3-各种风电机组结构类型介绍

合集下载

风力机分类

风力机分类

P130-26
三叶片风轮的性能比较好,目前,水平轴风电机组一般 采用两叶片或三叶片风轮,其中以三叶片风轮为主。我国安 装投运的大型并网风电机组几乎全部采用三叶片风轮。 叶片数量减少,将使风轮制造成本降低,但也会带来很 多不利的因素,在选择风轮叶片数时要综合考虑。两叶片风 轮上的脉动载荷大于三叶片风轮。另外,由于两叶片风轮转 速高,在旋转时将产生较大的空气动力噪声,对环境产生不 利影响,而且风轮转速快视觉效果也不好。 风轮实度:风轮叶片总面积与风轮扫掠面积的比值,常 用于反映风轮的风能转换性能。 风轮的叶片数多,风轮的实度大,功率系数比较大,但 功率曲线较窄,对叶尖速比的变化敏感。叶片数减小,风轮 实度下降,其最大功率系数相应降低,但功率曲线也越平坦, 对叶尖速比变化越不敏感。
P130-27
风轮转速、叶尖速比
叶尖速比为风轮叶片尖端线速度与风速之比,是描述 风电机组风轮特性的一个重要的无量纲量。 wR r
P130-18
• H形风轮结构简单,但离心力使叶片在其连接点处产生严 重的弯曲应力。直叶片借助支撑件或拉索来支撑,这些支 撑产生气动阻力,降低了风力机的效率。 • φ形风轮所采用的弯叶片只承受张力,不承受离心力载荷, 使弯曲应力减至最小。由于材料可承受的张力比弯曲应力 要强,对于相同的总强度,φ形叶片比较轻,且比直叶片 可以更高的速度运行。但φ形叶片不便采用变浆距方法来 实现自起动和控制转速。对于高度和直径相同的风轮,φ 形转子比H形转子的扫掠面积要小一些。
P130-19
§3-2 风电机组主要参数及设计级别
风电机组的性能和技术规格可以通过一些主要参数反映。
P130-20
一. 主要参数 风轮直径与扫掠面积
风轮直径是风轮旋转时的外圆直径,用D表示。风 轮直径大小决定了风轮扫掠面积的大小以及叶片的长度, 是影响机组容量大小和机组性价比的主要因素之一。 根据贝茨理论,风轮从自然风中获取的功率为 1 P SC P 3 2 式中,S为风轮的扫掠面积,S 4 D增加,则其扫掠面积与D2成比例增加,其获取的 风功率也相应增加。

风力发电机的分类

风力发电机的分类

1,风力发电机按叶片分类。

按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。

(1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。

水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。

适合于大型风力发电厂。

水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。

到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。

(2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。

垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。

垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。

按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。

凡属轴流风扇的叶片数目往往是奇数设计。

这是由于若采用偶数片形状对称的扇叶,不易调整平衡。

还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。

因此设计多为轴心不对称的奇数片扇叶设计。

对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。

包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。

所以绝大多数风扇都是三片叶的。

三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。

降低维修成本。

按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。

风力发电机组的介绍1

风力发电机组的介绍1

• 211 风轮
• 风力机区别于其他机械的最主要特征就是风轮。风轮 一般由2~3 个叶片和轮毂所组成, 其功能是将风能 转换为机械能。
• 叶片的构造如图125 所示。小型风力机的常用优质木 材加工制成, 表面涂上保护漆, 其根部与轮毂相接处 使用良好的金属接头并用螺栓拧紧。有的采用玻璃纤 维或其它复合材料蒙皮则效果更好。
风力发电机的分类
①水平轴风力发电机,风轮的旋转轴与风向平行; ②垂直轴风力发电机,风轮的旋转轴与风向垂直。
风力发电机的分类
三一电气的机组特性
主动偏航 上风向 三叶片 水平轴
变桨距
变速 衡频
双馈
第三部分 风力机的结构组成
风力机的结构组成
从外部结构
风 力 发 电 机 组 风轮
风力发电机组内部结构
结构和功能
变桨电机: 每个叶片都有一个变桨电机,并带有刹车、测速传感器、绝对值传送器及强 制空冷装置。 超级电容:用于电网断电和安全链中断时叶片的变桨控制。 充电器:带有充电控制和电压检测装置。 转换器:三相两路装置,用于向变桨电机输送直流电。 叶片自动变桨控制器 除变桨电机,其余部件都在轴控制柜或公用控制柜内,每个叶片都有可控硅 片。
(二)沿海抗台风新型高效风电机
我国有很长的海岸线,沿海蕴藏着非常丰富的风能资 源,由于台风对风电机的破坏很大,严重阻碍了沿海风能 的开发。海上风电技术一直都是国外研发的重点,但在抗 台风技术上始终没有重大突破。
我国风电产业发展现状
(三) 大规模电网接入
由于风电机的并网稳定性没有保证,所以仍采用分散 入网的方式,风电场规模都较小,当风速和风向变化很大 时,风电机不稳定,不能满足并网条件,此时风电机可以 随时脱网;风电机稳定后,又可以随时入网,不会对电网 造成太大的冲击。

几种类型的风力发电机组特点总结

几种类型的风力发电机组特点总结

风力发电机组按运行方式可以分为恒速恒频(Constant Speed Constant Frequency,简称CSCF)风力发电机组和变速恒频(Variable Speed Constant Frequency,简称VSCF)风力发电机组两大类。

当风力发电机组与电网并联时,要求风力发电机的频率与电网频率保持一致,这便是恒频的含义。

下面分别介绍恒速恒频和变速恒频风力发电机组。

1 恒速恒频风力发电机组恒速恒频风力发电系统的基本结构如下图所示:图1 恒速鼠笼异步风力发电系统可以看出,这里采用的是异步电动机,也正是基于此,恒速恒频风力发电系统也称作异步风力发电系统。

异步发电机尽管带一定滑差运行,但在实际运行中滑差s是很小的,不仅输出频率变化较小,而且叶片转速变化范围也很小,看上去似乎是在“恒速”,故称之为恒速恒频。

就风力机的调节方式而言,恒速恒频风力发电系统又分为定桨距失速调节型和变桨距调节型两种。

1.1 定桨距失速调节型风力发电机组定桨距是指桨叶与轮毅之间是固定连接,即当风速变化时,桨叶的迎风角不能随之变化。

失速调节是指桨叶翼型本身所具有的失速特性,当风速高十额定风速时,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。

定桨距失速调节型风力发电机组的优点是失速调节简单,运行可靠性高,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。

其缺点是机组的整体效率较低,对电网影响大,常发生过发电现象,加速机组的疲劳损坏。

目前这种机组在欧美国家已经停产,但是在中国还有一定需求。

1.2 变桨距型风力发电机组变桨距是指风机的控制系统可以根据风速的变化,通过桨距调节机构,改变其桨距角的大小以调整输出电功率,以便更有效地利用风能。

其工作特性为:在额定风速以下时,桨距角保持零度附近,可认为等同十定桨距风力发电机,发电机的输出功率随风速的变化而变化;当风速达到额定风速以上时,变桨距机构发挥作用,调整桨距角,保证发电机的输出功率在允许的范围内。

风机各部件的基本介绍

风机各部件的基本介绍

大唐山东风电培训中心 第二部分 控制系统功能和控制策略介绍
• 各类机型中,变速变距型风电机组控制技术较复杂,其控制系统主要 由三部分组成:主控制器、桨距调节器、功率控制器。 • 主控制器主要完成机组运行逻辑控制,如偏航、对风、解绕等,并在 桨距调节器和功率控制器之间进行协调控制。 • 桨距调节器主要完成叶片节距调节,控制叶片桨距角,在额定风速之 下,保持最大风能捕获效率,在额定风速之上,限制功率输出。 • 功率控制器主要完成变速恒频控制,保证上网电能质量,与电网同压、 同频、同相输出,在额定风速之下,在最大升力桨距角位置,调节发 电机、叶轮转速,保持最佳叶尖速比运行,达到最大风能捕获效率, 在额定风速之上,配合变桨距机构,最大恒功率输出。 • 小范围内的抑制功率波动,由功率控制器驱动变流器完成,大范围内 的超功率由变桨距控制完成。
大唐山东风电培训中心
偏航控制
大多数水平轴风机采用偏航机构旋转风轮顺风,限 制功率输出。但这种方法响应速度很慢,原因有: (1)机舱和风轮有很大的惯性力矩; (2)垂直于风轮的风速与偏航角度的变化呈正弦 关系,如果偏航角变化10度,功率下降只变化几个 百分比,而如果桨距角变化10度,功率下降会很明 显。 在变速机组上应用主动偏航控制,振风引起的的超 功率可以暂时储存在风轮动能里,如果继续超功率, 再进行偏航动作,这种设计方法已在Gamma 60试验 样机上获得成功,偏航最大速率8度/s。
大唐山东风电培训中心
(4)偏航系统
偏航系统是水平轴风力发电机组的不可缺少的组成部分, 偏航系统的主要作用有两个: 其一是与风力发电机组的控制系统相配合,使风力发电 机组的风轮始终处于迎风状态,充分利用风能,提高风 力发电机组的发电效率; 其二是提供必要的锁紧力矩, 以保障风力发电机组的安全运行

风力发电系统的分类及拓扑

风力发电系统的分类及拓扑

风力发电系统分类:
1.独立型风力发电系统 2.并网型风力发电系统
小型直流混合系统
小型交流混合系统
A型:恒速恒频 B型:变速恒频 C型:变速含部分功率变频器 D型:变速全功率变频器型
小型直流混合系统
小型风力发电系统经常与其他能源混合发电,又可称之为 “混合电力系统”。
1.传统的直流混合系统,如下图所示。小型风力机输出的 交流频率和电压可变的交流电,经过整流后输送到电池组 电压等级的直流母线。能量存储在电池中或通过逆变器转 换成交流提供给负荷。电池组被用来平滑风力机的功率波 动,存储有风时产生的能量以备不时之需。
特点及其拓扑结构
特点及其拓扑结构
该类型还具体包括三种类型: (1) 失速控制型。该机型在上世纪80~90年代被许多丹麦风力机制造
商采用。 特点:简单、坚固、耐用。不能实现辅助启动,无法控制风力Байду номын сангаас的
功率。 (2) 桨距控制型。
优点是可控功率,可控启动和紧急停车。 缺点:高风速时很小的风速变化也会导致很大的输出功率波动。桨 叶调节能补偿份额的缓慢变化,但阵风情况不能补偿。 (3) 主动失速控制型。低风速时桨叶调节类似于桨距控制型风机,高 风速时、使桨叶进入深度失速状态。 优点:能够获得更平稳的有限功率,不会出现桨距控制型风力机的 高功率波动。
直驱式永磁同步发电机根据全功率变流器的不同又可分为: (1)不可控整流+DC/DC升压+PWM电压源型逆变器型
DC/DC环节将整流器输出的直流电压提高并保持稳定在合适的 范围内,使得逆变器的输入电压稳定,提高运行效率、减小谐 波。
(2)背靠背双PWM变流器型
优点:后者中的PWM整流器可同时实现整流和升压,效率较高,通 过电流隔离,机侧和网侧可以实现各自的控制策略。 缺点:全控型器件数量多,控制电路复杂,增加了变流系统成本

风电机组类型有哪些?

风电机组类型有哪些?

风电机组类型有哪些?
目前国内风电机组的主要机型有3种,每种机型都有其特点。

1.1异步风力发电机
国内已运行风电场大部分机组是异步风电发电机。

主要特点是结构简单、运行可靠、价格便宜。

这种发电机组为定速恒频机组,运行中转速基本不变,风力发电机组运行在风能转换最佳状态下的几率比较小,因而发电能力比新型机组低。

同时运行中需要从电力系统中吸收无功功率。

为满足电网对风电场功率因数的要求,多采用在机端并联补偿电容器的方法,其补偿策略是异步发电机配有若干组固定容量的电容器。

由于风速大小随气候环境变化,驱动发电机的风力机不可能经常在额定风速下运行,为了充分利用低风速时的风能,增加全年的发电量,近年广泛应用双速异步发电机。

这种双速异步发电机可以改变极对数,有大、小电机2种运行方式。

1.2双馈异步风力发电机
国内还有一些风电场选用双馈异步风力发电机,大多来源于国外,价格较贵。

这种机型称为变速恒频发电系统,其风力机可以变速运行,运行速度能在一个较宽的范围内调节,使风机风能利用系数Cp得到优化,获得高的利用效率;可以实现发电机较平滑的电功率输出;发电机本身不需要另外附加无功补偿设备,可实现功率因数在一定范围内的调节,例如功率因数从领先0.95调节到滞后0.95范围内,因而具有调节无功功率出力的能力。

1.3直驱式交流永磁同步发电机
大型风力发电机组在实际运行中,齿轮箱是故障较高的部件。

采用无齿轮箱结构能大大提高风电机组的可靠性,降低故障率,提高风电机组的寿命。

目前国内有风电场使用了直驱式交流永磁同步发电机,运行时全部功率经A-D-A变换,接入电力系统并网运行。

与其他机型比较,需考虑谐波治理问题。

风力发电机组内部结构

风力发电机组内部结构

风力发电机组内部结构
风力发电机组内部结构主要由风轮、发电机、机舱、塔架和控制系统等部分组成。

风轮:包括叶片、轮毂和加固件等,是风力发电机组中最重要的部分之一,其作用是将风的动能转换为机械能。

当风吹动叶片时,叶片会带动轮毂旋转,进而带动发电机发电。

发电机:发电机是风力发电机组中的核心部分,其作用是将风轮旋转的机械能转换为电能。

发电机通常由定子和转子两部分组成,定子固定不动,而转子则随着风轮的旋转而旋转。

机舱:机舱是安装风力发电机组的主要部位之一,通常由钢板制成封闭的箱形结构,内部安装有发电机、齿轮箱、刹车系统、偏航系统等关键部件。

机舱的作用是保护内部设备免受外部环境的影响,并确保设备的安全运行。

塔架:塔架是支撑风力发电机组的重要部分,通常由钢管或角钢制成,其高度和直径根据机组的功率和风速等条件而定。

塔架的作用是支撑风轮和机舱,并将它们固定在适当的高度上,以便捕获更多的风能。

控制系统:控制系统是风力发电机组的“大脑”,负责监测和控制机组的运行状态。

控制系统通常由传感器、控制器和执行机构等部分组成,可以实时监测风速、风向、发电机转速等参数,并根据这些参数调整机组的运行状态,确保机组的稳定运行和最
大发电量的输出。

除了上述主要部分外,风力发电机组还包括变速箱、主轴承、电气系统、液压系统、冷却系统、刹车系统等辅助部分,这些部分共同协作,确保风力发电机组的正常运行和高效发电。

风电机组工作原理及结构

风电机组工作原理及结构

风电机组工作原理及结构
概述:
随着清洁能源的发展,风力发电逐渐成为一种重要的可再生能源。

风电机组是将风能转化为电能的关键设备。

本文将介绍风电机组的工作原理及其结构。

一、工作原理:
风电机组的工作原理可以简单地描述为将风能转化为电能的过程。

具体来说,风能通过风轮转动传递到发电机,通过发电机的转动产生交流电能。

1. 风轮:
风轮是风电机组的核心组件,也称为风力涡轮机。

其作用是将风能直接转化为机械能。

风轮通常由数片叶片组成,可以根据所在地区的风能特征和设计要求来确定叶片的数量和形状。

当风刮过叶片时,叶片会因风压力的作用而转动,进而驱动传动系统。

2. 传动系统:
传动系统是连接风轮和发电机的重要部分。

其作用是将风轮产生的转动力矩转化为转速和转向适合于发电机的机械能。

传动系统通常包括齿轮箱、扭矩支撑装置等。

齿轮箱由一组齿轮组成,通过合理设置齿轮的大小和布局,可以实现风轮与发电机之间的匹配。

3. 发电机:
发电机是将机械能转化为电能的关键组件。

风电机组中常用的发电机有同步发电机和异步发电机两种。

- 同步发电机采用恒速运行,其转速与电网的基准频率一致。

因此,在风速变化时,需要通过调节传动系统来保持发电机的转速恒定。

同步发电机具有较高的效率和较好的稳定性,但需要额外的调速系统来控制电流输出。

- 异步发电机通过变频器控制转速,可以实现风速变化时的自动调节。

它具有较低的成本和较好的适应性,但在部分负载或低负载情况下,效率较低。

二、结构:。

风电机组结构及选型

风电机组结构及选型

第一节风电机组结构1.外部条件根据最大抗风能力和工作环境的恶劣程度,按强度变化的程度对风电机组进行分级。

根据IEC61400设计标准,共分为4级。

一类风场I:参考风速为50m/s,年平均风速为10m/s,50年一遇极限风速为70m/s,一年一遇极限风速为52.5m/s;二类风场II:参考风速为42.5m/s,年平均风速为8.5m/s,50年一遇极限风速为59.5m/s,一年一遇极限风速为44.6m/s;三类风场III:参考风速为37.5m/s,年平均风速为7.5m/s,50年一遇极限风速为52.5m/s,一年一遇极限风速为39.4m/s;四类风场IV:低于三类风场风速,属低风速区,鲜有商业风电场开发。

对电网的要求:电压波动为额定值±10%,频率波动为额定值±5%。

2.机械结构2.1总体描述整机是建立在钢结构底座上,该结构应具有很大的强韧度,底部由坚固底法兰组成,风电机组所有的主要部件都连接于其上。

发电机固定位置与机舱轴线偏离,以使得风电机组在满载运行时,整机质心与塔架和基础中心相一致。

偏航机构直接安装在机舱底部,机舱通过偏航轴承与偏航机构连接,并安装在塔架上,整个机舱底部对叶轮转子到塔架造成的动力负载和疲劳负荷有很强的吸收作用。

机舱座上覆盖有机舱罩,材料是玻璃钢,具有轻质高强的特点,有效地密封,以防止外界侵蚀,如雨、潮湿、盐雾、风砂等。

产品生产采用多种工艺,包括:滚涂、轻质RTM、真空灌注等,机舱罩主体部分设置PVC泡沫夹层,以增加强度。

内层设置消音海绵,以降低主机噪声。

机舱上安装有散热器,用于齿轮箱和发电机的冷却;同时,在机舱内还安装有加热器,使得风电机组在冬季寒冷的环境下,机舱内保持在10℃以上的温度。

2.2载荷情况- 启动:从任一静止位置或空转状态到发电过渡期间,对风电机组产生的载荷。

- 发电:风电机组处于运行状态,有电负荷。

- 正常关机:从发电工况到静止或空转状态的正常过渡期间,对风电机组产生的载荷。

风力发电机结构介绍

风力发电机结构介绍

风力发电机结构介绍风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。

该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。

风力发电机组结构示意图如下。

1、叶片2、变浆轴承3、主轴4、机舱吊5、齿轮箱6、高速轴制动器7、发电机8、轴流风机9、机座10、滑环11、偏航轴承12、偏航驱动13、轮毂系统各主要组成部分功能简述如下(1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。

叶轮的转动是风作用在叶片上产生的升力导致。

由叶片、轮毂、变桨系统组成。

每个叶片有一套独立的变桨机构,主动对叶片进行调节。

叶片配备雷电保护系统。

风机维护时,叶轮可通过锁定销进行锁定。

(2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。

(3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。

(4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。

明阳1.5s/se机组采用是带滑环三相双馈异步发电机。

转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。

(5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。

同时提供必要的锁紧力矩,以保障机组安全运行。

(6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。

轮毂结构是3个放射形喇叭口拟合在一起的。

(7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。

通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。

MY1.5s/se型风电机组主要技术参数如下:(1)机组:机组额定功率:1500kw机组起动风速:3m/s机组停机风速: 25m/s机组额定风速: 10.8/11.3 m/s(2)叶轮:叶轮直径:82.6m叶轮扫掠面积:5316m2叶轮速度:17.4rpm叶轮倾角: 5o叶片长度:40.25m叶片材质:玻璃纤维增强树脂(3)齿轮箱:齿轮箱额定功率:1663kw齿轮箱转速比:100.48(4)发电机:发电机额定功率:1550kw发电机额定电压:690v发电机额定电流:1120A发电机额定频率:50Hz发电机转速:1750rpm发电机冷却方式:空-空冷却发电机绝缘等级:H级主刹车系统:变浆制动二级刹车系统:圆盘制动器(5)塔架:塔架型式:直立三段锥形塔架塔架高度:61830mm塔架底部直径:4200mm塔架重量:107t(6)偏航系统型式:主动对风齿轮圆盘星形驱动(7)控制器型式:PLC TwinCAT【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

第3章风力发电机组的结构

第3章风力发电机组的结构

3.2.1 3.2.2 3.2.3
ห้องสมุดไป่ตู้
叶片 轮毂 变桨机构
3.2 风轮
3.2.1 叶片
1)良好的空气动力外形,能够充分利用风电场的风资源条件,获得尽可能多的风能。 2)可靠的结构强度,具备足够的承受极限载荷和疲劳载荷能力;合理的叶片刚度、叶 尖变形位移,避免叶片与塔架碰撞。 3)良好的结构动力学特性和气动稳定性,避免发生共振和颤振现象,振动和噪声小。 4)耐腐蚀、防雷击性能好,方便维护。 5)在满足上述目标的前提下,优化设计结构,尽可能减轻叶片重量、降低制造成本。 1.叶片几何形状及翼型 2.叶片结构、材料及制造 3.气动制动系统 4.叶根连接 5.叶片失效与防护措施
2.基本性能
图3-3 变速风力发电机组的功率曲线
3.主要机组类型
(1)上风向机组和下风向机组 水平轴风电机组根据在运行中风轮与塔架的相对位置, 分为上风向风力发电机组和下风向风力发电机组,如图3-4所示。 (2)失速机组与变桨机组 当风速超过额定风速时,为了保证发电机的输出功率维持 在额定功率附近,需要对风轮叶片吸收的气动功率进行控制。 (3)带增速齿轮箱的风电机组、直驱风电机组和半直驱风电机组 风电机组通过传动 系统连接风轮和发电机,把风轮产生的旋转机械能传输到发电机,并使发电机转子达 到所需要的转速。 (4)陆地风电机组和海上风电机组 由于陆地地形地貌限制以及风电场噪声等对环境 的影响,自20世纪90年代起,国外开始建造近海风电场,并且成为未来风电发展的一 个趋势。
5.叶片失效与防护措施
0.tif
图3-17 叶片故障实例 0.TIF
5.叶片失效与防护措施
0318.TIF 图3-18 叶片故障统计
5.叶片失效与防护措施
图3-19 叶片对气动性能的影响

海上风电机组结构

海上风电机组结构

海上风电机组结构海上风力发电是一种在全球范围内广泛应用的可再生能源,而风电机组的结构是整个系统的核心部分。

本文将详细介绍海上风电机组结构的各个主要组成部分。

1.风轮风轮是风电机组的核心部件,它利用风力带动发电机工作。

一般来说,风轮包括叶片和轮毂两部分。

此外,根据不同的设计,风轮还可以包含刹车装置和测风设备等其他部件。

这些部件能够有效地吸收并利用风能,提高风电机组的效率。

2.塔筒塔筒是风电机组的另一重要部件,它负责将风轮吸收到的能量传输到发电机。

一般来说,塔筒包括底座、中间段和顶端三部分。

此外,塔筒还需具有防腐蚀和耐久性,并能承受很大的力量。

它不仅支撑着整个风电机组的结构,还将风能转化为电能的过程中的关键环节。

3.齿轮箱齿轮箱是连接风轮和发电机的关键部件,它可以将风轮的高速转动变为发电机的工作转速,从而将动能转化为电能。

此外,齿轮箱还需具有很高的准确性和稳定性,从而保证电力的质量。

齿轮箱的设计和制造需要经过精密的计算和实验验证,以确保其性能达到最优。

4.发电机发电机是风电机组的核心部件,它负责将动能转化为电能。

根据不同的设计,发电机包括的部件也不尽相同。

例如,水平轴风电机组通常使用的是三相异步发电机或双馈异步发电机,而垂直轴风电机组则可能使用的是直线发电机或旋转发电机。

5.控制系统控制系统是保证风电机组正常工作的关键,它负责监测风电机组的运作状态,并对其进行及时维护和修复。

控制系统一般由各种传感器、控制器和执行器等组成,能够实时监测和控制风电机组的各个部件。

6.变压器变压器是将电压转换成用户所需电压的重要设备,它可以将高压电变为低压电,保证用电的安全性和稳定性。

对于海上风电机组来说,变压器也是必不可少的设备之一,因为它需要将海上与陆地电网连接起来,实现电能的传输和分配。

7.支撑结构支撑结构包括机座、横梁等部件,它们负责支撑整个机组的工作,并保证其稳定的运转。

这些部件的设计和制造也需要经过精密的计算和实验验证,以确保其能够承受住各种恶劣环境和载荷条件下的运行。

风力发电机组的结构简介

风力发电机组的结构简介

发电机组的自动启动、自动调向、自动调速、自 动并网、自动解列、运行中机组故障时的自动停 机、自动执行电缆解绕、过振动停机以及风速过 大时的自动停机等自动控制。 风电
场的各风电机组群之间可以实现联网管理、互相 通信,出现故障的风电机组会在微机总站的微机 终端和显示器上显示出来,可以进行程序的调出 和修改程序等操作,实现现场无人值守
叶片一直正对着风的方向,以充分利用风的能量, 在机舱转盘底座上安装了调向机构。由调向电机 和调向制动器来共同实现该功能。调向系统具有 自动解缆和扭缆保护装置。 风轮
的直径比较大,在运行时转速比较低。为匹配交 流发电机,满足发电机的转速要求,在低速的风 轮轴和高速的发电机轴之间安装有增速器,使传 递到发电机轴上的转速达到发电机的额
机组现场具有可靠的通信连接。 风力发电机的微机自动控制是将风向标、风速仪、 风轮的转速、发电机的电压、电流、频率等参数, 以及发电机温升、增速器温升、机舱和塔架的
振动、电缆的过缠绕、电网的电压、电流、频率 等传感器信号,通过A/D转换,输送给微机,微 机进行分析比较后,再按设定的程序发出各种执 行指令。从而实现风力发电机组的自
的方向转动一定的角度,来使叶片所接受的风能 减少,以维持风轮在额定的转速之内运行;当风 速减小时,微机发出的指令信号与前述相反,变 桨矩液压油缸动作,以减小叶片的安装
角,使叶片所接受的风能增加,维持风轮在额定 的转速范围内运转。 交流发电机的防护等级应能满足防盐雾、防沙尘 暴的要求。在湿度较大的地区,发电机内部还设 有加热装置,
由叶片带动垂直轴转动,再去带动发电机进行发 电。垂直轴风力发电机的增速器、联轴器、发电 机、制动器等都是安装在地面上的,整个机组的 安装、调试和维修均比水平轴风力发电
机要方便一些。但由于一些难以解决的技术问题, 垂直轴风力发电机的发展和应用受到了很大的限 制。下面主要介绍水平轴风力发电机的结构以及 工作过程。 大型水平轴风力发电

风电机组结构概述

风电机组结构概述

风电机组结构概述风力发电技术发展很快,本人不揣浅陋,在此对风力发电机组的结构略作概述。

风力发电机组的机械件是指机组在各种允许的状态下,始终不带电的零部件。

相应地,风力发电机组中,在各种允许的状态下,有可能带电的零部件,称为电气件。

下面首先介绍风力发电机组的机械结构,然后介绍机组的电气结构。

一、机械结构所有的机械件构成整个风力发电机组的机械结构。

从外观结构上,可以将风电机组划分为以下八个系统:(一)转子又叫叶轮、风轮,包括三个叶片和轮毂,以及相应的附件。

(二)传动系统包括主轴、齿轮箱、联轴器三个部分。

主轴是指叶轮与发电机或者齿轮箱之间的连接部分,起支撑叶轮和传动风转矩的作用;齿轮箱也叫增速齿轮箱,起到增速作用;联轴器是连接传动轴(driving shaft,指齿轮箱高速轴)和非传动轴(driven shaft,指发电机前轴)的弹性部件。

对于直驱型机组,其传动系统由较大区别。

以金风1.5WM系列机组为例,传动系统比较特殊,没有齿轮箱、联轴器、主轴等部件,叶轮直接与发电机外转子(永磁体)相连接。

(三)发电机发电机是风力发电机组最重要的设备之一,是机电一体化的产物。

从机械角度看,发电机的安装、对中、减震等都很重要。

(四)液压系统在风力发电机组中,液压系统是机组重要的执行系统,从液压系统的组成上来说,它主要包括动力元件——液压泵、执行元件——液压缸和液压马达、控制元件——各种控制阀、辅助元件——蓄能器和油箱等;从液压的应用上来说,液压系统主要包括高速轴(或低速轴)机械刹车、液压变桨、叶尖扰流器控制、偏航阻尼控制等四个方面。

(五)偏航系统偏航系统的机械部件主要包括:偏航电机、偏航减速器、偏航驱动齿轮、偏航轴承、偏航卡钳。

其中偏航卡钳分为机械式偏航卡钳和液压式偏航卡两种,偏航轴承分为滑动轴承和滚动轴承两种。

(六)支撑系统机组的主要支撑件构成机组的支撑系统,主要包括机舱架(机架)、塔架与基础三大部分。

(七)电气柜体电气柜体主要包含了机组的电气控制部件,从机械角度来看,电气柜体的布置、固定也非常重要。

三一电气风力发电机组主控系统

三一电气风力发电机组主控系统
通讯网络
三三一一重电能气
• 内部通讯是指控制器与变桨、 变流、智能传感器的数据交换。 通常 是由工业现场总线实现, 包括:CANOPEN、PROFIBUS、 RS485等。
• 外部通讯是指主控与远端数据 服务器,多个风机控制器之间 的数据传输,通常使用 EtherNET TCP/IP(局域网络) 实现。
品质改变世界
三、 主控产品组成部分(软件)
主控系统监控界面
三一电气风场监控系统是建立 在3C+S基础上的风力发电场自 动化检测调度系统。 通过监控系统实现对风电场的 风机进行远程实时监测、控制 和诊断,实现风电场的优化运 行,以及通过远程启动、停止 、复位,最大限度地减少现场 考察和维护管理。
三三一一重电能气
图3.9主控系统监控界面 30
品质改变世界
三、 主控产品组成部分(软件)
强大的数据分析功能
三三一一重电能气
图3.10 监控系统数据分析界面 31
品质改变世界
三、 主控产品组成部分(软件)
风场信息化架构
三三一一重电能气
图3.11 风场网络架构 32
品质改变世界
三、 主控产品组成部分(软件)
监控组网案例
20
三三一一重电能气
品质改变世界
三、 主控产品组成部分(电气)
电气部分
三三一一重电能气
¾ 电气部分(即硬件组成部分)是主控系统的实物载体,与风机中的各 种外围设备如发电机、齿轮箱、液压站、变桨系统、变流器等之间形 成电气连接,收集反馈信号,并根据相应的动作逻辑,确保主控系统良 好地控制各种外围设备,使各设备能够相互谐调配合运行。
国内没有研发能力,增加新功能困难 人机界面中文化不完全,操作12复杂
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

WIND ENERGY INSTITUTE SUT.
直驱型
WIND ENERGY INSTITUTE SUT.
WIND ENERGY INSTITUTE SUT.
直驱型控制图
WIND ENERGY INSTITUTE SUT.
半直驱型

● ● WIND ENERGY INSTITUTE SUT.
WIND ENERGY INSTITUTE SUT.
低速直驱型电励磁同步发电系统
WIND ENERGY INSTITUTE SUT.
复合励磁发电系统
缺点 永磁同步 发电机
成本高
输出电压不能调节 效率高 结构简单,体积小 无刷化,运行可靠 输出电压可以调节
优点
调节方法成熟 电励磁同 效率低 步发电机 缺点 结构复杂,体积庞大 控制系统复杂 WIND ENERGY INSTITUTE SUT.
pitch drive
wind turbine control
WIND ENERGY INSTITUTE SUT.
Advanced solution: PM generator with high speed gear
• • • • • •
Mechanically identical to main stream solutions No slip rings Typically 6 or 8 pole Generator speed typically 1000…2000 rpm Low generator weight, compact design High efficiency generator
中速、高速电励磁式同步发电机组 直驱型电励磁式同步发电系统机组 复合励磁发电机组 齿轮箱速比可调的风力发电机组机组
多发电机型风力发电机组
WIND ENERGY INSTITUTE SUT.
风力发电机组结构形式
针对目前国际市场上和一些研究部门的研究结果, 按照机组选用的驱动链结构、发电机和功率变送 装置的不同,大致可划分为下列几种结构形式的 风力发电机组。 结构a:此结构为20世纪80年代、90年代丹麦制造 商普遍常用的结构,上风向,失速调节,三叶片, 采用笼型感应发电机、电容无功功率补偿装置和 软启动装置。
结构e
WIND ENERGY INSTITUTE SUT.
结构f:这种结构应用不普遍,原因有:需要外部 励磁电路,需要滑环,机组安全控制更复杂。 结构g:这种结构应用也不普遍,原因是功率变换 器需四象限运行。
结构f
结构g
WIND ENERGY INSTITUTE SUT.
结构h:这种结构采用多极同步发电机,不需齿 轮箱传动,Enercon和Lagerwey风机制造商的 机组有采用此种技术。
一级行星齿轮箱 9:1 发电机转速:190rpm 极数:72极
半直驱型
WIND ENERGY INSTITUTE SUT.
高速永磁发电机型
WIND ENERGY INSTITUTE SUT.
ABB高速永磁发电机组
WIND ENERGY INSTITUTE SUT.
WIND ENERGY INSTITUTE SUT.
WIND ENERGY INSTITUTE SUT.
齿轮箱速比可调的风力发电机组
WIND ENERGY INSTITUTE SUT.
多发电机型
6个 250KW
325rpm 永磁同步发电机
WIND ENERGY INSTITUTE SUT.
WIND ENERGY INSTITUTE SUT.
永磁多发电机型:
WIND ENERGY INSTITUTE SUT.
WIND ENERGY INSTITUTE SUT.
双馈异步风力发电系统:
WIND ENERGY INSTITUTE SUT.
WIND ENERGY INSTITUTE SUT.
WIND ENERGY INSTITUTE SUT.
双馈无刷发电机型:
优点
复 合 励 磁 同 步 发 电 机
复合励磁永磁同步发电机的总体结构
1-转轴 2-轴承 3-端盖 4- 辅 助 电 励 磁部分 5-定子 6 -转子
WIND ENERGY INSTITUTE SUT.
• 气隙磁场可调,输出电压稳定 • 功率密度高,结构紧凑,体积小,无 刷 • 适合应用于无齿轮箱直驱或一级齿轮 箱中速风力发电
Container
10...24 kV f = 50 Hz or 60 Hz
main converter 15...30 MW data bus
line coupling transformer
WIND ENERGY INSTITUTE SUT.
中速、高速电励磁式同步发电系统
WIND ENERGY INSTITUTE SUT.
Advanced solution: PM generator with high speed speed gear
frequency converter generator side converter DC line side converter main circuit breaker
converter control gearbox
10 ... 24 kV, f = 50 Hz or 60 Hz
brake
line coupling transformer synchronous generator (speed typically 1000...2000 rpm) medium voltage switchgear
rotor bearing
结构h
总之,结构a属传统风力发电机概念,不支持变 速运行外,其它结构的风力发电机组都可变速运 行 。
WIND ENERGY INSTITUTE SUT.
主动失速
失速
WIND ENERGY INSTITUTE SUT.
水平轴
WIND ENERGY INSTITUTE SUT.
立轴
失速型异步发电机组
WIND ENERGY INSTITUTE SUT.
双馈无刷发电机:
WIND ENERGY INSTITUTE SUT.
异步鼠笼发电机 + 四象限变流器
WIND ENERGY INSTITUTE SUT.
WIND ENERGY INSTITUTE SUT.
1)通过改变定子侧同步频率的方式实现并 网发电; 2)无滑环,可靠运行,长寿命,适合于海上 风电场; 3)发电机价格低廉; 4)低速时可电动运行.
结构c
WIND ENERGY INSTITUTE SUT.
结构d:这种结构适用于绕线转子双馈感应发电机, 采用频率变换器直接控制转子绕组的电流,达到控制 发电机功率输出的目的,采用的频率变换器为发电机 额定功率的20%~30%容量。这种概念的引进有两个优 点:较之优化滑差调节变速范围加宽,较之全容量功 率变换器成本降低。机组可在30%滑差范围内变速运 行。
WIND ENERGY INSTITUTE SUT.
交流异步多发电机型:
WIND ENERGY INSTITUTE SUT.
本节结束!
WIND ENERGY INSTITUTE SUT.
结构d
WIND ENERGY INSTITUTE SUT.
结构e:这种结构应用在离网型风力发电机上较普 遍,无齿轮箱式永磁发电机,2~3叶片上风向,通 过整流桥给电池充电。2000年由ABB提出应用此种 结构,采用多极3.5MW永磁发电机,二极管整流桥 产生21kV的直流电压,采用轻型直流输电(HVDC Light)技术输送电能。
WIND ENERGY INSTITUTE SUT.
Star connection, possible solution for wind farms
generator side converter
filter
main control center
DC-link i.e. 3...5 kV or 18.. .24 kV or low frequency
齿轮箱 电容组 ~
结构a
WIND ENERGY INSTITUTE SUT.
结构b:采用全容量的频率变换器替代电容无功功 率补偿和软启动装置,使机组可以变速运行。
结构b
WIND ENERGY INSTITUTE SUT.
结构c:这种结构应用于绕线转子发电机,20世纪 90年代被Vestas所采用,称为“优化滑差” (Optislip)技术,基本思想是通过控制转子外部 串接的电子变换装置,达到调节转子电阻的目的, 优化机组滑差运行范围在10%左右。机组可在一定 滑差范围内变速运行。
各种风电机组结构类型介绍
2013-8-23
沈阳工业大学风能技术研究所
内容提纲
失速型异步发电机组
双馈型变速恒频发电机组
双馈无刷发电机组 异步鼠笼发电机+四象限变流器机组 低速永磁直驱发电机组 中速半直驱永磁发电机组
WIND ENERGY INSTITUTE SUT.
内容提纲
高速永磁发电机组
相关文档
最新文档