分泌信号传递信息的方式
1、细胞通讯与信号转导
细胞通讯:一个细胞发出的信息通过介质 (又称配体)传递到另一个细胞并与靶细胞相 应的受体相互作用,然后通过细胞信号转导产 生胞内一系列生理生化变化,最终表现为细胞 整体的生物学效应的过程。 信号转导:化学信号分子可与细胞内或细 胞表面的受体相结合形成复合物,并将受体激 活,激活的受体可将外界信号转换成细胞能感 知的信号,从而使细胞对外界信号作出相应的 反应,这种由细胞外信号转换为细胞内信使的 过程称为信号转导。
细胞生物学 第五章 物质的跨膜运输与信号传递
钙泵和质子泵
钙泵:动物细胞质膜及内质网膜,1000 Aa组成的 跨膜蛋白,与Na+-K+ 泵的亚基同源,每一泵单位 约10个跨膜螺旋,与胞内钙调蛋白结合调节其活 性
质子泵
P型质子泵:真核细胞膜 V型质子泵:溶酶体膜和液泡膜 H+-ATP酶:顺浓度梯度,线粒体内膜,类囊体膜和细菌
质膜
在动物、植物细胞由载体蛋白介导的协同运输异同点的比较
调节型胞吐途径:蛋白分选由高尔基体反面 管网区受体类蛋白决定
BACK
第二节 细胞通信与信号传递
细胞通讯与信号传递 通过细胞内受体介导的信号传递 通过细胞表面受体介导的信号跨膜传递 由细胞表面整联蛋白介导的信号传递 细胞信号传递的基本特征与蛋白激酶的网络整合
信息
一、细胞通讯与信号传递
道
主动运输(active transport)
●特点:运输方向、能量消耗、膜转运蛋白 ●类型:
由ATP直接提供能量的主动运输 钠钾泵 钙泵 质子泵
协同运输(cotransport) 由Na+-K+泵(或H+-泵)与载体蛋白协同作用
物质的跨膜转运与膜电位
钠钾泵(Na+-K+ pump)
动物细胞 1/3-2/3能量用于细胞内外Na+-K+ 浓度 和二亚基组成, 亚基120kD, 亚基50kD 亚基Asp磷酸化与去磷酸化 1ATP转运3 Na+和2K+ 抑制剂:乌本苷 促进:Mg2+和膜脂 作用:保持渗透平衡
载体蛋白(carrier proteins)及其功能
与特定溶质分子结合,通过一系列构象变化 介导溶质分子的跨膜转运
通透酶,但改变平衡点,加速物质沿自由能 减少方向跨膜运动的速率
物质的跨膜运输习题及答案
细胞生物学章节习题-第五章一、选择题1、物质进入细胞的过程,需消耗能量,但不需要载体的一项是(C )。
A. 根吸收矿质元素离子B. 红细胞保钾排钠C. 腺细胞分泌的酶排出细胞D. 小肠对Ca、P的吸收2、母鼠抗体从血液上皮细胞进入母乳,或者乳鼠的肠上皮细胞将抗体摄入体内,都涉及将胞吞和胞吐作用相结合。
这种跨膜转运方式称为(B )。
A. 吞噬作用B. 跨细胞转运C. 协同转运D. 胞吞作用3、既能执行主动运输,又能执行被动运输的膜转运蛋白是(A )。
A. 载体蛋白B. 通道蛋白C. 孔蛋白D. ABC转运蛋白4、动物细胞对葡萄糖或氨基酸等有机物的吸收依靠(B )。
A. 受体介导的胞吞作用B. Na+-K+泵工作行程的Na+电化学梯度驱动C. Na+-K+泵工作行程的K+电化学梯度驱动D. H+-ATPase行程的H+电化学梯度驱动5、有关动物细胞胞内体膜或溶酶体膜上的V型质子泵的描述,错误的是( B)。
A. V型质子泵利用ATP水解供能从细胞质基质中逆H+电化学梯度将H+泵入细胞器B. V型质子泵利用ATP水解供能从细胞器中逆H+电化学梯度将H+泵入细胞质基质C. V型质子泵可以维持细胞质基质pH中性D. V型质子泵有利于维持胞内体或溶酶体的pH酸性6、流感病毒进入细胞的方式为(C )。
A. 吞噬作用B. 胞膜窖蛋白依赖的胞吞作用C.网格蛋白依赖的胞吞作用D. 大型胞饮作用7、表皮生长因子及其受体通过胞吞作用进入细胞后( D)。
A. 将通过夸细胞转运到细胞的另一侧发挥作用B. 受体返回质膜,而表皮生长因子进入溶酶体降解C. 表皮生长因子被活化,刺激细胞生长D. 进入溶酶体被降解,从而导致细胞信号转导活性下降8、一种带电荷的小分子物质,其胞外浓度比细胞内浓度高。
那么,该物质进入细胞的可能方式为(A )。
A. 被动运输B. 简单扩散C. 主动运输D.以上都错9、对P型泵描述正确的是(D )。
A. 位于液泡膜上B. 位于线粒体和叶绿体上C. 其ATP结合位点位于质膜外侧D. 水解ATP使自身形成磷酸化的中间体二、填空题1、质膜中参与物质运输的P型泵在物质运输中有两个特点:其一是水解ATP 功能,其二是磷酸化和去磷酸化作用。
细胞生物学第五章物质的跨膜运输与信号转导 复习题
第五章物质的跨膜运输与信号转导学习要求:1.掌握物质跨膜运输的各种方式及原理2.掌握细胞信号转导的各种途径及相关知识。
3.理解细胞内信号转导的复杂网络系统,并建立细胞内信号转导的复杂网络系统的整体的、概括的印象。
概要:1.物质跨膜运输的各种方式及原理和相互间的区别细胞膜是细胞与细胞外环境之间的一种选择性通透屏障,物质的跨膜运输对细胞的生存和生长是至关重要的。
物质的跨膜运输可分为:被动运输和主动运输两类方式。
被动运输包括简单扩散和载体介导的协助扩散,物质运输的方向是由高浓度向低浓度,不消耗ATP。
负责物质跨膜转运的蛋白可分为两类:载体蛋白和通道蛋白。
载体蛋白即可介导被动运输也可介导主动运输;通道蛋白质能介导被动运输。
每种载体蛋白能与特定的溶质分子结合,通过一系列的构象改变介导溶质分子的跨膜运输;通道蛋白所介导的被动运输不需要与溶质分子结合,通道蛋白多为多次跨膜的离子通道,具有选择性和门控特性的特点。
主动运输是由蛋白质所介导的物质你浓度梯度或电化学梯度的跨膜转运方式,需要与某种释放能量的过程相偶联。
主动运输可分为由ATP直接供能和间接供能以及光驱动的三种类型。
由于离子的选择性跨膜运输,产生了膜电位,这对细胞的生命活动是非常重要的。
真核细胞除通过简单扩散、协助扩散和主动运输对小分子物质进行运输外,还可以通过胞吞作用和胞吐作用完成大分子与颗粒性物质的跨膜运输。
胞吞作用又可分为胞饮作用和吞噬作用。
2.细胞信号转导的各种方式及原理多细胞生物是一个繁忙而有序的细胞社会,其中进行复杂细胞通信和信号转导。
细胞接受外界信号,通过一整套特定的机制,实现信号的跨膜转导最终调节特异敏感基因的表达,引起细胞的应答反应,这是细胞信号系统的主线,这种反应系列称为细胞信号通路。
根据其受体存在的部位不同可分为细胞内受体介导的信号转导核细胞表面受体介导的信号转导两大类型。
细胞内受体一般都有三个结构域:位于C端的激素结合位点,位于中部的DNA或Hsp90结合位点,以及N 端的转录激活结构域。
细胞生物学第五章至第十章习题
第五章物质的跨膜运输五、简答题1、细胞质基质中Ca2+浓度低的原因是什么?2、简述细胞信号分子的类型及特点?3、比较主动运输与被动运输的异同。
4、NO的产生及其细胞信使作用?5、钙离子的主要作用途径有哪几种?6、G蛋白的类型有哪些?7、简要说明由G蛋白偶联的受体介导的信号的特点。
8、磷酯酰肌醇信号通路的传导途径。
六、论述题1、试论述Na+-K+泵的结构及作用机理。
2、cAMP信号系统的组成及其信号途径?3、试论述蛋白磷酸化在信号传递中的作用。
4、如何理解“被动运输是减少细胞与周围环境的差别,而主动运输则是努力创造差别,维持生命的活力”?第六章细胞的能量转换-线粒体和叶绿体五、简答题1、为什么说线粒体和叶绿体是半自主性细胞器?2、简述光合磷酸化的两种类型及其异同。
六、论述题1、线粒体与叶绿体的内共生学说的主要内容及证据。
第七章真核细胞内膜系统、蛋白质分选与膜泡运输五、简答题1、信号假说的主要内容是什么?2、溶酶体是怎样发生的?它有哪些基本功能?3、简述细胞质基质的功能。
4、比较N-连接糖基化和O-连接糖基化的区别。
六、论述题1、何为蛋白质分选?细胞内蛋白质分选的基本途径、分选类型是怎样的?第八章细胞信号转导五、简答题1、简述细胞信号分子的类型及特点?2、NO的产生及其细胞信使作用?3、G蛋白的类型有哪些?4、简要说明由G蛋白偶联的受体介导的信号的特点。
5、磷酯酰肌醇信号通路的传导途径。
六、论述题1、cAMP信号系统的组成及其信号途径?2、试论述蛋白磷酸化在信号传递中的作用。
第九章细胞骨架五、简答题1、微丝的化学组成及在细胞中的功能。
2、什么是微管组织中心,它与微管有何关系。
3、简述中间纤维的结构及功能。
六、论述题1、比较微管、微丝和中间纤维的异同。
2、试述微管的化学组成、类型和功能。
第十章细胞核与染色体五、简答题1、简述细胞核的基本结构及其主要功能。
2、简述染色质的类型及其特征。
3、简述核仁的结构及其功能。
细胞生物学名词解释与简答题汇总
学习好资料欢迎下载细胞生物学名词解释与简答题汇总【精】第一、二、三章细胞概述1.细胞学说2.中膜体3.细胞融合4.细胞株5.细胞系6.细胞学说7.分辨率8.原位杂交9.原代细胞10.传代细胞11.负染色技术第四章细胞膜与细胞表面1.脂质体2.细胞膜3.细胞连接4.紧密连接5.间隙连接6.CAM7.钙黏素8.选择素9.整联蛋白10.细胞外表面细胞外被11.细胞外基质12.层黏连蛋白13.凝集素14.生物膜15.载体蛋白通道蛋白第五章物质的跨膜运输与信号传导1.细胞识别2.受体3.第二信使4.细胞通讯5.第一信使6.协同运输(cotransport)7.细胞识别(cellrecognition)8.主动运输9.受体介导的内吞作用(receptor mediatedendocytosis)10.胞吞作用(exocytosis)11.组成型胞吐途径(constitutiveexocytosis pathway )12.调节型胞吐途径(regulated eexocytosispathway)13.信号转导(signaltransduction )14.分子开关(molecularswitches)15.双信使系统(doublemessenger system)16.激酶磷酸化级联反应( phosophorylationcascade)第六章细胞质基质与细胞内膜系统1.信号肽2.共转移3.后转移4.导肽5.内质网6.溶酶体7.微粒体微体8.内膜系统细胞质膜系统9.细胞质基质10.跨膜运输11.肌质网12.SRP DP13.O-连接糖基化N-连接糖基化14.溶酶体15.自噬性溶酶体异噬性溶酶体16.调节型分泌途径组成型分泌途径17.融合蛋白18.乙醛酸循环体19.信号肽导肽20.分子伴侣第七章细胞能量转换器——线粒体和叶绿体1.氧化磷酸化2.化学渗透学说3.类囊体4.碳同化5.循环式光合磷酸化6.非循环式光合磷酸化7.Q循环8.C4 途径9.导肽10.内共生学说第八章细胞核和染色体1.多线染色体2.拓扑异构酶3.常染色体4.异染色体5.着丝粒6.动粒7.次缢痕8.随体9.核仁10.核仁组织区第九章核糖体1.多聚核糖体2.A位点3.P位点4.核酶5.小分子RNA6.剪接体7.遗传密码8.反密码子9.RNA编辑10.蛋白酶体第十章细胞骨架1.细胞骨架2.微管3.微管组织中心4.中心体5.微丝6.中等纤维7.肌动蛋白8.胞质环流9.微管踏车现象10.成核反应第十一章细胞增值及其调控1.细胞增值2.无丝分裂3.有丝分裂4.减数分裂5.细胞周期6.R点7.有丝分裂器8.接触抑制9.cdc基因10.原癌基因第十二章细胞分化与基因调控1.管家基因2.奢侈基因3.组合调控4.细胞全能性5.终末分化6.隐蔽mRNA7.胚胎诱导8.位置效应9.接触性抑制10.抑癌基因第十三章细胞衰老和凋亡1.Hayflick界限2.凋亡小体3.细胞凋亡4.Caspases蛋白家族5.Bcl-2基因6.P53基因7.Ced基因8.死亡底物9.死亡酶10.自由基第一、二、三章细胞概述1.通过学习细胞学发展简史,如何认识细胞学说的重要意义?2.研究细胞生物学有何重要的实践意义?3.细胞生物学研究的主要内容有哪些?4.细胞是生命活动的基本单位,而病毒是非细胞形态的生命体,如何理解二者之间的关系?5.如何理解“细胞是生命活动的基本单位”?6.为什么说支原体是最小、最简单的细胞?7.比较原核细胞与真核细胞差别,真核细胞的细胞器结构的出现有什么优点?8.简述动物细胞与植物细胞之间的主要区别。
第五章 物质的跨膜运输+第八章细胞信号转导(复习习题)
第五章物质的跨膜运输+第八章细胞信号转导一、名词解释1、主动运输2、被动运输3、细胞通讯4、简单扩散5、协助扩散(促进扩散)6、协同运输7、分子开关8、胞吞作用9、胞吐作用10、吞噬作用11、胞饮作用12、信号分子13、信号通路14、受体15、第一信使16、第二信使17、G—蛋白偶联受体18、双信使系统二、填空题1、根据胞吞的物质是否有专一性,将胞吞作用分为的胞吞作用和的胞吞作用。
2、细胞的化学信号可分为、、、等四类。
3、细胞膜表面受体主要有三类即、和。
4、细胞之间以三种方式进行通讯,细胞间,通过与质膜的影响其他细胞;细胞间形成连接,通过交换使细胞质相互沟通;细胞通过分泌进行相互通讯,是细胞间通讯的途径。
5、根据物质运输方向与离子沿梯度的转移方向,协同运输又可分为协同与协同。
6、在细胞的信号转导中,第二信使主要有、、和。
7、Ca2+泵主要存在于膜和膜上,其功能是将Ca2+输出或泵入中储存起来,维持内低浓度的Ca2+。
8、小分子物质通过、、等方式进入细胞内,而大分子物质则通过或作用进入细胞内。
9、H+泵存在于细菌、真菌、细胞的细胞膜、及上,将H+泵出细胞外或细胞器内,使周转环境和细胞器呈性。
10、IP3信号的终止是通过形成IP2,或被形成IP4。
DG通过两种途径终止其信使作用:一是被成为磷脂酸,进入磷脂酰肌醇循环;二是被水解成单脂酰甘油。
11、在磷酰③脂醇信号通路中胞外信号分子与细胞表面受体结合,质膜上的磷脂酶C,使质膜上水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统又称为。
12、酶偶联受体通常是指与酶连接的细胞表面受体又称,目前已知的这类受体都是跨膜蛋白,当胞外配体与受体结合即激活受体胞内段的酶活性。
至少包括五类即:、、、和。
13、门通道对离子的通透有高度的不是连续开放而是开放,门的开关在于孔道蛋白的变化,根据控制门开关的影响因子的不同,可进一步区分为门通道、门通道、门通道。
细胞生物学 第五章 物质的跨膜运输和第八章 细胞信号转导
第五章 物质的跨膜运输一、跨膜运输方式细胞质膜是选择性透性膜,是能调控物质进出的精致装臵。
除脂溶性分子和不带电荷的小分子能以简单扩散方式过膜之外,水溶性分子和离子都是不能自行穿越脂双层的。
几乎所有的有机小分子和带电荷的无机离子都需要由膜转运蛋白来跨膜转运。
总之,跨膜的物质运输方式有:被动运transport 胞能量,顺浓度梯1、简单扩散 小分子物质(水、尿素、甘油、葡萄糖、O 2、N 2等)能自由扩散过膜,不须膜蛋白协助 2、协助扩散小分子及离子在膜转运蛋白协助下,会增快跨膜转运速率 (1)葡萄糖、氨基酸、乳糖、核糖等由载体蛋白选择性结合转运过膜 (2)离子由通道蛋白选择性开启离子通道转运 主动运输active transport (消耗细胞能量,运输方向是逆浓度梯度或逆电化学梯度) 1、主动运输:靠离子泵(钠钾泵、钙泵)或质子泵(H +泵)直接消耗细胞的ATP 进行运输。
2、协同运输:待运物质在载体蛋白上与某种离子伴跨膜转运,由钠钾泵(或H +泵)所维持的离子浓度梯度所驱动,∴是间接消耗细胞内的ATP 。
⑴同向转运:例如肠上皮细胞摄取葡萄糖、氨基酸需伴Na +过膜;而细菌吸收乳糖是伴H +过膜。
⑵反向转运:动物细胞靠Na +-H +交换载体,由Na +驱动H +反向输出胞外,以调节细胞内 pH 值。
吞排作用 胞吞作用胞吐作用(消耗细胞能量,将大分子和颗粒物泡来跨膜运输) 1、吞噬作用:吞食大的颗粒物质2、胞饮作用:吞饮液态物质(微胞饮作用)3、跨细胞转运: 由胞吞和胞吐相结合,组成穿胞吞排物质转运方式,其过程中不涉及溶酶体消化。
例如母体中的抗体由血液穿过上皮细胞进入乳汁,而婴儿肠上皮细胞再将母乳中的抗体摄入其血液。
二、各类跨膜运输的特点(一)被动运输1、简单扩散:由小分子自行热运动,顺浓度梯度过膜,其通透性主要取决于分子的大小和极性,凡带电荷的离子皆不能简单扩散;2、协助扩散:由膜转运蛋白促使被动运输的转运速率增快,可分为两种类型:①载体蛋白与其特定溶质分子相结合来转运;②离子通道蛋白能对离子选择转运。
第五章 物质的跨膜运输与信号传导
第五章物质的跨膜运输与信号传导填空题1.物质跨膜运输的主要途径是。
2.被动运输可以分为和两种方式。
3.协助扩散中需要特异的完成物质的跨膜转运,根据其转运特性,该蛋白又可以分为和两类。
4.主动运输按照能量来源可以分为。
5.协同运输在物质跨膜运输中属于类型。
6.协同运输根据物质运输方向于离子顺电化学梯度的转移方向的关系,可以分为7.在钠钾泵中,每消耗1分子的ATP可以转运个钠离子和个钾离子。
8.钠钾泵、钙泵都是多次跨膜蛋白,它们都具有酶活性。
9.真核细胞中,质子泵可以分为三种。
10.真核细胞中,大分子的跨膜运输是通过和来完成的。
11.根据胞吞泡的大小和胞吞物质,胞吞作用可以分为和两种。
12.胞饮泡的形成需要的一类蛋白质的辅助。
13.细胞的吞噬作用可以用特异性药物来阻断。
14.生物体内的化学信号分子一般可以分为两类,一是,一是。
15.细胞识别需要细胞表面的和细胞外的之间选择性的相互作用来完成。
16.具有跨膜信号传递功能的受体可以分为、和1.一般将细胞外的信号分子称为,将细胞内最早产生的信号分子称为。
2.受体一般至少包括两个结构域;。
3.由G蛋白介导的信号通路主要包括:。
4.有两种特异性药物可以调节G蛋白介导的信号通路,即可以使G蛋白α亚基持续活化,而则使G蛋白α亚基不能活化。
磷脂酰肌醇信使系统产生的两个第二信使是。
5.催化性受体主要分为。
6.Ras蛋白在RTK介导的信号通路中起着关键作用,具有,当结合时为活化状态,当结合时为失活状态。
7.Rho蛋白在膜表面整联蛋白介导的信号通路中起重要作用,当其结合时处于活化状态,当其结合时处于失活状态。
8.小分子物质通过脂双层膜的速度主要取决于。
9.协助扩散和主动运输的相同之处主要在于都,主要区别在于10.G蛋白的а亚基上有三个活性位点,分别是。
11.PKC有两个功能域,一个是,另一个是。
12.DAG可被而失去第二是信使的作用,另一个是。
13.EGF的信号接触是通过内吞作用进行的,即。
物质的跨膜运输与信号转导(一)
△每种膜转运蛋白只能转运一种特定类型的分子(或离子)。 △所有膜转运蛋白都是跨膜蛋白质。
载体蛋白介导的易化扩散
载体蛋白:
特定结合部位:一种载体蛋白只能与特定的溶质 结合,通过改变构象,使溶质穿越细胞膜。 最大值(Vmax)与结合常数(Km):最大值是指载 体蛋白所有结合部位均被占据,处于饱和状态,这 时的转运速率达到最大值(Vmax) 。当转运速率达到 最大值的1/2时,称“结合常数(Km)”。
载体蛋白的转运方式
转运的分子
伴随转运的离子
脂 质 双 层
单运输
共同运输 协同转运
对运输
通道蛋白:
能形成一种充满水溶液的通道,贯穿脂质双层。
★闸门通道扩散(通道蛋白介导的跨膜运输) 概念: 指镶嵌在细胞膜上的转运蛋白构成闸门通道 小孔。部分离子、代谢产物、溶质分子在短时间 内顺浓度梯度经闸门孔道扩散到细胞膜的另一侧, 称闸门通道扩散。
★ 离子梯度驱动的主动运输
概念:指由离子梯度中贮存的位能驱动的主
动运输。即能量不是来自ATP,而是 来自离子梯度中产生的位能。
协同运输、共运输
★ Na+-H+交换体(离子驱动的对向运输)
这种载体主要功能:表现为H+泵出,Na+泵进,从 清除细胞代谢过程中产生的过多的H+,以维持细胞内 PH7.1-7.2。(7.4开始生长分裂,7.7停止生长)。
◆主动运输(载体蛋白介导的主动运输)
概念: 细胞膜上载体蛋白利用代谢产生的能量 驱动物质逆浓度梯度和电化学梯度的运输。 物质从低浓度
逆浓度、电化学梯度 需能量、载体蛋白
向高浓度渗透
渗透:水或溶剂分子经过半透膜的扩散现象,以 维持细胞膜内外各种物质极大的浓度差。
细胞生物学 5.第五章 物质的跨膜运输与信号转导
图5-1 不同物质透过人工脂双层的能力
图5-6 钾电位门通道
图5-13 吞噬作用图5-14胞饮作用
图5-15外排作用
图5-19化学通信的类型
图5-21细胞间隙连接
图5-23 鸟苷酸环化酶
图5-24 NO的作用机制三、膜表面受体介导的信号转导
图5-25 膜表面受体主要有三类
图5-26 离子通道型受体
5-29 G蛋白耦联型受体为7次跨膜蛋白
图5-30 腺苷酸环化酶
Protein Kinase A,PKA):由两个催化亚基和两个调节亚基,在没有cAMP时,以钝化复合体形式存在。
调节亚基结合,改变调节亚基构象,使调节亚基和催化亚基解离,释放
图5-31 蛋白激酶A
图5-33 Gs调节模型
cAMP信号途径的反应速度不同,在肌肉细胞
启动糖原降解为葡糖1-磷酸(图5-34),而抑制糖原的合成。
在某些分泌细
图5-34 cAMP信号与糖原降解图5-35 cAMP信号与基因表达
图5-38 IP3和DG的作用
与内质网上的IP3配体门钙通道结合,开启钙通道,使胞内
图5-39 Ca2+信号的消除
图5-41 受体酪氨酸激酶的二聚化和自磷酸化
图5-44 IRS。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章物质的跨膜运输与信号转导学习要求:1.掌握物质跨膜运输的各种方式及原理2.掌握细胞信号转导的各种途径及相关知识。
3.理解细胞内信号转导的复杂网络系统,并建立细胞内信号转导的复杂网络系统的整体的、概括的印象。
概要:1.物质跨膜运输的各种方式及原理和相互间的区别细胞膜是细胞与细胞外环境之间的一种选择性通透屏障,物质的跨膜运输对细胞的生存和生长是至关重要的。
物质的跨膜运输可分为:被动运输和主动运输两类方式。
被动运输包括简单扩散和载体介导的协助扩散,物质运输的方向是由高浓度向低浓度,不消耗ATP。
负责物质跨膜转运的蛋白可分为两类:载体蛋白和通道蛋白。
载体蛋白即可介导被动运输也可介导主动运输;通道蛋白质能介导被动运输。
每种载体蛋白能与特定的溶质分子结合,通过一系列的构象改变介导溶质分子的跨膜运输;通道蛋白所介导的被动运输不需要与溶质分子结合,通道蛋白多为多次跨膜的离子通道,具有选择性和门控特性的特点。
主动运输是由蛋白质所介导的物质你浓度梯度或电化学梯度的跨膜转运方式,需要与某种释放能量的过程相偶联。
主动运输可分为由ATP直接供能和间接供能以及光驱动的三种类型。
由于离子的选择性跨膜运输,产生了膜电位,这对细胞的生命活动是非常重要的。
真核细胞除通过简单扩散、协助扩散和主动运输对小分子物质进行运输外,还可以通过胞吞作用和胞吐作用完成大分子与颗粒性物质的跨膜运输。
胞吞作用又可分为胞饮作用和吞噬作用。
2.细胞信号转导的各种方式及原理多细胞生物是一个繁忙而有序的细胞社会,其中进行复杂细胞通信和信号转导。
细胞接受外界信号,通过一整套特定的机制,实现信号的跨膜转导最终调节特异敏感基因的表达,引起细胞的应答反应,这是细胞信号系统的主线,这种反应系列称为细胞信号通路。
根据其受体存在的部位不同可分为细胞内受体介导的信号转导核细胞表面受体介导的信号转导两大类型。
细胞内受体一般都有三个结构域:位于C端的激素结合位点,位于中部的DNA或Hsp90结合位点,以及N 端的转录激活结构域。
而细胞表面受体分属于三个家族:(1)离子通道耦联的受体;(2)G蛋白耦联的受体;(3)与酶连接的受体。
离子通道耦联的受体是多亚基组成的受体-离子通道复合体,本身既有信号分子结合位点,又是离子通道,其跨膜信号转导无需中间步骤。
G蛋白耦联受体是细胞表面由单条多肽经7次跨膜形成的受体,该信号通路是指配体-受体复合物与靶蛋白的作用要通过G蛋白的中介,并在细胞内产生第二信使,才将细胞外信号跨膜传递到细胞内影响细胞的行为。
G蛋白耦联受体信号通路又可分为cAMP信号通路和磷脂酰肌醇信号通路。
受体酪氨酸激酶是细胞表面一大类重要酶连家族,当配体与受体结合后,导致受体二聚化,激活受体酪氨酸蛋白激酶活性随即引起磷酸化级联反应,终致细胞生理或基因表达的改变。
该信号通路为:配体→受体酪氨酸激酶→adaptor ←GRF →Ras →Raf(MAPKKK) →MAPKK →MAPK →进入细胞核→其他激酶或基因调控蛋白的磷酸化修饰。
它具有广泛的功能,包括调节细胞增殖与分化,促进细胞存活,以及细胞代谢过程中的调节与矫正作用。
此外,整联蛋白是细胞表面的跨膜蛋白(异二聚体),不仅介导细胞附着到胞外基质上,更重要的是提供了一种细胞外环境调控细胞内活性的通道。
整联蛋白与胞外配体相互作用,可产生多种信号和生理反应。
细胞信号转导是多通路、多环节、多层次和高度复杂的可控过程。
细胞内的多条信号通路相互联系,整合为复杂的信号网络系统。
基本概念:简单扩散:又称自由扩散。
是物质从浓度较大的一侧通过膜向浓度较小一侧扩散,扩散速度依赖于膜两侧溶质的浓度差及溶质分子的大小和电荷性质,同时与透过物质的脂溶性程度有关,同该物质在脂肪中的溶解度成正比。
通道蛋白:转运膜蛋白的一类,横跨质膜可形成亲水通道,允许一定大小和一定电荷的溶质从膜的一侧转到另一侧。
通道蛋白不直接与小的带电荷的溶质相互作用,而是通过质双层中膜蛋白带电荷的亲水区形成的亲水通道,使带电荷的溶质分子自由地扩散。
离子通道:是细胞膜中一类内在蛋白构成的孔道,可为化学方式或电学方式激活,控制离子通过细胞膜的顺势流动。
离子通道有两个显著的特点:一是具有选择性,二是属于门控通道。
极化与去极化:细胞在静息状态下,质膜内外存在内负、外正的相对稳定的电位差,这种现象称为极化。
在多数细胞中,极化状态主要由Na+、K+在膜内侧的不同浓度分布所决定(膜外Na+多)。
当细胞膜受到的刺激信号超过一定的阈值时,会引起膜对Na+的通透性的大幅度增加,在瞬间有大量Na+流入细胞内,使膜电位减少甚至消失,这种现象就称质膜的去极化。
载体蛋白:又称为通透酶,是一类膜内在蛋白,几乎都是多次跨膜的蛋白质分子。
每种载体蛋白能与特定的溶质分子结合,通过一系列构象改变,介导溶质分子的跨膜转运。
由载体介导的转运可以是被动的,也可是主动的。
通过动力学分析,经通道蛋白进行的转运是一种简单的扩散过程,没有饱和现象;而经载体进行的转运则依赖于溶质与载体特异性的结合,因结合部位的数量有限,所以有饱和现象。
主动运输:是由载体蛋白介导的物质逆浓度梯度方向跨膜耗能的运输方式。
根据主动运输过程中所需能量来源的不同,可归纳为由ATP直接供能和间接提供能量以及光驱动三种基本类型。
对向运输:是协同运输的一种方式,指物质跨膜转运的方向与离子转运的方向相反,如动物细胞常通过Na+-H+对向运输的方式,以调节细胞内的pH.网格蛋白有被小泡:是胞饮泡或在高尔基体反面管网处形成的小泡.当配体与膜上受体结合后,网格蛋白聚集在膜下一侧,逐渐形成直径50~100nm的质膜凹陷,称为网格蛋白有被小窝;一种小分子GTP结合蛋白在深陷有被小窝的颈部装配成环,并水解与其结合的GTP,引起颈部缢缩而形成小泡.膜电位:不同方式的物质跨膜运动,结果产生并维持了膜两侧特定的电荷分布,就形成了膜两侧的电位差,细胞膜两侧各种带电物质形成的电位差的总和,即为膜电位.细胞通讯:是指一个细胞发出的信息通过介质传递到另一个细胞产生相应反应的过程.细胞间的通讯对于多细胞生物体的发生和组织的构建、协调细胞的功能,控制细胞的生长和分裂都是必需的。
自分泌:细胞合成和分泌的各种物质反过来又通过与其本身表面受体的作用,调节自身的生长和分化,即细胞对其自身分泌的物质起反应的现象。
自分泌信号常见于病理条件下。
离子通道耦联受体:是由多亚基组成的受体-离子通道复合体,本身既有信号结合位点,又是离子通道。
其跨膜信号转导无需中间步骤,又称门控离子通道。
此受体主要见于可兴奋细胞间的突触信号传递。
G蛋白耦联受体:指配体-受体复合物与靶蛋白(酶或离子通道)的作用要通过与GTP结合的调节蛋白(G蛋白)的耦联,在细胞内产生第二信使,才能将外界信号跨膜传递到细胞内影响细胞的行为受体.信号转导:指耦联的各种保外刺激信号与其相应的生理效应之间的一系列反应机制.或者说是将细胞膜外的刺激信号转变为细胞应答的过程.即由细胞膜受体接受信息经过细胞内信使传入或胞质因子直接活化进入细胞核内,导致特定基因的激活和表达的过程.第二信使:为细胞信号转导过程中的次级信号,指胞内信号分子,是由胞外刺激信号(第一信使)与受体作用后在胞内最早产生的信号分子.现已知道的有:camp、cGMP、IP3、GD等。
这些信使各自有自身的循环作用途径,同时又会相互影响,形成反应网络。
其相互调节控制的关系十分复杂。
G蛋白:又称为GTP结合调节蛋白,是耦联受体接受信号与第二信使的产生之间的膜上信号转换系统,故又称耦联蛋白质或信号转换蛋白。
由α、β和γ三个亚基组成。
G蛋白的耦联功能靠GTP的结合蛋白或水解产生的变构作用完成,当G蛋白与受体结合而结合时,它就同时结合上GTP,继而触发效应器,把胞外信号转换为胞内信号,而当GTP水解为GDP后,G蛋白就回到原处构象,失去信号转换的功能。
分子开关:是使细胞内一系列信号传递的级联反应,能在正、负反馈两个方面得到精确控制分子机制,细胞内信号传递作为分子开关的蛋白质可分为两类:一类开关蛋白的火星由蛋白激酶使之磷酸化而开启,由蛋白磷酸酯酶使之去磷酸化而关闭,许多由可逆磷酸化控制的开关蛋白是开关蛋白本身,在细胞内构成信号传递的磷酸化级联反应;另一类主要开关蛋白由GTP结合蛋白组成,结合GTP 而激活,结合GDP而失活。
肌醇磷脂信号系统:在胞外信号为膜受体接受后,以G蛋白为中介,由质膜中磷脂酶C水解PIP2产生肌醇-1,4,5-三磷酸和二酯酰甘油两种胞内信号,因此又称为双信号系统,分别形成两个信号传递途径,调节和控制一系列的生理反应。
催化性受体:指与酶连接的细胞表面受体,目前已知的这类受体都是跨膜蛋白,当细胞外信号分子与受体结合即激活该受体细胞内段的酶活性。
SH结构域:制首先在Src蛋白中发现的几个高度保守的结构域。
原癌基因c-src的蛋白质产物c-src 是细胞膜上的酪氨酸蛋白激酶,其家族中其它蛋白质与Src具有同源性的结构域称为Src同源结构域或SH结构域,在Src分子中,SH1就是激酶结构域,SH2结构域能与含有磷酸化酪氨酸的蛋白质结合,SH3就是激酶识别富含脯氨酸的结构域。
SH2和SH3都参与Src家族与其它蛋白质的选择性结合,但无催化活性。
受体超家族:结构上具有较高性同源性的一类受体称为受体超家族。
他们的基因也具有较高的同源性。
一般来说,受体超家族成员在某些结构特征或功能上具有相似性,在另一些功能上有不尽相同,因此他们相互间如何协调作用的问题近年来很受重视。
问答题1.以钠钾泵为例说明主动运输的机理。
Na+-K+泵存在于一切动物细胞的细胞膜上,是由α和β二种亚基组成的跨膜多次的膜整合蛋白,具有ATP酶活性,因此,也被称作Na+ -K+泵ATP酶。
β亚基是具有组织特异性的糖蛋白,其工作模式是在a亚基的细胞内侧与Na+相结合促进ATP 水解,a亚基上的一个天冬氨酸残基磷酸化,引起a亚基的构象改变,将Na+逆浓度梯度泵出细胞,同时细胞外的K+与a亚基的另一个结合位点结合,使其去磷酸化,a亚基构象再次发生变化将K+逆浓度梯度泵进细胞,完成整个循环。
每个循环消耗一个ATP分子,泵出3个Na+和泵进2个K+.由此可以看出,主动运输的机理是在膜载体的协助下,由ATP功能,直接或间接将所有转运物质逆浓度梯度运出或运进细胞的过程。
2.概述H+泵的类型与作用。
H+-ATP酶指转运H+的ATP酶或称H+泵.可分为三种类型:一种与Na+-K+泵和Ca2+类似,在转运H+的过程中涉及磷酸化和去磷酸化,存在于真核细胞的细胞膜上,称为P型质子泵。
P型质子泵是植物生命活动过程中的主宰酶,对植物许多生命活动起着重要的调控作用,它在矿质元素转运中的主要作用是:(1)使细胞质的pH升高,但由于细胞质较强的缓冲作用,这种升高并不显著。