初三数学-二次根式
初三数学目录

初三数学(上下)目录第一章二次根式
第一节二次根式
第二节二次根式的乘除
第三节二次根式的加减
第二章二元一次方程]
第一节一元二次方程
第二节降次—二元一次方程
1 配方法
2 公式法
3 因式分解法
第三节实际问题与二元一次方程第三章旋转
第一节图形的旋转]
第三节中心对称
1 中心对称
2 中心对称图形
3 关于原点对称的点的图表
第四章圆
第一节圆
1 圆
2 垂直于弦的直径
3 弧弦圆心角]
4 圆周角]
第二节与圆有关的位置关系
1 点和圆的位置关系]
2 直线和圆的位置关系
3 圆和圆的位置关系
第三节正多边形和圆
第四节弧长和扇形面积
1 弧长和扇形面积
2 圆锥的侧面积和全面积
第五章概率初步
第一节概率
1 随机事件
2 概率的定义
第二节用举例法求概率]
第二节利用频率估计概率
第六章二次函数
第一节二次函数
第二节用函数观点看一元二次方程第四节实际问题与二次函数
第七章相似
第一节图形的相似
第二节相似三角形
1 相似三角形的判定
2 相似三角形的应用
3 相似三角形的周长与面积
第三节位似
第八章锐角三角函数
第一节锐角三角函数
第二节直角三角形
第九章投影与视图
第一节投影
第二节三视图。
九年级数学二次根式的概念、二次根式的乘除法知识精讲

初三数学二次根式的概念、二次根式的乘除法【本讲主要内容】二次根式的概念、二次根式的乘除法 1. 二次根式的概念 2. 二次根式的性质 3. 二次根式的乘法 4. 二次根式的除法【知识掌握】【知识点精析】一. 二次根式的概念:1. 定义:式子a a ()≥0叫做二次根式.注意:(1)根式定义中的a ≥0是定义的一个重要组成部分,不可省略;因为负数没有平方根,所以当a <0时,a 没有意义.如-2不是二次根式,()-22是二次根式,当a ≤0时,-a 是二次根式.(2)被开方数a 可以是数,也可以是代数式. 2. 最简二次根式(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式. (2)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简. ②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上. “三化”即化去被开方数的分母.二. 二次根式的性质:1. 非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. 2. ()()a a a 20=≥.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()()注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a a a 20=≥的区别与联系(1)a 2表示求一个数的平方的算术根,a 的X 围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的X 围是非负数. (3)a 2和()a 2的运算结果都是非负的.三. 二次根式的乘法ab a b a b =⋅≥≥()00,积的算术平方根,等于积中各因式的算术平方根的积.注意:(1)a b ≥≥00,是公式成立的必要重要条件.如()()-⨯-≠-⋅-4949 (2)公式中的a b ,可以是数,也可以是代数式,但必须是非负的.四. 二次根式的除法1.a baba b =≥>(,)00 商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 2. 分母有理化(1)把分母中的根号化去,叫做分母有理化.(2)分母有理化的依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式. (3)有理化因式两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式.常用的互为有理化因式有如下几种类型: ①a a 与;②a b a b +-与; ③a b a b +-与; ④a b c d a b c d +-与. (4)分母有理化时分母要先化简.【解题方法指导】例1. x 为何值时下列式子有意义? (1)21x + (2)-+15x (3)x x+-13 分析:要使二次根式有意义,被开方数必须是非负数. 解:(1)根据二次根式定义,得21012x x +≥∴≥-(2)根据二次根式定义,得-+≥∴+<∴<-1505005x x x ()分母不能为 (3)根据二次根式定义,得x x+-≥130 ∴+≥->⎧⎨⎩x x 1030或x x +≤-<⎧⎨⎩1030∴≥-<⎧⎨⎩x x 13或x x ≤->⎧⎨⎩13(空集)∴-≤<13x例2. 计算: (1)()62;(2)()352;(3)()82-a 解:(1)()662=(2)()()35359545222=⨯=⨯= (3)()882-=-a a点评:此例体现了公式()a a 2=的应用.对于(3)题()82-a ,其运算是先开平方、再乘二次方,所以题目本身已隐含了80-≥a .例3. 计算: (1)44176⨯;(2)-⨯⨯-4259169() (3)23483415⨯;(4)162436a a ⨯;(1)解法一:原式=⨯⨯=⨯=⋅=⨯=44444442442442882222 解法二:原式=⨯⨯⨯=⨯⨯=⨯⨯=11411161142114288222(2)解:原式=⨯⨯=⨯⨯425916925313222() =⋅⋅=253131303222()点评:运算时,(1)被开方数的积不要计算成一个结果,应是化简成幂的积的形式,以便于开方、化简;(2)被开方数的负因子要计算成正因子,才能用公式.(3)23483415⨯=⨯⨯=⨯⨯⨯=⨯⨯=2334481512163351243565 (4)162436163246a a a a ⨯=⨯⋅=⨯⨯=⨯⨯=12646126262a a a .例4. 化简. (1)19681;(2)27424c a b ;(3)385a ;(4)12a b a b ->()解法一:(1)原式==19681149(2)原式==⨯=27493232324222c a bc ab ab c ()解法二:(1)原式==()1491492 (2)原式=⋅=()323323222ab c ab c(3)原式=⋅⋅=a a a a 42321646注意:化去分母时,被开方数的分子、分母只要同乘2即可,若同乘8就太繁了. (4)原式=⨯--=--43232()()()a b a b a b a b 点评:化去被开方数的分母时,不能忘掉分子中开得尽方的因数的化简.例5. 把x yx y --分母有理化.解法一:原式=---=---=-()()()x y x y x y x y x yx yx y 2解法二:原式=--=-()x y x yx y 2(x y -中隐含条件x y ->0,故x y x y -=-()2) 同样,55555101010101022====()(),例6. 化简:1235133552735773+++++++++()()()()分析:联想分式中逆用分式加、减法,得到分子为1而分母也很简单的式子. 解:原式=+++++++++++()()()()()()()()1335133557735773=+++++++=-+-+-+-=11313515717312315375371() 点评:如果要直接化为同分母或先有理化分母,都太繁琐,但是,注意到数学中的公式总是双向的,如果根据题目的结构特点,灵活地逆用公式,在解题时便能左右逢源,得心应手.建议只能从左到右地运用公式而不习惯逆用(即由右到左)或变用公式的同学,对这几个题目多加分析,以求从熟悉、模仿到主动在解题中运用逆向思维的方法.例7. (2001年某某省中考题)填空题: 化简a a b a a ab-+的结果是________.分析:因为分母是含字母的根式,可能使a ab -=0,所以不可将分子、分母同乘以分母的有理化因子.但是,如果注意到分子、分母可以分解为乘积的形式,也许可以解决问题. 解:由所给算式知a b >≥00, ∴原式=-+=+-+=-a a b a a b a a b a b a a b a b ()()()()()【考点突破】【考点指要】二次根式的概念及其运算在中考说明中是C 级知识点,它们常与整式、分式、综合在一起,以选择题、填空题、计算题等题型出现在中考题中,大约占有4—8分左右.解决这类问题需熟练掌握二次根式的概念和运算法则.【典型例题分析】 例1. 选择题: (1)(2006年某某省中考题)函数y x =-1中,自变量的取值X 围是() A. x ≥1 B. x >1 C. x >0 D. x ≠1 (2)(2003年某某市中考题)选择题:如果()x x -=-222,那么x 的取值X 围是()A. x ≤2B. x <0C. x ≥2D. x >2(3)选择题:若a a a a 2211-=-,则a 的取值X 围是() A. a a >≠01且 B. a ≤0 C. a a ≠≠01且D. a <0(4)(1996年某某省中考题)选择题:若ab ≠0,则等式--=-a b b ab 531成立的条件是()A. a b >>00,B. a b ><00,C. a b <>00,D. a b <<00,分析:正确运用二次根式性质的前提是被开方数的非负性(在分母上则不能为零). 解:(1)要使x -1有意义,x -≥10,∴≥x 1 答案:选A .(2)等式()x x -=-222成立的条件是x -≥20,即x ≥2 故选C .(3)由a a aa 2211-=-,得 ||()a a a a 111-=- 即-⋅-=-||a a a a 1111于是,-=||a a1∴<a 0.故选D .(4)等式--=-a b bab 531变形为--=-1133||b ab b ab , 这个等式成立的条件是 ->=-⎧⎨⎩ab b b 0||即ab b <<⎧⎨⎩0 ∴><a b 00且故选B .点评:正确运用二次根式性质的前提是掌握公式中被开方式中字母的取值X 围,而且这个X 围必须使每个二次根式都有意义,因本例的问题是找使公式能成立的条件,所以是逆向求字母的取值X 围,这种方法常归结为求不等式组的解的问题.★最简根式 例2. 选择题: (1)(2004年某某市中考题)下列二次根式中,最简二次根式是()A.12B. 8C. y 3D. a 21+ (2)(2002年某某市中考题)下列二次根式中,属于最简二次根式的是()A. 4aB. a 4C. a4D. a 4(3)下列根式中,最简二次根式是()A. 23aB. aa3 C. a b b a D. a a b 423+(4)(2001年某某省中考题)下列二次根式:2xy ,8,ab2,35xy ,x y +,12,其中最简二次根式共有()A. 2个B. 3个C. 4个D. 5个分析:紧扣最简二次根式的条件:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.解:(1)因为12中含有分母,822232=⋅=⋅和y y y 的被开方数中含开得尽方的因数或因式,它们都不是最简二次根式,只有a 21+满足最简二次根式的条件,故选D . (2)选C . (3)选B .(4)只有2xy x y 和+是最简二次根式,故选A .点评:判断一个二次根式是不是最简二次根式,必须抓住由“两条”刻画的“最简”含义,先看被开方数的因数是不是整数,因式是不是整式,再看被开方数是不是含有能开得尽方的因数或因式,如果“两条”都满足的就是最简二次根式,否则就不是最简二次根式.★对错难辨例3. (2001年某某市中考题)阅读下面的文字后,回答问题.小明和小芳解答题目“先化简下式,再求值:a a a +-+122,其中a =9”时,得到了不同的答案.小明的解答是:原式=+-=+-=a a a a ()()1112;小芳的解答是:原式=+-=+-=-=⨯-=a a a a a ()()1121291172; (1)__________的解答是错误的.(2)错误的解答错在未能正确运用二次根式的性质:________. 答案:(1)小明(2)a a 2=||点评:本例中,小明的错误是同学最容易出现的错误,如a a a a 22=-=-,(),42=±,等等.纠正办法是:①明确“a ”表示算术平方根;②明确算术平方根的非负性,即a a ≥≥00(),也就是说a 只能是正数或0,而不可能是负数;③在化简a 2时,应利用公式a a 2=||过渡,稍作停留,冷静下来,看清算术根的实质,再去掉绝对值符号(需分类讨论时再分类写出答案),即可确保万无一失.★隐含条件例4. (1)(2002年市顺义区中考题)把二次根式a a-1化简,正确的结果是() A. -aB. --aC. -aD. a(2)(2001年某某省中考题)化简二次根式a a a -+12的结果是() A. --a 1B. ---a 1C. a -1D. --a 1分析:紧紧抓住:对于a ,只有当a ≥0时,a 才表示a 的算术平方根. 解:(1)显然a ≠0,由->10a,得a <0 ∴-=-=⋅-=⋅-=--=--a a a a a a a aa a a a a a a 122||故选B .点评:①因为二次根式a 隐含条件“a ≥0”,所以本题隐含了一个条件->10a②a a a a ||()()=>-<⎧⎨⎩1010(2)显然a ≠0.由a a aa 2201010>-+≥-+≥,,得() ∴≤-∴=-+=⋅-+=⋅-+a aa a a a a a a a 111122原式()()()|| =---=---aa a a 11 故选B . 点评:在化简二次根式a 2的问题中,要把根式的性质a a 2=||与绝对值||a 的概念结合起来,形成一条“等式链”:a a a a a a 200==≥-<⎧⎨⎩||(),()在具体解题时,强调在这个“等式链”的中间一环——||a 处“暂停”,以便由||a 再考虑a 的符号,以保证最后结果为非负数. ★对错难辨例5. (1)(2002年某某省中考题)选择题:化简132+.甲、乙两位同学的解法如下:甲:13232323232+=-+-=-()()乙:132323232323232+=-+=+-+=-()()对于甲、乙两位同学的解法,正确的判断是()A. 甲、乙的解法都正确B. 甲正确、乙不正确C. 甲、乙的解法都不正确D. 甲不正确、乙正确(2)选择题:有理化分母:x yx y-+小聪和小明的解法如下:小聪的解法:原式=--+-()()()()x y x y x y x y=---=-()()x y x y x yx y小明的解法:原式=-+()()x y x y22=+-+=-()()x y x y x yx y对于小聪、小明的解法,正确的判断是()A. 小聪、小明的解法都正确B. 小聪正确、小明不正确C. 小聪、小明的解法都不正确D. 小聪不正确、小明正确分析:在作二次根式的除法时,通常把除法写成分数的形式,所得的商应是分母中不含根号的式子.如果分母中含有根号,就要把分母中的根号化去.至于怎么“化去”分母中的根号,既可以采用根式的除法运算,也可以在分子、分母上同乘以分母的有理化因式,只要能使分母变成有理式(但分母的值不能为零!) 解:(1)甲的解法是在分子、分母上同乘以分母()32+的有理化因式()32-,使分母变成了有理式1,所得的商是分母中不含根式的式子.所以,甲的解法正确.乙的解法是把分子1变成()32-后分解变形,变成()()3232+-,利用二次根式的除法运算(实际上是“约分”),也把分母变成了有理式1,所得的商也是分母中不含根式的式子,所以,乙的解法也正确. 故选A .(2)首先注意题目的隐含条件:由已知的算式可知,应该有x >0且y >0.但是,x y 、之间的大小关系,在已知算式中没有特别地表明,所以,x y 、之间的关系应该有:x y x y ≠=或.由此可见,小聪的解法不正确.错误的原因是:如果x y =,那么x y -=0,分子、分母就不能同乘以分母()x y +的有理化因式()x y -.小明的解法是正确的.因为他把分子x y -分解变形:由x y x y x y x y x y >>-=-=+-0022,,得()()()(),然后应用根式的除法运算使分母中的根号化去,符合分母有理化的标准,而且在这个过程中,保持分母不为零.所以,小明的解法正确. 故选D . 点评:本题表现的是分母有理化的两种基本方法以及应该注意的地方.在作二次根式的除法时,特别是除式的两个根式的和的情形,如本例两个小题那样,为了化简或计算上避免作除数是近似小数的除法运算,要使所得的商是分母中不含根式的式子,就要化去分母中的根号(这个过程就是分母有理化),基本方法一是分子、分母同乘以分母的有理化因式,使分母变为有理式;二是通过分子的分解变形约去分母中的根号.这是代数中的基本功,一定要熟练掌握.当然,由于所给式子结构形式的其他特点,也可以采用其他的办法进行分母有理化.★化简求值例6. (1)(2002年某某省某某市中考题)当x =-21时,求x x x x x x x +-++⋅-++13114322的值. 分析:先化简,再代入求值.解:x x x x x x x +-++⋅-++13114322 =+-++⋅+-++=+--+=+x x x x x x x x x x x x x 131111311111()()()()∴当x =-21时原式=-+==12111222(2)(2002年某某市中考题)填空题:已知x =+21,则代数式:x x x x x x x x -+--÷--++121221222的值等于______. 解:原式=-+--⋅++--x x x x x x x x 121212222 =-+-+-⋅++-=-+-=+-x x x x x x x x x x x x x 1211112111112()()()()()∴当x =+21时原式=+++-=+=+211211212212()(3)(2001年某某省某某市中考题)已知a =+123,求a a a a a a a2226221--+--+-的值. 分析:“目标”中有a a 221-+,化简时应由已知推知a -1的正负.解:由a =+=-<123231,得a -<10∴原式=+-+---()()()()a a a a a a 232112=----=-+--=+-a a a a a a a a a a31131113||()()a =-∴=-++-=23232331,原式点评:本题因化简()a -12需要将123+进行分母有理化,得到a =-<231,一方面解决了a -<10,从而()()a a -=--112,使原式顺利化简,另一方面又在最后求值计算a a +1时正好用上了,再注意到由已知即得123a=+,使计算合理、正确、迅速.这个题目设计巧妙,考查了有理式变形(因式分解、约分)和根式变形(化简()a -12、分母有理化),以及计算的灵活性、合理性,是一个多功能的好题.【综合测试】一. 选择题:1. (某某市)下列二次根式中,最简二次根式是() A. 22xB. b 21+C. 4aD.1x2. (某某省)在下列式子中,正确的是() A. -=-5533 B. -=-3606.. C. ()-=-13132D. 366=± 3. (市某某区)化简1231-的结果为()A. 231+B. 231-C.23111- D. 23111+ 4. (某某市)下列二次根式中,属于最简二次根式的是()A. 4aB. a 4C. a4 D. a 45. (某某市)化简132-的结果是()A. 32-B. 32+C. --32D. -+326. (某某市)下列二次根式中,属于最简二次根式的是()A. x2B. 8C. x 2D. x 21+7. (某某回族自治区)已知a =+132,b =-32,那么a 与b 的关系为()A. a b =B. a b +=0C. ab =1D. ab =-18. (某某市)-a 3化简的结果为()A. -a aB. a a -C. --a aD. a a 9. 在根式2823512xy ab xy x y ,,,,,+中,最简二次根式的个数是() A. 2B. 3C. 4D. 510. (2001某某)能使等式xx xx -=-22成立的x 取值X 围是()A. x ≠2B. x ≥0C. x >2D. x ≥2二. 填空题:1. (某某省)若x <5,则()x -=52_______.2. (某某市)若14<<x ,则化简()()x x -+-4122的结果是________.3. (某某市)计算⋅---+)3223(1313()3223+=_________.4. (某某市)已知x =-152,则x x -1的值等于_______. 5. (某某省)已知,实数a b ,在数轴上对应点的位置如图所示,化简:b b a --=()2_______.a 0 b6. (某某市)已知x ≤1,化简124422-+--+=x x x x _______.三. 当x 是何实数时,下列各式分别为二次根式? (1)21x +;(2)-52x ; (3)1-||x ;(4)x x 244-+四. 化简:1. ()()()x x x ---<<810810222. ()()x y x yx y ---<13. a ab ab b ab a b 2240+⋅+⋅<<()4. ()()m n mnm mn n n m 222220--+>>5. |()|||()x x x x --+-<22112五. 求代数式的值:1. (某某市)先化简,再求值:()1112+÷-x x x,其中x =22. (市东城区)已知a b =-=+152152,,求b a ab ++2的值. 3. (某某省)先化简,再求值:()()()2121212a a a +-+-,其中a =-512六. (某某市)化简352+,甲、乙两同学的解法如下:甲:3523525252+=-+-()()()=-52;乙:352525252+=+-+()()=-52对于他们的解法,正确的判断是() A. 甲、乙的解法都正确B. 甲的解法正确,乙的解法不正确C. 乙的解法正确,甲的解法不正确D. 甲、乙的解法都不正确七. 把代数式()x y x y---1根号外的因式移到根号内,并化简.某同学这样解:原式=---=--=-()()x y x yx y y x 2问:他做得对吗?如果不对,就指出错误的原因,并写出正确的解法.八. 已知a b =51,是a 的小数部分,求a b21-的值.【综合测式答案】一. 1. B 2. A 3. D 4. C5. B6. D7. B8. C9. A10. C二. 1. 5-x 2. 33. 34-4. 45. a6. -1三.解:(1)要使21x +为二次根式,必须210x +≥,即x ≥-12∴当x ≥-12时,21x +为二次根式. (2)要使-52x 为二次根式,必须-≥502x ,即x 20≤,而x 2是非负的,得x =0.∴当x =0时,-52x 为二次根式.(3)要使1-||x 为二次根式,必须10-≥||x ,得||x ≤1,即-≤≤11x .∴当-≤≤11x 时,1-||x 为二次根式.(4)要使x x 244-+为二次根式,必须04x 4x 2≥+-,而x x x 22442-+=-(),不论x 取何实数,()x -22是非负的,即()x -≥202.∴x 取任意实数时,x x 244-+都为二次根式.说明:通过本例我们应进一步明确a a ()≥0的意义.不是对任意的实数a a ,都有意义,只有当a 有意义时,它才叫做二次根式.四. 1. 原式=---=---=--+=-||||()x x x x x x x 810810810218 2. 原式=-----=--()()()x y x y x y y x3. 原式=++⋅=+=+()()()|()|a ab ab b ab a b a b ab a b 22222442=-+=--22222ab a b a b ab ()4. 原式=+--=-+()()(()m n m n n m)mn m n mn5. 原式=--+-=-++-=|()()|||x x x x x x 2212220五. 1. 原式=+⋅+-=-x x x x x x 11111()() 当x =2时,原式=-=+121212. a =-=+15252,b =+=-15252原式=+=++-+-==()()()()()a b ab 2225252525225120 3. 原式=++--4414122a a a ())1a 2(22a 41a 41a 4a 422+=+=+-++= 当a =-512时,原式52)115(2=+-=六. A七. 解:他做得不对.错误的原因是他没有考虑到原式成立的隐含条件是-->10x y,即x y -<0.因为把根号外的代数式移到根号内时,实际上是在逆用“等式链”a a a a a a 200==≥-<⎧⎨⎩||()()也就是说,应先考虑移到根号内的代数式的正、负,注意只能把正因式平方后移到根号内.正确的解法:由所给代数式知-->10x y,故x y -<0.∴原式=---()y x y x1=---=--()y x y x y x 2说明:如果你不能看出某同学解法的问题,就可以把具体的数代入算算看,例如取x y ==37,(思考:为什么不取x y ==73,呢?)那么,一方面,由题目的原式=---=-=-()371374142;另一方面,由这位同学解得的结果得原式=-=734=2.由此可见,这位同学做错了.八. 解:由495164<<,得7518<< ∴a 的小数部分b =-517 ∴-=--=-+-a b 2151215175125175149 272751251-=+-=。
初三上数学课件(华东师大)-二次根式的除法

5 .
A. 48÷ 12=4
B.3 2÷2 2=1
C. 24÷ 6=2
D.
2 3÷
6=2
2.计算:
18= 3
6
;
16a3b÷ 2a= 2a
2b
;-2 56= -43 3 14
.
知识点二:商的算术平方根
商的算术平方根等于 算术平方根的商 ,即 ab=
3.下列化简正确的是( D )
A. --49= --49=--23=23
【规范解答】(1) 1.25= 54= 25; (2) 549= 499= 499=37; (3) 4a2b+8a3b= 4a2b+2ab=2a b+2ab.
知识点一:二次根式的除法
两个算术平方根的商,等于被开方数的商的算术平方根 ,即 a=
a b
b
(a≥0,b> 0 ).
1.下列计算结果正确的是( C )
会用商的算术平方根性质化简.
【例 2】化简:
(1)
25166×9 9;(2)
98y 25x2.
【思路分析】给的二次根式中被开方数都是能开得尽方的或分母能开得尽
方的,可以直接运用商的算术平方根的性质进行化简.
【规范解答】(1) 25166×9 9=
25166×9 9=
256× 13
9=161×3 3=4183;
(3)
2 5+
; 3
(4)2
1 5+5
2.
解:(Байду номын сангаас)a
1= b
a
b b·
= b
abb;
(2)
31-1=
3+1 3-1 3+1=
3+1 2;
(3)
2 5+
人教版数学中考知识点梳理-二次根式

第4讲二次根式青海一中李清
一、知识清单梳理
【素材积累】
1、一个房产经纪人死后和上帝的对话一个房产经人死后,和上帝喝茶。
帝认为他太能说了,会打扰天堂的幽静,于是旧把他打入了地狱。
刚过了一个星期,阎王旧满头大汗找上门来说:上帝呀,赶紧把他弄走吧!上帝问:怎么回事?阎王说:地狱的小。
2、机会往往伪装成困难美国名校芝加哥大学的一位教授到访北大时曾提到:芝加哥大学对学生的基本要求是做困难的事。
因为一个人要想有所成旧,旧必须做那些困难的事。
只有做困难的事,才能推动社会发展进步。
暑期新初三数学讲义第一讲二次根式及一元二次方程

第一讲 二次根式及一元二次方程【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2⎩⎨⎧<-≥)0()0(a a a a 5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0);=b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算6.分母有理化(1)定义:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:a =b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如a +与a -,,(3)分母有理化的方法与步骤:(1)先将分子、分母化成最简二次根式;(2)将分子、分母都乘以分母的有理化因式,使分母中不含根式;(3)最后结果必须化成最简二次根式或有理式。
7、一元二次方程:(1)定义:在一个等式中,只含有一个未知数,且未知数的最高项的次数的和是2次的整式方程叫做一元二次方程。
初三数学知识点大全

初三数学知识点大全初三数学各章节重要知识点概要第21章二次根式1.二次根式是指形如a的式子,其中a≥0.2.重要公式:(a)²=a(a≥0),a²=a或a²=-a(a<0)。
3.积的算术平方根等于积中各因式的算术平方根的积。
4.二次根式的乘法法则:a×b=ab(a≥0,b≥0)。
5.二次根式比较大小的方法:利用近似值比大小,把二次根式的系数移入二次根号内,分别平方,然后比大小。
6.商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
7.二次根式的除法法则:a/b=a×(1/b)(a≥0,b>0),分母有理化的方法是分式的分子与分母同乘分母的有理化因式,使分母变为整式。
8.最简二次根式满足被开方数的因数是整数,因式是整式,被开方数中不含能开的尽的因数或因式;被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;化简二次根式时,往往需要把被开方数先分解因数或分解因式;二次根式计算的最后结果必须化为最简二次根式。
10.同类二次根式是指化成最简二次根式后,被开方数相同的二次根式。
12.二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
第22章一元二次方程1.一元二次方程的一般形式是ax+bx+c=0,其中a≠0.2.研究一元二次方程的有关问题时,多数题要先化为一般形式,目的是确定一般形式中的a、b、c;其中a、b、c可能是具体数,也可能是含待定字母或特定式子的代数式。
2.解一元二次方程的方法有四种,需要根据实际情况选择合适的方法。
直接开平方法虽然简单,但只适用于某些特定情况;公式法适用范围较广,但计算较为繁琐,容易出错;因式分解法适用范围广,计算简单,是首选方法;而配方法使用较少。
3.一元二次方程的根的判别式是Δ=b^2-4ac,其中a、b、c为方程ax^2+bx+c=0中的系数,注意以下等价命题:当Δ>0时,方程有两个不等实根;当Δ=0时,方程有两个相等实根;当Δ<0时,方程无实根。
初三数学二次根式知识点学习讲解

初三数学二次根式一、学习目标1.二次根式的定义、最简二次根式、同类二次根式;2.二次根式的运算。
二、知识点讲解二次根式定义一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。
当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。
注意被开方数可以是数,也可以是代数式。
被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
二次根式的判断方法根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
性质1. 任何一个正数的平方根有两个,它们互为相反数。
如正数a的算术平方根是,则a的另一个平方根为﹣;最简形式中被开方数不能有分母存在。
2. 零的平方根是零;3. 负数的平方根也有两个,它们是共轭的。
如负数a的平方根是±i。
4. 有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
5. 无理数可用连分数形式表示。
6. 当a≥0时,()22;()2与2中a取值范围是整个复平面。
7. ()2=a任何一个数都可以写成一个数的平方的形式;利用此性质可以进行因式分解。
8. 逆用可将根号外的非负因式移到括号内。
算术平方根非负数的平方根统称为算术平方根,用(a≥0)来表示。
负数没有算术平方根,0的算术平方根为0。
有理化因式两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。
有理化因式注意①他们必须是成对出现的两个代数式;②这两个代数式都含有二次根式;③这两个代数式的积化简后不再含有二次根式;④一个二次根式可以与几个二次根式互为有理化因式。
分母有理化在分母含有根号的式子中,把分母的根号化去,叫做分母有理化。
分母有理化即将分母从非有理数转化为有理数的过程最简二次根式①被开方数的因数是整数或字母,因式是整式;②被开方数中不含有可化为平方数或平方式的因数或因式。
初三数学目录

初三数学目录
一、二次根式
1.1 二次根式的定义与性质
1.2 二次根式的化简
1.3 二次根式的运算规则
二、二次根式的乘除
2.1 二次根式乘法的运算方法
2.2 二次根式除法的运算方法
2.3 乘法与除法的混合运算
三、二次根式的加减
3.1 二次根式加减的前提
3.2 同类二次根式的合并
3.3 加减运算在实际问题中的应用
四、一元二次方程
4.1 一元二次方程的定义
4.2 一元二次方程的一般形式
4.3 一元二次方程的解与判别式
五、降次——解一元二次方程
5.1 公式法解一元二次方程
5.2 因式分解法解一元二次方程
5.3 配方法解一元二次方程
5.4 一元二次方程的解的应用
六、实际问题与一元二次方程
6.1 一元二次方程在实际问题中的应用
6.2 利润、面积等问题的数学模型
6.3 一元二次方程的最值问题
七、图形的旋转
7.1 旋转的定义与性质
7.2 旋转对称图形
7.3 旋转对称在实际图形设计中的应用
八、中心对称
8.1 中心对称的定义与性质
8.2 中心对称图形的识别与绘制
8.3 中心对称在几何问题中的应用
注:以上目录为初三数学的主要内容概览,具体章节内容可能因教材版本和学校教学进度而有所差异。
在实际学习过程中,请结合教材和教师教学安排,逐步深入学习各个章节的内容。
初三数学知识点大全

精心整理初三数学各章节重要知识点概要倪月舟第21章二次根式1.二次根式:一般地,式子)0a(,a≥叫做二次根式.2345(((67((3)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12((第是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根;Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根;4.平均增长率问题--------应用题的类型题之一(设增长率为x):(1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和.第23章旋转1、概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋个对应点与旋转中心的连线段的夹角等于旋转角°,如果它能够与另一个图形重合,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心. 6、坐标系中的中心对称第24章圆1、(要求深刻理解、熟练运用)1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形. 三 公式: 1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2.(4)扇形面积S扇形 =LR1R n 2=π; (r四 ? d 5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ? d >R+r ; 两圆外切 ? d=R+r ; 两圆相交 ? R-r <d <R+r ;两圆内切 ? d=R-r ; 两圆内含 ? d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径”的方法加辅助线.第25章概率1、必然事件、不可能事件、随机事件的区别2、概率m会稳定在某个一般地,在大量重复试验中,如果事件A发生的频率n常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P第一半图象下坡;其中c叫二次函数在y轴上的截距, 即二次函数图象必过(0,c)点.3. y=ax2 (a≠0)的特性:当y=ax2+bx+c (a≠0)中的b=0且c=0时二次函数为y=ax2 (a≠0);这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y轴对称;(2)顶点(0,0);4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式-------待定系数法.5.二次函数的顶点式: y=a(x-h)2+k (a≠0);由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程 x=h 和函数的最值 y= k.最值6a,的图二次函数y=ax+bx+c (a≠0)的图象及几个重要点的公式:二次函数y=ax2+bx+c (a≠0)中,a、b、c与Δ的符号与图象的关系:(1) a>0 <=> 抛物线开口向上; a<0 <=> 抛物线开口向下;(2) c>0 <=> 抛物线从原点上方通过; c=0 <=> 抛物线从原点通过;c<0 <=> 抛物线从原点下方通过;y(4) b2-4ac>0 <=> 抛物线与x轴有两个交点;b2-4ac =0 <=> 抛物线与x轴有一个交点(即相切);b2-4ac<0 <=> 抛物线与x轴无交点.10.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.第27章相似形(要求深刻理解、熟练运用)1.三角形中,作平行线构造相似形和已知中点构造中位线是常用辅助线. 2.相似形有传递性;即:∵Δ1∽Δ2Δ2∽Δ3∴Δ1∽Δ3四、位似A1、位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,且每组对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.2、掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心34第1.2么:sinA=cosB ; cosA=sinB ; tanA=cotB ; cotA=tanB.3. 同角三角函数关系:sin 2A+cos 2A =1; tanA·co tA =1. tanA=A cos A sin 4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函数随角的增大,函数值反而减小.5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k, 它可以推出特殊角的直角三角函数值,要熟练记忆它们.坡平线。
二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
初三数学二次根式

初三数学二次根式
初三数学中,关于二次根式的主要内容包括以下几个方面:
1. 二次根式的定义和性质:二次根式指的是含有根号的形式,如√2、3√5等。
这些式子可以进行简化、合并、化简,也可以进行加减乘除等运算。
2. 二次根式的化简:一般来说,我们希望将二次根式化简
为最简形式。
这需要运用一些技巧,如分解因数、用有理
化方法去除根号等。
3. 二次根式的运算:在进行加减乘除运算时,需要注意二
次根式的可加性和可乘性。
具体来说,需要注意同类项的
合并、乘方的运算等。
4. 二次根式的应用:二次根式在几何中有广泛的应用,例
如计算线段的长度、三角形的面积等。
在实际问题中,也
常常会涉及到二次根式的计算和应用。
初三数学中的二次根式内容相对简单,主要是为后续数学学习打下基础。
在高中阶段数学中,会进一步学习二次根式的性质和运算规律。
九年级数学上册《第21章_二次根式》小结课件_人教新课标版

2 = 2 ______ . 5 5
一般地,对二次根式的除法规定
a a a 0, b 0 b b
二次根式的加法
8+ 18 2 2+3 2 (化成最简二次根式) 2+3 2 5 2
(分配律)
分析上面计算 8+ 18 的过程,可以看到,把 8 和 18 化 成最简二次根式 2 2 和 3 2 后,由于被开方数相同(都是2), 可以利用分配律将 3 2 和 2 2 进行合并.
一、本章知识结构图
二次根式
a aa 0
2
a 2 aa 0
二 次 根 式 的 化 简 与 运 算
二次根式乘除
二次根式加减
二、回顾与思考 1.对于二次根式,要明确被开方数必须是非负数,也就是说, 对于 ,只有当a≥0时才有意义. a
2.二次根式的运算中,一般要先把式子中的二次根式适 当化简. 10. 2 = = 3
一般地,对二次根式的乘法规定:
a b ab a 0, b 0 .
二次根式的除法
1
2 2 4 4 ( ), ( 9 9 3 3
);
2
2 2 = ______ ; 3 3
3
二次根式相减时,可以先将二次根式化成最简二次根式,再将 被开方数相同的二次根式进行合并.
4.结合本章内容,进一步体会代数式在表 示数量关系方面的作用.
3 2 a 2 2, , 10 a
这些式子有如下两个共同点: (1) 被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式
把满足上述两个条件的二次根式,叫做最简二次根式.
3.结合例子说明二次根式的加、减、乘、除运算法则.
二次根式的乘法
1 4
二次根式知识点

二次根式知识点一、二次根式的定义二次根式是指具有形式√a的数,其中a为非负实数。
在二次根式中,根号下的数a叫做被开方数。
二、二次根式的性质1. 二次根式的值始终为非负实数,即√a ≥ 0。
2. 二次根式的积仍然是一个二次根式,即√a · √b = √(a·b)。
3. 二次根式的商仍然是一个二次根式,即√a ÷ √b = √(a÷b),其中b≠ 0。
4. 二次根式的乘方仍然是一个二次根式,即(√a)^n = √(a^n),其中n为正整数。
5. 二次根式可以与整数运算,即√a + √b = √a + √b。
6. 同类项相加,即a·√b + c·√b = (a+c)·√b。
三、二次根式的化简1. 将二次根式改写成带有平方数因子的形式,如√(a ·b) = √a · √b。
2. 合并同类项,如√a + √a = 2√a。
3. 分解被开方数的因数,如√(a·a·b) = a√b。
4. 有理化分母,如分母有根号,可以将其乘以一个形如√b/√b的式子,使分母变为有理数。
四、二次根式的运算1. 二次根式的加法:将二次根式看作是整体进行运算,合并同类项,如√a + √b = √a + √b。
2. 二次根式的减法:使用减法的性质,将减法改写为加法,如√a -√b = √a + (-√b)。
3. 二次根式的乘法:使用分配律进行展开,合并同类项,如(√a +√b)·(√c + √d)。
4. 二次根式的除法:利用有理化分母将除法转化为乘法,然后进行乘法运算。
五、二次根式的应用1. 二次根式在几何中的应用:例如计算正方形的对角线长度,三角形中的边长等。
2. 二次根式在物理中的应用:例如求解速度、加速度等问题。
3. 二次根式在方程中的应用:例如求解二次方程的根。
六、常见的二次根式1. 2的二次根式约等于1.414,常用符号表示为√2。
九年级数学二次根式知识点

九年级数学二次根式知识点一、二次根式1. 定义:二次根式是形如√a的表达式,其中a是非负实数。
2. 运算规则:(1) 乘法规则:√a * √b = √(a * b)(2) 除法规则:√a / √b = √(a / b),其中b不能为0(3) 幂运算规则:(√a)^n = (√a)^(n / 2),其中n为偶数,a为非负实数3. 合并同类项:(1) 如果二次根式的底数相同,则可以合并为一个根号,即√a ±√a = ±2√a(2) 如果二次根式的根次相同,则可以合并为同一个根次的根号,即√a^n ±√a^n = ±2√a^n(3) 如果二次根式的底数和根次都相同,则可以合并为同一个根号,即√a^n * √a^n = a^n,(√a^n) / (√a^n) = 1二、二次根式的化简1. 因式分解法:将二次根式的底数a分解为素数的乘积,然后利用乘法规则、除法规则和合并同类项的规则将二次根式化简为最简形式。
2. 有理化分母法:利用有理化分母公式将二次根式的分母有理化。
(1) a + √b有理化分母:a + √b = (a + √b) * (a - √b) / (a - √b)(2) a - √b有理化分母:a - √b = (a - √b) * (a + √b) / (a + √b)(3) 1 / (a + √b)有理化分母:1 / (a + √b) = (a - √b) / (a^2 - b)(4) 1 / (a - √b)有理化分母:1 / (a - √b) = (a + √b) / (a^2 - b)三、二次根式的运算1. 加减运算:将二次根式化为最简形式,然后合并同类项。
2. 乘法运算:将二次根式的底数和根次分别相乘。
3. 除法运算:将二次根式的底数和根次分别相除。
4. 化简运算:利用因式分解法或有理化分母法将二次根式化简为最简形式。
四、二次根式的应用二次根式在实际问题中具有广泛的应用,例如计算物体的体积、面积等。
数学初三基础知识点二次根式

数学初三基础知识点二次根式第21章二次根式学生差不多学过整式与分式,明白用式子能够表示实际问题中的数量关系。
解决与数量关系有关的问题还会遇到二次根式。
二次根式一章就来认识这种式子,探究它的性质,把握它的运算。
在这一章,第一让学生了解二次根式的概念,并把握以下重要结论:注:关于二次根式的运算,由于二次根式的乘除相关于二次根式的加减来说更易于把握,教科书先安排二次根式的乘除,再安排二次根式的加减。
二次根式的乘除一节的内容有两条进展的线索。
一条是用具体运算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到并运用它们进行二次根式的化简。
二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。
在本节中,注意类比整式运算的有关内容。
例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍旧适用。
这些处理有助于学生把握本节内容。
第22章一元二次方程学生差不多把握了用一元一次方程解决实际问题的方法。
在解决某些实际问题时还会遇到一种新方程一元二次方程。
一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
本章第一通过雕像设计、制作方盒、排球竞赛等问题引出一元二次方程的概念,给出一元二次方程的一样形式。
然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。
下面分别加以说明。
(1)在介绍配方法时,第一通过实际问题引出形如的方程。
如此的方程能够化为更为简单的形如的方程,由平方根的概念,能够得到那个方程的解。
进而举例说明如何解形如的方程。
然后举例说明一元二次方程能够化为形如的方程,引出配方法。
最后安排运用配方法解一元二次方程的例题。
九年级数学二次根式全章

易错难点剖析及注意事项提醒
01
易错点一:忽视被开方数的非负性
02
在解决二次根式问题时,要确保被开方数是非负数,否则 二次根式无意义。
03
易错点二:忽视二次根式的化简
04
在进行二次根式运算时,要先将二次根式化为最简形式, 再进行运算,否则可能导致结果错误。
05
易错点三:忽视运算过程中的符号问题
06
在进行二次根式运算时,要注意符号问题,特别是在进行 加减运算时,要确保同类二次根式的符号一致。
应用场景
适用于含有公因式的二次根式化简。
示例
$sqrt{18a^3b^4c^5}=sqrt{9a^2b^4c^4
times
2ac}=sqrt{9a^2b^4c^4}
times
sqrt{2ac}=3ab^2c^2sqrt{2ac}$
典型例题解析与思路拓展
01
典型例题
$sqrt{75}-sqrt{54}+sqrt{96}-sqrt{108}$
03 二次根式化简技巧与方法
完全平方公式在化简中应用
完全平方公式
01
$(a+b)^2=a^2+2ab+b^2$ 和 $(a-b)^2=a^2-2ab+b^2$
应用场景
02
当二次根式中含有完全平方项时,可以直接应用完全平方公式
进行化简。
示例
03
$sqrt{4+4sqrt{3}+3}=sqrt{(2+sqrt{3})^2}=2+sqrt{3}$
九年级数学二次根式全章
目 录
• 二次根式基本概念与性质 • 二次根式四则运算规则 • 二次根式化简技巧与方法 • 二次根式在生活实际问题中应用 • 复杂二次根式处理和转换策略 • 总结回顾与拓展延伸
初三数学最新课件-二次根式的除法 精品

例3: 计算 3
5
解: 3
5
3
5
35 55
15
52
15
52
15 5
解法二: 3 3 5 5 5 5
15
2
5
15 5
分母有理化的概念:把分母中的根号化去,使分母变 成有理数,这个过程叫做分母有理化。
练习:把下列各式的分母有理化:
(1)-4 2 37
(2) 2a a+b
(3) 3
2 40
a b ab(a 0,b 0)
ab a ( b a 0,b 0)
注意:
a、b 必须都是非负数,上式才能成立。
二次根式的除法
探究
计算下列各式, 观察计算结果, 你发现什么规律?
1
4
2
__3___,
9
4 9
2
__3___2
16 25
4 __5__,
4
16 25
__5___
❖ 二次根式的除法:
注意:要进行 根式化简,关 键是要搞清楚
解:(1)-4 2 =-4 2 • 7 = -4 14 ;
37
3 7• 7
21
分式的分子和 分母都乘什么,
(2) 2a = a+b
2a a+b
a+b • a+b
=
2a a+b a+b
有时还要对分 母进行化简。
(3) 3
2=
2 =
40 3 • 2 10 6
2 • 10 =
2. 二次根式的除法有两种常用方法:
(1)利用公式: a
=
a (a
≥ 0,b
>
0)
b
b
(2)把除法先写成分式的形式,再进行分母有理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学
二次根式
1. 有意义的条件是 。
2. 当__________
3. 11
m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x p 的结果是 。
9. 当15x ≤p 5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. =成立的条件是 。
12. 若1a b -+()
2005_____________a b -=。
13. )))020x y x x y =-+f p 中,二次根式有( )
A. 2个
B. 3个
C. 4个
D. 5个
14. 下列各式一定是二次根式的是( )
15. 若23a p p )
A. 52a -
B. 12a -
C. 25a -
D. 21a -
16. 若A =
=( ) A. 24a + B. 22a + C. ()222a + D. ()2
24a +
17. 若1a ≤
)
A. (1a -
B. (1a -
C. (1a -
D. (1a -
18.
=成立的x 的取值范围是( )
A. 2x ≠
B. 0x ≥
C. 2x f
D. 2x ≥
19.
)
A. 0
B. 42a -
C. 24a -
D. 24a -或42a -
20.
下面的推导中开始出错的步骤是( )
(
)
(
)()
()
123224==-==∴=-∴=-Q L L L L L L L L L L L L L
A. ()1
B. ()2
C. ()3
D. ()
4
21. 2440y y -+=,求xy 的值。
22. 当a 1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:
())10x f ())21x f
24. 已知2310x x -+=
25. 已知,a b (10b -=,求20052006a b -的值。
二次根式答案
1. 4x ≥;
2. 122x -≤≤
; 3. 01m m ≤≠-且; 4. 任意实数;
5. ()((223;x x x x +-;
6. 0x ≥;
7. 2x ≤;
8. 1x -;
9. 4; 10. ; 11. 1x ≥; 12. -1; 13——20:CCCABCDB
21. 4; 22. 1
2a =-,最小值为1;
23. ()()121x x +;
25. -2。