高中数学易错题精选--排列组合篇20180825
高中 排列组合 知识点+例题 全面分类
辅导讲义―排列组合教学内容1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.1.三个人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过3次传递后,毽子又被踢回给甲.则不同的传递方式共有()A.5种B.2种C.3种D.4种2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.2793.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13 C.12 D.104.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)题型一分类加法计数原理的应用例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?分类计数原理与分步计数原理(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?在所有的两位数中,个位数字大于十位数字的两位数共有多少个?题型二分步乘法计数原理的应用例2有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.题型三两个原理的综合应用例3如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有()A.30种B.27种C.24种D.21种方法与技巧1.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.分类标准要明确,做到不重复不遗漏.3.混合问题一般是先分类再分步.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.失误与防范1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.A 组 专项基础训练1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( ) A .3 B .4 C .6 D .82.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有( ) A .4种 B .5种 C .6种 D .9种3.集合P ={x,1},Q ={y,1,2},其中x ,y ∈{1,2,3,…,9},且P ⊆Q .把满足上述条件的一对有序整数对(x ,y )作为一个点的坐标,则这样的点的个数是( ) A .9 B .14 C .15 D .214.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( ) A .9 B .10 C .18 D .205.从-2、-1、0、1、2、3这六个数字中任选3个不重复的数字作为二次函数y =ax 2+bx +c 的系数a 、b 、c ,则可以组成顶点在第一象限且过原点的抛物线条数为( ) A .6 B .20 C .100 D .120. B 组 专项能力提升1.已知集合M ={1,2,3},N ={1,2,3,4},定义函数f :M →N .若点A (1,f (1))、B (2,f (2))、C (3,f (3)),△ABC 的外接圆圆心为D ,且DA →+DC →=λDB →(λ∈R ),则满足条件的函数f (x )有( ) A .6种 B .10种 C .12种 D .16种2.直角坐标xOy 平面上,平行直线x =n (n =0,1,2,…,5)与平行直线y =n (n =0,1,2,…,5)组成的图形中,矩形共有( )A .25个B .36个C .100个D .225个3.如图,一环形花坛分成A ,B ,C ,D 四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .484.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.1.排列与组合的概念名称定义排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C m n表示.3.排列数、组合数的公式及性质公式(1)A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(2)C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!性质(1)0!=1;A n n=n!.(2)C m n=C n-mn;C m n+1=C m n+C m-1n.1.用数字1、2、3、4、5组成的无重复数字的四位偶数的个数为()A.8 B.24 C.48 D.1202.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.243.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()4.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.排列组合题型一排列问题例1有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男女相间.由0,1,2,3,4,5这六个数字组成的无重复数字的自然数,求:(1)有多少个含有2,3,但它们不相邻的五位数?(2)有多少个数字1,2,3必须由大到小顺序排列的六位数?题型二组合问题例2某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?从10位学生中选出5人参加数学竞赛.(1)甲必须入选的有多少种不同的选法?(2)甲、乙、丙不能同时都入选的有多少种不同的选法?题型三排列与组合的综合应用问题例34个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?思维升华排列、组合综合题目,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列.其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准.(1)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种(2)(2014·重庆)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120C.144 D.168排列、组合问题计算重、漏致误典例:有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有________种.温馨提醒(1)排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻,考虑周全,这样才能做到不重不漏,正确解题.(2)“至少、至多”型问题不能利用分步乘法计数原理求解,多采用分类求解或转化为它的对立事件求解.方法与技巧1.对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧:(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.失误与防范求解排列与组合问题的三个注意点:(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理做最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)和间接法(排除法)来解决,分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意等价答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.A组专项基础训练1.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种3.10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为()A.C27A55B.C27A22C.C27A25D.C27A354.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种5.如图所示,要使电路接通,开关不同的开闭方式有()1。
排列组合综合问题.[五篇范例]
排列组合综合问题.[五篇范例]第一篇:排列组合综合问题.[文件] sxgdja0017.doc [科目] 数学 [年级] 高中 [章节][关键词] 排列/组合/综合 [标题] 排列组合综合问题 [内容]北京市东直门中学吴卫教学目标通过教学,学生在进一步加深对排列、组合意义理解的基础上,掌握有关排列、组合综合题的基本解法,提高分析问题和解决问题的能力,学会分类讨论的思想.教学重点与难点重点:排列、组合综合题的解法.难点:正确的分类、分步.教学用具投影仪.教学过程设计(一)引入师:现在我们大家已经学习和掌握了一些排列问题和组合问题的求解方法.今天我们要在复习、巩固已掌握的方法的基础上,来学习和讨论排列、组合综合题的一般解法.先请一位同学帮我们把解排列问题和组合问题的一般方法及注意事项说一下吧!生:解排列问题和组合问题的一般方法直接法、间接法、捆绑法、插空法等.求解过程中要注意做到“不重”与“不漏”.师:回答的不错!解排列问题和组合问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.(教师边讲,边板书)互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法(二)举例师:我下面我们来分析和解决一些例题.(打出片子——例1)例1 有12个人,按照下列要求分配,求不同的分法种数.(1)分为两组,一组7人,一组5人;(2)分为甲、乙两组,甲组7人,乙组5人;(3)分为甲、乙两组,一组7人,一组5人;(4)分为甲、乙两组,每组6人;(5)分为两组,每组6人;52(6)分为三组,一组5人,一组4人,一组3人;(7)分为甲、乙、丙三组,甲组5人,乙组4人,丙组3人;(8)分为甲、乙、丙三组,一组5人,一组4人,一组3人;(9)分为甲、乙、丙三组,每组4人;(10)分为三组,每组4人.(教师慢速连续读一遍例1,同时要求学生审清题意,仔细分析,周密考虑,独立地求解.这是一个层次分明的排列、组合题,涉及非平均分配、平均分配和排列组合综合.各小题之间有区别、有联系,便于学生分析、比较、归纳,有利于学生加深理解,提高能力)师:请一位同学说一下各题的答案(只需要列式).7566生:(1),(2),(3)都是C12;(4),(5)都是C12;(6),(7),(8)C5C654344都是C12(9),(10)都是C12 C7C3;C84C4师:从这个同学的解答中,我们可以看出他对问题的考虑分先后次序,用位置法求解是掌握了的.但是还请大家审清题意,看(3)与(1),(2);(5)与(4);(8)与(6),(7);(10)与(9)是否分别相同,有没有出现“重复”和“遗漏”的问题.(找班里水平较高的一位学生回答)生:(3)和(1),(2);(5)和(4);(8)和(6),(7);(10)和(9)并不相同.(3),(5),(8),(10)的答案都错了,既出现了“重复”也出现了“遗漏”的问题.(3)的答案是CCP312552(5)是2;6644C12C6C12C84C45433;(8)是C12C7C3P 3(10)是P22P33(教师在学生回答时板书各题答案)师:回答的正确,请说出具体的分析.生:(3)把12人分成甲、乙两组,一组7人,一组5人,但并没有指明甲、乙谁是7人,谁是5人,所以要考虑甲、乙的顺序,再乘以P2;(8)也是同一道理.(5)把12人分成两组,66每组6人,如果是分成甲组、乙组,那么共有C12种不同分法,但是(5)只要求平均分C62成两组,这样甲、乙组两元素的所有不同排列顺序,甲乙、乙甲共P22个就是同一种分组了,66C12C6所以(5)的答案是;(10)的道理相同. 2P2师:分析的很好!我们大家必须认识到,题目中具体指明甲、乙与没有具体指明是有区别的.如果在解题过程中不加以区别,就会出现“重复”和“遗漏”的问题,这是解决排列、组合题时要特别注意的.例1中,(1),(2),(6),(7)都是非平均分配问题,虽然(1),(6)都没有指出组名,而(2),(7)给出了组名,但是在非平均分配中是一样的.这是因为(2),(7)不仅给出了组名,而且还指明了谁是几个人,这一点上又与(3),(8)有差异.(3),(8)给了组名却没有指明谁是几个人.题中(4),(5),(9),(10)都属于平均分配问题,在平均分配中,如果没有给出组名,一定要除以组数的阶乘!如果12个人分成三组,其中一组2人,另外两组都是5人,求所有不同的分法种数.这里有不平均(一组2人),又有平均(两组都是是5人).怎么办? 53 生:分两步完成.第一步:12个人中选2人的方法数C212;第二步:剩下的10个人平均分5555C10C5C10C52成两组,每组5人的方法数,根据乘法原理得到,共有C12•种不同的分法. 22P2P2师:很好!大家已经理解了不平均分配的、平均分配,以及部分平均分配的计算,部分平均分配问题先考虑不平均分配,剩下的仍是平均分配,平均分配要商除.这样分配问题已彻底解决了.请看例题2.(打出片子——例2)(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.(教师读题、巡视)师:请一位同学说出(1),(2)的答案.872生甲:N1=P77P22;N2=P8-P7P2师:完全正确!他是用捆绑法解决“相邻”问题的,把2女“捆绑”在一起看成一组,与6男共7组,组外排列为P77,女生组内排列为P2,得2女相邻排法数N1=P77•P22;(2)是用捆绑法结合排除法来解得,从总体排列P88中排除N1得2女不相邻的排法数N2=2P88-P77P22(教师的复述是为了使水平较差学生明白解题思路,了解分析方法,真正理解解法)师:(2)的不相邻的分离排列还有没有其它解法? 生乙:可以用插空法直接求解.6男先排实位,再在7个空位中排2女,共有N2=P66P72种不同排法.(板书(1),(2)算式)师:对于(2)的两种解法思路不同,但殊途同归,结果一样,都是正确的.两种解法解决分离问题是否都很方便呢?试想,如果“5男3女排成一排,3女都不能相邻“P88-P66P33与P55P63一样吗?大家动手计算一下.生:前者是36 000,后者是14 400,不一样,肯定有问题.师:P66P33是什么? 生:3女相邻.师:3女相邻的反面是什么? 生:P8-P6P3是3女不都相邻,其中有2女相邻,不是3女都不相邻.师:这一例题说明什么? 生:不相邻的分离排列还是用插空法要稳妥一些.师:请大家下课后想一想,用捆绑法结合排除法能否解决上述问题,如果能解决,应该怎么做?我们继续分析和解决(3),(4)两小题.863 54 N3=P33P44P44;N4=2P44P44.(板书(3),(4)的算式)834444师:非常正确!(4)吸取了(2)的教训,没有用P8-P3P4P4,并且没有简单的用P4P5插空,而是考虑到了男、女都要排实位,否则会出现.(板书)(女男男女男女男女)两男或两女相邻的问题.这时同性不相邻必须男女都排好,即男奇数位,女偶数位,或者对调.(通过对例2的讨论和分析,能够帮助学生对于分离排列、排除法以及插空法有更清楚的认识,只有这样学生才会找到合理的解法,提高分析和解决问题的能力.)师:我们再来看一个例题.(打出片子——例3)例3 某乒乓球队有8男7女共15名队员,现进行混合双打练习,两边都必须是1男1女,共有多少种不同的搭配方法?(教师朗读一遍例3后巡视)师:请同学说一下答案.224生:N=C8. C7P4(板书此式)师:怎么分析的呢?22生:每一种搭配都需要2男2女,先把4名队员选出来,有C8C7种选法,然后考虑4人的排法,故乘以P44师:选出的4名队员做全排列,那么(板书)男A男B、女A女B行吗? 生:不行,有“重复”了,应该乘以什么呢? 师:这就需要我们再把问题想想清楚了,当选出2男2女队员进行混合双打时,有几种搭配方法呢?(板书)男——男女①Aa Bb ②Ab Ba ③Ba Ab ④Bb Aa 以上四种吗? 生:不是!③与②,④与①属于同一种,只有2种搭配,应该乘以2.22师:这就对了.N=2C8C7,还可以用下面的思路:先在8男中选2男各据一侧,是排列问222题,有P82种方法;再在7女中选2女与之搭配,是组合问题,有C7种方法,一共有N=P8C7种搭配方法.(板书)22解法1:N=2C8C7 22解法2:N=P8C7师:最后看例4(打出片子——例4)例4 高二(1)班要从7名运动员中选出4名组成4×100米接力队,参加校运会,其中甲、乙二人都不跑中间两棒的安排方法有多少种?(教师读题,引导分析)师:从7人中选4人分别安排第一、二、三、四棒这四个不同任务,一定与组合和排列有关,对甲、乙有特殊要求,这就有了不同情况,要分类相加了.先不考虑谁跑哪棒,就说4人的选择有几类情况呢?53生:三类,第一类,没有甲乙,有C4种选法;第二类,有甲没乙或有乙没甲,有2C5种选2法;第三类,既有甲也有乙,有C5种选法.师:如果把上述三类选法数相加再乘以P44行不行? 生:不行,对于上面三类不同选法,并不能都有P44种安排方法.考虑甲、乙二人都不跑中44313222间两棒,应有不同的安排方法数是:N=C5P4+2C5P2P3+C5P2P2.师:第二项中的P21P33是什么意思呢? 生:第二类中甲、乙两人只有1人选中时,甲(乙)的排法数量是P21,其他三人的排法数是P33.师:很好,这个排列组合综合题在求解中的分类十分重要,大家要认真体会,了解其思路和方法.(三)小结我们通过对4个例题的分析和讨论,总结了分配问题,分离排列问题的解法,以及排列、组合综合题的解法.解排列、组合综合题,一般应遵循:先组后排的原则.解题时一定要注意不重复、不遗漏.(四)作业1.四名优秀生保送到三所学样去,每所学样至少得1名,则不同的保送方案总数是种.(23C4P3=36)2.有印着0,1,3,5,7,9的六张卡片,如果允许9当作6用,那么从中任意以组成多少个不同的三位数?(6P或2C4P2P2+2C4P3+C4P2P2+P4=152)5+P4C1C4P2=152课堂教学设计说明关于排列组合的应用题,由于其内容独特,自成体系;种类繁多,题目多变;解法别致,思维抽象;条件隐晦,难以捉摸;得数较大,不易检验.所以这一课历来是学生学习中的难点.为了降低解题的难度,在教会学生基本方法的同时,一定要使学生学会转化,分类的思想方法,将复杂的排列、组合综合题转化为若干个简单的排列、组合问题.基于这一点,在例题的选排上,特别安排了例1,在复习巩固前面所学基本解法的基础上,总结了分配问题的解法,并引出了简单的排列组合综合问题.通过例2来讨论排列中常见的相邻排列和分离排列问题,21112112332122 56 以及排除法、插空法等解法在应用中需注意的事项.例3、例4是典型的排列、组合综合题,分别侧重了分步和分类两个难点.教学方法上,以问答形式,通过讨论分析,引导学生正确思维,培养学生分析问题和解决问题的能力.操作过程中也要根据学生的具体情况,采取多变的方式.学生配合的好,就以学生为主,学生回答问题不尽如人意时,就需要教师在提高语言、方式等方面多做文章,或以教师的讲授为主.第二篇:08届高三数学排列组合综合问题g3.1092 排列与组合的综合问题一、知识梳理1.排列、组合都是研究事物在某种给定的模式下所有可能的配置的数目问题,它们之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行排队,因此,分析解决排列组合问题的基本思维是“先组,后排”.2.解排列组合的应用题,要注意四点:(1)仔细审题,判断是组合问题还是排列问题;要按元素的性质分类,按事件发生的过程进行分步.(2)深入分析、严密周详,注意分清是乘还是加,既不少也不多,辩证思..维,多角度分析,全面考虑,这不仅有助于提高逻辑推理能力,也尽可能地避免出错.(3)对于附有条件的比较复杂的排列组合应用题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后应用分类计数原理或分步计数原理来解决.(4)由于排列组合问题的答案一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决问题的方案是否完备,有无重复或遗漏,也可采用多种不同的方法求解,看看是否相同.在对排列组合问题分类时,分类标准应统一,否则易出现遗漏或重复.二、基础训练1.(04福建)某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为2A.A6C24B.122A6C242C.A6A24D.2A62.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为A.24B.48C.120D.72 3.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为A.480B.240C.120D.96 4.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字组成没有重复数字的四位数,其中能被5整除的四位数共有_____________个.(用数字作答)5.市内某公共汽车站有10个候车位(成一排),现有4名乘客随便坐在某个座位上候车,则恰好有5个连续空座位的候车方式共有_____________种.(用数字作答)例1.从6名短跑运动员中选4人参加4×100 m接力,如果其中甲不能跑第一棒,乙不能跑第四棒,问共有多少种参赛方法? 例2.对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止.若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能? 思考讨论用类似的方法,讨论如下问题.某种产品有5件不同的正品,4件不同的次品,现在一件件地进行检测,直到4件次品全部测出为止,则最后一件次品恰好在第6次检测时被测出,这样的检测方案有多少种?提示:问题相当于从10件产品中取出6件的一个排列,第6位为次品,前五位有其余3件次品,可分三步:先从4件产品中留出1件次品排第6位,有42种方法;再从5件正品中取2件,有C5种方法;再把3件次品和取出的2件正2品排在前五位有A5种方法.所以检测方案种数为4×C5·A5=4800.55例3.在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄.为有利于作物生长,要求A、B 两种作物的间隔不小于6垄,则不同的种植方法共有多少种?例4.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是A.234B.346C.350D.363 例5.(1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法? 例6.已知1(1+n)m.四、同步练习g3.1092 排列与组合的综合问题1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有A.24种B.18种C.12种D.6种2.四个不同的小球全部随意放入三个不同的盒子中,使每个盒子都不空的放法种数为A.A13A343B.C24A32C.C34A22D.C14C34C23.(05湖北卷)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数 A.168 B.96 C.72 D.144 4.(05江苏卷)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A)96(B)48(C)24(D)0 5.从6名短跑运动员中选出4人参加4 × 100米接力赛,如果甲、乙两人都不跑第一棒,那么不同的参赛方案有 A.180种B.240种C.300种D.360种6.书架上原有5本书,再放上2本,但要求原有书的相对顺序不变,则不同的放法有_____________种.7.(04浙江)设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,..则质点不同的运动方法共有__________种.(用数字作答)8.在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法?9.18人的旅游团要选一男一女参加生活服务工作,有两位老年男人不在推选之列,共有64种不同选法,问这个团中男女各几人?10.如下图,矩形的对角线把矩形分成A、B、C、D四部分,现用五种不同色彩给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,共有多少种不同的涂色方法?ABCD11.6名运动员分到4所学校去做教练,每校至少1人,有多少种不同的分配方法?参与答案基本训练1.将4名学生均分成两组,方法数为C24,再分配给6个年级中的2个,222分配方法数为A6,∴合要求的安排方法数为C24·A6.112答案:B432.若不含A,则有A4若含有A,则有C3C12·A3C12·A34种;4·3种.∴A4+C4·3=72.答案:D23.先把5本书中的两本捆起来(C5),再分成四份(A4,∴分法种数为4)2C5·A44=240.答案:B 4.①四位数中包含5和0的情况:12C13·C14·(A33+A2·A2)=120.②四位数中包含5,不含0的情况:3C13·C24·A3=108.③四位数中包含0,不含5的情况:2C3C14A3=72.3综上,四位数总数为120+108+72=300.答案:300 5.把四位乘客当作4个元素作全排列有A4种排法,将一个空位和余下的4422个空位作为一个元素插空有A5种排法.∴A4·A5=480.4答案:480 例题分析例1.解法一:问题分成三类:(1)甲、乙两人均不参加,有A4种;(2)甲、4乙两人有且仅有一人参加,有2C3(A4-A3)种;(3)甲、乙两人均参加,有443C2(A4-2A3+A2)种.故共有252种.44324解法二:六人中取四人参加的种数为A6,除去甲、乙两人中至少有一人不排在恰当位置的有C12 A3种,因前后把甲、乙两人都不在恰当位置的种数A2减544去了两次.故共有A6-C12 A3+A2=252种.54评述:对于带有限制条件的排列、组合综合题,一般用分类讨论或间接法两种方法处理.4例2.解:C14(C16C33)A4=576,第5次必测出一次品,余下3件在前4次被测出,从4件中确定最后一件品有C14种方法,前4次中应有1正品、3次品,4有C16C33种,前4次测试中的顺序有A4种,由分步计数原理即得.评述:本题涉及一类重要问题,即问题中既有元素的限制,又有排列的问题,一般是先选元素(即组合)后排列.例3.解:依题意,A、B两种作物的间隔至少6垄,至多8垄.(1)间隔62垄时,有3×A2(2)间隔7垄时,有2×A22种;2种.(3)间隔8垄时,有A2种.22所以共有3A22+2A2+A2=12种种植方法.例4.解法一:分类讨论法.(1)前排一个,后排一个,2C18·C112=192.(2)后排坐两个(不相邻),2(10+9+8+…+1)=110.(3)前排坐两个,2·(6+5+…+1)+2=44个.∴总共有192+110+44=346个.解法二:考虑中间三个位置不坐,4号座位与8号座位不算相邻.2∴总共有A19+2+2=346个.答案:B 评述:本题考查分类讨论在解排列组合应用题中的运用.这是一道难度较大的小综合题.例5.解:(1)先将3人(用×表示)与4张空椅子(用□表示)排列如图(×□□×□□×),这时共占据了7张椅子,还有2张空椅子,一是分开插入,如图中箭头所示(↓×□↓□×□↓□×↓),从4个空当中选2个插入,有C2种4插法;二是2张同时插入,有C14种插法,再考虑3人可交换有A3种方法.3所以,共有A3(C2+C14)=60(种).34下面再看另一种构造方法:先将3人与2张空椅子排成一排,从5个位置中选出3个位置排人,另2个位置排空椅子,有A3C2种排法,再将4张空椅子中的每两张插入每两人之间,52只有1种插法,所以所求的坐法数为A3·C2=60.52(2)可先让4人坐在4个位置上,有A4种排法,再让2个“元素”(一个4是两个作为一个整体的空位,另一个是单独的空位)插入4个人形成的5个“空22当”之间,有A5种插法,所以所求的坐法数为A44·A5=480.01n1n例6.证法一:由二项式定理(1+m)n=C0nm+Cnm+…+Cnm,011mm(1+n)m=C0,mn+Cmn+…+Cmn又因为Cinmi=Anmi!ii,Cimni=Amni!ii,2322333mmm而Ainmi>Aimni,所以C2>Cm.nm>Cmn,Cnm>Cmn,…,Cnmmn0001111又因为C0nm=Cmn,Cnm=Cmn,所以(1+m)n>(1+n)m.证法二:(1+m)n>(1+n)m⇔nln(1+m)>mln(1+n)⇔ln(1+m)mx>ln(1+n)n.令f(x)=ln(1+x),x∈[2,+∞],只要证f(x)在[2,+∞]上单调递减,只要证 f ′(x)<0.f ′(x)=[ln(1+x)]'x-x'⋅ln(1+x)x2=x-ln(1+x)2(1+x)x(1+x).当x≥2时,x-lg(1+x)(1+x)<0,x2(1+x)>0,得f ′(x)<0,即x∈[2,+∞]时,f ′(x)<0.以上各步都可逆推,得(1+m)n>(1+n)m.作业:1—4 BBDBB6.427.5 8.解法一:添加的三个节目有三类办法排进去:①三个节目连排,有C17A33种方法;②三个节目互不相邻,有A3种方法;③有且仅有两个节目连排,有7C13C17C16A2种方法.根据分类计数原理共有C17A3+A3+C13C17C16A2=504种.2372解法二:从结果考虑,排好的节目表中有9个位置,先排入三个添加节目有A3种方法,余下的六个位置上按6个节目的原有顺序排入只有一种方法.故所求9排法为A3=504种.9解法三:A9A669=504.评述:插空法是处理排列、组合问题常用的方法.9.解:设这个团中有男人x人,则有女人18-x人,根据题意得C1x-2· C118-x=64.解得x=10.∴这个团中有男10人,女8人.10.解法一:依题意,给四部分涂色,至少要用两种颜色,故可分成三类涂色:4第一类,用4种颜色涂色,有A5种方法;第二类,用3种颜色涂色,选3种颜色的方法有C35种;在涂的过程中,选对顶的两部分(A、C或B、D)涂同色,另两部分涂异色有C12种选法;3种颜313色涂上去有A33种涂法.共C5·C2·A3种涂法;2第三类,用两种颜色涂色.选颜色有C5种选法;A、C与B、D 各涂一色有22A22种涂法.共C5·A2种涂法.41322所以共有涂色方法A5+C35·C2·A3+C5·A2=260种.解法二:区域A有5种涂色法;区域B有4种涂色法;区域C的涂色法有2类:若C与A涂同色,区域D 有4种涂色法;若C与A涂不同色,此时区域C有3种涂色法,区域D也有3种涂色法.所以共有5×4×4+5×4×3×3=260种涂色法.11.解法一:先取人,后取位子.1,1,1,3:6人中先取3人有C3种取法,与剩余3人分到4所学校去有6A4种不同分法,∴共C3A4种分法;46421,1,2,2:6人中取2人、2人、1人、1人的取法有C6·C2·C12种,4然后分到4所学校去,有A4A2⋅A2224种不同的分法,共C·C·C·262412A4A2⋅A2224种分法.所以符合条件的分配方法有CA+C·C·C·3644262412A4A22422⋅A=1560种.解法二:先取位子,后取人.1,1,1,3:取一个位子放3个人,有C14种取法,6人中分别取3人、1人、1人、1人的取法有C3·C13·C12·C1种,∴共有C14·C3·C13·C12·C1种.61611,1,2,2:先取2个位子放2(其余2个位子放1)有C24种取法,6人中22分别取2人,2人,1人,1人的取法有C6·C2C12·C1共有C2C6·C2C12·C14·1种,4·4·1种.112221所以符合条件的分配方法有C14·C36·C3·C2+C4·C6·C4·C2=1560种.第三篇:排列组合排列组合方法一:相邻元素捆绑法:所谓“捆绑法”就是在解决对于某几个元素要求相邻问题时,可整体考虑将相邻元素视为一个“大”元素例:6名同学排成一排,其中甲,乙两人必须在一起的不同徘法共有(C)A.720种 B.360种 C.240种 D.120种因甲,乙两人排在一起,故甲乙两人捆在一起视作一人,与其余四个全排列A5种排法,但甲乙两人之间有A2种52排法,由分布计数原理可知:共有A5•A2=240种不同排法,故选C 方法二:相离问题插空法:不相邻问题是指要求某些元素不能相邻,由其他元素将它隔开,此类问题可以先将其他元素排好,再将所指定的不相邻的元素插入到它们的空隙及两端位置,故称“插空法”例:要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法?先将6个歌唱节目排好,其不同的排法A6种,这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目有A746种排法,由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为A7.•A6方法三:定序问题缩倍法:在排列问题中限制某几个元素必须保持一定顺序成为定序问题,这类问题用缩小倍数的方法求解比较方便。
高中数学_排列组合100题(附解答)
高中数学_排列组合100题一、填充题1. (1)设{}3,8A =﹐{}8,36B x =+﹐若A B =﹐则x =____________﹒(2)设{}2|320A x x x =-+=﹐{}1,B a =﹐若A B =﹐则a =____________﹒2. (1)822x x ⎛⎫-⎪⎝⎭展开式中10x 项的系数为____________﹒ (2)52123x x ⎛⎫- ⎪⎝⎭展开式中3x 项的系数为____________﹒ (3)53212x x ⎛⎫+ ⎪⎝⎭展开式中常数项为____________﹒ 3. (1)()82x y z +-展开式中332x y z 项的系数为____________﹒(2)()532x y z -+展开式中﹐2.3x y 项的系数为____________﹒4. 四对夫妇围一圆桌而坐﹐夫妇相对而坐的方法有___________种﹒5. {}{}1,21,2,3,4,5,A ⊂⊂且A 有4个元素﹐则这种集合A 有____________个﹒6. 从2000到3000的所有自然数中﹐为3的倍数或5的倍数者共有____________个﹒7. 从1至10的十个正整数中任取3个相异数﹐其中均不相邻的整数取法有____________种﹒8. 某女生有上衣5件﹑裙子4件﹑外套2件﹐请问她外出时共有____________种上衣﹑裙子﹑外套的搭配法﹒(注意:外套可穿也可不穿﹒) 9. 已知数列n a 定义为1132n n a a a n +=⎧⎨=+⎩﹐n 为正整数﹐求100a =____________﹒ 10. 设A ﹑B ﹑T 均为集合﹐{},,,A a b c d =﹐{},,,,=B c d e f g ﹐则满足T A ⊂或T B ⊂的集合T 共有____________个﹒11. 李先生与其太太有一天邀请邻家四对夫妇围坐一圆桌聊天﹐试求下列各情形之排列数:(1)男女间隔而坐且夫妇相邻____________﹒(2)每对夫妇相对而坐____________﹒12. 体育课后﹐阿珍将4个相同排球﹐5个相同篮球装入三个不同的箱子﹐每箱至少有1颗球﹐则方法有____________种﹒13. 如图﹐由A 沿棱到G 取快捷方式(最短路径)﹐则有____________种不同走法﹒14. 0﹑1﹑1﹑2﹑2﹑2﹑2七个数字全取排成七位数﹐有____________种方法﹒1013⎛⎫16. 有一数列n a 满足11a =且1213n n a a +=+﹐n 为正整数﹐求()13n n a ∞=-=∑____________﹒ 17. 设{}2,4,1A a =+﹐{}24,2,23B a a a =----﹐已知A B ⋂{}2,5=﹐则()()A B A B ⋃-⋂=____________﹒18. 把1~4四个自然数排成一行﹐若要求除最左边的位置外﹐每个位置的数字比其左边的所有数字都大或都小﹐则共有____________种排法﹒(例如:2314及3421均为符合要求的排列) 19. 从1到1000的自然数中﹐(1)是5的倍数或7的倍数者共有____________个﹒(2)不是5的倍数也不是7的倍数者共有____________个﹒(3)是5的倍数但不是7的倍数者共有____________个﹒20. 如图﹐从A 走到B 走快捷方式﹐可以有____________种走法﹒21. 1到1000的正整数中﹐不能被2﹑3﹑4﹑5﹑6之一整除者有____________个﹒22. 将100元钞票换成50元﹑10元﹑5元﹑1元的硬币﹐则(1)50元硬币至少要1个的换法有____________种﹒(2)不含1元硬币的换法有____________种﹒23. 求()21x -除1001x +的余式为____________﹒24. 在()8x y z ++的展开式中﹐同类项系数合并整理后﹐(1)共有____________个不同类项﹒(2)其中323x y z 的系数为____________﹒25. 小明与小美玩猜数字游戏﹐小明写一个五位数﹐由小美来猜;小美第一次猜75168﹐小明说五个数字都对﹐但只有万位数字对﹐其他数字所在的位数全不对﹐则小美最多再猜____________次才能猜对﹒26. 若{}|,,110000S x x x x =≤≤為正整數為正整數﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐则()n S T -=____________﹒27. 小于10000之自然数中﹐6的倍数所成集合为A ﹐9的倍数所成集合为B ﹐12的倍数所成集合为C ﹐则(1)()n A B ⋂=____________﹒ (2)()n A B C ⋂⋂=____________﹒ (3)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒(4)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒28. 1到300的自然数中﹐是2或3的倍数但非5的倍数有____________个﹒29. ()10222x x -+除以()31x -所得的余式为____________﹒ 30.如圖﹐以五色塗入各區﹐每區一色且相鄰區不得同色﹐則有____________種不同的塗法﹒(圖固定不得旋轉)(1)由A 取捷徑到B 的走法有____________種﹒(2)由A 走到B ﹐走向可以↑﹑→或↓﹐但不可以←﹐且不可重複走﹐則走法有____________種﹒32. 求()()23311x x ++++……()2031x ++展开式中12x 项系数为____________﹒ 33. ()1001k k x =-∑展开式中5x 的系数为____________﹒34. 展开()200.990.abcd =……﹐则a b c ++=____________﹒35. 建中高二教室楼梯一层有11个阶梯﹐学生上楼时若限定每步只可跨一阶或二阶﹐则上楼的走法有____________种﹒36. 利用二项式定理求12323n n n n n C C C nC +++⋅⋅⋅⋅⋅⋅+和为____________﹒37. 四对夫妇Aa ﹑Bb ﹑Cc ﹑Dd 围一圆桌而坐﹐若Aa 要相对且Bb 要相邻的坐法有____________种﹒38. 许多白色及黑色的磁砖﹐白色的磁砖为正方形﹐边长为1单位;黑色为长方形﹐其长为2单位﹐宽为1单位﹔则贴满一个长7单位﹐宽1单位的长方形墙壁﹐共有____________种方法﹒39.如圖,有三組平行線,每組各有三條直線,則(1)可決定____________個三角形.(2)可決定____________個梯形.(一組對邊平行,另一組對邊不平行).40. 小功家住在一栋7楼的电梯公寓﹐今天小功回家时有5人同时和小功一起进入1楼电梯欲往上﹐假设每人按下自己想要到的楼层(可相同或不同)﹐请问电梯有____________种停靠方式﹒(假设这期间电梯只会由下而上依次停靠这6人所按的楼层)41. 设202020201232023......20,S C C C C =+⋅+⋅++⋅则S 为____________位数﹒(设log20.3010=)42. 4面不同色的旗子﹐若任取一面或数面悬挂在旗杆上来表示讯号﹐如果考虑上下的次序﹐则可作成____________种不同的讯号﹒43.如圖的棋盤式街道﹐甲走捷徑從A 至B ﹐則 (1)走法有____________種﹒(2)若不得經過C 且不經過D 的走法有____________種﹒44.圖中的每一格皆是正方形﹐邊長均為1個單位﹐試問由圖中線段(1)共可決定____________個矩形﹒(2)可決定____________個正方形﹒45. 有红﹑白﹑黄三种大小一样的正立方体积木各20个﹐从中取出7个积木﹐相同颜色堆在一起﹐一一重迭堆高﹐共有____________种堆法﹒47. A ﹑B ﹑C ﹑D ﹑E 五对夫妇围成一圆桌而坐(座位无编号)﹐A 夫妇相对且B 夫妇相邻的情形有____________种﹒48. 如图﹐取快捷方式而走﹐由A 不经P ﹑Q 至B 有____________种方法﹒49. 将pallmall 的字母全取排成一列﹐相同字母不相邻的排法有____________种﹒50. 二个中国人﹑二个日本人﹑二个美国人排成一列﹐同国籍不相邻有____________种排法﹒二、计算题1. 设数列n a 满足14a =且132k n a a +=+﹐n 为自然数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)推测n a 之值(以n 表示)﹒(3)401k k a =∑﹒2. 某校从8名教师中选派4名教师分别去4个城市研习﹐每地一人﹒其中甲和乙不能同时被选派﹐甲和丙只能同时被选派或同时不被选派﹐问共有几种选派方法?3. 试求()632x y -的展开式﹒4. 试求()421x -的展开式﹒6. 下列各图形﹐自A 到A 的一笔划﹐方法各有多少种﹖ (1) (2) (3)7. 如图﹐至少包含A 或B 两点之一的矩形共有几个?8. 设()n x y +展开式中依x 降序排列的第6项为112﹐第7项为7﹐第8项为14﹐试求x ﹑y 及n 之值﹒(但x ﹑y 都是正数)9. 红﹑白﹑绿﹑黑四色大小相同的球各4颗共16颗球﹐任取四颗﹐则(1)四球恰为红﹑白二色的情形有几种?(2)四球恰具两种颜色的情形有几种?10. 一楼梯共10级﹐某人上楼每步可走一级或两级﹐要8步走完这10级楼梯﹐共有多少种走法?11. 设{}1,2,3,4,5,6,7,8,9,10U =为一基集(宇集)﹐则{}1,2,4,5,8A =﹐{}1,2,5,7,9B =﹐求(1)A B ⋃(2)A B ⋂ (3)A B - (4)B A - (5)'A (6)'B (7)()'⋃A B (8)''⋂A B (9)()'A B ⋂ (10)''A B ⋃﹒12. 若()1922381211x x a x a x x -+=+++⋅⋅⋅⋅⋅⋅+﹐求1a 和2a 的值﹒13. 某一场舞会将4位男生与4位女生配成4对﹐每一对皆含一位男生与一位女生﹐试问总共有几种配对法﹖(1)43C ﹒ (2)44P ﹒ (3)44﹒ (4)44H ﹒ (5)4﹒14. 如图﹐A A →一笔划的方法数有几种﹖ (1)(2)16. 求()70.998之近似值﹒(至小数点后第6位)17. 设()1012220211x x ax bx cx +-=+++⋅⋅⋅⋅⋅⋅+﹐求a ﹑b ﹑c 之值﹒18. (1)试证明下列等式成立:()1012121.12311n n n n n n C C C C n n ++++⋅⋅⋅⋅⋅⋅+=-++ (2)设n 为自然数﹐且满足12031,2311n n n nn C C C C n n +++⋅⋅⋅⋅⋅⋅+=++则n 之值为何?19. 王老师改段考考卷﹐她希望成绩是0﹑4﹑5﹑6﹑7﹑8﹑9所组成的2位数﹐则(1)不小于60分的数有几个﹖(2)有几个3的倍数﹖(3)改完考卷后发现由小到大排列的第12个数正是全班的平均成绩﹐请问班上的平均成绩是几分﹖20. 某日有七堂课﹐其中有两堂是数学﹐有两堂是国文﹐另外是英文﹑生物﹑体育各一堂﹒若数学要连两堂上课﹐国文也要连两堂上课﹐但同科目的课程不跨上﹑下午(即第四五节课不算连堂)﹐若第四﹑五堂课也不排体育﹐则该日之课程有几种可能的排法﹖21. ()10122320211,x x ax bx cx x +-=++++⋅⋅⋅⋅⋅⋅+求a ﹑b ﹑c ﹒22. 已知{}{}{}0,,1,2,1,1,2=∅A ﹐下列何者为真﹖(A)∅∈A (B)∅⊂A (C)0A ∈ (D)0A ⊂ (E){}1,2A ∈ (F){}1,2A ⊂ (G){}∅⊂A ﹒23.設有A ﹑B ﹑C ﹑D ﹑E 五個市鎮﹐其通道如圖所示﹐今某人自A 地到E 地﹐同一市鎮不得經過兩次或兩次以上﹐且不必走過每一市鎮﹐求有幾種不同路線可走﹖24. 设数列n a 的首项15a =且满足递归关系式()123n n a a n +=+-﹐n 为正整数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)一般项n a (以n 表示)﹒(3)20a ﹒25. 方程式10x y z ++=有多少组非负整数解?26. 用0﹑1﹑2﹑3﹑4﹑5作成大于230的三位数奇数﹐数字可重复使用(1)可作成多少个﹖ (2)其总和若干﹖27. 求5678192023451617C C C C C C ++++++的值﹒28. 妈妈桌球俱乐部拟购买8把桌球拍以供忘记携带球拍的会员使用﹐若球拍分为刀板﹐直拍与大陆拍3类﹐试问俱乐部有多少种不同的购买方式?29. 设直线方程式0ax by +=中的,a b 是取自集合{}3,2,1,0,2,4,6---中两个不同的元素﹐且该直线的斜率为正值﹐试问共可表出几条相异的直线﹖30. 下列各图﹐由A 到B 的一笔划﹐方法各有多少种﹖31. 以五种不同的颜色﹐涂入下列各图(图形不能转动)﹐同色不相邻﹐颜色可重复使用﹐则涂法各有多少种﹖ (1) (2)32. 平面上有n 个圆﹐其中任三个圆均不共点﹐此n 个圆最多可将平面分割成n a 个区域﹐则(1)求1a ﹐2a ﹐3a ﹐4a ﹒(2)写出n a 的递归关系式﹒(3)求第n 项n a (以n 表示)﹒33. 于下列各图中﹐以五色涂入各区﹐每区一色但相邻不得同色﹐则各有几种不同的涂法﹖(各图固定﹐不得旋转) (1) (2) (3)34. 车商将3辆不同的休旅车及3辆不同的跑车排成一列展示﹒求下列各种排列方法:(1)休旅车及跑车相间排列﹒ (2)休旅车及跑车各自排在一起﹒35. 从6本不同的英文书与5本不同的中文书中﹐选取2本英文书与3本中文书排在书架上﹐共有几种排法?36. 将9本不同的书依下列情形分配﹐方法各有几种?(1)分给甲﹐乙﹐丙3人﹐每人各得3本﹒(2)分装入3个相同的袋子﹐每袋装3本﹒(3)分装入3个相同的袋子﹐其中一袋装5本﹐另两袋各装2本﹒37. 学校举办象棋及围棋比赛﹐已知某班级有42位同学参赛﹐其中有34位同学参加围棋比赛﹐而两种棋赛都参加的同学有15人﹒试问此班有多少位同学参加象棋比赛?38. 求()321x x ++的展开式中2x 的系数﹒39. 求()322x x -+的展开式中4x 的系数﹒41. 自甲地到乙地有电车路线1条﹐公交车路线3条﹐自乙地到丙地有电车路线2条﹐公交车路线2条﹒今小明自甲地经乙地再到丙地﹐若甲地到乙地与乙地到丙地两次选择的路线中﹐电车与公交车路线各选一次﹐则有几种不同的路线安排?42. 某班举行数学测验﹐测验题分A﹐B﹐C三题﹒结果答对A题者有15人﹐答对B题者有19人﹐答对C题者有20人﹐其中A﹐B两题都答对者有10人﹐B﹐C两题都答对者有12人﹐C﹐A两题都答对者有8人﹐三题都答对者有3人﹒试问A﹐B﹐C三题中至少答对一题者有多少人?43. 在1到600的正整数中﹐是4﹐5和6中某一个数的倍数者共有几个?44.用黑白兩種顏色的正方形地磚依照如右的規律拼圖形:a是第n圖需用到的白色地磚塊數﹒設n(1)寫下數列n a的遞迴關係式﹒(2)求一般項n a﹒(3)拼第95圖需用到幾塊白色地磚﹒45. 欲将8位转学生分发到甲﹐乙﹐丙﹐丁四班﹒(1)若平均每班安排2人﹐共有几种分法?(2)若甲乙两班各安排3人﹐丙丁两班各安排1人﹐共有几种分法?46. 求满足12320003000n n n n n C C C C <++++<的正整数n ﹒47. (1)方程式9x y z ++=有多少组非负整数解﹖(2)方程式9x y z ++=有多少组正整数解﹖48. 旅行社安排两天一夜的渡假行程﹐其中往返渡假地点的交通工具有飞机﹑火车及汽车3种选择﹐而住宿有套房与小木屋2种选择﹒试问全部渡假行程﹐交通工具与住宿共有几种安排法﹖49. 老师想从10位干部中选出3人分别担任班会主席﹑司仪及纪录﹒试问有几种选法﹖50. 如果某人周末时﹐都从上网﹑打牌﹑游泳﹑慢跑与打篮球等5种活动选一种作休闲﹐那么这个月4个周末共有多少种不同的休闲安排呢﹖答 案一、填充题 (65格 每格0分 共0分)1. (1)1-;(2)22. (1)112;(2)0;(3)403. (1)4480;(2)90-4. 485. 36. 4687. 568. 609. 9903 10. 44 11.(1)48;(2)384 12. 228 13. 6 14. 90 15. 12- 16. 6 17. {}4,4- 18. 8 19. (1)314;(2)686;(3)172 20. 35 21. 266 22. (1)37;(2)18 23. 10098x - 24. (1)45;(2)560 25. 9 26. 84 27. (1)555;(2)277;(3)1111;(4)1111 28. 160 29. 2102011x x -+ 30. 780 31. (1)26;(2)120 32. 20349 33. 462- 34. 16 35. 144 36. 12n n -⋅ 37. 192 38. 2139. (1)27;(2)81 40. 63 41. 8 42. 64 43. (1)56;(2)20 44. (1)369;(2)76 45. 129 46. 3756 47. 8640 48. 80 49. 54 50. 240二、计算题 (75小题 每小题0分 共0分)1. (1)2112a =﹐37a =﹐4172a =﹐510a =;(2)3522n +;(3)1330 2. 600 3. 见解析 4. 见解析 5. 18 6. (1)48;(2)48;(3)96 7. 150 8. 4x =﹐12y =﹐8n = 9. (1)3;(2)18 10. 28 11. 见解析 12. 1219,190a a =-= 13. (2) 14. (1)32;(2)64 15. 27 16. 0.986084 17. 101,4949,a b ==1c =- 18. (1)见解析;(2)4 19. (1)28;(2)14;(3)5720. 52 21. 101,4949,a b ==156550c = 22. (A)(B)(C)(E)(F)(G) 23. 76 24. (1)24a =﹐35a =﹐48a =﹐513a =;(2)248n n -+;(3)328 25. 66 26. (1)63;(2)25299 27. 5980 28. 45 29. 13 30. (1)72;(2)864 31. (1)420;(2)3660 32. (1)12a =﹐24a =﹐38a =﹐414a =;(2)12n n a a n +=+⨯;(3)22n n -+ 33. (1)260;(2)3380;(3)43940 34. (1)72;(2)72 35. 1800036. (1)1680;(2)280;(3)378 37. 23 38. 6 39. 9 40. 20 41. 8 42. 27 43. 280 44.(1)15,2n n a a n -=+≥;(2)53n +;(3)478 45. (1)2520;(2)1120 46. 11 47. (1)55;(2)28 48. 18 49. 720 50. 625 解 析一、填充题 (65格 每格0分 共0分)1. (1)3631x x +=⇒=-﹒(2)()()2320120x x x x -+=⇒--=1,2x ⇒=﹐∴2a =﹒2. (1)设第1r +项为10x 项﹐则()()882816222rr r r r r r C x C x x x ---⎛⎫-=- ⎪⎝⎭ 163102r r ⇒-=⇒=﹐∴10x 项之系数为()2822112C -=﹒(2)设第1r +项为3x 项﹐则()55255102112233r rr r r r r r C x C x x x ----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭ 710333r r ⇒-=⇒=(不合)﹐∴3x 项之系数为0﹒ (3)设第1r +项为常数项﹐则()5535515322122rr r r r r r C x C x x x ----⎛⎫= ⎪⎝⎭3. (1)()()()()332238!22144803!3!2!x y z -⇒⨯⨯-=﹒ (2)()()()()2303223235!321031902!3!x y z x y x y -=⨯-=-﹐∴系数为90-﹒ 4. 所求为1161412148⨯⨯⨯⨯⨯⨯⨯=﹒[另解]34!2484⨯=﹒ 5. {}1,2,3,4﹐{}1,2,3,5﹐{}1,2,4,5﹐共3个﹒6. 2000~3000中3的倍数有3000200033433⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中5的倍数有30002000120155⎡⎤⎡⎤-+=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中15的倍数有30002000671515⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ ∴所求为33420167468+-=﹒ 7. 83563!P =﹒ 8. ()542160⨯⨯+=﹒9. ∵12n n a a n +=+﹐∴2121a a =+⨯3222a a =+⨯()1)21n n a a n -+=+⨯-()()21121213232n n n a a n n n -⋅=+⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦﹐ ∴210010010039903a =-+=﹒10. ∵T A T B ⊂⋃⊂﹐∴T 的个数为4522221632444+-=+-=﹒ 11. (1)5!2485⨯=﹒ (2)A a B b C c D d E e1181614121384⨯⨯⨯⨯⨯⨯⨯⨯⨯=﹒[另解]55!1238452⨯⨯=﹒ 12. 全部-(恰有一空箱)-(恰有二空箱)()67564545323228C C C C =⨯-⨯--=﹒13. 3216⨯⨯=﹒14. 任意排0-在首位7!6!5675610515904!2!4!2!22⨯⨯⨯=-=-=-=﹒ 15. 展开后各实数项和为2468108642101010101002468113131313222222222C C i C i C i C i ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭10010101322C i ⎛⎫⎛⎫+- ⎪ ⎪ ⎪⎝⎭⎝⎭512110242=-=-﹒ [另解]原式()()10cos 60sin 60i =⎡-︒+-︒⎤⎣⎦()()cos 600sin 600i =-︒+-︒1322i =-+﹐ ∴实数项和为12-﹒ 16. ∵1213n n a a +=+⋅⋅⋅⋅⋅⋅ ∴1213n n a a -=+⋅⋅⋅⋅⋅⋅ -()1123n n n n a a a a +-⇒-=- 而11a =﹐2125133a a =+=﹐2123a a -=﹐ 表示数列1n n a a +-为首项23﹐公比23的等比数列﹐ ()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅⋅⋅⋅+-111221332211213223313n n n ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-﹐ ∴()111223262313n n n n a -∞∞==⎛⎫-=== ⎪⎝⎭-∑∑﹒17. ∵{}2,5A B ⋂=﹐∴154a a +=⇒=﹐∴{}2,4,5A =﹐{}4,2,5B =-﹐{}4,2,4,5A B ⋃=-﹐2134 32412314 34212341 4321共8种﹒19. 设1到1000的自然数所成的集合为基集U ﹐1到1000的自然數中﹐5的倍數者所成的集合為A ﹐ 而7的倍數者所成的集合為B ﹐ 則A B ⋂表示35的倍數者所成的集合﹐(1)即求()()()()n A B n A n B n A B ⋃=+-⋂100010001000200142283145735⎡⎤⎡⎤⎡⎤=+-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦﹒(2)即求()()()()1000314686⎡⎤'''⋂=⋃=-⋃=-=⎢⎥⎣⎦n A B n A B n U n A B ﹒ (3)即求()()()20028172n A B n A n A B -=-⋂=-=﹒20. 7!354!3!=﹒ 21. 若一整数不能被2整除﹐则必不能被4﹑6整除﹐故本题即求1到1000正整数中﹐不能被2﹑3﹑5之一整除者的个数﹒设1到1000之正整数中﹐可被2﹑3﹑5整除者之集合分别为A ﹑B ﹑C ﹐则()10005002n A ⎡⎤==⎢⎥⎣⎦﹐()10003333n B ⎡⎤==⎢⎥⎣⎦﹐()10002005n C ⎡⎤==⎢⎥⎣⎦﹐ ()10001666n A B ⎡⎤⋂==⎢⎥⎣⎦﹐()100010010n A C ⎡⎤⋂==⎢⎥⎣⎦﹐()10006615n B C ⎡⎤⋂==⎢⎥⎣⎦﹐ ()10003330n A B C ⎡⎤⋂⋂==⎢⎥⎣⎦﹐ ()()()()()()()()n A B C n A n B n C n A B n A C n B C n A B C ⋃⋃=++-⋂-⋂-⋂+⋂⋂ 5003332001661006633734=++---+=﹐故所求为()()'''10001000734266n A B C n A B C ⋂⋂=-⋃⋃=-=(个)﹒22. (1)①一个50⇒设10元x 个﹐5元y 个﹐1元z 个﹐则10550x y z ++=﹐x 0 1 2 3 4 5y 0~10 0~8 0~6 0~4 0~2 0z 50~0 40~0 30~0 20~0 10~0 0∴所求为36137+=种﹒(2)设50元x 个﹐10元y 个﹐5元z 个﹐则50105100x y z ++= 10220x y z ⇒++=﹐x0 1 2 y 0~100~5 0 z 20~0 10~0 0共116118++=种﹒23. ()()()1002100100100121111111x x C x C x +=⎡+-⎤+=+-+-+⎣⎦……()10010010011C x +-+﹐∴1001x +除以()21x -的余式为()11001110098x x +-+=-﹒24. (1)3101088245H C C ===﹒ (2)8!560.3!2!3!= 25. 先考虑5不在千位﹐1不在百位﹐6不在十位﹐8不在个位的方法﹐ 14!43!62!41!10!9⨯-⨯+⨯-⨯+⨯=﹐∴最多再猜9次﹒26. {}{}2222|,1100001,2,3,,100,=≤≤=為正整數S x x x ∴()100n S =﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐ 令()222212232336x k k ==⨯⨯=⨯⨯=﹐ 则()()(){}22261,62,,616,⋂=⨯⨯⨯S T ∴()16n S T ⋂=﹐故()1001684n S T -=-=﹒27. (1)所求为999955518⎡⎤=⎢⎥⎣⎦﹒ (2)所求为999927736⎡⎤=⎢⎥⎣⎦﹒ (3)()()()()n A B C n A B n C n A B C ⎡⋂⋃⎤=⋂+-⎡⋂⋂⎤⎣⎦⎣⎦5558332771111=+-=﹒(4)()()()n A B C n A B A C ⎡⋂⋃⎤=⎡⋂⋃⋂⎤⎣⎦⎣⎦()()()()n A B n A C n A B A C =⋂+⋂-⎡⋂⋂⋂⎤⎣⎦ ()555833n A B C =+-⋂⋂5558332771111=+-=﹒28.()()()()()()236151030n n n n n n +---+15010050203010160=+---+=﹒29. ()()1010222211x x x ⎡⎤-+=-+⎣⎦ ()()10922101010911C x C x ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦……()()22210101021011C x C x C ⎡⎤+-+-+⎣⎦ 故余式为()()210102210110211102011C x C x x x x -+=-++=-+﹒ 30.①B ﹑D 同﹐54143240,A B D C E⨯⨯⨯⨯= ②B ﹑D 異﹐ 54333540,A B D C E⨯⨯⨯⨯=由①②可得﹐共有240540780+=种﹒31.(1)走捷徑等於是走向只許向右與向上兩種﹒如圖﹐ 由A 開始朝任何方向走都有1種走法﹐走至交叉 點P 後﹐將會合箭頭的方法數全部加起來﹐即為走到該點的走法數(累加法)﹒如圖﹐走法有26種﹒(2)走向可以↑﹑→或↓﹐但不可以←又不可重複走﹒如圖﹐由P 出發﹐依所規定的走法﹐走到隔鄰的鉛垂路線上立即停止﹐再決定走向﹒如此相鄰的兩鉛垂路線間的走法數相乘﹐即為所求的走法數﹒∴走法有120種﹒32. ()()23311x x ++++……()()()()()()203321332033311111111x x x x x x x ⎡⎤++-+-+⎢⎥⎣⎦++==+-﹐ 所求即分子()2131x +展开式中15x 项系数 ∴所求为21521201918172034954321C ⨯⨯⨯⨯==⨯⨯⨯⨯﹒ 33. ()()()()1001201111k k x x x x =-=-+-+-+∑……()101x +- ()()()11111111111x x x x⎡⎤----⎣⎦==--﹐ 展开式中5x 系数即为()1111x --展开式中6x 系数﹐∴所求为()61161462C --=-﹒()()()2320202012310.010.010.01C C C =+-+-+-+……()2020200.01C +-10.20.0190.00114=-+-+……0.81786≈﹐ ∴81716a b c ++=++=﹒35. 设一步一阶走x 次﹐一步二阶走y 次﹐则211x y +=﹐x 1 3 5 7 9 11 y543216!7!8!9!10!15!3!4!5!3!7!2!9!⇒+++++144=﹒ 36. 令12323n n n n n S C C C nC =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 则()0111n n n n S nC n C C -=+-+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+()0122n n n nn S n C C C n ⇒=++⋅⋅⋅⋅⋅⋅+=⋅﹐∴12n S n -=⋅﹒ 37.()1142!4!192.⨯⨯⨯⨯=選位A aBb38. 设白色x 块﹐黑色y 块﹐则27x y +=﹐y0 1 2 3 x7531⇒6!5!4!116104215!2!3!3!+++=+++=﹒ 39. (1)33311127C C C =﹒ (2)33333333321121121181C C C C C C C C C ++=﹒40. 62163-=41. 20202020123202320S C C C C =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 20202001192019S C C C =++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅()202020200120220202S C C C +⇒=++⋅⋅⋅⋅⋅⋅+=⨯﹐∴20102S =⨯﹐∵20log 220log 2200.3010 6.02==⨯=﹐∴202为7位数﹐∴S 为8位数﹒ 42. ①选一面4⇒﹐ ②选二面4312⇒⨯=﹐ ③选三面43224⇒⨯⨯=﹐ ④选四面⇒432124⨯⨯⨯=﹐由①②③④可得﹐共可作成412242464+++=种﹒ 43. (1)8!565!3!=﹒ (2)所求=全部()n C D -⋃()()()56A C B A D B A C D B =-⎡→→+→→-→→→⎤⎣⎦3!5!4!4!3!4!5612!3!2!3!2!2!2!2!2!⎛⎫=-⨯+⨯-⨯⨯ ⎪⎝⎭()5630241820=-+-=﹒44. (1)含中空:3342111172,C C C C ⨯⨯⨯= 左 上 右 下不含中空:37934792334342222222222222223C C C C C C C C C C C C C C +++----左 上 右 下 左上 右上 左下 右下 631081263691836297=+++----= ∴所求为72297369.+=(2)含中空:边长为31⇒﹐边长为44⇒﹐边长为56⇒﹐边长为63⇒﹐∴共14个﹐ 不含中空:()()()()625128176352418523122362,⨯+⨯+⨯+⨯+⨯+⨯+⨯+--⨯+⨯--=左 上 右 下 左上 右上 左下 右下 ∴所求为146276+=个﹒ 45. ①只用一色:3种﹐②只用二色:()()()()()()6,1,5,2,4,3,3,42,5,1,6 ∴()322!636,C ⋅⨯=上下色交換③用三色:红+白+黄=7 1 1 1 剩4∴36443!690,⨯=⨯=H C 紅白黃排列∴共33690129++=种﹒46. 444333222111234234234234146410H H H H H H H H H H H H ⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯700049006604103756=-⨯+⨯-⨯+=﹒ 47. 6A a Bb →→→坐法其他人坐法1162!6!8640⨯⨯⨯⨯=﹒48. ()A B A P B A Q B A P Q B →-→→+→→-→→→ 10!4!6!5!5!4!5!16!4!2!2!4!2!3!2!3!2!2!2!3!2!⎛⎫⇒-⨯+⨯-⨯⨯ ⎪⎝⎭()210901006080=-+-=﹒ 49. aa 不相邻且llll 不相邻﹐可先排pmaa ﹐再安插llll ﹐ ①aa 排在一起时:pm aa 排法有3!6=种﹐再安插4个l :p m a a △△△△△方法有434C =种﹒↑ l②aa 不排在一起时:p m △△△排法有322!6C ⨯=种﹐ 再安排4个l :p a m a △△△△△方法有545C =种﹒ 由①②可知﹐排法有646554⨯+⨯=种﹒ [另解]llll 不相邻llll -不相邻且aa 相邻54444!3!606542!4!4!P P =⨯-⨯=-=﹒ 50. 6!35!2!34!2!2!13!2!2!2!240-⨯⨯+⨯⨯⨯-⨯⨯⨯⨯=﹒二、计算题 (75小题 每小题0分 共0分)1. ∵132n n a a +=+﹐∴132n n a a +-=﹐ 表示n a 为首项4﹐公差32的等差数列﹐(1)2133114222a a =+=+=﹐ 3231137222a a =+=+=﹐ 4333177222a a =+=+=﹐ 54317310222a a =+=+=﹒ (2)()()1335141222n a a n d n n =+-=+-⨯=+﹒ (3)()401240134024401213302k k a a a a =⎡⎤⨯+-⨯⎢⎥⎣⎦=++⋅⋅⋅⋅⋅⋅+==∑﹒ 2. 从8名教师中选出4名教师去4个城市研习的方式可分为甲去和甲不去两种情形: (1)若是甲去研习﹐则丙也会去﹐而乙不去﹐因此需从剩下的5名教师中选出2人去参加研习﹐故选法有52C 种﹒ (2)若是甲不去研习﹐则丙也不会去﹐而乙可去也可不去﹐因此需从剩下的6名教师中选出4名教师去参加研习﹐故选法有64C 种﹒综合这两种情形﹐从8名教师中选派4名教师的选法共有562425C C +=种﹒而选出4名教师后﹐分别安排到4个城市去研习﹐则安排的方式有4!种﹐ 因此总共有254!600⨯=种选派方法﹒3. ()()()()()()()()()()6651423324666660123432332323232x y C x C x y C x y C x y C x y -=+-+-+-+-()()()566656322C x y C y +-+-6542332456729291648604320216057664.x x y x y x y x y xy y =-+-+-+4. ()()()()()()()()()44312213444444012342122121211x C x C x C x C x C -=+-+-+-+-43216322481x x x x =-+-+﹒5. SENSE 的5个字母中取3种字母﹐其中任取3个字母可能取出「三个字母皆不相同」或「两个字母同另一不同」两种情形:(1)选出三个字母皆不相同的选法有331C =种﹐排列的方法有3!种﹐ 因此排法有333!6C ⨯=种﹒(2)选出两个字母同另一不同的选法有2211C C ⨯种﹐排列的方法有3!2!1!种﹐ 因此排法有22113!122!1!C C ⨯⨯=种﹒ 综合这两种情形﹐共有18种排法﹒6. (1)先走任一瓣都可以﹐故将3瓣视为3条路任意排列﹐方法3!种﹐又每一瓣走法有2种(两个方向)﹐故所求为323!⨯48=种﹒(2)323!48⨯=﹒ (3)423!96⨯=﹒7. ()()()()n A B n A n B n A B ⋃=+-⋂253343422332111111111111C C C C C C C C C C C C =⨯⨯⨯+⨯⨯⨯-⨯⨯⨯909636150.=+-=8. 555112n n C x y -=⋅⋅⋅⋅⋅⋅ 6667n n C x y -=⋅⋅⋅⋅⋅⋅77714n n C x y -=⋅⋅⋅⋅⋅⋅6165xn y⇒⋅=⋅⋅⋅⋅⋅⋅- 7286xn y⇒⋅=⋅⋅⋅⋅⋅⋅- ()()66167528n n -⇒=-﹐∴8n =﹐ 代入⇒8x y =﹐由⇒()877184C y y =8812y ⎛⎫⇒= ⎪⎝⎭﹐即得12y =±﹐4x =±﹐∴14,,82x y n ===(取正值)﹒9. (1)红+白=41 1 剩223223H C ⇒==﹒[另解] 红 白1322313.⇒共種 (2)利用第(1)题的结果42318C ⇒⨯=﹒10. 用8步走完10级楼梯﹐假设一级走了x 步﹐两级走了y 步﹐ 可列得8210x y x y +=⎧⎨+=⎩解得6x =﹐2y =﹐因此用这样的走法共有8!286!2!=(种)﹒ 11.(1){}1,2,4,5,7,8,9A B ⋃=﹒ (2){}1,2,5A B ⋂=﹒ (3){}4,8A B -=﹒(4){}7,9B A -=﹒(5){}3,6,7,9,10'=-=A U A ﹒ (6){}3,4,6,8,10'=-=B U B ﹒(7)(){}3,6,10'⋃=A B ﹒(8){}3,6,10''⋂=A B ﹒(9)(){}3,4,6,7,8,9,10'⋂=A B ﹒(10){}3,4,6,7,8,9,10''⋃=A B ﹒12. ()()()()191919182219192011111x x x x C x C x x ⎡⎤-+=-+=-+-+⋅⋅⋅⋅⋅⋅⎣⎦﹐∴()1919101119,a C C =-=-1919192021190.a C C C =+=13. 可看作第一位男生有4位女生舞伴可选择﹐第二位男生有3位女生舞伴可选择﹐以此类推得舞会配对方法数共有44432124P =⨯⨯⨯=种﹒故选(2)﹒ 14. (1)5232=﹒(2)①先往右42232⨯=﹐ ②先往左42232⨯=﹐ 共有323264+=﹒ 15.如图﹐共有27种方法﹒16. ()()()()()77237777712370.99810.00210.0020.0020.0020.002C C C C =-=-⨯+⨯-⨯+⋅⋅⋅⋅⋅⋅-⨯10.0140.0000840.0000002800.9860837200.986084.≈-+-=≈ 17. ()()1011012211x x x x ⎡⎤+-=+-⎣⎦()()()()()21011011009910121012101212101111x C x x C x x C x =+-+++-⋅⋅⋅⋅⋅⋅+- ()10111c =-=-﹐∵()1011x +展开式中才有x 项﹐∴1011101,a C == ∵()1011x +及()100101211C x x -+展开式中均有2x 项﹐∴101101214949.b C C =-=18. (1)∵()()()()()()111!!11!1!1!1!1n n k k n C n C k n k k k n n k k n +++===+-+⋅+⋅-++﹐∴左式()()1111121011121.111nn n n n n k n k C C C C k n n +++++==⨯=++⋅⋅⋅⋅⋅⋅+=-+++∑ (2)承(1)知﹐()1113121213111n n n n ++-=⇒-=++﹐得4n =﹒ 19. (1)□□:4728⨯=﹒ ↓ 6﹑7﹑8﹑9(2)45﹑48﹑54﹑57﹑60﹑66﹑69﹑75﹑78﹑84﹑87﹑90﹑96﹑99﹐共14个﹒ (3)4□7⇒个﹐ 5□7⇒个﹐∴1459a =﹐1358a =﹐1257a =﹐∴平均为57分﹒ 20.上午 下午 1 2 3 4 5 6 7數 數 國 國 ╳ 體 體 2228⇒⨯⨯= 數 數 體 ╳ 國 國 體 2228⇒⨯⨯= 數 數 體 ╳ ╳ 國 國 2124⇒⨯⨯= 體 數 數 ╳ 國 國 體 2228⇒⨯⨯= 體 數 數 ╳ ╳ 國 國 2124⇒⨯⨯= 體 體 數 數 國 國 體 23212⇒⨯⨯= 體 體數數╳ 國國2228⇒⨯⨯=∴共有8848412852++++++=種﹒21. ()()()()1011012211x xx x+-=++-()()()()()()21011011009910121012101212101111x C x x C x x C x =+++-++-+⋅⋅⋅⋅⋅⋅+- ()()()1011002411011x x x x f x =+-++⋅﹐其中()f x 为一多项式﹐∴x 项的系数1011101,a C == 2x 项的系数10121014949,b C =-=3x 项的系数10110031101156550.c C C =-⨯=23.∴共有441212218396676+++++++++=种走法﹒ 24. (1)∵()123n n a a n +=+-且15a =﹐ ∴()21213514a a =+⨯-=-=﹐ ()32223415a a =+⨯-=+=﹐ ()43233538a a =+⨯-=+=﹐ ()542438513a a =+⨯-=+=﹒ (2)∵()123n n a a n +=+-﹐ ∴()21213a a =+⨯- ()32223a a =+⨯-()()121223)213n n n n a a n a a n ---=+⎡⨯--⎤⎣⎦+=+⎡⨯--⎤⎣⎦()()()2112121315233482n n n a a n n n n n -⋅=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤--=+⨯-+=-+⎣⎦﹒(3)20a =2204208328-⨯+=﹒25. x ﹐y ﹐z 的非负整数解共有331011212101010266H C C C +-====(组)﹒26. (1)3﹑4﹑5 1﹑3﹑5 →有363⨯⨯个 2 4﹑5 1﹑3﹑5 →有123⨯⨯个 2 3 1﹑3﹑5 →有113⨯⨯个∴共有()()36323363⨯⨯+⨯+=个大于230的三位数奇数﹒(2)①个位数字为1者有()()()36121121⨯+⨯+⨯=个﹐为3﹑5者也各有21个﹐ 故个位数字的和为()21135189⨯++=﹒②十位数字为1﹑2者各有339⨯=个﹐为3者有()33312⨯+=个﹐为4﹑5者各有 ()331312⨯+⨯=个﹐故十位数字和为()()()9121231245171⨯++⨯+⨯+=﹒③百位数字为3﹑4﹑5者各有6318⨯=个﹐为2者有()()23139⨯+⨯=个﹐故百位数字和为()()1834592234⨯++⨯⨯=﹒由①②③可知﹐总和为()()1891711023410025299+⨯+⨯=﹒27. 由于515C =且565622125C C C C =-=-﹐于是利用帕斯卡尔定理111n n n m m m C C C ---=+﹐得原式()66781920234516175C C C C C C =++++++-778192034516175C C C C C =+++++-8819204516175C C C C =++++-21175C =- 5980=﹒28. 设桌球俱乐部拟购买刀板﹐直拍与大陆拍各1x ﹐2x ﹐3x 把﹐ 根据题意得1238x x x ++=﹒其非负整数解有33811010888245H C C C +-====(组)﹐故共有45种不同的购买方式﹒29. 直线0ax by +=是恒过原点﹐且斜率为a b -的直线﹒因为斜率ab-为正值﹐所以,a b 必须异号﹐且,a b 皆不等于0﹒我们以a 的正负情形讨论如下﹕(1)当0a >时﹐a 有3种选法﹐而此时0b <亦有3种选法﹐ 因此有339⨯=种选法﹒(2)当0a <时﹐a 有3种选法﹐而此时0b >亦有3种选法﹐ 因此有339⨯=种选法﹒ 但是①当()()()(),2,1,4,2,6,3a b =---时﹐均表示同一条直线20x y -=﹒ ②当()()()(),3,6,2,4,1,2a b =---时﹐均表示同一条直线20x y -+=﹒ ③当()(),2,2a b =-﹐()2,2-时﹐均表示同一条直线0x y -=﹒ 因此需扣除重复计算的2215++=条直线﹒ 故共可表出99513+-=条相异的直线﹒ 30.(1)從A 走到P 後 ﹐方法有2種﹐完成A 到P 的各路線﹐方法有3!種﹐ 完成P 到B 的各路線﹐方法有3!種﹐ ∴共有()223!3!23!⨯⨯=⨯72=種﹒(2)A 到P 後 ﹐方法2種﹐P 到Q 後 ﹐方法2種﹐∴共有()32223!3!3!23!⨯⨯⨯⨯=⨯864=種﹒ABA Q P B31. (1)B ﹑D 同色﹐A BD C E →→→ 5433180⨯⨯⨯=﹐ B ﹑D 异色﹐A B D C E →→→→54322240⨯⨯⨯⨯=﹐ ∴共有180240420+=种涂法﹒(2)B ﹑D ﹑F 同色﹐A BDF C E G →→→→ 54333540⨯⨯⨯⨯=﹐ B ﹑D ﹑F 异色﹐A B D F C E G →→→→→→ 5432222960⨯⨯⨯⨯⨯⨯=﹐ B ﹑D 同色﹐F 异色﹐A BD F C E G →→→→→ 543322720⨯⨯⨯⨯⨯=﹐同理B ﹑F 同色﹐D 异色;D ﹑F 同色﹐B 异色涂法也各有720种﹐ ∴共有54096072033660++⨯=种﹒ 32.(1)12a = 24a = 38a = 414a =1n = 2n = 3n = 4n =(2)12a =﹐212a a =+﹐3222a a =+⨯﹐4323a a =+⨯﹐∴12n n a a n +=+⨯﹒ (3)∵12n n a a n +=+⨯且12a =﹐ ∴2121a a =+⨯ 3222a a =+⨯()1222n n a a n --=+⨯- ()1)21n n a a n -+=+⨯-()()21121212222n n n a a n n n -⨯=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦∴22n a n n =-+﹒ 33. (1)①A ﹑C 同色﹐541480,A B C D ⨯⨯⨯=②A ﹑C 异色﹐5433180,A B C D ⨯⨯⨯=由①②可得﹐共有80180260+=种﹒(2)由(1)可知[]541433⨯⨯⨯+⨯﹐推得[]25414333380⨯⨯⨯+⨯=﹒ (3)[]354143343940⨯⨯⨯+⨯=﹒34.(1)休旅車及跑車相間排列的情形﹐可分為兩種情形﹐如圖所示:3輛休旅車排成一列共有3!6=種方法﹐同樣地﹐3輛跑車排成一列共有3!6=種方法﹐ 因此根據乘法原理﹐共有26672⋅⋅=種排法﹒ (2)因為休旅車及跑車要各自排在一起﹐如圖所示:所以可以將3輛休旅車看成「1」輛﹐3輛跑車看 成「1」輛﹐變成2輛的排列問題﹐有2!2=種方法﹒又3輛休旅車之間有3!6=種排列方法﹐3輛跑車之間有3!6=種排列方法﹒故共有2!3!3!26672⋅⋅=⋅⋅=種排法﹒35. 选出2本英文书3本中文书的方法有6523150C C ⋅=(种)﹐将此5本书作直线排列﹐有5!种排法﹐故所求排法为65235!18000C C ⋅⋅=(种)﹒36.(1)從9本中取出3本給甲﹐取法有93C 種;再從其餘的6本取出3本給乙﹐取法有63C 種;剩下的3本給丙﹐即33C 種﹒因此﹐全部分配方式共有9633331680C C C ⋅⋅=(種)﹒(2)先假設袋子上依序標示有甲﹐乙﹐丙的記號﹐則有963333C C C ⋅⋅種分 法﹐但事實上袋子是相同的﹐因 此每3!種只能算1種﹐如圖所示﹒故分配方式共有96333316802803!6C C C ⋅⋅==(種)﹒ (3)仿上述作法﹐先假設袋子依序有甲﹐乙﹐丙的記號﹐甲得5本﹐乙丙各得 2本的分法有942522C C C ⋅⋅種﹒因袋子是無記號的﹐所以如圖的2!種其實是同1種﹒故分配方式共有9425223782!C C C ⋅⋅=(種)﹒37.設集合A 表示參加象棋比賽的同學﹐ 集合B 表示參加圍棋比賽的同學﹐ 集合A B ⋃表示參加棋藝活動的同學﹐集合A B ⋂表示參加兩種棋藝活動的同學﹒由題意知()34n B =﹐()42n A B ⋃=﹐()15n A B ⋂=﹒ 利用()()()()n A B n A n B n A B ⋃=+-⋂﹐得()423415n A =+-﹐即()23n A =﹒ 故這個班級中共有23位同學參加象棋比賽﹒38. 因为()()()332211x x x x ++=++﹐所以利用二项式定理将乘积展开﹐得 ()()()()()3321232320111A x x C x C x x ++=++部分+()()()1233232311B C x x C x +++部分﹒ 由于上式中A 部分的各项次数均超过2次﹐因此全部展开式中2x 的系数﹐就是B 部分的展开式中的2x 系数﹒ 又B 部分的展开式为()()223243232133137631x x x x x x x x x x ++++++=++++﹐故全部展开式中2x 的系数为6﹒39. 因为()()()332222x x x x -+=-+﹐所以利用二项式定理将乘积展开得()()()()()()()()()()332100123232323232012322222A B x x C x x C x x C x x C x x -+=-+-+-+-部分部分上述()()322x x -+展开式中B 部分各项次数低于4次﹐因此要计算展开式中4x 的系数只要计算A 部分各项展开式即可﹐又A 部分展开式为()()()()320132320122C x x C x x -+- ()()654343233322x x x x x x x =-+-+-+⨯6543239136x x x x x =-+-+故4x 的系数为9﹒40. 将240作质因子分解﹐得411240235=⨯⨯﹒因为240的正因子必为235a b c ⨯⨯的形式﹐其中{}0,1,2,3,4a ∈﹐{}0,1b ∈﹐{}0,1c ∈﹐所以a 有5种选择﹐b 有2种选择﹐c 有2种选择﹒利用乘法原理﹐得240的正因子个数有52220⨯⨯=个﹒41. 依题意图示如下:其中实线表电车路线﹐虚线表公交车路线﹒ 因为电车与公交车路线各选一次﹐所以路线安排可分成以下二类:(1)先电车再公交车:利用乘法原理﹐得有122⨯=种路线﹒(2)先公交车再电车:利用乘法原理﹐得有326⨯=种路线﹒由加法原理得知﹐共有268+=种路线安排﹒42. 设A ﹐B ﹐C 分别表示答对A ﹐B ﹐C 题的人组成的集合﹒由题意知()15n A =﹐()19n B =﹐()20n C =﹐()10n A B ⋂=﹐()12n B C ⋂=﹐()8n C A ⋂=﹐()3n A B C ⋂⋂=﹒利用排容原理﹐得()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂()n A B C +⋂⋂151920101283=++---+27=﹒故三题中至少答对一题者有27人﹒43.設集合A ﹐B ﹐C 分別表示從1到600的自然數當中的4﹐5,6倍數所形成的集合﹐即()150n A =﹐()120n B =﹐()100n C =﹐()30n A B ⋂=﹐()20n B C ⋂=﹐()50n C A ⋂=﹐()10n A B C ⋂⋂=利用排容原理()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂()n A B C +⋂⋂﹐得()15012010030205010280n A B C ⋃⋃=++---+=﹒故1到600的自然數中﹐是4﹐5﹐6中某一個數的倍數﹐共有280個﹒44. (1)n a 代表「第n 个图需用到白色地砖的块数」﹐我们可以发现图形每次均增加1个黑色地砖与5个白色地砖﹐因此15n n a a -=+﹐2n ≥﹒(2)而上述这些图形中﹐白色地砖的个数可视为一个首项为8﹐公差为5的等差数列﹐故()81553n a n n =+-⨯=+﹒(3)拼第95图所需用到白色地砖数955953478a =⨯+=﹒45. (1)先将这8位转学生分成四堆﹐每堆2人﹐再将这四堆分发到甲﹐乙﹐丙﹐丁四班﹐故总共有86428642222222224!25204!C C C C C C C C ⋅⋅⋅⨯=⋅⋅⋅=种分法﹒ (2)先将这8位转学生分成四堆﹐两堆3人﹐两堆1人﹐再将3人的两堆分发到甲乙两班﹐1人的两堆分发到丙丁两班﹐故总共有85218521331133112!2!11202!2!C C C C C C C C ⋅⋅⋅⨯⨯=⋅⋅⋅=⋅种分法﹒ 46. 因为01232n n n n n n n C C C C C +++++=﹐ 所以1230221n n n nn n n n C C C C C ++++=-=-﹒即原式可改写为2000213000n <-<﹐即200123001n <<﹐得11n =﹒ 47. (1)3119911!559!2!H C ===组﹒ (2)338936628H H C -===组﹒48. 因为去程有3个交通工具可以选择﹐住宿则有2个方式可供选择﹐而回程亦有3个交通工具可以选择﹒因此由乘法原理得共有32318⨯⨯=种安排法﹒ 49. 10310!10987207!P ==⨯⨯=种选法﹒ 50. 由题意知每个周末都有5种休闲活动可以选择﹒利用乘法原理﹐得4个周末共有5555625⨯⨯⨯=种休闲安排﹒。
高中数学排列组合中的典型例题与分析(三)
排列与组合的八大典型错误、24种解题技巧三大模型一、知识点归纳二、基本题型讲解三、排列组合解题备忘录1.分类讨论的思想2.等价转化的思想3.容斥原理与计数4.模型构造思想四、排列组合中的8大典型错误1.没有理解两个基本原理出错2.判断不出是排列还是组合出错3.重复计算出错4.遗漏计算出错5.忽视题设条件出错6.未考虑特殊情况出错7.题意的理解偏差出错8.解题策略的选择不当出错五、排列组合24种解题技巧1.排序问题相邻问题捆绑法相离问题插空排定序问题缩倍法(插空法)定位问题优先法多排问题单排法圆排问题单排法可重复的排列求幂法全错位排列问题公式法2.分组分配问题平均分堆问题去除重复法(平均分配问题)相同物品分配的隔板法全员分配问题分组法有序分配问题逐分法3.排列组合中的解题技巧至多至少间接法染色问题合并单元格法交叉问题容斥原理法构造递推数列法六.排列组合中的基本模型分组模型(分堆模型)错排模型染色问题七.排列组合问题经典题型与通用方法(一)排序问题1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有()A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有()A、24种B、60种C、90种D、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合十种解题技巧与易错题归纳总结
排列组合问题十种题型及其解题技巧、易错归纳(一)至少变恰好例题1 某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( ) A .36B .72C .108D .144【解析】根据题意,分3步进行分析:①单位甲在6人中任选2人招聘,要求至少招聘一名男生,有226312C C -=种情况,②单位乙在剩下的4人中任选2人招聘,有246C =种情况,③单位丙在剩下的2人中任选1人招聘,有122C =种情况, 则有1262144⨯⨯=种不同的录取方案,选D巩固1 2019年高考结束了,有5为同学(其中巴蜀、一中各2人,八中1人)高考发挥不好,为了实现“南开梦”来到南开复读,现在学校决定把他们分到123、、三个班,每个班至少分配1位同学,为了让他们能更好的融入新的班级,规定来自同一学校的同学不能分到同一个班,则不同的分配方案种数为( ) A .84B .48C .36D .28【解析】设这五人分别为1212,,,,A B B C C ,若A 单独为一组时,只要2种分组方法;若A 组含有两人时,有11428C C ⋅=种分组方法;若A 组含有三人时,有11224C C ⋅=种分组情况;于是共有14种分组方法,所以分配方案总数共有331484A =,故选A. (二)插空法例题2 电视台在电视剧开播前连续播放6个不同的广告,其中4个商业广告2个公益广告,现要求2个公益广告不能连续播放,则不同的播放方式共有( )A .5424A A ⋅B .5424C C ⋅C .4267A A ⋅ D .4267C C ⋅【解析】先排4个商业广告,有44A 种排法,然后利用插空法,4个商业广告之间有5个空,插2个公益广告,有25A 种排法,根据分步计数原理,所以共有5424A A ⋅种排法,选A.巩固2 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩下的4个车位连在一起,那么不同的停放方法的种数为( ) A .18B .24C .32D .64【解析】首先安排三辆车的位置,假设车位是从左到右一共7个,当三辆车都在最左边时,有车之间的一个排列33A ,当左边两辆,最右边一辆时,有车之间的一个排列33A , 当左边一辆,最右边两辆时,有车之间的一个排列33A ,当最右边三辆时,有车之间的一个排列33A ,总上可知,共有不同的排列法33424A ⨯=种结果,所以选B(三)特殊元素优先例题3 某所大学在10月份举行秋季越野接力赛,每个专业四人一组,其中计算机专业的甲、乙、丙、丁四位大学生将代表本专业参加拉力赛,需要安排第一棒到第四棒的顺序,四个人去询问教练的安排,教练对甲说:“根据训练成绩,你和乙都不适合跑最后一棒”;然后又对乙说:“你还不适合安排在第一棒”,仅从教练回答的信息分析,要对这四名同学讲行合理的比赛棒次安排,那么不同情形的种数共有( ) A .6B .8C .12D .24【解析】根据条件乙只能安排在第二棒或第三棒;若“乙”安排在第二棒,此时有:1222C A 4=种,若“乙”安排在第三棒,此时有:1222C A 4=种,则一共有8种,选B.(四)捆绑法例题4 为迎接双流中学建校80周年校庆,双流区政府计划提升双流中学办学条件.区政府联合双流中学组成工作组,与某建设公司计划进行6个重点项目的洽谈,考虑到工程时间紧迫的现状,工作组对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有() A .240种B .188种C .156种D .120种【解析】第一类:当甲在第1位时,第一步,丙、丁捆绑成的整体有4种方法,第二步,丙、丁内部排列用22A 种方法,第三步,其他三人共33A 种方法,共23234A A 42648=⨯⨯=种方法;第二类:当甲在第2位时,第一步,丙、丁捆绑成的整体有3种方法, 后面两步与第一类方法相同,共23233A A 32636=⨯⨯=种方法; 第三类:当甲在第3为时,与第二类相同,共36种方法; 总计,完成这件事的方法数为483636120N =++=,故选D.巩固3 某校迎新晚会上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校迎新晚会节目演出顺序的编排方案共有( ) A .120种B .156种C .188种D .240种【解析】先考虑将丙、丁排在一起的排法种数,将丙、丁捆绑在一起,与其他四人形成五个元素,排法种数为25252120240A A =⨯=,利用对称性思想,节目甲放在前三位或后三位的排法种数是一样的, 因此,该校迎新晚会节目演出顺序的编排方案共有2401202=种,选A. (五)不在问题的间接法例题5 某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是( ) A .320B .313C .79D .1778【解析】设事件A :数学不排第一节,物理不排最后一节. 设事件B :化学排第四节.()41134333555578A C C A P A A A +==,()31123222555514A C C A P AB A A +==,故满足条件的概率是()()739P AB P A =.故选C.巩固4 某公司安排五名大学生从事A B C D 、、、四项工作,每项工作至少安排一人且每人只能安排一项工作,A 项工作仅安排一人,甲同学不能从事B 项工作,则不同的分配方案的种数为( ) A .96B .120C .132D .240【解析】若甲同学在A 项工作,则剩余4人安排在B 、C 、D 三项工作中,共有1211342136C C C C =种 若甲同学不在A 项工作,,则在C 或D 工作,共有111112423323()96C C C C C C ++=种,共36+96=132种,选C 巩固5 某次文艺汇演为,要将A ,B ,C ,D ,E ,F 这六个不同节目编排成节目单,如下表:序号 1 2 3 4 5 6 节目如果A ,B 两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有 A .192种B .144种C .96种D .72种【解析】由题意知A ,B 两个节目要相邻,且都不排在第3号位置, 可以把这两个元素看做一个,再让他们两个元素之间还有一个排列,A ,B 两个节目可以排在1,2两个位置,可以排在4,5两个位置,可以排在5,6两个位置, 这两个元素共有种排法,其他四个元素要在剩下的四个位置全排列,节目单上不同的排序方式有,选B .(六)走街道问题例题6 如图,某城市中,M 、N 两地有整齐的道路网,若规定只能向东或向北两个方向沿途中路线前进,则从M 到N 不同的走法共有( )A .10B .13C .15D .25【解析】因为只能向东或向北两个方向,向北走的路有5条,向东走的路有3条,走路时向北走的路有5种结果,向东走的路有3种结果,根据分步计数原理知共有3515⨯=种结果,选C (七)隔板法例题7 设有1n +个不同颜色的球,放入n 个不同的盒子中,要求每个盒子中至少有一个球,则不同的放法有( )A .()1!n +种B .()1!n n ⋅+种C .()11!2n +种 D .()11!2n n ⋅+种 【解析】将两个颜色的球捆绑在一起,再全排列得21!(1)!2n n C n n +=+ 选D巩固6 将4个大小相同,颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放球方法有( )种. A .7B .10C .14D .20【解析】根据题意,每个盒子里的球的个数不小于该盒子的编号, 分析可得,1号盒子至少放一个,最多放2个小球,分情况讨论: ①1号盒子中放1个球,其余3个放入2号盒子,有C 41=4种方法;②1号盒子中放2个球,其余2个放入2号盒子,有C 42=6种方法;则不同的放球方法有4+6=10种,选B . (八)回归原始的方法例题8 某次演出共有6位演员参加,规定甲只能排在第一个或最后一个出场, 乙和丙必须排在相邻的顺序出场,请问不同的演出顺序共有( ) A .24种B .144种C .48种D .96种【解析】第一步,先安排甲有12A 种方案;第二步,安排乙和丙有2124A A 种方案;第三步,安排剩余的三个演员有33A 种方案,根据分步计数原理可得共有1213224396A A A A =种方案.故选D.巩固7 如图,下有七张卡片,现这样组成一个三位数:甲从这七张卡片中随机抽出一张,把卡片上的数字写在百位,然后把卡片放回;乙再从这七张卡片中随机抽出一张,把卡片上的数字写在十位,然后把卡片放回;丙又从这七张卡片中随机抽出一张,把卡片上的数字写在个位,然后把卡片放回。
高中数学中的排列组合问题解析
高中数学中的排列组合问题解析在高中数学中,排列组合是一个重要的概念和工具,用于解决各种实际问题和数学题目。
排列组合问题涉及到对一组元素进行选择、排列或组合的方式和方法。
在本文中,我们将对排列组合问题进行详细解析,包括排列、组合、二项式定理等内容。
一、排列排列是指从一组元素中选取一部分元素按照一定的顺序进行排列的方式。
排列问题可以分为有放回排列和无放回排列两种情况。
有放回排列是指从一组元素中选取若干个元素进行排列,选取的元素在排列过程中可以重复使用。
例如,从1、2、3三个元素中选取两个进行排列,可以得到以下六种排列:12、21、13、31、23、32。
无放回排列是指从一组元素中选取若干个元素进行排列,选取的元素在排列过程中不可重复使用。
例如,从1、2、3三个元素中选取两个进行排列,可以得到以下两种排列:12、21。
二、组合组合是指从一组元素中选取一部分元素按照任意的顺序进行组合的方式。
组合问题也可以分为有放回组合和无放回组合两种情况。
有放回组合是指从一组元素中选取若干个元素进行组合,选取的元素在组合过程中可以重复使用。
例如,从1、2、3三个元素中选取两个进行组合,可以得到以下三种组合:11、12、22。
无放回组合是指从一组元素中选取若干个元素进行组合,选取的元素在组合过程中不可重复使用。
例如,从1、2、3三个元素中选取两个进行组合,可以得到以下三种组合:12、13、23。
三、二项式定理二项式定理是排列组合问题中的一个重要定理,它描述了两个数的幂次展开的规律。
二项式定理可以用于计算排列组合问题中的各种情况。
二项式定理的公式为:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ... + C(n, n-1)ab^(n-1) + C(n, n)b^n其中,C(n, k)表示从n个元素中选取k个元素进行组合的方式数,也称为组合数。
2024届高考数学易错题专项(排列组合)练习(附答案)
2024届高考数学易错题专项(排列组合)练习易错点一:相邻与不相邻问题处理方法不当致误(相邻问题)1.2023年杭州亚运会期间,甲、乙、丙3名运动员与5名志愿者站成一排拍照留念,若甲与乙相邻、丙不A.12C.1 4易错点二:“捆绑法”中忽略了“内部排列”或“整体列”(不相邻问题) 1.4名男生和3名女生排队(排成一排)照相,下列说法正确的是( ) A .若女生必须站在一起,那么一共有5335A A 种排法B .若女生互不相邻,那么一共有3434A A 种排法C .若甲不站最中间,那么一共有1666C A 种排法D .若甲不站最左边,乙不站最右边,那么一共有7676A 2A 种排法2.某校文艺汇演共6个节目,其中歌唱类节目3个,舞蹈类节目2个,语言类节目1个,则下列说法正确的是( )A .若以歌唱类节目开场,则有360种不同的出场顺序B .若舞蹈类节目相邻,则有120种出场顺序C .若舞蹈类节目不相邻,则有240种不同的出场顺序D .从中挑选2个不同类型的节目参加市艺术节,则有11种不同的选法3.现将8把椅子排成一排,4位同学随机就座,则下列说法中正确的是( )A .4个空位全都相邻的坐法有120种B .4个空位中只有3个相邻的坐法有240种C .4个空位均不相邻的坐法有120种D .4个空位中至多有2个相邻的坐法有900种4.有甲、乙、丙、丁、戊五位同学,下列说法正确的是( ).A .若五位同学排队要求甲、乙必须相邻且丙、丁不能相邻,则不同的排法有12种B .若五位同学排队最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .若甲、乙、丙三位同学按从左到右的顺序排队,则不同的排法有20种D .若甲、乙、丙、丁四位同学被分配到三个社区参加志愿活动,每个社区至少一位同学,则不同的分配方案有36种5.现将9把椅子排成一排,5位同学随机就座,则下列说法中正确的是( )A .4个空位全都相邻的坐法有720种B .4个空位中只有3个相邻的坐法有1800种C .4个空位均不相邻的坐法有1800种D .4个空位中至多有2个相邻的坐法有9000种6.现有3位歌手和4名粉丝站成一排,要求任意两位歌手都不相邻,则不同的排法种数可以表示为( )A .731424735454A A A A A A -- B .4343A AC .7314222473543254A A A A C A A A -- D .4345A A7.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程,每周一门,连续开设六周,则下列说法正确的是( )A .某学生从中选2门课程学习,共有15种选法B .课程“乐”“射”排在不相邻的两周,共有240种排法C .课程“御”“书”“数”排在相邻的三周,共有144种排法D .课程“礼”不排在第一周,也不排在最后一周,共有480种排法8.有甲、乙、丙等6名同学,则说法正确的是( )A .6人站成一排,甲、乙两人不相邻,则不同的排法种数为480B .6人站成一排,甲、乙、丙按从左到右的顺序站位,则不同的站法种数为240C .6名同学平均分成三组到A 、B 、C 工厂参观(每个工厂都有人),则有90种不同的安排方法D .6名同学分成三组参加不同的活动,甲、乙、丙在一起,则不同的分组方法有6种9.有甲、乙、丙、丁、戊五位同学,下列说法正确的是( )A .若五位同学排队要求甲、乙必须相邻且丙、丁不能相邻,则不同的排法有12种B .若五位同学排队最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .若甲乙丙三位同学按从左到右的顺序排队,则不同的排法有20种D .若甲、乙、丙、丁四位同学被分配到三个社区参加志愿活动,每个社区至少一位同学,则不同的分配方案有72种10.4名男生和3名女生排成一排照相,要求男生和男生互不相邻,女生与女生也互不相邻,则不同的排法种数是( )A .36B .72C .81D .14411.杭州第19届亚运会火炬9月14日在浙江台州传递,火炬传递路线以“和合台州活力城市”为主题,全长8公里.从和合公园出发,途经台州市图书馆、文化馆、体育中心等地标建筑.假设某段线路由甲、乙等6人传递,每人传递一棒,且甲不从乙手中接棒,乙不从甲手中接棒,则不同的传递方案共有( )A .288种B .360种C .480种D .504种12.A ,B ,C ,D ,E 五名学生按任意次序站成一排,其中A 和B 不相邻,则不同的排法种数为( )A .72B .36C .18D .64易错点三:忽视排列数、组合数公式的隐含条件(排列组合综合) 1.()(2)(3)(4)(15)N ,15x x x x x x +----∈> 可表示为( )在车站的个数为( )A .15B .16C .17D .188.不等式2886x x A A -<⨯的解集为( )A .{2,8}B .{2,6}C .{7,12}D .{8}9.若24C P mm n n =,则m = . 10.已知()1111A A A N ,2n n n n n n x n n -+-+++=∈≥,求x 的值. 11.解关于正整数x 的不等式288P 6P x x -<. 12.解关于正整数n 的方程:4321A 140A n n +=.13.已知57A 56C n n =,且()201212nn n x a a x a x a x -=+++⋅⋅⋅+.求12323n a a a na +++⋅⋅⋅+的值. 14.(1)解不等式266A 4A x x -<.(2)若2222345C C C C 55n ++++= ,求正整数n .15.(1)若32213A 2A 6A x x x +=+,则x = .(2)不等式46C C n n >的解集为 .易错点四:实际问题不清楚导致计算重复或者遗漏致误(加法与乘法原理) 1.高考期间,为保证考生能够顺利进入考点,交管部门将5名交警分配到该考点周边三个不同路口疏导交通,每个路口至少1人,至多2人,则不同的分配方染共有()A.81 B.48 C.36 D.245.从4名优秀学生中选拔参加池州一中数学、物理、化学三学科培优研讨会,要求每名学生至多被一学科选中,则每学科至少要选用一名学生的情况有()种A.24 B.36 C.48 D.606.将5个不同的小球放入3个不同的盒子,每个盒子至少1个球,至多2个球,则不同的放法种数有( )A.30种B.90种C.180种D.270种7.哈六中高一学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,不同的选取法的种数为A.484B.472C.252D.2328.下列说法正确的是()A.4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有81种报名方法B.4名同学选报跑步、跳高、跳远三个项目,每项限报一人,且每人至多报一项,共有24种报名方法C.4名同学争夺跑步、跳高、跳远三项冠军,共有64种可能的结果D.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为12个9.如图,线路从A到B之间有五个连接点,若连接点断开,可能导致线路不通,现发现AB之间线路不通,则下列判断正确的是()A.至多三个断点的有19种B.至多三个断点的有22种C.共有25种D.共有28种10.某班有5名同学报名参加校运会的四个比赛项目,计算在下列情况下各有多少种不同的报名方法. (1)每人恰好参加一项,每项人数不限;(2)每项限报一人,每项都有人报名,且每人至多参加一项;(3)每人限报一项,人人参加了项目,且每个项目均有人参加.11.已知8件不同的产品中有3件次品,现对它们一一进行测试,直至找到所有次品.(1)若在第5次测试时找到最后一件次品,则共有多少种不同的测试方法?(2)若至多测试5次就能找到所有次品,则共有多少种不同的测试方法?12.杭州亚运会启动志愿者招募工作,甲、乙等6人报名参加了A、B、C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,每人至多参加一个项目,若甲不能参加A、B项目,乙不能参加B、C项目,那么共有种不同的选拔志愿者的方案.(用数字作答)13.某校在高二年级开设选修课,其中数学选修课开四个班.选课结束后,有四名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有(用数字作答)14.某单位有A、B、C、D四个科室,为实现减负增效,每科室抽调2人,去参加再就业培训,培训后这8人中有2人返回原单位,但不回到原科室工作,且每科室至多安排1人,问共有种不同的安排方法?易错点五:均匀分组与不均匀分组混淆致误(相同元素与不同元素分配问题)1.第19届亚运会将于2023年9月23日在杭州开幕,因工作需要,还需招募少量志愿者.甲、乙等4人报名参加了“莲花”、“泳镜”、“玉琮”三个场馆的各一个项目的志愿者工作,每个项目仅需1名志愿者,每人至多参加一个项目.若甲不能参加“莲花”场馆的项目,则不同的选择方案共有()A.6种B.12种C.18种D.24种2.从2个不同的红球、2个不同的黄球、2个不同的蓝球共六个球中任取2个,放入红、黄、蓝色的三个袋子中,每个袋子至多放入一个球,且球色与袋色不同,那么不同的放法有()A.42种B.36种C.72种D.46种3.阳春三月,草长莺飞,三个家庭的3位妈妈和1位爸爸带着3位女宝宝和2位男宝宝共9人踏春.在沿行一条小溪时,为了安全起见,他们排队前进,宝宝不排最前面也不排最后面,为了方便照顾孩子,每两位大人之间至多排2位宝宝,由于男宝宝喜欢打闹,由这位爸爸照看且排在2位男宝宝之间.则不同的排法种数为()A.216 B.288C.432 D.5124.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.50种D.60种5.杭州亚运会启动志愿者招募工作,甲、乙等6人报名参加了A、B、C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,每人至多参加一个项目,若甲不能参加A、B项目,乙不能参加B、C项目,那么共有()种不同的选拔志愿者的方案.A.36 B.40 C.48 D.526.现有甲、乙、丙3位同学在周一至周五参加某项公益劳动,要求每人参加一天且每天至多安排一人,并要求甲同学安排在另外两位前面,则不同的安排总数为()易错点六:由于重复计数致错(可重复与限制问题)1.2023年6月25日19时,随着最后一场比赛终场哨声响起,历时17天的.2023年凉山州首届“火洛杯”禁毒防艾男子篮球联赛决赛冠军争夺赛在凉山民族体育馆内圆满闭幕,为进一步展现凉山男儿的精神风貌主办方设置一场扣篮表演,分别由西昌市、冕宁县、布拖县、昭觉县4个代表队每队各派1名球员参加扣且在游览过程中必须按先M后N的次序,则不同的游览线路有多少种?9.用0,1,2,3,4,5,6可以组成多少个无重复数字的五位数?其中能被5整除的五位数有多少个?10.某单位安排7位工作人员在10月1日至10月7日值班,每人值班一天,其中甲、乙二人都不安排在10月1日和2日,共有多少种不同的安排方法?参考答案易错点一:相邻与不相邻问题处理方法不当致误(相邻问题)1.2023年杭州亚运会期间,甲、乙、丙3名运动员与5名志愿者站成一排拍照留念,若甲与乙相邻、丙不A .18种B .36种C .72种D .144种【答案】C【详细分析】根据相邻问题捆绑法即可由全排列求解.【答案详解】由题意可得12331233A A A A 72=,故选:C7.甲、乙两个家庭周末到附近景区游玩,其中甲家庭有2个大人和2个小孩,乙家庭有2个大人和3个小孩,他们9人在景区门口站成一排照相,要求每个家庭的成员要站在一起,且同一家庭的大人不能相邻,则所有不同站法的种数为( ) A .144 B .864 C .1728 D .2880【答案】C【详细分析】利用捆绑以及插空法求得正确答案.【答案详解】甲家庭的站法有2223A A 12=种,乙家庭的站法有3234A A 72=种,最后将两个家庭的整体全排列,有22A 2=种站法,则所有不同站法的种数为127221728⨯⨯=. 故选:C8.某驾校6名学员站成一排拍照留念,要求学员A 和B 不相邻,则不同的排法共有( ) A .120种 B .240种 C .360种 D .480种【答案】D【详细分析】正难则反,首先我们可以求出6名学员随机站成一排的全排列数即66A ,然后求学员A 和B 相邻的排列数,两数相减即可.【答案详解】一方面:若要求学员A 和B 相邻,则可以将学员A 和B 捆绑作为一个“元素”,此时一共有5个元素,但注意到学员A 和B 可以互换位置,所以学员A 和B 相邻一共有2525A A 2154321240⋅=⨯⨯⨯⨯⨯⨯=种排法.另一方面:6名学员随机站成一排的全排列数为66A 654321720=⨯⨯⨯⨯⨯=种排法.结合以上两方面:学员A 和B 不相邻的不同的排法共有625625A A A 720240480-⋅=-=种排法.故选:D.9.某高铁动车检修基地库房内有A E ~共5条并行的停车轨道线,每条轨道线只能停一列车,现有动车01,02、A.12C.1 4【答案】B【详细分析】根据分步乘法原理结合排列数求解即可.【答案详解】先让甲站好中间位置,再让2名女生相邻有两种选法,最后再排剩余的2名男生,根据分步乘法原理得,有22222A A 8⨯⨯=种不同的排法.故选:B12.5名同学排成一排,其中甲、乙、丙三人必须排在一起的不同排法有( )A .70种B .72种C .36种D .12种【答案】C【详细分析】相邻问题用捆绑法即可得解.【答案详解】甲、乙、丙先排好后视为一个整体与其他2个同学进行排列,则共有3333A A 36=种排法.故选:C13.现有2名男生和3名女生,在下列不同条件下进行排列,则( )A .排成前后两排,前排3人后排2人的排法共有120种B .全体排成一排,女生必须站在一起的排法共有36种C .全体排成一排,男生互不相邻的排法共有72种D .全体排成一排,甲不站排头,乙不站排尾的排法共有72种 【答案】ABC【详细分析】根据题意,利用排列数公式,以及捆绑法、插空法,以及分类讨论,结合分类计数原理,逐项判定,即可求解.【答案详解】由题意知,现有2名男生和3名女生,对于A 中,排成前后两排,前排3人后排2人,则有3252A A 120=种排法,所以A 正确;对于B 中,全体排成一排,女生必须站在一起,则有3333A A 36=种排法,所以B 正确;对于C 中,全体排成一排,男生互不相邻,则有3234A A 72=种排法,所以C 正确;对于D 中,全体排成一排,甲不站排头,乙不站排尾可分为两类:(1)当甲站在中间的三个位置中的一个位置时,有13A 3=种排法,此时乙有13A 3=种排法,共有113333A A A 54=种排法;C .如果三名同学选择的社区各不相同,则不同的安排方法共有60种D .如果甲、乙两名同学必须在同一个社区,则不同的安排方法共有20种 【答案】AC【详细分析】对于A ,根据社区A 必须有同学选择,由甲、乙、丙三名同学都有5种选择减去有4种选择求解;对于B ,根据同学甲必须选择社区A ,有乙丙都有5种选择求解;对于C ,根据三名同学选择的社区各不相同求解;对于D ,由甲、乙两名同学必须在同一个社区,捆绑再选择求解;【答案详解】对于A ,如果社区A 必须有同学选择,则不同的安排方法有335461-=(种),故A 正确; 对于B ,如果同学甲必须选择社区A ,则不同的安排方法有2525=(种),故B 错误;对于C ,如果三名同学选择的社区各不相同,则不同的安排方法共有54360⨯⨯=(种),故C 正确; 对于D ,甲、乙两名同学必须在同一个社区,第一步,将甲、乙视作一个整体,第二步,两个整体挑选社区,则不同的安排方法共有2525=(种),故D 错误. 故选:AC.18.在树人中学举行的演讲比赛中,有3名男生,2名女生获得一等奖.现将获得一等奖的学生排成一排合影,则( )A .3名男生排在一起,有6种不同排法B .2名女生排在一起,有48种不同排法C .3名男生均不相邻,有12种不同排法D .女生不站在两端,有108种不同排法 【答案】BC【详细分析】利用捆绑法可判断A 、B ;利用插空法可判断C ;利用分步计数法可判断D. 【答案详解】解:由题意得:对于选项A :3名男生排在一起,先让3个男生全排后再作为一个整体和2个女生做一个全排,共有3333A A 36⋅=种,A 错误;对于选项B :2名女生排在一起,先让2个女生全排后再作为一个整体和3个男生做一个全排,共有2424A A 48⋅=种,B 正确;对于选项C :3名男生均不相邻,先让3个男生全排后,中间留出两个空位让女生进行插空,共有2323A A 12⋅=种,C 正确;对于选项D :女生不站在两端,先从三个男生种选出两个进行全排后放在两端,共有2232C A 6⋅=种,然后将剩下的3人进行全排后放中间,共有223323C A A 36⋅⋅=种,D 错误.故选:BC易错点二:“捆绑法”中忽略了“内部排列”或“整体列”(不相邻问题)1.4名男生和3名女生排队(排成一排)照相,下列说法正确的是( )A .若女生必须站在一起,那么一共有5335A A 种排法B .若女生互不相邻,那么一共有3434A A 种排法C .若甲不站最中间,那么一共有1666C A 种排法D .若甲不站最左边,乙不站最右边,那么一共有7676A 2A -种排法【答案】AC【详细分析】分别利用捆绑法、插空法、优先安排特殊元素法、间接法依次求解.【答案详解】选项A ,利用捆绑法,将3名女生看成一个整体,其排列方式有33A 种,加上4名男生一共有5个个体,则有55A 种排列方式,则由乘法原理可知一共有5335A A 种排法,故A 正确;选项B ,利用插空法,4名男生排成一排形成5个空,其排列方式有44A 种,再将3名女生插入空中,有35A 种排列方式,则由乘法原理可知一共有4345A A 种排法,故B 不正确;选项C ,利用优先安排特殊元素法,甲不站最中间,甲先从除中间之外的6个位置选一个,其选择方式有16C 种,再将剩余的6人全排列,有66A 种排列方式,则由乘法原理可知一共有1666C A 种排法,故C 正确;选项D ,利用间接法,3人站成一排共有77A 种排法,若甲站最左边有66A 种排法,乙站最右边有66A 种排法,甲站最左边且乙站最右边有55A 种排法,所以甲不站最左边,乙不站最右边,那么一共有765765A 2A A -+种排法,故D 不正确; 故选:AC.2.某校文艺汇演共6个节目,其中歌唱类节目3个,舞蹈类节目2个,语言类节目1个,则下列说法正确的是( )A .若以歌唱类节目开场,则有360种不同的出场顺序B .若舞蹈类节目相邻,则有120种出场顺序C .若舞蹈类节目不相邻,则有240种不同的出场顺序D .从中挑选2个不同类型的节目参加市艺术节,则有11种不同的选法 【答案】AD【详细分析】根据全排列、捆绑法、插空法,结合分步与分类计数原理依次详细分析选项,即可判断. 【答案详解】A :从3个歌唱节目选1个作为开场,有13C =3种方法,后面的5个节目全排列,所以符合题意的方法共有553A 360=种,故A 正确;B :将2个舞蹈节目捆绑在一起,有22A 2=种方法,再与其余4个节目全排列,所以符合题意的方法共有552A 240=,故B 错误;C :除了2个舞蹈节目以外的4个节目全排列,有44A 24=种,再由4个节目组成的5个空插入2个舞蹈节目,所以符合题意的方法有2524A 480=种,故C 错误;D :符合题意的情况可能是1个歌唱1个舞蹈、1个歌唱1个语言、1个舞蹈1个语言, 所以不同的选法共111111323121C C C C C C 11++=种,故D 正确. 故选:AD.3.现将8把椅子排成一排,4位同学随机就座,则下列说法中正确的是( ) A .4个空位全都相邻的坐法有120种 B .4个空位中只有3个相邻的坐法有240种 C .4个空位均不相邻的坐法有120种D .4个空位中至多有2个相邻的坐法有900种 【答案】AC【详细分析】对于A ,用捆绑法即可;对于B ,先用捆绑法再用插空法即可;对于C ,用插空法即可;对于D ,用插空法的同时注意分类即可.【答案详解】对于A ,将四个空位当成一个整体,全部的坐法:55A 120=种,故A 对;对于B ,先排4个学生44A ,然后将三个相邻的空位当成一个整体,和另一个空位插入5个学生中有25A 种方法,所以一共有4245480A A =种,故B 错;对于C ,先排4个学生44A ,4个空位是一样的,然后将4个空位插入4个学生形成的5个空位中有45C 种,所以一共有4445A C 120=,故C 对;对于D ,至多有2个相邻即都不相邻或者有两个相邻,由C 可知都不相邻的有120种,空位两个两个相邻的有:4245A C 240=,空位只有两个相邻的有412454A C C 720=,所以一共有1202407201080++=种,故D 错; 故选:AC.4.有甲、乙、丙、丁、戊五位同学,下列说法正确的是( ).A .若五位同学排队要求甲、乙必须相邻且丙、丁不能相邻,则不同的排法有12种B .若五位同学排队最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .若甲、乙、丙三位同学按从左到右的顺序排队,则不同的排法有20种D .若甲、乙、丙、丁四位同学被分配到三个社区参加志愿活动,每个社区至少一位同学,则不同的分配方案有36种 【答案】BCD【详细分析】根据相关的计数原理逐项详细分析.【答案详解】对于A ,将甲乙捆绑有22A 种方法,若戊在丙丁之间有22A 排法,丙丁戊排好之后用插空法插入甲乙,有14A 种方法;若丙丁相邻,戊在左右两边有2122A A 种排法,但甲乙必须插在丙丁之间,一共有212222A A A 种排法,所以总的排法有221212224222A A A A A A 24+= ,故A 错误;对于B ,若甲在最左端,有44A 24= 种排法,若乙在最左端,先排甲有13A 3= 种排法,再排剩下的3人有33A 6= ,所以总共有243642+⨯= 种排法,正确;对于C ,先将甲乙丙按照从左至右排好,采用插空法,先插丁有14A 种,再插戊有15A 种,总共有1145A A 20=种,正确;对于D ,先分组,将甲乙丙丁分成3组有24C 种分法,再将分好的3组安排在3个社区有33A 种方法,共有2343C A 36= 种方法,正确;故选:BCD.5.现将9把椅子排成一排,5位同学随机就座,则下列说法中正确的是( ) A .4个空位全都相邻的坐法有720种 B .4个空位中只有3个相邻的坐法有1800种 C .4个空位均不相邻的坐法有1800种D .4个空位中至多有2个相邻的坐法有9000种 【答案】AC【详细分析】对于A ,用捆绑法即可;对于B ,先用捆绑法再用插空法即可;对于C ,用插空法即可;对于D ,用插空法的同时注意分类即可.【答案详解】对于A,将四个空位当成一个整体,全部的坐法:66A 720=,故A 对;对于B ,先排5个学生55A ,然后将三个相邻的空位当成一个整体,和另一个空位插入5个学生中有26A 中方法,所以一共有5256A A 3600=种,故B 错;对于C ,先排5个学生55A ,4个空位是一样的,然后将4个空位插入5个学生中有46C 种,所以一共有5456A C 1800=,故C 对;对于D ,至多有2个相邻即都不相邻或者有两个相邻,由C 可知都不相邻的有1800种,空位两个两个相邻的有: 5256A C 1800=,空位只有两个相邻的有521564A C C 7200=,所以一共有18001800720010800++=种,故D 错;故选:AC6.现有3位歌手和4名粉丝站成一排,要求任意两位歌手都不相邻,则不同的排法种数可以表示为( )A .731424735454A A A A A A --B .4343A AC .7314222473543254A A A A C A A A -- D .4345A A【答案】CD【详细分析】第一种排法:先排4名粉丝,然后利用插空法将歌手排好;第二种排法:先计算3位歌手和2位歌手站一起的排法,然后利用总排法去掉前面两种不满足题意的排法即可 【答案详解】第一种排法:分2步进行:①将4名粉丝站成一排,有44A 种排法; ②4人排好后,有5个空位可选,在其中任选3个,安排三名歌手,有35A 种情况. 则有4345A A 种排法,第二种排法:先计算3位歌手站一起,此时3位歌手看做一个整体,有314354A A A 种排法,再计算恰好有2位歌手站一起,此时2位歌手看做一个整体,与另外一个歌手不相邻,有22243254C A A A 种排法, 则歌手不相邻有3142224354773254A A A C A A A A --种排法. 故选:CD7.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程,每周一门,连续开设六周,则下列说法正确的是( ) A .某学生从中选2门课程学习,共有15种选法故选:BC.10.4名男生和3名女生排成一排照相,要求男生和男生互不相邻,女生与女生也互不相邻,则不同的排法种数是( )A .36B .72C .81D .144【答案】D【详细分析】先将3名女生全排列,然后利用插空法,将4名男生排到3名女生之间的4个空位上,根据分步乘法计数原理,即可求得答案.【答案详解】由题意先将3名女生全排列,然后利用插空法, 将4名男生排到3名女生之间的4个空位上,故共有3434A A 624144=⨯=种不同的排法,故选:D11.杭州第19届亚运会火炬9月14日在浙江台州传递,火炬传递路线以“和合台州活力城市”为主题,全长8公里.从和合公园出发,途经台州市图书馆、文化馆、体育中心等地标建筑.假设某段线路由甲、乙等6人传递,每人传递一棒,且甲不从乙手中接棒,乙不从甲手中接棒,则不同的传递方案共有( )A .288种B .360种C .480种D .504种【答案】C【详细分析】根据排列数以及插空法的知识求得正确答案. 【答案详解】先安排甲乙以外的4个人,然后插空安排甲乙两人,所以不同的传递方案共有4245A A 480=种.故选:C12.A ,B ,C ,D ,E 五名学生按任意次序站成一排,其中A 和B 不相邻,则不同的排法种数为( )A .72B .36C .18D .64【答案】A【详细分析】先将其余三人全排列,利用插空法求解. 【答案详解】解:先将其余三人全排列,共有33A 种情况, 再将A 和B 插空,共有24A 种情况,所以共有2343A A 12672=⨯=种情况,故选:A.。
高中数学专项排列组合题库(带答案)
排列组合排列组合问题的解题思路和解题方法解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。
下面介绍几种常用解题方法和策略。
一、合理分类与准确分步法(利用计数原理)解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
例1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有( )A.120种B.96种C.78种D.72种分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有A 44=24种排法;2)若甲在第二,三,四位上,则有3*3*3*2*1=54种排法,由分类计数原理,排法共有24+54=78种,选C。
解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。
二、特殊元素与特殊位置优待法对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例2、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A) 280种(B)240种(C)180种(D)96种分析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有14C种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有35A种不同的选法,所以不同的选派方案共有14C35A=240种,选B。
三、插空法、捆绑法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
例3、7人站成一排照相,若要求甲、乙、丙不相邻,则有多少种不同的排法?分析:先将其余四人排好有A 44=24种排法,再在这些人之间及两端的5个“空”中选三个位置让甲乙丙插入,则有C 35=10种方法,这样共有24*10=240种不同排法。
高中数学排列组合典型题大全含答案
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合中的分组分配问题及排列组合专项练习题
排列组合中的分组分配问题分组分配问题是排列组合教学中的一个重点和难点。
某些排列组合问题看似非分配问题,实际上可运用分配问题的方法来解决。
一、 提出分组与分配问题,澄清模糊概念n 个不同元素按照某些条件分配给k 个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n 个不同元素按照某些条件分成k 组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况。
分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列。
二、基本的分组问题例1 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?(1)每组两本.(2)一组一本,一组二本,一组三本. (3)一组四本,另外两组各一本.分析:(1)分组与顺序无关,是组合问题。
分组数是624222C C C =90(种) ,这90种分组实际上重复了6次。
我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。
以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数33A,所以分法是22264233C C C A =15(种)。
(2)先分组,方法是615233C C C ,那么还要不要除以33A ?我们发现,由于每组的书的本数是不一样的,因此不会出现相同的分法,即共有615233C C C =60(种) 分法。
(3)分组方法是642111C C C =30(种) ,那么其中有没有重复的分法呢?我们发现,其中两组的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,不可能重复。
所以实际分法是41162122C C C A =15(种)。
高中数学排列组合习题及解析
排列组合问题在实际应用中是非常广泛的,并且在实际中的解题方法也是比较复杂的,下面就通过一些实例来总结实际应用中的解题技巧。
1。
排列的定义:从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.3.排列数公式:4。
组合数公式:5.排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题。
例1 学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。
所涉及问题是排列问题。
解先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。
根据乘法原理,共有的不同坐法为种。
结论1 插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法。
即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可。
例2 、5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题。
解因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法。
结论2 捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题。
即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
例3 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?分析此题若直接去考虑的话,就会比较复杂。
高中数学排列组合经典题型练习题(有答案)
高中数学排列组合经典题型练习题姓名班级学号得分说明:1、本试卷满分100分,考试时间80分钟1、填写答题卡的内容用2B铅笔填写2、提前5分钟收取答题卡一.单选题(每题3分,共30分)1.将标号为1,2,3,4,5,6的6个小球放入3个不同的盒子中.若每个盒子放2个,其中标号为1,2的小球放入同一盒子中,则不同的方法共有()A.12种B.16种C.18种D.36种2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有()A.60种B.63种C.65种D.66种3.由数字1、2、3、4、5组成没有重复数字,且3与4相邻,1与2不相邻的五位数的个数为()A.1120 B.48 C.24 D.124.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的数有()A.360个B.720个C.300个D.240个5.某校3名艺术生报考三所院校,其中甲、乙两名学生填报不同院校,则填报结果共有()A.18种B.19种C.21种D.24种6.有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有()A.1120种B.1136种C.1600种D.2736种7.一排座位共8个,3人去坐,要求每人的左右两边都有空位置的坐法种数为()A.6种B.24种C.60种D.120种8.有8人排成一排照相,要求A、B两人不相邻,C,D,E三人互不相邻,则不同的排法有()A.11520 B.8640 C.5640 D.28809.有5名毕业生站成一排照相,若甲乙两人之间至多有2人,且甲乙不相邻,则不同的站法有()A.36种B.12种C.60种D.48种10.有5个不同的红球和2个不同的黑球排成一排,在两端都是红球的排列中,其中红球甲和黑球乙相邻的排法有()A.1440种B.960种C.768种D.720种二.填空题(每题3分,共30分)11.0,1,3,4四个数可组成______不同的无重复数字的四位数.12.已知口袋里装有同样大小、同样质量的16个小球,其中8个白球、8个黑球,则从口袋中任意摸出8个球恰好是4白4黑的概率为______.(结果精确到0.001)13.从甲、乙等6名同学中挑选3人参加某公益活动,要求甲、乙至少有1人参加,不同的挑选方法共有______种.14.山东省某中学,为了满足新课改的需要,要开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有______种不同的选修方案.(用数值作答)15.在由数字1,2,3,4组成的所有没有重复数字的4位数中,大于2314的数共有______个.16.甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包一项,丙、丁公司各承包2项,则共有______种承包方式.(用数字作答)17.从7个同学中选出3人参加校代会,其中甲、乙两人至少选一人参加,不同选法有______种.18.用数字0,1,2,3,4组成没有重复数字的五位数,则其中五位数为偶数有______个(用数字作答).19.从1,3,5中任取2数,从2,4,6中任取2数,一共可以组成______个无重复数字的四位数.20.三位老师分配到4个贫困村调查义务教育实施情况,若每个村最多去2个人,则不同的分配方法有______种.三.简答题(每题10分,共40分)21.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置;(2)全体排成一行,男生不能排在一起;(3)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;(4)全体排成一行,甲、乙两人中间必须有3人.22.对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止.若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能?23.6位同学站在一排照相,按下列要求,各有多少种不同排法?①甲、乙必须站在排头或排尾②甲、乙.丙三人相邻③甲、乙、丙三人互不相邻④甲不在排头,乙不在排尾⑤若其中甲不站在左端,也不与乙相邻.24.7名男生5名女生中选5人,分别求符合下列的选法总数.(以下问题全部用数字作答)(1)A,B必须当选;(2)A,B不全当选;(3)选取3名男生和2名女生分别担任班长,体育委员等5种不同的工作,但体育必须有男生来担任,班长必须有女生来担任.参考答案一.单选题(共__小题)1.将标号为1,2,3,4,5,6的6个小球放入3个不同的盒子中.若每个盒子放2个,其中标号为1,2的小球放入同一盒子中,则不同的方法共有()A.12种B.16种C.18种D.36种答案:C解析:解:先从3个盒子中选一个放标号为1,2的小球,有3种不同的选法,2=6种放法,再从剩下的4个小球中选两个,放一个盒子有C4余下放入最后一个盒子,2=18∴共有3C4故选C.2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有()A.60种B.63种C.65种D.66种答案:A解析:解:由题意知,要得到四个数字的和是奇数,需要分成两种不同的情况,当取得3个偶数、1个奇数时,有=20种结果,当取得1个偶数,3个奇数时,有=40种结果,∴共有20+40=60种结果,故选A.3.由数字1、2、3、4、5组成没有重复数字,且3与4相邻,1与2不相邻的五位数的个数为()A.1120 B.48 C.24 D.12答案:C解析:解:先把3和4捆绑在一起,当做一个数,这样,5个数变成立4个数,方法有种.再把1和2单独挑出来,其余的2个数排列有种方法.再把1和2插入2个数排列形成的3个空中,方法有种.根据分步计数原理,五位数的个数为••=24种,故选C.4.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的数有()A.360个B.720个C.300个D.240个答案:C解析:解:法一:如果末位为0,则只需再选取2个奇数和1个偶数作前三位,其方法数有C41C42A33=144如果末位为5,先假设首位可以为0,则共有C31C52A33=180,再排除首位为0的个数:C31C41A22=24.∴符合要求的四位数共有144+180-24=300.法二:如果末位为0,同上,共有144个;如果末位为5,分两种情况:数字中含有0,且它不作首位:C31C41•2•2•1=48(因千位、百位、十位的选法依次有2、2、1种);数字中不含0:C31C42A33=108.∴总计有144+48+108=300.5.某校3名艺术生报考三所院校,其中甲、乙两名学生填报不同院校,则填报结果共有()A.18种B.19种C.21种D.24种答案:A解析:解:由题意可得,甲的填报结果有3种,乙的填报结果有2种,第三个学生的填报结果有3种,再根据分步计数原理,填报结果共有3×2×3=18种,故选A.6.有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有()A.1120种B.1136种C.1600种D.2736种答案:B解析:解:没有一等品的取法有=4种,而所有的取法有=1140种,故至少有1个一等品的不同取法有 1140-4=1136 种,故选B.7.一排座位共8个,3人去坐,要求每人的左右两边都有空位置的坐法种数为()A.6种B.24种C.60种D.120种答案:B解析:解:根据题意,两端的座位要空着,中间6个座位坐三个人,再空三个座位,这三个座位之间产生四个空,可以认为是坐后产生的空.3=24种,故共有A4故选B.8.有8人排成一排照相,要求A、B两人不相邻,C,D,E三人互不相邻,则不同的排法有()A.11520 B.8640 C.5640 D.2880答案:A解析:解:分三类:第一类:先排没有限制条件的3人(设为F、G、H),有种,再用“插空法”排A、B、C,有种,最后用“插空法”排A、B,有种,∴第一类共有••=6 048种排法.第二类:先排没有限制条件的3人(设为F、G、H),有种,再将C,D,E中选两个捆在一起有种捆法,把捆在一起的两人看作一人和另外一人用“插空法”排在四个空隙中,有种排法,然后从D、E中选一个放在捆在一起的两元素之间有种方法,最后一个元素安排在剩余的6个空隙中有种方法,故第二类共有••••=5 184种排法.第三类:先排没有限制条件的3人(设为F、G、H),有种排法,再把C,D,E三个人“捆绑”在一起有种“捆法”,看作一个元素安排在四个空隙中,有种放法,然后再把A、B利用“插空法”安排在C,D,E之间的两个空隙中,有种方法,故第三类共有•••=288种方法.综上所述,符合条件的所有排法共有6 048+5 184+288=11520种.故选A.9.有5名毕业生站成一排照相,若甲乙两人之间至多有2人,且甲乙不相邻,则不同的站法有()A.36种B.12种C.60种D.48种答案:C解析:解:分两种不同情况:第一种情况是甲、乙两人间恰有两人,不同的站法有:种;第二种情况是甲、乙两人间恰有一人,不同的站法有:种.∴由分类计数原理知不同的站法有+=60(种).故选C.10.有5个不同的红球和2个不同的黑球排成一排,在两端都是红球的排列中,其中红球甲和黑球乙相邻的排法有()A.1440种B.960种C.768种D.720种答案:C解析:解:假设红球甲恰好在两端,则它和黑球乙可以看成一个整体考虑,先从非甲红球中选一个放在两端,有种排法,再考虑两端的全排列种,最后再将除了两个红球和黑球乙以外的4个球的全排列有种,故这种情况的排列种类有=192如果红球甲不在两端,则红球甲和黑球乙看成一个整体要考虑内部的排列(即红球在左还是在右),先从非甲红球中选出两个放在两端排列数为,再考虑红球甲和黑球乙的全排列有种,最后2个红球1个黑球以及红球甲和黑球乙看作1个整体的四个元素的全排列数为,故此种排列种类有=576所以总的情况一共是768.故选C.二.填空题(共__小题)11.0,1,3,4四个数可组成______不同的无重复数字的四位数.答案:18解析:解:间接法:先对4个数字全排列共=24种,去掉其中0在首位的共=6种,故总共组成的无重复数字的四位数有24-6=18个,故答案为:1812.已知口袋里装有同样大小、同样质量的16个小球,其中8个白球、8个黑球,则从口袋中任意摸出8个球恰好是4白4黑的概率为______.(结果精确到0.001)答案:0.381解析:解:所有的摸法共有=12870种,从口袋中任意摸出8个球恰好是4白4黑的摸法共有•=4900种,故从口袋中任意摸出8个球恰好是4白4黑的概率为=≈0.381,故答案为 0.381.13.从甲、乙等6名同学中挑选3人参加某公益活动,要求甲、乙至少有1人参加,不同的挑选方法共有______种.答案:16解析:解:甲乙二人都没有参加的方法有=4种,所有的方法有=20种,故甲、乙至少有1人参加的挑选方法共有20-4=16种,故答案为16.14.山东省某中学,为了满足新课改的需要,要开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有______种不同的选修方案.(用数值作答)答案:75解析:解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门有C31•C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:7515.在由数字1,2,3,4组成的所有没有重复数字的4位数中,大于2314的数共有______个.答案:15解析:解:前2位是23的,只有1个,是2341.前2位是24的,有2个.最高位是3或4的,共有2×=12 个,综上,大于2314的数共有 1+2+12=15个.故答案为15.16.甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包一项,丙、丁公司各承包2项,则共有______种承包方式.(用数字作答)答案:1680解析:解;第一步,甲选,从8项工程中任选3项,有C83种选法,第二步,乙选,从剩下的5项工程中任选1项,有C51种选法,第三步,丙选,从剩下的4项工程中任选2项,有C42种选法,第四步,丁选,从剩下的2项工程中任选2项,有C22种选法共有C83C51C42C22=1680种故答案为168017.从7个同学中选出3人参加校代会,其中甲、乙两人至少选一人参加,不同选法有______种.答案:25解析:解:7个同学中选出3人参加校代会,总的选法有C73==35种甲、乙两人都不参数的选法有C53==10种故事件“甲、乙中至少有1人参加”包含的基本事件数是35-10=25故答案为:2518.用数字0,1,2,3,4组成没有重复数字的五位数,则其中五位数为偶数有______个(用数字作答).答案:60解析:解:若末位是0,则有=24个,若末位是2或4,则先排末位,方法有=2种,再把0排在第二、或第三、或第四位上,方法有3种,再把其余的3个数排在剩余的3个位上,方法有=6种.再根据分步计数原理,求得五位数为偶数有 2×3×6=36种.综上,五位数为偶数有24+36=60个,故答案为 60.19.从1,3,5中任取2数,从2,4,6中任取2数,一共可以组成______个无重复数字的四位数.答案:216解析:解:由题意,先取后排,可得=216个无重复数字的四位数.故答案为:216.20.三位老师分配到4个贫困村调查义务教育实施情况,若每个村最多去2个人,则不同的分配方法有______种.答案:60解析:解:一个贫困村去一位老师,有=24种;一个村有两个老师,另一个村有一个老师,有×=36种,∴不同的分配方法有60种故答案为:60.三.简答题(共__小题)21.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置;(2)全体排成一行,男生不能排在一起;(3)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;(4)全体排成一行,甲、乙两人中间必须有3人.答案:解:(1)利用元素分析法,甲为特殊元素,先安排甲左、右、中共三个位置可供甲选择.有种,其余6人全排列,有种.由乘法原理得=2160种;(2)插空法.先排女生,然后在空位中插入男生,共有=1440种.(3)定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此=N×,∴N==840种.(4)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有种,甲、乙和其余2人排成一排且甲、乙相邻的排法有,最后再把选出的3人的排列插到甲、乙之间即可,共有=720种.22.对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止.若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能?答案:解:第5次必测出一次品,余下3件在前4次被测出,从4件中确定最后一件品有C41种方法;前4次中应有1正品、3次品,有C61C33种,前4次测试中的顺序有A44种,由分步计数原理得这样的测试方法有C41(C61C33)A44=576种可能.23.6位同学站在一排照相,按下列要求,各有多少种不同排法?①甲、乙必须站在排头或排尾②甲、乙.丙三人相邻③甲、乙、丙三人互不相邻④甲不在排头,乙不在排尾⑤若其中甲不站在左端,也不与乙相邻.答案:解:①甲、乙必须站在排头或排尾,则有=48种不同排法;②甲、乙、丙三人相邻,则有=144种不同排法;③甲、乙、丙三人互不相邻,则有=144种不同排法;④甲不在排头,乙不在排尾,则有-2+=264种不同排法;⑤6个人站成一排,有种,甲在左端的有种,甲和乙相邻的有种,甲既在左端也和乙相邻的有,所以甲不在左端也不和乙相邻,则不同的排法共有--+=384种.24.7名男生5名女生中选5人,分别求符合下列的选法总数.(以下问题全部用数字作答)(1)A,B必须当选;(2)A,B不全当选;(3)选取3名男生和2名女生分别担任班长,体育委员等5种不同的工作,但体育必须有男生来担任,班长必须有女生来担任.答案:解:(1)根据题意,先选出A、B,再从其它10个人中再选3人即可,共有的选法种数为C103=120种,(2)根据题意,按A、B的选取情况进行分类:①,A、B全不选的方法数为C105=252种,②,A、B中选1人的方法数为C21C104=420,共有选法252+420=672种;(3)先选取3名男生和2名女生C73C52种情况,再根据体育必须有男生来担任,班长必须有女生来担任,有C31C21种情况,用分步计数原理可得到所有方法总数为:C73C52C31C21A33=12600种.。
高中数学排列组合经典题型全面总结版
高中数学排列与组合(一)典型分类讲解一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法乙甲丁丙练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
高中数学排列组合高频经典题目练习及答案解析
5.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果乙机不能最先着舰,而丙机必须在甲机之前着舰〔不一定相邻〕,那么不同的着舰方法种数为〔 〕
A.24B.36C.48D.96
6.某学校需要把6名实习老师安排到A,B,C三个班级去听课,每个班级安排2名老师,已知甲不能安排到A班,乙和丙不能安排到同一班级,则安排方案的种数有〔 〕
故选:D.
8.从7名男队员和5名女队员中选出4人进行乒乓球男女混合双打,不同的组队种数是〔 〕
A. B. C. D.
【解答】解:根据题意,分2步分析:
首先从7名男队员中选出2名男队员,5名女队员中2名女队员,有C72•C52种;
再对选出的4人进行分组,进行混双比赛,有2种方法;
则不同的组队种数有2C72•C52种;
假设分成1、1、3的三组,有 =10种分组方法;
假设分成1、2、2的三组,有 =15种分组方法;
则有15+10=25种分组方法;
②,将分好的三组全排列,对应三人,有A33=6种情况,
则有25×6=150种不同的分法;
故选:B.
5.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果乙机不能最先着舰,而丙机必须在甲机之前着舰〔不一定相邻〕,那么不同的着舰方法种数为〔 〕
则此时有 ×C21A44=24种情况,
则此时有24种不同的着舰方法;
则一共有24+24=48种不同的着舰方法;
故选:C.
6.某学校需要把6名实习老师安排到A,B,C三个班级去听课,每个班级安排2名老师,已知甲不能安排到A班,乙和丙不能安排到同一班级,则安排方案的种数有〔 〕
高中数学排列组合:全错位排列问题详解
利用此递推关系可以分别算出 T4=9,T5=44,所以题三的答案为 44+5×9+10×2=109.
3.关于全错位排列数的一个通项公式:Tn= n![ 1 1 (1) n 1 ] (n≥2).
2! 3!
n!
(1).探索
规定 An0 =1(n∈N*),试计算以下各式的值: (1) A42 A41 A40 ; (2) A53 A52 A51 A50 ; (3) A64 A63 A62 A61 A60 .
2! 3!
k! 2! 3!
(k 1)!
= k!·[ k 1 k 1 (1)k1 k 1 +k· (1)k 1 ]
2! 3!
( k 1)!
k!
=k!·[ k 1 k 1 (1)k1 k 1 +(k+1)· (1)k 1 (1)k 1 ]
2! 3!
( k 1)!
k!
k!
= k!·[ k 1 k 1 (1)k1 k 1 +(k+1)· (1)k 1 (1)k k 1 ]
全错位排列问题
每个元素都不在自己编号的位置上的排列问题,我们把这种限制条件的排列问题叫做全错位 排列问题.
1.错位排列问题
例 1. 4 名同学各写一张贺卡,先集中起来,然后每人从中拿出一张别人写的贺卡,则
四张贺卡的不同分配方式共有
Hale Waihona Puke 种.例 2. 将编号为 1,2,3,4 的四个小球分别放入编号为 1,2,3,4 的四个盒子中,
(k 1)!
k!
(k 1)!
∴n=k+1 时(*)式也成立.
由以上过程可知 n 个元素全错位排列的排列数为:
Tn=
aj 不排 i 位
高中数学排列组合题讲义和答案(分难易程度)
选修2-3第一章第二节和第三节 排列组合一、排列.1. 排列定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.2. 排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号表示.3. 排列数公式:注意: 规定0! = 1规定 二、组合.2. 组合定义:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2. 组合数公式:3. 两个公式:① ②①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有一类是不含红球的选法有)②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C ,如果不取这一元素,则需从剩余n个元素中取出m 个元素,所以共有C 种,依分类原理有.三、排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.四、几个常用组合数公式m n A ),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ!)!1(!n n n n -+=⋅111--++=⋅+=m nm n m n m m m n m n mA A C A A A 11--=m n m n nA A 10==n n n C C )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n-=+--==Λ;m n n m n C C -=m n m n m n C C C 11+-=+1m n 111m n C C C --=⋅m n C 1-m n m n m n m n m n C C C 11+-=+n n nn n n C C C 2210=+++Λλ五、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型:①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有.⑦隔板法:常用于解正整数解组数的问题.II. 排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(线组合再排列);④间接法;⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略;⑦ “小集团”排列问题中先整体后局部的策略;2. 组合问题中分组问题和分配问题.①均匀不编号分组:将n 个不同元素分成不编号的m 组,假定其中r 组元素个数相等,不管是否分尽,其分法种数为(其中A 为非均匀不编号分组中分法数).如果再有K 组均匀分组应再除以. ②非均匀编号分组: n 个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为 ③均匀编号分组:n 个不同元素分成m 组,其中r 组元素个数相同且考虑各组间的顺序,其分法种数为. 例题(简单)例1. 5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C ΛΛΛkk n nn n k n kn A C C C Λ)1(-⋅rr A A /k kA m mA A ⋅m mrr A A A ⋅/不同的报名方法共有( )A.10种B.20种C.25种D.32种例2.用数字1,2,3,4,5可以组成的无重复数字的四位偶数的个数为( ) A.8 B.24 C.48 D.120例3. 6名同学排成1排照相,要求同学甲既不站在最左边又不站在最右边,共有种站法.例题(稍难)例1. 某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85 B.86 C.91 D.90例2. 在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为 .例3. 将7个相同的小球放入4个不同的盒子中.(1)不出现空盒子时放入方式共有种.(2)可出现空盒时的放入方法共有种.例题(难)例1. 从0,1,2,3,4,5,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300 B.216 C.180 D.162例2. 用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个.例题(很难)例1. 国家教育部为了发展贫困地区的教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有种不同的分派方法. 例2. 将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有种.例3. 将6名教师分到3所学校任教,一所1名,一所2名,一所3名,则有种不同的分法.例4. 有甲、乙、丙3项任务,任务甲需要2人承担,任务乙、丙各需要1人承担,从10人中选派4人承担这3项任务,不同的选法共有种. 例5. 4个不同的小球放入编号为1,2,3,4的4个盒子中,恰好有1个空盒子的放法有种.例6. 如图所示的花圃中的5个区域中种入4种不同颜色的花,要求相邻区域不同色,有________种不同的种法.同步基础排列1.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A.48个B.36个C.24个D.18个2.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种3.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A.24种 B.36种 C.48种 D.72种4.某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:如果A、B排序方式有( )A.192种B.144种C.96种D.72种5.某中学一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、英语、信息技术、体育、地理6节课,要求上午第一节课不排体育,数学必须排在上午,则不同排法共有( )A.600种B.480种C.408种D.384种6.5人排成一排照相,要求甲不排在两端,不同的排法共有________种.(用数字作答)7.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有________种(用数字作答).8.由0,1,2,3,4,5六个数字可以组成________个数字不重复含2,3且2,3相邻的四位数.9.用数字0、1、2、3、4、5组成没有重复数字的四位数,(1)可组成多少个不同的四位数?(2)可组成多少个四位偶数?(3)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么?10.用0、1、2、3、4、5这六个数字组成无重复数字的六位数,其中个位数字小于十位数字的六位数的个数是多少个?组合1.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为( )A.50B.45 C.40 D.352.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )A.70种 B.80种 C.100种 D.140种3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14 B.24 C.28 D.484.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A.10种 B.20种 C.36种 D.52种5.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A和一般项目B至少有一个被选中的不同选法种数是( )A.15 B.45 C.60 D.756.从0,1,2,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有________个.(用数字作答)7.从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种.8.某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有________种.(以数字作答)9.有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生.(2)某女生一定要担任语文科代表.(3)某男生必须包括在内,但不担任数学科代表.(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.10.一个口袋里有4个不同的红球,6个不同的白球(球的大小均一样)(1)从中任取3个球,恰好为同色球的不同取法有多少种?(2)取得一个红球记为2分,一个白球记为1分.从口袋中取出五个球,使总分不小于7分的不同取法共有多少种?过关训练1.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为( )A.24 B.48 C.120 D.72 2.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36 3.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有( )A.120种 B.96种 C.60种 D.48种4.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种5.某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )A.16种 B.36种 C.42种 D.60种6.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有________种.7.安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有________种.8.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有________种.(用数字作答)9.某小组学生举行毕业联欢会,人员到齐后大家彼此握手,其中有2名学生各握了3次手后提前离开,其他学生都彼此握了手.若知握手的总次数为83次,试问该小组共有多少名学生?10.在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法?自我超越1. 12名同学合影,站成了前排4人,后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同的调整方法的种数是( )A. 168B. 20 160C. 840D. 5602. 将4名司机和8名售票员分配到四辆公共汽车上,每辆车上分别有1名司机和2名售票员,则可能的分配方案种数是( )A. C28C26C24A44A44B. A28A26A24A44C. C28C26C24A44D. C28C26C243. 五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )A. C14C44种 B. C14A44种 C. C44种 D. A44种4. 从45名男生和15名女生中按分层抽样的方法,选出8人参加国庆活动.若此8人站在同一排,则不同的排法种数为( )A. C645C215B. C645C215A88C. C545C315D. C545C315A885. 某校在高二年级开设选修课,其中数学选修课开三个班.选课结束后,有四名学生要求改修数学,但每班至多可再接收两名学生,那么不同的分配方案有( )A. 72种B. 54种C. 36种D. 18种6. 从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有________种(用数字作答).7. 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是________.8. (创新题)在一次文艺演出中,需要给舞台上方安装一排完全相同的彩灯15只,以不同的点亮方式增加舞台效果,设计要求如下:恰好有6只是关的,且相邻的灯不能同时被关掉,两端的灯必须点亮,则不同的点亮方式为________种.9. 甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).10. 将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).11. 现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是( )A. 54B. 90C. 126D. 15212.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是()A.136B.19C.536D.1613. 两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A. 10种B.15种C. 20种D. 30种超级挑战1. 把1个圆分成4个扇形,依次记为D1,D2,D3,D4,每个扇形都可以用3种不同颜色中任何1种涂色,要求相邻的扇形颜色不同,则共有 种不同涂色方法.2. 某城市在中心广场建造一个花圃,花圃分为6个部分,如图,现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同颜样色的花,不同的栽种方法有3. 集合A ∪B ∪C={a 1,a 2,a 3,a 4,a 5},且A ∩B={ a 1,a 2},求,A ,B ,C 的所有可能组合的个数.4. 如图,ABCD 为海上的四个小岛,要建三座桥将这四个小岛连接起来,则不同的剑桥方案共有( ).A .8种 B.12种 C .16种 D .20种5. 甲、乙、丙、丁四个做互相传球练习,第一次传给除甲外其他三人中的一人,第二次由拿球者再传给其他三人中的一人,这样共传了4次,则第四次仍传回到甲的概率是( ).A.277B. 275C. 87D. 6421 6. 一楼梯共12级,每步可以向上跨1级或2级,共有 种上楼梯方法.。
高中数学必修3《排列组合问题经典题型与通用方法》
排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。
高中数学排列组合:全错位排列问题详解
第二步:将剩余的
4
个名额分到这
6
个班里,由隔板法知,此时,有
C
5 9
种不同分法。由分
步计数原理知,共有
C
5 9
种不同分法。
C
5 9
=C
4 9
=
98 43
7 2
6 1
=126(种)。
答:某校召开学生会议,要将 10 个学生代表名额,分配到某年级的 6 个班中,若
每班至少 1 个名额,有 126 种不同分法.
(1).一般地,设 n 个编号为 1、2、3、… 、i、…、j、…、n 的不同元素 a1、a2、a3、…、 ai、…、aj、…、an,排在一排,且每个元素均不排在与其编号相同的位置,这样的全错位 排列数为 Tn ,则 T2=1,T3=2,Tn= (n-1) ( Tn-1+Tn-2) ,(n≥3).
(2).递推关系的确立
aj 不排 i 位
表(2)
此时,ai 仍排在 j 位,aj 不排在 i 位,则 aj 有 n-1 个位置可排,除 ai 外,还有 n-1 个元
素,每个元素均有一个不能排的位置,问题就转化为 n-1 个元素全错位排列,排列数为 Tn-1,
由乘法原理和加法原理可得:Tn=(n-1)(Tn-1+Tn-2) ,(n≥3).
要求每个盒子放一个小球,且小球的编号与盒子的编号不能相同,则共有
种不同的放
法.
这两个问题的本质都是每个元素都不在自己编号的位置上的排列问题,我们把这种限
制条件的排列问题叫做全错位排列问题.
例 3.五位同学坐在一排,现让五位同学重新坐,至多有两位同学坐自己原来的位置,
则不同的坐法有
种.
解析:可以分类解决:
高中数学排列组合的性质及相关题目解析
高中数学排列组合的性质及相关题目解析在高中数学中,排列组合是一个重要且常见的概念。
它不仅在数学中有着广泛的应用,而且在生活中也有着实际的意义。
本文将从排列组合的性质出发,结合具体的题目进行解析,帮助高中学生和他们的父母更好地理解和掌握排列组合的知识。
一、排列的性质及相关题目解析排列是从给定的元素中选取若干个进行排列,它的性质主要包括全排列和部分排列两种情况。
1. 全排列全排列是指从给定的n个元素中选取n个进行排列,排列的顺序不同即视为不同的排列。
全排列的个数可以通过n!(n的阶乘)来计算。
例如,有4个元素A、B、C、D,它们的全排列个数为4! = 4 × 3 × 2 × 1 = 24。
2. 部分排列部分排列是指从给定的n个元素中选取m个进行排列,排列的顺序不同即视为不同的排列。
部分排列的个数可以通过A(n, m)来计算,其中A代表排列数。
例如,有4个元素A、B、C、D,从中选取2个进行部分排列,部分排列的个数为A(4, 2) = 4 × 3 = 12。
下面通过具体的题目来进一步说明排列的性质。
题目1:某班有5名学生,要从中选取3名学生参加数学竞赛,请问有多少种不同的选取方式?解析:根据题目可知,从5名学生中选取3名学生进行排列。
由于顺序不同即视为不同的排列,因此这是一个部分排列问题。
根据部分排列的计算公式A(n, m)= n × (n-1) × ... × (n-m+1),可得部分排列的个数为A(5, 3) = 5 × 4 × 3 = 60。
所以,有60种不同的选取方式。
题目2:某班有5名学生,要从中选取3名学生参加数学竞赛,如果其中一名学生必须参加,请问有多少种不同的选取方式?解析:根据题目可知,从5名学生中选取3名学生进行排列,并且其中一名学生必须参加。
这个问题可以转化为从剩下的4名学生中选取2名学生进行排列。
高中数学排列组合中的典型例题与分析(五)
排列与组合的八大典型错误、24种解题技巧三大模型一、知识点归纳二、基本题型讲解三、排列组合解题备忘录1.分类讨论的思想2.等价转化的思想3.容斥原理与计数4.模型构造思想四、排列组合中的8大典型错误1.没有理解两个基本原理出错2.判断不出是排列还是组合出错3.重复计算出错4.遗漏计算出错5.忽视题设条件出错6.未考虑特殊情况出错7.题意的理解偏差出错8.解题策略的选择不当出错五、排列组合24种解题技巧1.排序问题相邻问题捆绑法相离问题插空排定序问题缩倍法(插空法)定位问题优先法多排问题单排法圆排问题单排法可重复的排列求幂法全错位排列问题公式法2.分组分配问题平均分堆问题去除重复法(平均分配问题)相同物品分配的隔板法全员分配问题分组法有序分配问题逐分法3.排列组合中的解题技巧至多至少间接法染色问题合并单元格法交叉问题容斥原理法构造递推数列法六.排列组合中的基本模型分组模型(分堆模型)错排模型染色问题(四)高考数学中涂色问题的常见解法及策略与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。
解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。
本文拟总结涂色问题的常见类型及求解方法一.区域涂色问题1、根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。
例1。
用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240⨯⨯⨯=2、根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。
例2、四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学易错题精选——排列组合篇
排列组合问题类型繁多、方法丰富、富于变化,稍不注意,极易出错.
1、重复计算出错
在排列组合中常会遇到元素分配问题、平均分组问题等,这些问题要注意避免重复计数,产生错误。
5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为( )
(A )480 种 (B )240种 (C )120种 (D )96种
误解:先从5本书中取4本分给4个人,有45A 种方法,剩下的1本书可以给
任意一个人有4种分法,共有480445=⨯A 种不同的分法,选A .
错因分析:设5本书为a 、b 、c 、d 、e ,四个人为甲、乙、丙、丁.按照上述分法可能如下的表1和表2: 表1是甲首先分得a 、乙分得b 、丙分得c 、丁分得d ,最后一本书e 给甲的情况;表2是甲首先分得e 、乙分得b 、丙分得c 、丁分得d ,最后一本书a 给甲的情况.这两种情况是完全相同的,而在误解中计算成了不同的情况。
正好重复了一次.
正解:首先把5本书转化成4本书,然后分给4个人.第一步:从5本书中任
意取出2本捆绑成一本书,有25C 种方法;第二步:再把4本书分给4个学生,有44
A 种方法.由乘法原理,共有⋅25C 24044
=A 种方法,故选B . 例2: 某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有( )种.
(A )5040 (B )1260 (C )210 (D )630
误解:第一个人先挑选2天,第二个人再挑选2天,剩下的3天给第三个人,
这三个人再进行全排列.共有:1260332527=A C C ,选B .
错因分析:这里是均匀分组问题.比如:第一人挑选的是周一、周二,第二人挑选的是周三、周四;也可能是第一个人挑选的是周三、周四,第二人挑选的是周
乙 丙 丁 a 甲 e d c b 表1 乙
丙 丁 a 甲 e d c b 表2
一、周二,所以在全排列的过程中就重复计算了. 正解:6302
332527=A C C 种.
2、判断不出是排列还是组合出错
在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.
例3 有大小形状相同的3个红色小球和5个白色小球,排成一排,共有多少种不同的排列方法?
误解:因为是8个小球的全排列,所以共有88A 种方法.
错因分析:误解中没有考虑3个红色小球是完全相同的,5个白色小球也是完全相同的,同色球之间互换位置是同一种排法.
正解:8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这3个红球完全相同,所以没有顺序,
是组合问题.这样共有:5638=C 排法.
3、没有理解两个基本原理出错
排列组合问题基于两个基本计数原理,即加法原理和乘法原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提.
例4(上海高考题)从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有 种.
误解:因为可以取2台原装与3台组装计算机或是3台原装与2台组装计算机,所以只有2种取法.
错因分析:误解的原因在于没有意识到“选取2台原装与3台组装计算机或是3台原装与2台组装计算机”是完成任务的两“类”办法,每类办法中都还有不同的取法.
正解:由分析,完成第一类办法还可以分成两步:第一步在原装计算机中任意
选取2台,有26C 种方法;第二步是在组装计算机任意选取3台,有35C 种方法,据
乘法原理共有35
26C C ⋅种方法.同理,完成第二类办法中有2536C C ⋅种方法.据加法原理完成全部的选取过程共有+⋅3526C C 3502536=⋅C C 种方法.
例 5 在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )种.
(A )34A (B )34 (C )43 (D )34C
误解:把四个冠军,排在甲、乙、丙三个位置上,选A .
错因分析:误解是没有理解乘法原理的概念,盲目地套用公式.
正解:四项比赛的冠军依次在甲、乙、丙三人中选取,每项冠军都有3种选取方法,由乘法原理共有433333=⨯⨯⨯种.
说明:本题还有同学这样误解,甲乙丙夺冠均有四种情况,由乘法原理得34.这是由于没有考虑到某项冠军一旦被一人夺得后,其他人就不再有4种夺冠可能.
4、遗漏计算出错
在排列组合问题中还可能由于考虑问题不够全面,因为遗漏某些情况,而出错。
例6 用数字0,1,2,3,4组成没有重复数字的比1000大的奇数共有( )
(A )36个 (B )48个 (C )66个 (D )72个
误解:如右图,最后一位只能是1或3有两种取法,
又因为第1位不能是0,在最后一位取定后只有3种取 法,剩下3个数排中间两个位置有23A 种排法,共有363223=⨯⨯A 个.
错因分析:误解只考虑了四位数的情况,而比1000大的奇数还可能是五位数.
正解:任一个五位的奇数都符合要求,共有363233=⨯⨯A 个,再由前面分析四
位数个数和五位数个数之和共有72个,选D .
5、忽视题设条件出错
在解决排列组合问题时一定要注意题目中的每一句话甚至每一个字和符号,不然就可能多解或者漏解.
例7 (全国高考题)如图,一个
地区分为5个行政区域,现给地图着色,
要求相邻区域不得使用同一颜色,现有
4
种颜色可供选择,则不同的着色方法共有 种.(以数字作答)
误解:先着色第一区域,有4种方法,剩下3种颜色涂四个区域,即有一种
颜色涂相对的两块区域,有1222213=⋅⋅A C 种,由乘法原理共有:48124=⨯种.
错因分析:据报导,在高考中有很多考生填了48种.这主要是没有看清题设“有4种颜色可供选择..
”,不一定需要4种颜色全部使用,用3种也可以完成任务. 正解:当使用四种颜色时,由前面的误解知有48种着色方法;当仅使用三种
颜色时:从4种颜色中选取3种有34C 种方法,先着色第一区域,有3种方法,剩
下2种颜色涂四个区域,只能是一种颜色涂第2、4区域,另一种颜色涂第3、5
区域,有2种着色方法,由乘法原理有242334=⨯⨯C 种.综上共有:722448=+种.
例8 已知02=-b ax 是关于x 的一元二次方程,其中a 、}4,3,2,1{∈b ,求解集不同的一元二次方程的个数.
误解:从集合}4,3,2,1{中任意取两个元素作为a 、b ,方程有24A 个,当a 、b 取
同一个数时方程有1个,共有13124=+A 个.
错因分析:误解中没有注意到题设中:“求解集不同....
的……”所以在上述解法中要去掉同解情况,由于⎩⎨⎧==⎩⎨⎧==4221b a b a 和同解、⎩
⎨⎧==⎩⎨⎧==2412b a b a 和同解,故要减去2个。
正解:由分析,共有11213=-个解集不同的一元二次方程.
6、未考虑特殊情况出错
在排列组合中要特别注意一些特殊情况,一有疏漏就会出错.
例9 现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( )
(A)1024种 (B)1023种 (C)1536种 (D)1535种
误解:因为共有人民币10张,每张人民币都有取和不取2种情况,减去全不取的1种情况,共有10231210=-种.
错因分析:这里100元面值比较特殊有两张,在误解中被计算成 4 种情况,实际上只有不取、取一张和取二张3种情况.
正解:除100元人民币以外每张均有取和不取2种情况,100元人民币的取法有3种情况,再减去全不取的1种情况,所以共有15351329=-⨯种.
7、题意的理解偏差出错
例10 现有8个人排成一排照相,其中有甲、乙、丙三人不能相邻的排法有( )种.
(A )5536A A ⋅ (B )336688A A A ⋅- (C )3335A A ⋅ (D )46
88A A - 误解:除了甲、乙、丙三人以外的5人先排,有55A 种排法,5人排好后产生6
个空档,插入甲、乙、丙三人有36A 种方法,这样共有55
36A A ⋅种排法,选A . 错因分析:误解中没有理解“甲、乙、丙三人不能相邻”的含义,得到的结果是“甲、乙、丙三人互不相邻....
”的情况.“甲、乙、丙三人不能相邻”是指甲、乙、丙三人不能同时相邻,但允许其中有两人相邻.
正解:在8个人全排列的方法数中减去甲、乙、丙全相邻的方法数,就得到
甲、乙、丙三人不相邻的方法数,即33
6688A A A ⋅-,故选B .
8、解题策略的选择不当出错
有些排列组合问题用直接法或分类讨论比较困难,要采取适当的解决策略,如间接法、插入法、捆绑法、概率法等,有助于问题的解决.
例10 高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( ).
(A )16种 (B )18种 (C )37种 (D )48种
误解:甲工厂先派一个班去,有3种选派方法,剩下的2个班均有4种选择,这样共有48443=⨯⨯种方案.
错因分析:显然这里有重复计算.如:a 班先派去了甲工厂,b 班选择时也去了甲工厂,这与b 班先派去了甲工厂,a 班选择时也去了甲工厂是同一种情况,而在上述解法中当作了不一样的情况,并且这种重复很难排除.
正解:用间接法.先计算3个班自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即:37333444=⨯⨯-⨯⨯种方案.
排列组合问题虽然种类繁多,但只要能把握住最常见的原理和方法,即:“分步用乘、分类用加、有序排列、无序组合”,留心容易出错的地方就能够以不变应万变,把排列组合学好.。