高中数学排列组合难题十一种方法

合集下载

排列组合难题21种题型及方法

排列组合难题21种题型及方法

高考数学排列组合难题21种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A = C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中排列组合问题的解答技巧和记忆方法

高中排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?三、复杂问题——总体排除法例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.四、特殊元素——优先考虑法例4.(上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.例5.(全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有----- 种.五、多元问题——分类讨论法例6.(北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()A.42 B.30 C.20 D.12例7.(全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答)六、混合问题——先选后排法例8.(2012年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()例9.(2013年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()A.24种B.18种C.12种D.6种七.相同元素分配——档板分隔法例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。

请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。

高中数学轻松搞定排列组合难题21种方法

高中数学轻松搞定排列组合难题21种方法

高考数学排列组合难题21种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A 由分步计数原理得113434288C C A = 143413练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)教学目标:1.理解和应用分类计数原理和分步计数原理。

2.掌握解决排列组合问题的常用策略,能够解决简单的综合应用题,提高解决问题分析问题的能力。

3.学会应用数学思想和方法解决排列组合问题。

复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法。

在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+。

+mn种不同的方法。

2.分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法。

做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×。

×mn种不同的方法。

3.分类计数原理和分步计数原理的区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。

解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。

2.确定采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素。

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

一、特殊元素和特殊位置优先策略:例1:由0、1、2、3、4、5可以组成多少个没有重复数字五位奇数。

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。

先排末位共有C3,然后排首位共有C4,最后排其它位置共有A4^3,由分步计数原理得C4×C3×A4^3=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。

若以元素分析为主,需先安排特殊元素,再处理其它元素。

若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

高中数学排列组合难题十一种方法

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx ,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有种不同的排法乙甲丁丙练习题1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法.1524位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

排列组合专题各方法题型及其答案

排列组合专题各方法题型及其答案

排列组合题型总结一.直接法例1用1, 2, 3, 4, 5, 6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

二.间接法当直接法求解类别比较大时,应釆用间接法。

例2有五张卡片,它的正反面分别写0与1, 2与3, 4与5, 6与7, 8与9,将它们任意三张并排放在一是组成三位数,共可组成多少个不同的三位数三.插空法当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法四.捆梆法当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种五.阁板法名额分配或相同物品的分配问题,适宜釆阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共多少种六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法七.染色问题例7菜城市中心广场建造一个花圃,花囲6分为个部分,现要我种4种颜色的花,每部分我种一种且相邻部分不能我种同一样颜邑的话,不同的我种方法有 _________ 种(以数字作答).八・逼推法例八一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法九•几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有种十.先选后排法例9有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担.从10人中选派4人承担这三项任务,不同的选派方法有多少种十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.十二.转化命题法例11 •圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各•排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的究破口。

高中数学轻松搞定排列组合难题21种方法

高中数学轻松搞定排列组合难题21种方法

完成这件事共有:
N m1 m2 mn
种不同的方法.
2.分步计数原理(乘法原理)
完成一件事,需要分成 n 个步骤,做第 1 步有 m1 种不同的方法,做第 2 步
有 m2 种不同的方法,…,做第 n 步有 mn 种不同的方法,那么完成这件事共 有:
N m1 m2 mn
种不同的方法.
3.分类计数原理分步计数原理区别
排列数,则共有不同排法种数是:
A
7 7
/
A
3 3
(空位法)设想有
7
把椅子让除甲乙丙以外的四人就坐共有
A
4 7
种方法,其
余的三个位置甲乙丙共有
1
种坐法,则共有
A
4 7
种方法。
思考:可以先让甲乙丙就坐吗?
(插入法)先排甲乙丙三个人,共有 1 种排法,再把其余 4 四人依次插入共

方法
定序问题可以用倍缩法,还可转化为占位插
C
1 4
A34
C
1 3
位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需
先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位
置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件
1
练习题:7 种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不 种在两端的花盆里,问有多少不同的种法?
解:8 人排前后两排,相当于 8 人坐 8 把椅子,可以把椅子排成一排.个特殊
元素有
A
2 4
种,再排后
4
个位置上的特殊元素丙有
A14
种,其余的
5

排列组合问题常用的解题方法含答案

排列组合问题常用的解题方法含答案

高中数学排列组合问题常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组( 看作一个元素 ) 参加摆列.例 1: 五人并排站成一排,假如甲、乙一定相邻且乙在甲的右侧,那么不一样的排法种数有种。

二、相离问题插空法元素相离 ( 即不相邻 ) 问题,可先把无地点要求的几个元素全摆列,再把规定相离的几个元素插入上述几个元素间的空位和两头.例 2:七个人并排站成一行,假如甲乙两个一定不相邻,那么不一样排法的种数是。

三、定序问题缩倍法在摆列问题中限制某几个元素一定保持必定次序,可用减小倍数的方法.例 3: A、 B、 C、 D、 E 五个人并排站成一排,假如 B 一定站 A 的右侧 (A、 B 可不相邻 ) ,那么不一样的排法种数有。

四、标号排位问题分步法把元素排到指定号码的地点上,可先把某个元素按规定排入,第二步再排另一个元素,这样持续下去,挨次即可达成.例 4:将数字 1、2、3、4 填入标号为 1、 2、 3、 4 的四个方格里,每格填一个数,则每个方格的标号与所填数字均不同样的填法有。

五、有序分派问题逐分法有序分派问题是指把元素按要求分红若干组,可用逐渐下量分组法。

例 5:有甲、乙、丙三项任务,甲需 2 人肩负,乙丙各需 1 人肩负,从 10 人中选出 4 人肩负这三项任务,不一样的选法总数有。

六、多元问题分类法元素多,拿出的状况也有多种,可按结果要求,分红不相容的几类状况分别计算,最后总计。

例 6:由数字 0 ,1,2,3,4,5 构成且没有重复数字的六位数,此中个位数字小于十位数字的共有个。

例 7:从 1,2,3, 100 这 100 个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法 ( 不计次序 ) 共有多少种?例 8:从 1,2, 100 这 100 个数中,任取两个数,使其和能被 4 整除的取法( 不计次序 ) 有多少种?七、交错问题会合法某些摆列组合问题几部分之间有交集,可用会合中求元素个数公式n( A B) n( A) n(B) n( A B) 。

排列组合问题常用方法(二十种)

排列组合问题常用方法(二十种)

解排列组合问题常用法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。

末位和首位有特殊要求。

先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。

由分步计数原理得113344288C C A =。

变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。

由分步计数原理得25451440A A =。

二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。

先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素部进行自排。

由分步计数原理得522522480A A A =。

变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。

三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。

分两步。

第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。

变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。

排列组合问题17种方法

排列组合问题17种方法

完成一件事,有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有:种不同的方法. 12nN=m +m ++m 复习巩固1.分类计数原理(加法原理)完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,…, 做第n 步有m n 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 12nN=m m m 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.※解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置先排末位共有___ 然后排首位共有___最后排其它位置共有___13C 13C 14C 14C 34A 34A 由分步计数原理得=28813C 14C 34A 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件1.7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?练习题解一:分两步完成;第一步选两葵花之外的花占据两端和中间的位置35A 有种排法第二步排其余的位置:3454A A ∴共有种不同的排法44有A 种排法解二:第一步由葵花去占位:24A 有种排法第二步由其余元素占位:55A 有种排法2545A A ∴共有种不同的排法小结:当排列或组合问题中,若某些元素或某些位置有特殊要求的时候,那么,一般先按排这些特殊元素或位置,然后再按排其它元素或位置,这种方法叫特殊元素(位置)分析法。

第4讲排列组合常见11种题型总结分析(原卷板)

第4讲排列组合常见11种题型总结分析(原卷板)

第4讲 排列组合常见11种题型总结分析【题型目录】题型一:特殊元素与特殊位置优待法题型二:分类讨论思想题型三:插空法(不相邻问题)题型四:捆绑法(相邻问题)题型五:平均分组问题除法策略题型六:分配问题先分组再分配题型七:正难则反题型八:定序问题(消序法)题型九:相同元素隔板法题型十:涂色问题题型十一:与几何有关的组合应用题【典型例题】题型一:特殊元素与特殊位置优待法对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

【例1】从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )(A ) 280种 (B )240种 (C )180种 (D )96种【例2】某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )个A .242610AB .242610A AC .()2142610CD .()2142610C A【例3】将甲、乙、丙等六位同学排成一排,且甲、乙在丙的两侧,则不同的排法有______种.【例4】用0、1、2、3、4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.【题型专练】1.某校从8名教师中选派4名教师到4个边远地区支教(每地1人),要求甲、乙不同去,甲、丙只能同去或同不去,则不同的选派方案有______种.2.某化工厂生产中需依次投放2种化工原料,现已知有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲必须先投放,则不同的投放方案有().A.10种B.12种C.15种D.16种3.4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为()A.288B.336C.368D.4124.用0,2,4,5,6,8组成无重复数字的四位数,则这样的四位数中偶数共有()A.120个B.192个C.252个D.300个题型二:分类讨论思想【例1】在8张奖券中有一、二、三等奖各1张,其余5张无奖,将这8张奖券分配给4个人,每人2张,不同的获奖情况数()A.60B.40C.30D.80【例2】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1~9的一种方法.例如:3可以表示为“≡”,26可以表示为“=⊥”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1~9这9个数字表示两位数的个数为_________.⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写【例3】将1,2,3填入33方法共有()A.6种B.12种C.24种D.48种【题型专练】1.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种2.某公司安排甲乙丙等7人完成7天的值班任务,每人负责一天.已知甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,则不同的安排方式有___种.题型三:插空法(不相邻问题)对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)教学目标:1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力。

3.学会应用数学思想和方法解决排列组合问题。

复巩固:1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有:N=m1+m2+…+mn种不同的方法。

2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn 种不同的方法,那么完成这件事共有:N=m1×m2×…×mn种不同的方法。

3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。

解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。

2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。

先排末位共有C3,然后排首位共有C4,最后排其它位置共有A4^3=24×64=1536.由分步计数原理得C4×C3×A4^3=2880种不同的方法。

位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。

高中数学排列组合难题21种方法

高中数学排列组合难题21种方法

歌人员为标准进行研究
只会唱的 5 人中没有人选上唱歌人员共有 C32C32 种,只会唱的 5 人中只 有 1 人选上唱歌人员 C51C31C42 种,只会唱的 5 人中只有 2 人选上唱歌人 员有 C52C52 种,由分类计数原理共有 种。 C32C32 C51C31C42 C52C52
解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做 到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。
解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他
元素一起进行排列,然后用总排列数除以这几个元素之间的全
排列数,则共有不同排法种数是:
A
7 7
/
A
3 3
(空位法)设想有
7
把椅子让除甲乙丙以外的四人就坐共有
A
4 7
种方法,其
余的三个位置甲乙丙共有
1
种坐法,则共有
A
4 7
种方法。
思考:可以先让甲乙丙就坐吗?
的两个班级且每班安

2
名,则不同的安排方案种数为______(
C42C22
A
2 6
/
A
2
2
90

十三. 合理分类与分步策略
例 13.在一次演唱会上共 10 名演员,其中 8 人能能唱歌,5 人会跳舞,现要演
出一个 2 人唱歌 2 人伴舞的节目,有多少选派方法
解:10 演员中有 5 人只会唱歌,2 人只会跳舞 3 人为全能演员。选上唱
究.
3
定前排中间的 3 个座位不能坐,并且这 2 人不左右相邻,那么不同
排法的种数是 346

排列组合的13种方法题,,

排列组合的13种方法题,,

排列组合常用十三种解题方法方法一:捆绑法例题:甲、乙、丙、丁、卯五人并排成一排,如果甲、乙必须相邻且甲在乙的右边,那么不同的排法有多少种?方法二:插空法例题:甲、乙、丙、丁、卯五人并排成一排,如果甲、乙必须不相邻,那么不同的排法有多少种?例题:晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2个节目插入原节目单中,则不同的插法有种。

方法三:隔板法例题:小明有10块糖,他每天可以吃1块到10块不等,现在要求小明3天把10块糖吃完,问小明一共有多少种不同的吃糖方法?例题:将10个保送生预选指标分配给某重点中学高三年级六个班,每班至少一名,共有多少种分配方案?方法四:定位问题优先法例题:一个老师和四名学生排成一排,老师不在两端,且老师不能跟其中某个学生相邻,则不同的排法有种例题:2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为方法五:多排问题单排法例题:共有8个人分别站前后2排,每排4人,其中要求某2人站前排,某1人站在后排,则共有__ 种排法。

例题:现有12人排成3行,每行4人,其中小明不站第二行,小红只站第一行,小白不站第三行,问一共有多少种不同的站队方法?方法六:乱坐问题分步法例题:将数字1,2,3,4,填入标号为1,2,3,4的四个方格,每格填一个数,则每个方格的标号与所填数字均不相同的填法有种。

例题:将标有1,2,3,4,5编号的五个小球分别填入标号为1,2,3,4,5的五个箱子,每个箱子放一个球,则每个箱子的标号与放小球标号均不相同的填法有种。

方法七:多元问题罗列法例题:由0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个。

例题:用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为?方法八:至少问题间接法 例题:有9名男生与4名女生共13人,现在要求从所有学生中任选 5人参加知识竞赛,问选择的5人中至少有1名女生的选择情况有多 少种? 例题:甲、乙两人从4门课程中各选修 2门,则甲、乙所选的课程中至少有 1 门不相同的选法共有 种 方法九:条件问题排除法 例题:正六边形中心和顶点共7个点,以其中任意3个点为顶点 的三角形共有 个。

高二数学一些典型的排列与组合问题的处理方法

高二数学一些典型的排列与组合问题的处理方法

一些典型的排列与组合问题的处理方法一、要求某元素排在某固定位置或不排在某固定位置的方法:先特殊后一般。

即特殊元素法—先排特殊的元素,再排余下的元素;或特殊位置法先排特殊的位置,再排余下的位置。

对念有“不”字的还可用排除法。

当有多个限制条件时不妨设计一个顺序。

例1:有四名男生,五名女生,(1)全体排成一列,甲只能排在中间,有多少种不同排法?(2)全体排成一列,甲不能排在中间,有多少种不同排法?(3)全体排成一列,甲只能排在中间或两头,有多少种不同排法?(4)全体排成一列,甲、乙两人必须排在两头,有多少种不同排法?(5)全体排成一列,甲不在排头,且乙不在排尾,有多少种不同排法?(6)排成二排,前排4人,后排5人,且甲在前排,乙、丙在后排,有多少种不同排法?例2:用1,2,3,4,5,6这6个数字组成无重复数字的四位数,(1)奇数数字必须在奇数位的有多少个?(2)奇数位只排奇数数字的有多少个?(3)奇数数字不排在奇数位的有多少个?例3:6人划船,其中2人只能划右桨,1人只能划左桨,若要求左、右边各3人,则有几种不同的划法?例4:某天的课程表排入政治、语文、数学、外语、劳技、体育6门课,1门排课1节。

若第一节不能排体育,第6节不能排数学,则共有几种不同排法?例5:由0,1,2,3,4,5这六个数字组成的无重复数字的三位数中,奇数个数与偶数个数之比为多少?二、要求某几个元素排在一起的排法:将这几个元素当成一个元素,与剩下的各元素进行排列,再乘以这几个元素的全排列。

例1:用数字1,2,3,4,5能组成多少个数字不重复的三位奇数字连在一起的五位数?例2:7位同学站成一排,甲、乙两人必须,且丙不站在排头和排尾,有多少种不同排法?例3:赛前将4对乒乓球双打选手介绍给观众,每对选手要连着介绍,则介绍这8位选手的不同顺序共有多少种方法?三、要求某两个元素不在一起的排法:法一:由不受限制条件的排列数减去两元素排在一起的排列数。

排列组合难题21种题型及方法

排列组合难题21种题型及方法

高考数学排列组合难题21 种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

1. 分类计数原理(加法原理)完成一件事,有n类办法,在第 1 类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,⋯,在第n 类办法中有m n种不同的方法,那么完成这件事共有:种不同的方法.2. 分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第 1 步有m1种不同的方法,做第2步有m2种不同的方法,⋯,做第n步有m n种不同的方法,那么完成这件事共有:种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1. 认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行, 确定分多少步及多少类。

3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例 1. 由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.解: 由于末位和首位有特殊要求, 应该优先安排, 以免不合要求的元素占了这两个位置.先排末位共有C31然后排首位共有C41 最后排其它位置共有A43C41A34 C13由分步计数原理得C41C13A43288位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法, 若以元素分析为主, 需先安排特殊元素, 再处理其它元素.若以位置分析为主,需先满足特殊位置的要求, 再处理其它位置。

若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件1练习题:7 种不同的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例 2. 7 人站成一排, 其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合难题21种题型及方法

排列组合难题21种题型及方法

( ) C153C84C44
/
A
2 2
2.10 名学生分成 3 组,其中一组 4 人, 另两组 3 人但正副班长不能分在同一
组,有多少种不同的
分组方法 (1540)
3.某校高二年级共有六个班级,现从外地转 入 4 名学生,要安排到该年级
的两个班级且每班安

2
名,则不同的安排方案种数为______(
解: 分三步取书得 C62C42C22 种方法,但这里出现重复计数的现象,不妨记 6
本书为 ABCDEF,若第一步取 AB,第二步取 CD,第三步取 EF 该分法记

(AB,CD,EF),

C62C42C22



(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)
C42C22
A
2 6
/
A
2 2
90
)十Biblioteka . 合理分类与分步策略例 13.在一次演唱会上共 10 名演员,其中 8 人能能唱歌,5 人会跳舞,现要演
出一个 2 人唱歌 2 人伴舞的节目,有多少选派方法
解:10 演员中有 5 人只会唱歌,2 人只会跳舞 3 人为全能演员。选上唱
歌人员为标准进行研究
只会唱的 5 人中没有人选上唱歌人员共有 C32C32 种,只会唱的 5 人中只
空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对
应地分给7个班级,每一种插板方法对应一种分法共有 C96 种分法。













高中数学排列组合难题十一种方法计划

高中数学排列组合难题十一种方法计划

2020/3/27高考数学摆列合解决方法1.分数原理 ( 加法原理 )达成一件事,有 n 法,在第1法中有 m1种不一样的方法,在第2法中有 m2种不一样的方法,⋯,在第 n 法中有 m n种不一样的方法,那么达成件事共有:N m1m2L m n种不一样的方法.2.分步数原理(乘法原理)达成一件事,需要分红n 个步,做第 1 步有m1种不一样的方法,做第2 步有 m2种不一样的方法,⋯,做第 n 步有 m n种不一样的方法,那么达成件事共有:N m1m2L m n种不一样的方法.3.分数原理分步数原理区分数原理方法互相独立,任何一种方法都能够独立地达成件事。

分步数原理各步互相依存,每步中的方法达成事件的一个段,不可以达成整个事件.解决摆列合合性的一般程以下:1.真弄清要做什么事2.怎做才能达成所要做的事 , 即采纳分步是分 , 或是分步与分同行 , 确立分多少步及多少。

3.确立每一步或每一是摆列 ( 有序 ) 是合 ( 无序 ) , 元素数是多少及拿出多少个元素 .4.解决摆列合合性,常常与步交错,所以必掌握一些常用的解策略一. 特别元素和特别地点先策略例 1. 由 0,1,2,3,4,5能够成多少个没有重复数字五位奇数.解: 因为末位和首位有特别要求 , 先安排 , 免得不合要求的元素占了两个地点 .先排末位共有 C31而后排首位共有 C41最后排其余地点共有 A34由分步数原理得 C41C31 A43288地点剖析法和元素剖析法是解决摆列组合问题最常用也是最基本的方法, 若以元素剖析为主 , 需先安排特别元素 , 再办理其余元素 . 若以地点剖析为主, 需先知足特别地点的要求 , 再办理其余位置。

如有多个拘束条件,常常是考虑一个拘束条件的同时还要兼备其余条件12020/3/27练习题 :7 种不一样的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两头的花盆里,问有多少不一样的种法二. 相邻元素捆绑策略例 2. 7 人站成一排 , 此中甲乙相邻且丙丁相邻 , 共有多少种不一样的排法 . 解:可先将甲乙两元素捆绑成整体并当作一个复合元素,同时丙丁也当作一个复合元素,再与其余元素进行摆列,同时对相邻元素内部进行自排。

排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全

排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全

排列组合问题的解题方法总结一、相邻问题 “捆绑法”:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。

例1:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解: 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有66A 种排法,其中女生内部也有33A 种排法,根据乘法原理,共有6363A A 种不同的排法. 练1-1:7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法练1-2:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 练1-3:6个人排成一排,甲、乙二人必须相邻的排法有多少种?解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A55种,甲、乙二人的排列有A22种,共有A22·A55=240种.二、不相邻问题 “插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可。

例2: 学校组织老师学生一起看电影,同一排电影票12张。

8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.解:先排学生共有88A 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有47A 种选法.根据乘法原理,共有的不同坐法为4878A A 种.练2-1:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的 出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的 6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练2-2:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30练2-3:用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”,共有2223222234576A A A A A =种.三、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑。

1717解排列组合问题常用方法(二十种)

1717解排列组合问题常用方法(二十种)

17 解排列组合问题常用方法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。

末位和首位有特殊要求。

先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。

由分步计数原理得113344288C C A =。

变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。

由分步计数原理得25451440A A =。

二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。

先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。

由分步计数原理得522522480A A A =。

变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。

三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。

分两步。

第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。

变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
5 5
种,第二步将
4
舞蹈插
入第一步排好的
6
个元素中间包含首尾两个空位共有种
A
4 6
不同的方法,
由分步计数原理,节目的不同顺序共有
A
5 5
A
4 6

元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两

练习题:某班新年联欢会原定的 5 个节目已排成节目单,开演前又增加了两 个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,
有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求 出它的反面,再从整体中淘汰.
,
练习题:我们班里有 43 位同学,从中任抽 5 人,正、副班长、团支部书记至 少有一人在内的
抽法有多少种 十. 合理分类与分步策略 例 10.在一次演唱会上共 10 名演员,其中 8 人能能唱歌,5 人会跳舞,现要演
么共有陈列方式的种数为
A
2 2
A
5 5
A
4 4
3.
5
男生和5女生站成一排照像,男生相邻,女生也相邻的排法有
A
2 2
A
5 5
A
5 5

三.不相邻问题插空策略
例 3.一个晚会的节目有 4 个舞蹈,2 个相声,3 个独唱,舞蹈节目不能连续出场,
则节目的出场顺序有多少种

解:分两步进行第一步排
2
个相声和
3
个独唱共有
取法有多少种 解:这问题中如果直接求不小于 10 的偶数很困难,可用总体淘汰法。这 十个数字中有 5 个偶数 5 个奇数,所取的三个数含有 3 个偶数的取法有C53 ,
只含有 1 个偶数的取法有 C51C52 ,和为偶数的取法共有 C51C52 C53 。再淘汰和
小于 10 的偶数共 9 种,符合条件的取法共有 C51C52 C53 9
完成一件事,需要分成 n 个步骤,做第 1 步有 m1 种不同的方法,做第 2 步 有 m2 种不同的方法,…,做第 n 步有 mn 种不同的方法,那么完成这件事共 有:
?
种不同的方法.
N m1 m2 mn
3.分类计数原理分步计数原理区别
分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
解:8 人排前后两排,相当于 8 人坐 8 把椅子,可以把椅子排成一排.个特殊
元素有
A
2 4
种,再排后
4
个位置上的特殊元素丙有
A
1 4
种,其余的
5
人在
5
个位置上任意排列有
A
5 5
种,则共有
A
2 4
A
1 4
A
5 5

前排
后排
?
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研
究.
七.排列组合混合问题先选后排策略















将 n 个相同的元素分成 m 份(n,m 为正整数),每份至少一个元素,可以用 m-1 块隔板,
插入
n
个元素排成一排的
n-1
个空隙中,所有分法数为
C m1 n 1
练习题: 1. ; 2. 10 个相同的球装 5 个盒中,每盒至少一有多少装法 C94 九.正难则反总体淘汰策略 例 9.从 0,1,2,3,4,5,6,7,8,9 这十个数字中取出三个数,使其和为不小于 10 的偶数,不同的
员有 C52C52 种,由分类计数原理共有
>
种。 C32C32 C51C31C42 C52C52
解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做 到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。
练习题:
(
1.从 4 名男生和 3 名女生中选出 4 人参加某个座 谈会,若这 4 人中必须 既有男生又有女生,则不同的选法共有 34
出一个 2 人唱歌 2 人伴舞的节目,有多少选派方法 解:10 演员中有 5 人只会唱歌,2 人只会跳舞 3 人为全能演员。选上唱
歌人员为标准进行研究 只会唱的 5 人中没有人选上唱歌人员共有 C32C32 种,只会唱的 5 人中只
有 1 人选上唱歌人员 C51C31C42 种,只会唱的 5 人中只有 2 人选上唱歌人
小结 此题若直接去考虑的话,就会比较复杂.但如果我们将其转换 为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解.
多少及取出多少个元素.
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解
题策略
一.特殊元素和特殊位置优先策略
例 1.由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这
两个位置.
先排末位共有 C31 然后排首位共有 C41
练习题:一个班有 6 名战士,其中正副班长各 1 人现从中选 4 人完成四种不 同的任务,每人完成一种任务,且正副班长有且只有 1 人参加,则不同 的选法有 192 种
八.元素相同问题隔板策略 例 8.有 10 个运动员名额,分给 7 个班,每班至少一个,有多少种分配方案
解:因为 10 个名额没有差别,把它们排成一排。相邻名额之间形成9个 空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对 应地分给7个班级,每一种插板方法对应一种分法共有 C96 种分法。
例 7.有 5 个不同的小球,装入 4 个不同的盒内,每盒至少装一个球,共有多少
不同的装法.
解:第一步从 5 个球中选出 2 个组成复合元共有C52 种方法.再把 4 个元素
(包含一个复合元素)装入
4
个不同的盒内有
A
4 4
种方法,根据分步计数
原理装球的方法共有
C52
A
4 4
#
解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗
/
最后排其它位置共有 A43 由分步计数原理得 C41C31A43 288
C
1 4
A34
C
1 3
位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件
例 1 学校组织老师学生一起看电影,同一排电影票 12 张。8 个学生,4 个
老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法
分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是
特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.
解 先排学生共有 种排法,然后把老师插入学生之间的空档,共有 7 个

练习题:7 种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不 种在两端的花盆里,问有多少不同的种法
二.相邻元素捆绑策略 例 2. 7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一
个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。 由分步计数原理可得共有 A55 A22 A22 480 种不同的排法

方法
空模型处理
[
马路上有编号为 1,2,3,4,5,6,7,8,9 的九只路灯,现要关掉其中的 3 盏,但不 能关掉相邻的 2 盏或 3 盏,也不能关掉两端的 2 盏,求满足条件的关 灯方法有多少种
解:把此问题当作一个排队模型在 6 盏亮灯的 5 个空隙中插入 3 个不亮的灯 有 C53 种
一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒 模型等,可使问题直观解决

分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊 元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题. 因为女生要排在一起,所以可以将 3 个女生看成是一个人,与 5 个男生作全排 列,有 种排法,其中女生内部也有 种排法,根据乘法原理,共有 种不 同的排法. 捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即 将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意 合并元素内部也可以作排列. 例 3 在高二年级中的 8 个班,组织一个 12 个人的年级学生分会,每班要求 至少 1 人,名额分配方案有多少种
练习题:某排共有 10 个座位,若 4 人就坐,每人左右两边都有空位,那么 不同的坐法有多少种(120)
^
练习题:10 人身高各不相等,排成前后排,每排 5 人,要求从左至右身高逐渐 增加,共有多少排法
C 150
五.重排问题求幂策略 例 5.把 6 名实习生分配到 7 个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名
新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42 2. 某 8 层大楼一楼电梯上来 8 名乘客人,他们到各自的一层下电梯,下电梯 的方法 78

练习题:6 颗颜色不同的钻石,可穿成几种钻石圈 120
六.多排问题直排策略
例人排成前后两排,每排 4 人,其中甲乙在前排,丙在后排,共有多少排法
2. 3 成人 2 小孩乘船游玩,1 号船最多乘 3 人, 2 号船最多乘 2 人,3 号船只 能乘 1 人,他们任选 2 只船或 3 只船,但小孩不能单独乘一只船, 这 3 人共 有多少乘船方法. (27) 本题还有如下分类标准: *以 3 个全能演员是否选上唱歌人员为标准 *以 3 个全能演员是否选上跳舞人员为标准 *以只会跳舞的 2 人是否选上跳舞人员为标准 都可经得到正确结果
相关文档
最新文档