磁共振临床应用及进展 ppt课件

合集下载

磁共振成像序列及应用最新版本ppt课件

磁共振成像序列及应用最新版本ppt课件

时间对FID进行空间编码,因而临床上很少采用。
精选课件ppt
10
饱和恢复(部分饱和)序列 Saturation Recovery Partial Saturation
精选课件ppt
11
饱和恢复(SR)序列结构示意图
精选课件ppt
12
SR序列一般用于T1WI,TR决定SR序列的T1对比,选择两种 组织T1值之间的TR能产生较好的T1对比。
TR无穷大,TE=1100ms
扫描时间=4秒精选课件ppt
67
SS-TSE MRCP
SS-RARE,一次投射成像MRCP
TR无穷大,TE=1100ms
扫描时间=4秒
精选课件ppt
68
急 性 胰 腺 炎
SS-RARE,一次投射成像MRCP
TR无穷大,TE=1100ms
扫描时间=精选4课秒件ppt
69
同时有自旋回波和梯度回波的序列
杂合序列 Hybrid Sequence
精选课件ppt
7
杂梯自自 合度旋由 序回回感 列波波应
类类衰 序序减 列列序

MRI sequence tree
精选课件ppt
8
一、自由感应衰减序列
精选课件ppt
9
90度脉冲产生最大的横行磁化矢量,此时采集的MR信号
最强,由于T2*衰减,FID信号衰减很快,大约只有20ms
精选课件ppt
37
精选课件ppt
38
精选课件ppt
39
(3)、中ETL的FSE-T2WI
•ETL=10-20 •优点:
•扫描速度快(1-5分钟) •缺点:
•T2对比不及SE或短回波链的FSE-T2WI •运动伪影

磁共振临床应用ppt课件

磁共振临床应用ppt课件

T1WI
编辑版ppt
T1WI
增强T1WI
40
前列腺癌
编辑版ppt
41
子宫肌瘤
编辑版ppt
T2WI
42
脊柱MRI
适应症
椎管内肿瘤 椎骨肿瘤 脊柱和脊髓炎症性病变 脊柱与脊髓外伤 脊柱退行性病变和椎管狭窄 脊髓血管性病变 脊髓脱髓鞘病变(MS) 脊柱及脊髓先天性畸形
编辑版ppt
43
脊柱结核
T1WI
编辑版ppt
16
磁共振在各系统中 的临床应用
编辑版ppt
17
颅脑 五官 体部
脊柱 心血管系统
骨关节系统
MRI对中枢神经系统、四肢关节肌肉系统的诊断价值最为突出
编辑版ppt
18
颅脑MRI检查
适应症
• 1.脑梗塞和脑出血 • 2.脑血管畸形 • 3.脑萎缩:痴呆 • 4.颅内肿瘤和囊肿 • 5.颅脑外伤 • 6.颅内感染 • 7.脑白质病 • 8.先天性颅脑发育异常 • 9.后颅窝和脑干病变
磁共振的临床应用
编辑版ppt
1
当轮椅吻上核磁!!!
编辑版ppt
2
磁共振成像特点:优势
• 多参数成像:提供丰富诊断信息,利于定性诊断 • 多方位成像:三维观察病变,定位准确 • 软组织分辨率高:解剖结构显示清晰 • 无X线辐射 • 不用造影剂,观察心血管结构和功能 • 无骨伪影干扰,利于检出后颅凹病变
➢ 疑有铁磁性植入者,如弹片及眼内铁磁性金属异物 ➢ 妊娠三个月内的早期妊娠者; ➢ 危重患者(如重度高热、意识障碍、需生命支持系
统者) ➢ 幽闭恐怖症患者
编辑版ppt
5
பைடு நூலகம்
检查前注意事项

(医学课件)MRI磁共振扫描技术PPT幻灯片

(医学课件)MRI磁共振扫描技术PPT幻灯片
15
出血:影像表现很复杂,与出血的部位、 时间有关
① 《24h仅见周围水肿征象; ② 1~3天急性期,脱氧血红蛋白可使T2缩
短且水肿更明显; ③ 3~14天亚急性期,红血球溶解破坏,脱
氧血红蛋白氧化成高铁血红蛋白,T1弛 豫明显缩短T2弛豫延长,周围水肿存在; ④ 》14天慢性期,高铁血红蛋白氧化为半 色素,含铁血红蛋白沉积血肿周边部。
7
TR为重复时间, 越长图像对比度越高 TE 为回波时间 在自旋回波和梯度回波中二者共同决定图像
对比度。
T1、T2 是组织固有属性,在相同磁场不同 组织表现不同T1、T2 ,在磁共振图像上出 现不同的像素亮度。
8
根据弛豫值T1、T2定义,90˚射频脉冲停止后, 纵向磁化矢量增长到原值的63%所需时间为T1 值; 长T1组织,磁化矢量恢复慢,在短TR序列 中,有效TE时间点采集的磁化矢量没有恢复到 足够大,处于低值水平,所以长T1组织为低信 号,短T1组织为高信号。
13
病变在MRI上通常有四种信号强度的改变:
①等信号强度:指病变与周围组织呈相同灰度,平 扫MRI上无法识别病灶,有时需借助MRI对比剂的 顺磁性效应以增加病变信号强度,使之与周围组 织产生对比差别;
②低信号强度:MRI片上病灶信号强度不及周围组 织亮;
③高信号强度:MRI片上病变组织的信号强度高于 周围组织;
流动血液:信号强度与流速有关,射 频脉冲和采集信号的时间差,出现流 空信号,涡流、层流可出现信号差别。
气体:质子密度最小,信号趋向零。 水:质子密度极高,具有长T1和长T2
弛豫特点。
12
一、磁共振成像基本原理 二、磁共振常见物质的信号特点 三、病理组织的信号特点 四、中枢神经系统磁共振成像常用序列 五、磁共振图片展示

磁共振 PPT课件

磁共振 PPT课件
19
20
21
22
23
24
腹部、盆腔MRI适应证
主要用于部分实质性器官的肿瘤性病变,(需做增强) 肝肿瘤性病变,提供鉴别信息 胰腺肿瘤,有利小胰癌、胰岛细胞癌显示 宫颈、宫体良恶性肿瘤及分期等,先天畸形 肿瘤的定位(脏器上下缘附近)、分期 胆道、尿路梗阻和肿瘤,(需做MRCP,MRU) 直肠肿瘤
40
41
42
椎间盘突出颈髓损伤、软化灶
43
椎间盘突出,颈髓损伤 44
女,43岁,高出坠下 8小时,截瘫。
45
女,20岁
脊髓星形细胞瘤
16年后复发 46
骨与关节MRI适应证
X线及CT的后续检查手段--钙质显示差和 空间分辨力
部分情况可作首选: 1. 累及骨髓改变的骨病(早期骨缺血性坏死,
8
MR检查的临床应用及与相关影像方法比较
. 1.中枢神经系统最佳,也比较成熟; . 2.胸部:适于纵隔和心脏大血管的检查; . 3.腹、盆部:各种脏器和器官(胃肠道除外); . 4.骨关节系统:观察骨髓改变、软骨及软组织
(如椎间盘、半月板)
9
颅脑MRI适应证:
颅内良恶性占位病变 (需加做增强) 脑血管性疾病: 梗死、出血、动脉瘤、动静脉
利用人体内固有的H离子原子核, 在外加磁场作用下产生共振现象, 吸收能量并释放MR信号,将其采集 并作为成像源,经计算机处理,形 成人体MR图像,是一种核物理现象 在医学领域的应用。
3
2、MRI检查有那些优点?
(1)没有电离辐射的损伤(尚未发现); (2)多方位(横、冠、矢及斜面)成像; (3)图像对解剖结构的细节显示比较好; (4)对组织细微病理的变化更敏感,如脑
水肿 等,组织间的对比度优于CT; (5)根据信号可以确定组织的类型,如脂

mri课件ppt课件

mri课件ppt课件
MRI技术具有无辐射、无创伤、无痛苦、成像清晰等优点,广泛应用于临床医学 、生物学、药学等领域。
MRI原理
MRI技术基于原子核的自旋磁矩和外 加磁场之间的相互作用,通过施加射 频脉冲激发原子核产生共振,然后检 测共振信号并重建图像。
原子核在磁场中会受到洛伦兹力,产 生能级分裂,当外加射频脉冲的频率 与原子核的固有频率相同时,原子核 受到激发产生共振。
诊断报告
医生根据图像处理结果和 患者病史等信息,撰写 MRI诊断报告。
报告解读
患者或家属可向医生咨询 MRI检查结果,了解病情 状况。
03
MRI图像解读
图像特点
高分辨率
MRI图像具有高分辨率, 能够清晰显示组织的细微 结构。
多平面成像
MRI可以进行多平面成像 ,如横断面、矢状面和冠 状面,有助于全面观察病 变。
循环系统
心包疾病
MRI可以检测心包积液、心包肿 瘤等心包疾病,为医生提供更准 确的诊断依据。
大血管疾病
MRI可以检测大血管的狭窄、阻 塞和动脉瘤等病变,有助于医生 制定治疗方案。
05
MRI与其他影像学检查的比较
CT与MRI的比较
分辨率
MRI具有更高的软组织分辨率 ,能够更清晰地显示器官和组
织结构。
软组织对比度高
MRI利用不同组织间的弛 豫时间差异产生对比,使 得软组织对比度较高。
常见病变表现
肿瘤
MRI图像上肿瘤常表现为形态不 规则、信号不均匀的异常信号影

炎症
炎症常表现为软组织肿胀、积液等 ,MRI图像上表现为信号增强。
出血
出血在MRI图像上表现为高信号影 ,根据出血时间的不同,信号强度 也会有所变化。
06

《MR临床应用》课件

《MR临床应用》课件

MR在临床治疗中 的应用
原理:通过MR实时成像,引导医生 进行介入治疗
应用:肿瘤、血管疾病、神经疾病 等
添加标题
添加标题
添加标题
添加标题
优势:精确定位,减少对周围组织 的损伤
发展趋势:智能化、微创化、个性 化
原理:利用MR图 像引导放射治疗, 提高治疗精度
优势:实时监测肿 瘤位置,减少对周 围组织的损伤
结论:MR技术在 临床应用中具有重 要价值,但仍需不 断改进和完善。
技术发展趋势:更高分辨率、更快扫描速度、更精确诊断 应用前景:在医疗、科研、教育等领域广泛应用 技术挑战:成本、安全性、伦理问题 发展趋势:人工智能、大数据、云计算等技术与MR技术的融合
感谢您的观看
汇报人:PPT
2010年代,MRI技术在临床上得到更加广 泛的应用,如心脏MRI、脑功能MRI等
优势:无创、无辐射、高分辨率、多参数成像 局限性:对运动伪影敏感、对金属植入物有影响、对某些疾病诊断效果不佳
MR在临床诊断中 的应用
01
脑肿瘤:MR可以清晰地显示肿瘤的位置、大小和 形态,有助于诊断和治疗
03
骨骼肌肉系统疾病的治疗:MR成像技术可以帮助医生了解病变的部位、范围和程度,为制 定治疗方案提供依据。
骨骼肌肉系统疾病的预后:MR成像技术可以帮助医生了解病变的预后情况,为制定康复计 划提供依据。
骨骼肌肉系统疾病的研究:MR成像技术可以帮助医生了解骨骼肌肉系统疾病的发病机制和 病理生理过程,为研究提供依据。
消化系统疾病的诊断:MR能够清晰地显示消化系统的结构和功能,有助于诊断消化系统疾病。
胃肠道疾病的诊断:MR能够清晰地显示胃肠道的结构和功能,有助于诊断胃肠道疾病。
肝脏疾病的诊断:MR能够清晰地显示肝脏的结构和功能,有助于诊断肝脏疾病。 胰腺疾病的诊断:MR能够清晰地显示胰腺的结构和功能,有助于诊断胰腺疾病。

MR检查技术及其临床应用ppt课件

MR检查技术及其临床应用ppt课件

.
14
二、磁共振检查的脉冲序列
.
15
1、自旋回波脉冲序列(SE脉 冲序列):它是MR扫描最基 本、最常用的脉冲序列。在该
序列中通过选择不同的TR和TE 可分别获得T1加权像(T1WI) 、T2加权像(T2WI)和质子密 度加权像(PdWI)
.
16
TR(激发时间或重复时间 ):两个激励脉冲间的间隔 时间。TR的长、短决定着能 否显示出组织间T1的差别, 用短TR能显示出组织间T1信 号强度的差别。
第一节、磁共振成像(MRI) 的设备与基本原理
.
1
磁共振设备主要由主 磁体、梯度系统、射频 系统、计算机系统及其 他辅助设备等构成。
.
2
核磁共振(nuclear magnetic resonance,NMR)现称为磁共振成 像(MRI)是一种核物理现象。它 是在1946年,美国哈佛大学 Purcell和斯坦福大学Block发现物 质核磁共振原理的基础上,于20世 纪70年代末继CT之后,借助电子 计算机和图像重建数学而发展起来 的一种新型医学影像技术。直至
1978年才用于临床。
.
3
方法:将患者检查部位摆入强的
外磁场中,表面有线圈包绕,射频
发射器很像一个短波发射台及发射
天线,向人体发射不同的脉冲序列
,人体内氢原子核相当于一台收音
机接收此脉冲。瞬间关掉发射脉冲
,这时人体内氢原子核则变成一个
短波发射台发出磁共振信号由MR
信号接收器接收。最后利用磁共振
信号重建图像。
脑 脑 脑 脂 骨 纤维 骨 脑
白 灰 脊 肪 髓 韧带 皮 膜
质质液


T1WI 白 灰 黑 白 白 稍黑 黑 黑 灰

磁共振检查在各个科室的应用精品PPT课件

磁共振检查在各个科室的应用精品PPT课件

PVL、新生儿低血糖后遗改变
灰质移位、胼胝体发育不良
脑白质营养不良
病毒性脑炎
四叠体池蛛网膜囊肿
恶性胶质瘤
脑内多发结节样 长T1 长 T2异常信号
脑内多发结节明显强化
正常脑MRA
MRA大脑中动脉狭窄
正常垂体
正常垂体
显示面、听、三叉神经
磁共振的临床应用
➢ 脊髓
➢ MRI直接显示脊髓的全貌,对脊髓肿瘤、脊髓 白质病变、脊髓空洞、脊髓炎、脊髓损伤等脊 髓和椎管内疾病有重要诊断价值。
➢ MRI是目前诊断脊椎转移瘤最敏感的影像学方 法。
正常颈胸髓
单纯压缩性骨折
Chair-1畸形并脊髓空洞
脊膜瘤
脊髓栓系、纵裂畸形
磁共振的临床应用
➢ 头颈部
➢ MRI是眼、耳鼻、咽喉部和口腔疾病重要的影像 学检查方法,尤其适用于头颈部肿瘤和肿瘤样 病变的诊断与鉴别诊断。
➢ MRI无创性的进行头颈部血管检查 ➢ MRI也是甲状腺疾病的有效方法。
缩短扫描时间。 ➢ 实现频率饱和脂肪抑制技术 ➢ 能开展PWI、MRS、fMRI、动态增强等技术
磁共振的优点
➢ MRI的优点(与CT相比)
➢ 无射线辐射损伤,对人体无危害 ➢ 软组织分辨率高:显示正常解剖结构如
脑灰白质、神经核团、肾脏皮髓质、关 节软骨、关节囊等更为清楚,显示病变 能力也明显优于CT。
➢ 也可用于囊性病变与实性病变鉴别、纯水囊肿 与非纯水囊肿鉴别、肿瘤存活组织与坏死组织 鉴别、肿瘤复发与治疗后改变鉴别、脓肿与肿 瘤中心坏死组织鉴别等。
DWI急性脑梗塞
DWI发现超急性脑梗塞
磁共振的临床应用
磁共振的优点
➢ 成像参数多,提供信息量大:T1值、T2值、质 子密度、流动特性、水分子扩散、MRS、fMRI 等可提供更多诊断和鉴别诊断信息。

《磁共振的临床应用》课件

《磁共振的临床应用》课件

VS
预测模型
建立基于人工智能的预测模型,根据患者 的磁共振图像预测疾病的发展和预后。
THANKS
感谢您的观看
肿瘤分子成像与功能成像
分子成像
MRI技术结合分子探针可以实现对肿瘤分子水平的成像,为 肿瘤的早期发现、靶向治疗和药物研发提供有力支持。
功能成像
MRI功能成像技术可以反映肿瘤的代谢、灌注和细胞活性等 信息,有助于了解肿瘤的生长方式、侵袭能力和预后评估。
Part
05
磁共振在其他领域的应用
骨关节疾病的诊断
《磁共振的临床应用 》ppt课件
• 磁共振简介 • 磁共振在神经系统疾病中的应用 • 磁共振在心血管系统疾病中的应用 • 磁共振在肿瘤诊断中的应用 • 磁共振在其他领域的应用 • 磁共振的未来展望
目录
Part
01
磁共振简介
磁共振的发展历程
1
1946年核磁共振现象被 发现
4
如今磁共振成像技术已成 为医学影像诊断的重要手 段之一
总结词
磁共振成像在骨关节疾病的诊断中具有重要价值,能够提供高分辨率的关节结构图像,帮助医生准确判断病变位 置和程度。
详细描述
磁共振成像技术可以清晰地显示关节软骨、韧带、肌腱等软组织的结构,对于诊断骨关节炎、类风湿性关节炎、 强直性脊柱炎等骨关节疾病具有很高的敏感性和特异性。通过磁共振成像,医生可以观察到关节炎症、积液、关 节间隙狭窄等病变表现,为制定治疗方案提供重要依据。
脑炎和脑膜炎
磁共振成像可以辅助诊断 脑炎和脑膜炎等感染性疾 病。
脊柱疾病的诊断
STEP 01
颈椎病
STEP 02
腰椎病
磁共振成像可以清晰地显 示颈椎间盘突出的程度和 位置,有助于医生判断病 情。

磁共振功能成像的临床应用PPT课件

磁共振功能成像的临床应用PPT课件
磁共振功能成像的应用将促进医学影像学与其他学科的交叉融合, 推动医学领域的发展。
提高医疗服务水平
磁共振功能成像的应用将提高医疗服务的质量和效率,为患者提 供更好的医疗体验。
THANKS
感谢观看
磁共振功能成像的优势与局限性
优势
无创、无辐射损伤、多参数成像 、高软组织分辨率等。
局限性
检查费用较高、检查时间长、对 运动伪影敏感等。
03
磁共振功能成像在神经系统疾病中的
应用
脑肿瘤
总结词
磁共振功能成像在脑肿瘤的诊断、治疗和预后评估中具有重要作用。
详细描述
磁共振功能成像技术可以检测肿瘤的位置、大小和扩散情况,有助于医生制定 更精确的治疗计划。同时,通过观察肿瘤的代谢和血流情况,可以评估治疗效 果和预测复发风险。
该技术可以提供高分辨率、高对比度的图像,并且无辐射, 对人体无害。
临床应用的意义和价值
磁共振功能成像能够提供更深入的生理和病理生理信息,有助于疾病的早期诊断和 预后评估。
该技术能够检测到传统影像学检查难以发现的细微病变,提高诊断的准确性和可靠 性。
磁共振功能成像还可以用于监测治疗效果和评估病情进展,为临床医生制定治疗方 案提供重要依据。
分析和处理,提高诊断准确性和可靠性。
新型成像技术
02
研究和发展新的磁共振功能成像技术,如高分辨率成像、多模
态成像等,以满足临床对诊断和治疗的更高要求。
实时成像与导航技术
03
实现实时成像和导航技术,为手术和介入治疗提供更精确的定
位和导航信息。
在临床诊断和治疗中的作用与价值
01
02
03
精准诊断
磁共振功能成像能够提供 更精准的定位和定性信息, 有助于医生对疾病的早期 发现和准确诊断。

磁共振 ppt课件

磁共振 ppt课件
化学交换饱和转移成像(Chemical Exchange Saturation Transfer,CEST):通过测量化学交换过程中产生的磁共振 信号来反映组织内的特定代谢物浓度,常用于神经退行性疾 病和肿瘤的研究。
05 磁共振的优势与局限性
优势
无电离辐射
磁共振成像技术利用磁场和射频脉冲,而 不是X射线,因此没有电离辐射,对病人
磁场均匀度
为了保证检测结果的准确性,磁体 系统需要提供高均匀度的磁场环境 。
射频系统
发射器
射频系统中的发射器负责 产生高频电磁波,用于激 发人体内的氢原子核。
接收器
接收器负责接收氢原子核 返回的信号,并将其转换 为可供计算机系统处理的 电信号。
射频线圈
射频线圈是发射和接收电 磁波的重要部件,其设计 和性能对信号质量和成像 质量有重要影响。
研究和发展分子成像技术,实现从分子水平上对疾病进行早期诊断 和疗效评估。
THANKS FOR WATCHING
感谢您的观看
磁共振的发展历程
1946年,美国科学家Bloch和Purcell 共同获得了诺贝尔物理学奖,因为他 们发现了核磁共振现象。
1977年,美国科学家Mansfield和 Maudsley开发出了基于快速扫描的 磁共振成像技术,大大缩短了成像时 间。
1971年,美国科学家Damadian发明 了第一台核磁共振成像仪,并获得了 专利。
无害。
高软组织分辨率
磁共振成像能够清晰地显示软组织结构, 对于脑、关节、肌肉等部位的病变诊断具
有优势。
多参数成像
磁共振成像可以获取多种参数,如T1、T2 、质子密度等,从而提供丰富的诊断信息 。
功能成像
除了结构成像外,磁共振还可以进行功能 成像,如灌注成像和弥散成像,有助于疾 病的早期诊断和预后评估。

磁共振成像(MRI)解剖PPT课件

磁共振成像(MRI)解剖PPT课件
局限性
检查费用较高、检查时间长、对 金属植入物敏感、部分患者不适 宜进行检查等。
02 MRI解剖学基础
头部MRI解剖
脑干与小脑
脑室与脑池
展示脑干和小脑的MRI图像,解释其 结构与功能。
介绍脑室和脑池的MRI表现,阐述其 临床意义。
脑皮质与髓质
通过MRI图像展示脑皮质和髓质的解 剖特点,解释其在神经系统中的作用。
信号产生与接收
通过施加射频脉冲,使原子核发生 能级跃迁并释放出能量,被探测器 接收并转化为电信号,再经过计算 机处理形成图像。
成像原理
利用不同组织对射频脉冲的吸收和 散射程度不同,通过测量磁场中原 子核的共振频率和相位信息,重建 出人体内部结构的图像。
MRI技术发展历程
1971年
第一台医用核磁共振成像仪问 世。
腹部MRI解剖
腰椎与肾脏
展示腰椎和肾脏的MRI图像,解释其在腹部结构中的功能。
肝脏与脾脏
通过MRI图像展示肝脏和脾脏的解剖特点,阐述其在消化系统中的作用。
03 正常MRI解剖图像展示
正常头部MRI解剖图像
总结词
展示大脑、脑干、小脑等结构
详细描述
正常头部MRI解剖图像可以清晰地展示大脑、脑干和小脑等重要结构,以及它们 之间的相互关系。这些结构包括灰质、白质、脑室和脑池等,对于诊断神经系统 疾病具有重要意义。
疗效评估
手术后或放化疗后,MRI 可用于评估肿瘤缩小或消 退的情况,监测疗效。
血管疾病的诊断与评估
动脉粥样硬化
MRI能够检测动脉粥样硬化的早期病变,对预防 心血管事件具有重要意义。
血管狭窄与阻塞
MRI能够评估血管狭窄和阻塞程度,为治疗方案 的选择提供依据。

《磁共振成像》课件

《磁共振成像》课件
穿着要求
穿着舒适、无金属纽扣或拉链的衣 服进行检查。
检查中的安全问题
保持静止
在检查过程中,需要保持静止不动,以免影 响成像效果。
遵循医生指导
在检查过程中,需要遵循医生的指导,如保 持正常呼吸、不要憋气等。
观察身体反应
在检查过程中,需要观察身体是否有不适反 应,如有异常应及时告知医生。
避免携带电子设备
02
磁共振成像系统
磁体系统
01
磁体类型
磁体系统是磁共振成像的核心 部分,主要分为永磁型、超导
型和脉冲型三种类型。
02
磁场强度
磁场强度是衡量磁体性能的重 要指标,通常在0.5-3.0特斯拉
之间。
03
磁场均匀性
为了获得高质量的图像,磁场 的均匀性必须得到保证,通常
要求在±0.01ppm之内。
梯度系统
• 技术挑战:高场强磁共振成像技术需要更高的技术和资金投入,同时还需要解决磁场均匀性、信噪比和安全性等问题。
快速成像技术
总结词
快速成像技术能够缩短成像时间,提高成像效率 ,减轻患者的痛苦和不适感。
发展趋势
随着快速成像技术的不断改进和完善,其应用范 围也将不断扩大,未来可能会成为磁共振成像技 术的主流之一。
02
详细描述
多模态成像技术是当前研究的 热点之一,它能够综合利用多 种成像模式的信息,如磁共振 成像、超声成像、X射线成像 等,从而提供更加全面和准确
的诊断结果。
03
发展趋势
多模态成像技术的应用范围将 不断扩大,未来可能会成为医
学影像技术的主流之一。
04
技术挑战
多模态成像技术需要解决不同 模态之间的兼容性和同步性问 题,同时还需要进一步提高图

15T磁共振的临床应用ppt课件

15T磁共振的临床应用ppt课件

MRI技术的优势
• 1.多参数成像,它可利用被检组织的物理和生物化学特性(如 水、铁、脂肪、血管外血液及其分解后的产物等)来作组织特性 的评价,并区别不同组织。
• 2.无需造影剂即可通过流动效应来评价血流和脑脊液的流动。 • 3自旋回波序列扫描时,骨皮质及钙不发射信号。因此,为骨骼
所包围的组织,如后颅窝和椎管内的组织显示清楚,不受因骨产 生的伪影所影响。 • 4.多方位扫描,无需移动病人即可作多方向的扫描,因此在制 定放射治疗和手术方案时很有帮助。 • 5.MRI增强扫描时所用的顺磁性造影剂无毒性反应,使我们能 研究血脑屏障的完整性。 • 6.MRI图像信号的采集无电离辐射,也无需含碘的造影剂;在 检查前不用对病人进行特殊的准备;加之它是一种无创伤性的检 查,所以易为病人所接受。
1、Gd-DTP A
特 点:
① 弛豫性强 ② 毒性小 ③ 安全系数大 ④ 细胞外分布 ⑤ 不通过正常血脑屏障 ⑥ 迅速由肾脏排出 ⑦ 在人体内结构稳定 ⑧ 具有高溶解度
2、 Gd-DTP A的适应症: 1、某些肿瘤的鉴别诊断。 2、确定血脑屏障是否被破坏。 3、提高病变的发现率。
3、禁忌或注意:过敏史、早期孕妇
静磁场的安全

两个国外的故事
MRI安全
• 磁共振检查给大家感觉,是非常安全的 设备。
• 但实际上磁共振存在许多安全隐患。稍 不注意就会对病人或医生造成严重伤害, 甚至是死亡。
MRI检查的禁忌证
• 1.体内有金属异物(如弹片、起搏器或动脉瘤术后的金属夹者, 尤其被检部位有金属异物(磁铁性金属),不仅因为磁体的吸引 力而会引起异物位置移动,造成危害,而且也会产生金属伪影, 致图像质量不良)。
• 8.腹部、盆腔MRI检查,应嘱咐病人检查前尽 可能空腹。盆腔检查前需要憋尿。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

囊性肿瘤与脓肿鉴别
实性
2020/10/28
20
2020/10/28
21
2020/10/28
蛛 网 膜 囊 肿
22
表皮样囊肿术后残存
2020/10/28
23
脑脓肿
2020/10/28
24
多形胶质母细胞瘤
2020/10/28
25
磁共振全身弥散技术
(Whole Body Diffusion Weighted Imaging,WB DWI)
2020/10/28
30
2020/10/28
FA彩色编码图
31
2020/10/28
32
胼胝体张量
2020/10/28
33
PART 4
2020/10/28
良性脑膜瘤
34
PART 4
2020/10/28
良性脑膜瘤 35
PART 4
2020/10/28
恶性脑膜瘤 36
磁共振灌注加权成像(PWI)
磁共振成像新进展
2020/10/28
1
磁共振成像(MRI)
❖ 利用人体组织中氢原子核(质子)在磁 场中受到射频脉冲的激励而发生核磁共 振现象,产生磁共振信号,经过电子计 算机处理,重建断层图像的成像技术。
2020/10/28
2
精品资料
MR图像特点
1、多参数灰阶成像
❖ T1WI: MR图像主要反映的是组织间T1 值的差别
2020/10/28
5
T1WI
5
T2WI
2、多方位成像
轴位、矢状位、冠状位、 任何倾斜位
2020/10/28
6
6
3、流空效应
❖ 定义:射频脉冲所激发的质 子在接收线圈获取MR信号时, 已流出成像层面;而此时成 像层面内原部位的质子为流 入的非激发质子,故不能产 生MRI信号,呈无信号黑影。
❖ 流空效应:不用对比剂使血 管成像
2020/10/28
18
根据Stejiskal-Tanner公式, ❖ ADC=ln(S2/S1)/(b1-b2) ❖ S2与S1是不同b 值条件下的信号强度。
2020/10/28
19
临床应用
❖ 发现病变 ❖ 定性诊断
– 脑梗死:
超急性、急性脑梗死 判断梗死核心
– 蛛网膜囊肿和表皮样囊肿鉴别 – 肿瘤的定性和分级诊断
❖ T2WI: MR图像主要反映的是组织间T2 值的差别
❖ PdWI: MR图像主要反映的是组织间质 子密度值差别
2020/10/28
4
4
❖同一组织或病变在不 同的成像序列具有不
同的信号强度。
❖T1WI
– T1值长,信号低(黑) – T1值短,信号高(白)
❖ T2WI
– T2值长,信号高(白)
– T2值短,信号低(黑)
❖ 反映组织内微血管分布及血流灌注 ❖ 通过测量不同的血液动力学指标,如脑
2020/10/28
7
7
4、MR对比增强效应
❖ 定义:顺磁性对比剂可以缩短周围质子 的弛豫时间。
2020/10/28
8
5、伪彩色功能图像
❖ 不同功能成像的技术,是正常或病变组 织以伪彩色显示在解剖结构背景上。
2020/10/28
9
6、无电离辐射 7、无骨骼伪影
2020/10/28
10
禁忌症
❖ 心脏起搏器、体内有体磁性物质、重症 监护患者
2020/10/28
11
2020/10/28
12
2020/10/28
13
一、磁共振功能成像
❖ 磁共振扩散加权成像(Diffusion Weighted Imaging , DWI) ❖ 扩散张量成像(Diffusion Tensor Imaging, DTI) ❖ 磁共振灌注加权成像(Perfusion Weighted Imaging , PWI ) ❖ 磁共振波谱成像(MR spectroscopy,MRS) ❖ 功能磁共振成像(functional MRI, fMRI ) ❖ 磁敏感加权成像(Susceptibility Weighted Imaging, SWI)
➢各向异性分数(FA)是水分子各向异性成分
占整个弥散张量的比例,描述水分子在弥散
过程中方向和速度上的不均匀性。其范围在
0~1之间,0代表最大的各向同性,1代表各
20向20/10异/28 性的最大值。
29
临床应用
❖ 反映白质纤维束的病理状态及其与邻近 病变的解剖关系 ;
❖ 白质纤维走行图对于手术方案的选择、 预后的评估提供影像学依据。
❖ 水分子的运动包括细胞内、细胞外、跨 细胞运动及微循环灌注;
❖ 细胞外运动及微循环灌注是组织DWI受 限的主要原因。
2020/10/28
16
磁共振扩散加权成像
❖ 弥散系数(diffusion coefficient,D):单个 水分子单位时间内随机弥散的平均范围 ( mm2/s) 。
❖ 由于组织间D值不同而形成DWI图像
❖ 是近几年最新发展起来的磁共振技术, 俗称磁共振类PET成像技术(MR PET)
❖ 敏感性高,无辐射,是非常适合于临床 筛查的一项检查手段;
❖ 对全身各系统的恶性肿瘤原发灶及淋巴 结与骨转移灶具有很高的诊断价值 。
2020/10/28
26
2020/10/28
27
磁共振扩散张量成像(DTI)
➢扩散张量成像(DTI)在多个方向上施
2020/10/28
14
磁共振扩散加权成像(DWI)
❖ 弥散(diffusion):指分子的随机不规则 运动,又称布朗运动,是人体重要的生 理活动,是体内的物质转运方式之一。 弥散是一物理过程,其原始动力为分子 的热能。
2020/10/28
15
磁共振扩散加权成像(DWI)
❖ DWI是利用活体组织中水分子的弥散运 动,反映组织和细胞微观结构和功能的 一种MR成像技术。
2020/10/28
17
❖ 表观弥散系数(Apparent diffusion coefficient, ADC) :来衡量水分子在人体组织环境中的弥 散运动。把影响水分子运动的所有因素(随机和非随
机)都叠加成一个观察值,反映弥散敏感梯度方向上 的水分子位移强度。
❖ ADC值越高,组织内水分子弥散运动越强,在 DWI图上表现为低信号,相反ADC值越低, DWI图上表现为高信号。
加弥散敏感的梯度脉冲并采集弥散信 息,能描述每一个方向上水分子弥散 的各向异性的组织弥散特征。经过计 算机处理可获得白质纤维走行图。
2020/10/28
28
磁共振扩散张量成像
➢ 各向同性(isot弥散系数。
➢ 各向异性(anisotropic):水分子弥散运动 在各个方向不同步性,称之为各向异性。
相关文档
最新文档