(完整版)高中数学排列组合习题精选
高中数学排列组合专题练习题
高中数学排列组合专题练习题一、选择题1、从 5 名男同学和 4 名女同学中选出 3 名男同学和 2 名女同学,分别担任 5 种不同的职务,不同的选法共有()A 5400 种B 18000 种C 7200 种D 14400 种解析:第一步,从 5 名男同学中选出 3 名,有\(C_{5}^3\)种选法;第二步,从 4 名女同学中选出 2 名,有\(C_{4}^2\)种选法;第三步,将选出的 5 名同学进行排列,有\(A_{5}^5\)种排法。
所以不同的选法共有\(C_{5}^3 × C_{4}^2 × A_{5}^5 = 10×6×120 =7200\)种,故选 C。
2、有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。
若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A 24B 48C 72D 96解析:先排语文书有\(A_{2}^2 = 2\)种排法,再在语文书的间隔(含两端)处插数学书有\(A_{3}^2 = 6\)种插法,最后将物理书插入 4 个间隔中的一个有 4 种方法。
所以共有\(2×6×4 = 48\)种排法,故选 B。
3、从 0,1,2,3,4,5 这 6 个数字中,任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A 300B 216C 180D 162解析:分两类情况讨论:第一类:取出的偶数含 0。
偶数 0 和另外一个偶数的取法有\(C_{2}^1\)种,奇数的取法有\(C_{3}^2\)种。
0 在个位时,其他三个数字全排列,有\(A_{3}^3\)种;0 不在个位时,0 有 2 种位置,其他三个数字全排列,有\(2×A_{2}^1×A_{2}^2\)种。
此时共有\(C_{2}^1×C_{3}^2×(A_{3}^3 + 2×A_{2}^1×A_{2}^2) = 108\)种。
高中数学排列组合专项练习(后附答案)
排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的排列数,用____表示.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的组合数,用____表示.3.排列数、组合数的公式及性质)(!n m m −+)m n n n C C =二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ( ) (2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( ) (4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )题组二 教材改编2.[P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.3.[P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.题组三易错自纠4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种.5.为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.6.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)三、课中讲解题型一排列问题1.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)2.用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.3.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有_____种不同的分派方法.例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.2.有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.3.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.4.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.5.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.6.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.7.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有_____个.11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.16. 设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用.3.排列数、组合数的公式及性质)(!n m m −+C m -1n__ 二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ()(2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( )(4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )【答案】×;×;√;√;×;√题组二教材改编2. [P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.【答案】24“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3. [P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.【答案】48末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种)排法,所以偶数的个数为48.题组三易错自纠4. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种. 【答案】216第一类:甲在左端,有A55=5×4×3×2×1=120(种)排法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)排法.所以共有120+96=216(种)排法.5. 为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.【答案】540②一个国家派3名,一个国家派2名,一个国家派1名,有C36C23C11A33=360(种);③每个国家各派6. 寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)【答案】45设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9×5=45(种).三、课中讲解题型一排列问题1. 某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)【答案】1 560由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.2. 用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.【答案】432根据题意,分三步进行:第一步,先将1,3,5分成两组,共C23A22种排法;第二步,将2,4,6排成一排,共A33种排法;第三步,将两组奇数插入三个偶数形成的四个空位,共A24种排法. 综上,共有C23A22A33 A24=3×2×6×12=432(种)排法.3. 在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________. 【答案】864解析先把数字1,3,5,7作全排列,有A44=24种排法,再排数字6,由于数字6不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩下的4个空隙中排上2,4,有A24种排法,故共有A44×3×A24=864(种)排法.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?【答案】(1)从余下的34种商品中,选取2种有C234=561种取法,∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种取法.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100种取法.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)方法一(间接法)选取3种的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.方法二(直接法)选取3种真货有C320种,选取2种真货有C220C115种,选取1种真货有C120C215种,因此共有选取方式C320+C220C115+C120C215=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.【答案】30因为甲、乙两位同学从四个不同的项目中各选两个项目的选法有C24C24种.其中甲、乙所选的项目完全相同的选法有C24种,所以甲、乙所选的项目中至少有1个不相同的选法共有C24C24-C24=30(种).练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种. 【答案】66共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.【答案】602位男生不能连续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12(种),所以出场顺序的排法种数为N=N1-N2=60.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.【答案】24根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.【答案】90例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.【答案】36则共有6×6=36(种)不同的保送方案.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a. 对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b. 对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c. 对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.【答案】36由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13·C24·A22=练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)【答案】660方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C26A24=180(种)选法. 所以依据分类计数原理知,共有480+180=660(种)不同的选法.方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.【答案】36将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C 捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法. 于是符合题意的摆法共有A22A44-A22A33=36(种).四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.【答案】18为A25-2=18.2. 有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.【答案】12A33A22=12.3. 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.【答案】24将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6种排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.4. 方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.【答案】62a,b均不为0,且b取互为相反数的两数时抛物线相同,故分a取1与a不取1两类:①a取1时,b2取值为4,9两类,当b2=4和b2=9时,c都有5种情况,此时有2×5=10(种);②a不取1时有C14种,不妨设a取2,则b2取值有1,4,9三类,当b2=1时,c有4种,当b2=4时,c有4种,当b2=9时,c有5种,此时有C14(4+4+5)=52(条)不同的抛物线.故共有10+52=62(种)不同的抛物线.5. 有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.【答案】18由题意知,名次排列的种数为C13A33=18.6. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.【答案】72由题可知,五位数要为奇数,则个位数只能是1,3,5.分为两步:先从1,3,5三个数中选一个作为个位数有C13种选法,再将剩下的4个数字排列有A44种排法,则满足条件的五位数有C13·A44=72(个).7. 若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)【答案】11把g,o,o,d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)【答案】60分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.【答案】362名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有________个.【答案】240由题意,知本题是一个分步计数问题,从1,2,3,4四个数中选取一个有四种选法,接着从这五个数中选取3个在中间三个位置排列,共有A35=60个,根据分步计数原理知,有60×4=240(个).11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.【答案】120先安排小品节目和相声节目,然后让歌舞节目去插空. 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”. 对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法. 由分类计数原理知,共有36+36+48=120(种)安排方法.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)【答案】1145个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=90种,A,B住同一房间有C23·A33=18种,故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.【答案】360前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种).14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.【答案】150标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.【答案】150这三家酒店入住的参会国数目有以下两种可能:满足题意的安排方法共有90+60=150(种).。
高中数学选修2-3排列组合问题题目精选(附答案)
高中数学选修2-3排列组合问题题目精选(附答案)1. 某班有20名学生,其中有5名男生和15名女生。
从中选出3名学生组成一个小组,求以下概率:- 小组中至少有1名男生的概率是多少?答案:小组中至少有1名男生的概率为1减去小组全为女生的概率。
全为女生的概率可以用排列组合来计算,即从15名女生中选出3名女生组成小组的概率。
因此,小组中至少有1名男生的概率为1减去(C(15, 3) / C(20, 3))。
2. 有6本不同的数学书和4本不同的物理书。
现从这些书中任选2本,求以下概率:- 所选的两本书中至少有1本是数学书的概率是多少?答案:所选的两本书中至少有1本是数学书的概率等于1减去两本书都是物理书的概率。
两本书都是物理书的概率可以用排列组合来计算,即从4本物理书中选出2本物理书的概率。
因此,所选的两本书中至少有1本是数学书的概率为1减去(C(4, 2) / C(10, 2))。
3. 某公司有8名员工,其中有3名男员工和5名女员工。
请问,从这8名员工中选出4名员工组成一个小组,使得小组中至少有1名男员工的概率是多少?答案:小组中至少有1名男员工的概率等于1减去小组全为女员工的概率。
全为女员工的概率可以用排列组合来计算,即从5名女员工中选出4名女员工组成小组的概率。
因此,小组中至少有1名男员工的概率为1减去(C(5, 4) / C(8, 4))。
4. 一批音乐CD包含5张古典音乐CD和7张摇滚音乐CD。
现从这批CD中随机选取3张,求以下概率:- 所选的3张CD中至少有2张是摇滚音乐CD的概率是多少?答案:所选的3张CD中至少有2张是摇滚音乐CD的概率等于1减去3张CD都是古典音乐CD的概率。
3张CD都是古典音乐CD的概率可以用排列组合来计算,即从5张古典音乐CD中选出3张古典音乐CD的概率。
因此,所选的3张CD中至少有2张是摇滚音乐CD的概率为1减去(C(5, 3) / C(12, 3))。
5. 一位学生参加了5项体育比赛,他能获得的奖牌有金牌、银牌和铜牌。
高中排列组合试题及答案
高中排列组合试题及答案一、选择题1. 从5个人中选出3个人参加比赛,不同的选法有()种。
A. 10B. 15C. 20D. 60答案:B2. 有3个不同的球和3个不同的盒子,每个盒子只能放一个球,不同的放法有()种。
A. 3B. 6C. 9D. 27答案:D3. 从6本不同的书中选3本送给3个不同的人,每人一本,不同的送法有()种。
A. 20B. 60C. 120D. 720答案:B二、填空题4. 一个班级有20名学生,需要选出5名学生组成一个小组,那么不同的选法有______种。
答案:15,5045. 从10个人中选出3个人担任班长、副班长和学习委员,不同的选法有______种。
答案:720三、解答题6. 某学校有5个不同学科的竞赛,每个学生可以选择参加1个或多个竞赛,求至少参加一个竞赛的学生的选法总数。
答案:首先,每个学生有6种选择:不参加任何竞赛,只参加一个竞赛,参加两个竞赛,参加三个竞赛,参加四个竞赛,参加所有五个竞赛。
对于每个学科,学生有两种选择:参加或不参加,所以总共有2^5=32种可能的组合。
但是,我们需要排除不参加任何竞赛的情况,所以选法总数为32-1=31种。
7. 一个班级有30名学生,需要选出一个5人的篮球队,其中必须包括1名队长和4名队员。
如果队长和队员可以是同一个人,那么不同的选法有多少种?答案:首先,选择队长有30种可能,然后从剩下的29人中选择4名队员,有C(29,4)种可能。
但是,由于队长和队员可以是同一个人,我们需要减去只选了4名队员的情况,即C(30,4)种。
所以,总的选法为30*C(29,4) - C(30,4) = 30*1911 - 27,405 = 57,330种。
四、计算题8. 一个数字密码由5个不同的数字组成,每位数字可以是0-9中的任意一个,求这个密码的所有可能组合。
答案:每位数字有10种可能,所以总的组合数为10^5 = 100,000种。
9. 一个班级有15名学生,需要选出一个7人的足球队,不同的选法有多少种?答案:从15名学生中选出7人,不同的选法有C(15,7) = 6,435种。
高中数学排列组合必考知识点经典练习题(完整版)
排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同3. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
高中数学排列组合练习题及答案
高中数学排列组合练习题及答案1、小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?解:把路程看成1,得到时间系数去时时间系数:1/3÷12+2/3÷30返回时间系数:3/5÷12+2/5÷30两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)2、广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A. 36种B. 12种C. 18种D. 48种根据题意分2种情况讨论,①若小张或小赵入选,则有选法C21C21A33=24;②若小张、小赵都入选,则有选法A22A32=12,共有选法12+24=36种,故选A.根据题意,小张和小赵只能从事前两项工作,由此分2种情况讨论,①若小张或小赵入选,②若小张、小赵都入选,分别计算其情况数目,由加法原理,计算可得答案.3、4人在同一天的上下午做5个自己的测试ABCDE,每人上下午各做一个测试,且不重复,若上午不测A下午不测B,其余项目上下午各测试一人,则不同的安排方式有几种?分类:1.首先从四个人中选一个人参加特殊的ab则为4*2=8再将剩余的3人安排在cde的上下午为3*2*1=6则有6*8=48分类2.再算参加ab活动的人不同时有4*3=12对于剩下的两人进行讨论因为参加ab的人必需再选一个假设他们选的是同一样的则可算的有3种剩余两人只有2种,共有3*2=6假设参加ab的人选的不一样,则他们选的是3*2=6种,剩余两人只有两种可选,共6*2=1212+6=1818*12+48=2644、若把英语单词hello的字母写错了,则可能出现的错误共有 ( )A 119种B 36种C 59种D 48种解:5全排列5*4*3*2*1=120有两个l所以120/2=60原来有一种正确的所以60-1=595、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
高中数学排列组合典型题大全含答案
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中数学经典题型-排列组合(含答案)
排列组合经典题型【编著】黄勇权【例题1】设有编号为1、2、3、4、5、6的六个桌子和编号为1、2、3、4、5、6的六个小球,将六个小球放在六个桌子上,恰有2个小球和桌子的编号相同的放法有()A.180种B.200种270种 D.360种解:第一步:准确把握“恰有2个”的意义:有2组编号相同,其他不相同第二步:6张桌子,6个小球,小球与桌子编号相同有6组,取其中2组,记作:C26我们假设1、2编号相同,其他的不相同。
下面讨论不同情况下有多少种放法①---③合计:1+2+6=9=270故选C总数:9C26【例题2】从6双不同颜色的鞋子中任取4只,其中恰好有1双同色的取法有()A.240种 B.180种 C.120种 D.60种解:准确理解“4只中,恰好有1双同色”的含义。
意思是:4只中有2只同颜色,2只不同颜色。
①“同颜色的2只”怎么来?1种取法,从6双鞋子中任选一双,则有C6②“不同颜色的2只”,又怎么来?2种,再从剩下的10只鞋子中,任选2只,则有C102中,包含了剩下的5套颜色相同的鞋子,所以要扣除。
因为C10扣除了这5套,其他均为不同颜色的。
即有:C102-5故总的选法数为C61(C102-5)=240种.故选A.【例题3】用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是()A、1240B、2048C、3140D、4020解:先考虑千位:千位为1的四位偶数有A13A24=36个;千位为2的四位偶数有A12A24=24个;千位为3的四位偶数有A13A24=36个;因36+24<71<36+24+36,所以第71个偶数的千位数字为3;再考虑百位:首位是3时,百位为0时有:A12•A13=3×2=6个,合计66个,千位是3.百位是1时,第的偶数依次为:3102,3104,3120.3124,3140,3140就是0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数.故答案为:3140.【例题4】将7只相同的小球分给4个小朋友,每个小朋友至少分得1球的方法有多少种?A、12B、16C、18D、20解:设4个小朋友为A、B、C、D,因为每个小朋友至少分得1球,那么先给每个人1个球,则还剩3个球。
排列组合的试题及答案高中
排列组合的试题及答案高中一、选择题1. 从5个不同的小球中取出3个进行排列,共有多少种不同的排列方式?A. 20种B. 60种C. 120种D. 240种2. 有5个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排法?A. 48种B. 60种C. 120种D. 240种二、填空题3. 用0,1,2,3,4这五个数字组成没有重复数字的三位数,其中个位数字为1的共有多少个?4. 某班有10名同学,需要选出3名代表,有多少种不同的选法?三、解答题5. 某公司有10名员工,需要选出5名员工组成一个工作小组,要求其中至少有1名女性员工。
如果公司中有5名女性员工和5名男性员工,问有多少种不同的组合方式?6. 某校有5个社团,每个学生最多可以参加2个社团,问有多少种不同的参加方式?答案一、选择题1. 答案:B解析:从5个不同的小球中取出3个进行排列,使用排列公式A_{5}^{3} = 5 × 4 × 3 = 60。
2. 答案:A解析:将甲乙两人看作一个整体,有4!种排法,再将甲乙两人内部排列,有2!种排法,所以总共有4! × 2! = 48种排法。
二、填空题3. 答案:18解析:首先确定百位,有4种选择(不能选0和1),然后确定十位,有3种选择(不能与百位相同),最后确定个位为1,所以共有 4 × 3 = 12种。
但是,由于0不能作为百位,所以需要减去3种情况,最终答案为 12 - 3 = 9种。
4. 答案:120解析:从10个人中选出3个人,使用组合公式 C_{10}^{3} = 10! / (3! × (10 - 3)!) = 120。
三、解答题5. 答案:252种解析:首先计算所有可能的组合数,即 C_{10}^{5} = 252。
然后计算没有女性员工的组合数,即 C_{5}^{5} = 1。
所以至少有1名女性员工的组合数为 252 - 1 = 251。
(完整版)排列组合习题_[含详细答案解析]
圆梦教育中心排列组合专项训练1.题1 (方法对比,二星) 题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别”——相同元素问题 (法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C +(种) (法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一 题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 答案:69C 详解:因为10个名额没有差别,把它们排成一排。
相邻名额之间形成9个空隙。
在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。
同类题二题面:求方程X+Y+Z=10的正整数解的个数。
答案:36. 详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z之值, 故解的个数为C 92=36(个)。
2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:A 66·A 47种.详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.同类题二 题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:58A =6720种排法.(法2)[1]5个男生先排好:55A ;[2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素,共有:3216662C C C ++种,综上:有55A (3216662C C C ++)=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种? 答案:30。
高中数学排列组合训练含答案
、单选题(共 32题;共 64 分)1. 完成一项工作,有两种方法,有 5 个人只会用第一种方法,另外有 4 个人只会用第二种方法,从这 人中选 1 个人完成这项工作,则不同的选法共有( )赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于(4. 用 10 元、 5 元和 1 元来支付 20 元钱的书款,不同的支付方法的种数为( ) A. 3 B. 5C. 9D. 125. 学校将 位同学分别推荐到北京大学、上海交通大学、浙江大学三所大学参加自主招生考试,则每所大 学至少推荐一人的不同推荐的方法种数为( )A. B. C. D.6. 某一数学问题可用综合法和分析法两种方法证明,有 5 位同学只会用综合法证明,有 3 位同学只会用分析法证明,现任选 1 名同学证明这个问题,不同的选法种数有( )种.A. 8B . 15C . 18D . 307. 现有 6 名同学去听同时进行的 5 个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )8. 从 6 名男生和 4名女生中选出 3名志愿者,其中恰有 1 名女生的选法共有( ) A. 28 种B. 36种C. 52种D. 60 种9.6个人分乘两辆不同的汽车,每辆汽车最多坐 4 人,则不同的乘车方法种数为( ) A. 40 B. 50 C. 60 D. 7010. 一个教室有五盏灯,一个开关控制一盏灯,每盏灯都能正常照明,那么这个教室能照明的方法有种 () A. 24 B. 25 C. 31 D. 3211. 某技术学院安排 5 个班到 3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有( )排列组合训练9个D. 20 种D. 10 种3.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是C. 12 种 ,没有平局.若采用 三局两胜制比A.C. D.A. 24 种B. 16 种12.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那 么他们结账方式的可能情况有( )种13.上午要上语文、数学、体育和外语四门功课,而体育教师因故不能上第一节和第四节,则不同排课方 案的种数是( )16. 等于( )17.自 2020 年起,高考成绩由“ ”组成,其中第一个 “ 3指”语文、数学、英语 3科,第二个“3指”学生从物理、化学、生物、政治、历史、地理 6 科中任选 3科作为选考科目,某同学计划从物理、化学、生物 3 科 中任选两科,从政治、历史、地理 3科中任选 1科作为选考科目,则该同学 3 科选考科目的不同选法的种 数为( )A. 6 B . 7 C . 8 D . 918. 某教师要把语文、数学、外语、历史四个科目排到如下的课表中,如果相同科目既不同行也不同列, 星期一的课表已经确定如下表,则其余三天课表的不同排法种数有 ( )A. 96B. 36C. 24D. 1219. 已知有穷数列 2,3,, 满足2,3, , ,且当 2,3,, 时, 若 ,则符合条件的数列 的个数是A. B. C. D.A. 60 种B. 90种C. 15种0D. 240种A. 19 B . 26 D . 12A. 24B. 12C. 20D. 2214.本周日有 5所不同的高校来我校作招生宣传,学校要求每位同学可以从中任选 甲、乙、丙三位同学的选择没有一所是相同的,则不同的选法共有( )1所或 2所去咨询了解, D. 600种15.从 1,2,3,4,5中任取 2 个不同的数,设事件 为取到的两个数之和为偶数,则 () A. B. C. D.A. 330 种B. 420种C. 510种A. C. D.20.学校新入职的5名教师要参加由市教育局组织的暑期3期上岗培训,每人只参加其中1期培训,每期至多派2 人,由于时间上的冲突,甲教师不能参加第一期培训,则学校不同的选派方法有()A. 种B. 种C. 种D. 种21.《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有()A. 144种B. 288种C. 360种.720 种22.设6人站成一排,甲、乙、丙3 个人不能都站在一起的排法种数为()A. 720 B . 144 C . 576 D . 32423.将4 名志愿者分别安排到火车站、轮渡码头、机场工作,要求每一个地方至少安排一名志愿者,其中甲、乙两名志愿者不安排在同一个地方工作,则不同的安排方法共有()A. 24 种B. 30种C. 32种D. 36 种24.在某班进行的歌唱比赛中,共有5 位选手参加,其中3 位女生,2 位男生.如果2 位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为()A. 30B. 36C. 60D. 7225.可表示为()A. B. C. D.26.有三个兴趣小组,甲、乙两位同学各自参加其中的一个小组,每位同学参加各个小组的可能性相同,则这两位同学不在同一个兴趣小组的情况有()种A. 3B. 6C. 9D. 1227.从2,3,5,7 四个数中任选两个分别相除,则得到的结果有()A. 6 个B. 1个0C. 1个2D. 16个28.从6 本不同的书中选出4本,分别发给4个同学,已知其中两本书不能发给甲同学,则不同分配方法有()A. 180 B . 220 C . 240 D . 26029.一名老师和两名男生两名女生站成一排照相,要求两名女生必须站在一起且老师不站在两端,则不同站法的种数为().A. 8 B . 12 C . 16 D . 2430.从5名男生和4 名女生中选出4 人参加比赛,如果4人中须既有男生又有女生,选法有()种A. 21 B . 120 C . 60 D . 9131.表示的平面区域内,以横坐标与纵坐标均为整数的点为顶点,可以构成的三角形个数为()A. 286 B . 281 C . 256 D . 17632.从、、、4 个班级中选10 人组成卫生检查小组,每班至少选一人,每班人数的不同情况有多少种()A. 42 B . 56 C . 84 D . 168二、填空题(共13题;共13 分)33. _____________________________________________ 如图,用6 种不同的颜色给图中的4 个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有_________________________________________________ 种(用数字作答).34. ___________ 用1、2、3、4、5、6 组成没有重复数字的六位数,要求任何相邻两个数字的奇偶性不同,这样的六位数的个数是(用数字作答).35.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名,从中任选一人参加接待外宾的活动,有种不同的选法;从三个年级的学生中各选1 人参加接待外宾的活动,有种不同的选法,则_______ .36. ___________________________________________________________ 西部五省,有五种颜色供选择涂色,要求每省涂一色,相邻省不同色,有______________________________ 种涂色方法.37.定义“规范01数列” 如下:共有项,其中项为0,项为1,且对任意,中0的个数不少于1 的个数.若,则不同的“规范01 数列”共有______ 个。
(完整版)排列组合练习题及答案
(完整版)排列组合练习题及答案《排列组合》一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有 A.30种 B.31种 C.32种 D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是 A.230种 B.236种 C.455种 D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有 A.240种 B.180种 C.120种 D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是。
(完整版)高中数学排列组合习题精选
1、体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有( )种。
2、某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有( )种3、(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军(各项目冠军都只有一人),共有多少种可能的结果?4、从集合{1,2,…,10}中任选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()5、有4位教师在同一年级的四个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )种。
A .8 B .9 C .10 D .116、3人玩传球游戏,由甲开始并做为第一次传球,经过4次传球后,球仍回到甲手中,有多少种不同的传球方式呢?7、集合A ={a,b,c,d},B={1,2,3,4,5}。
(1)从集合A 到集合B 可以建立多少个不同的映射?(2)从集合A 到集合B 的映射中,要求集合A 中元素的象不同,这样的映射有多少个8、对一个各边长都不相等的凸五边形的各边进行染色,每条边都可以染红、黄、蓝三种不同的颜色,但是不允许相邻相邻的边染相同的颜色,则不同的染色方法共有( )种。
9、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有( )种不同的涂色方案。
10、将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,如图是一种填法,则不同的填写方法共有 A .6种 B .12种 C .24种 D .48种11、如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A .64B .72C.84 D .9612、(13山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .27913、(13福建)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( ) A .14 B .13 C .12 D .1014、(16全国)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数。
(完整版)排列组合经典练习(带答案)
排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个 答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A.10 B.11 C.12 D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
高中数学选修_排列组合经典问题练习(详细解析)
排列组合经典练习(含解析)1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( )A .40B .50C .60D .70 【解析】先分组再排列,一组2人一组4人有C 26=15种不同的分法;两组各3人共有C 36A 22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种【解析】恰有两个空或n =6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A .45种B .36种C .28种D .25种【解析】因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶 ②所得空间直角坐标系中的点的坐标中含有1个1的有C 12·A 33+A 33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C 13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A .72B .96C .108D .144 【解析】分两类:若1与3相邻,有A 22·C 13A 22A 23=72个,若1与3不相邻有A 33·A 33=36个故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A .50种B .60种C .120种D .210种【解析】先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C 16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A 25种,按照分步乘法计数原理可知共有不同的安排方法C 16·A 25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)【解析】先安排甲、乙两人在后5天值班,有A 25=20(种)排法,其余5人再进行排列,有A 55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)【解析】由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C 49·C 25·C 33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).【解析】先将6名志愿者分为4组,共有C 26C 24A 22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).【解析】5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) (A )72 (B )96 (C ) 108 (D )144【解析】先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A.10B.11C.12D.15【解析】与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有624=C 个第二类:与信息0110有一个对应位置上的数字相同有414=C 个第三类:与信息0110没有一个对应位置上的数字相同有104=C 个。
高中数学排列组合经典题型练习题(有答案)
高中数学排列组合经典题型练习题姓名班级学号得分说明:1、本试卷满分100分,考试时间80分钟1、填写答题卡的内容用2B铅笔填写2、提前5分钟收取答题卡一.单选题(每题3分,共30分)1.将标号为1,2,3,4,5,6的6个小球放入3个不同的盒子中.若每个盒子放2个,其中标号为1,2的小球放入同一盒子中,则不同的方法共有()A.12种B.16种C.18种D.36种2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有()A.60种B.63种C.65种D.66种3.由数字1、2、3、4、5组成没有重复数字,且3与4相邻,1与2不相邻的五位数的个数为()A.1120 B.48 C.24 D.124.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的数有()A.360个B.720个C.300个D.240个5.某校3名艺术生报考三所院校,其中甲、乙两名学生填报不同院校,则填报结果共有()A.18种B.19种C.21种D.24种6.有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有()A.1120种B.1136种C.1600种D.2736种7.一排座位共8个,3人去坐,要求每人的左右两边都有空位置的坐法种数为()A.6种B.24种C.60种D.120种8.有8人排成一排照相,要求A、B两人不相邻,C,D,E三人互不相邻,则不同的排法有()A.11520 B.8640 C.5640 D.28809.有5名毕业生站成一排照相,若甲乙两人之间至多有2人,且甲乙不相邻,则不同的站法有()A.36种B.12种C.60种D.48种10.有5个不同的红球和2个不同的黑球排成一排,在两端都是红球的排列中,其中红球甲和黑球乙相邻的排法有()A.1440种B.960种C.768种D.720种二.填空题(每题3分,共30分)11.0,1,3,4四个数可组成______不同的无重复数字的四位数.12.已知口袋里装有同样大小、同样质量的16个小球,其中8个白球、8个黑球,则从口袋中任意摸出8个球恰好是4白4黑的概率为______.(结果精确到0.001)13.从甲、乙等6名同学中挑选3人参加某公益活动,要求甲、乙至少有1人参加,不同的挑选方法共有______种.14.山东省某中学,为了满足新课改的需要,要开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有______种不同的选修方案.(用数值作答)15.在由数字1,2,3,4组成的所有没有重复数字的4位数中,大于2314的数共有______个.16.甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包一项,丙、丁公司各承包2项,则共有______种承包方式.(用数字作答)17.从7个同学中选出3人参加校代会,其中甲、乙两人至少选一人参加,不同选法有______种.18.用数字0,1,2,3,4组成没有重复数字的五位数,则其中五位数为偶数有______个(用数字作答).19.从1,3,5中任取2数,从2,4,6中任取2数,一共可以组成______个无重复数字的四位数.20.三位老师分配到4个贫困村调查义务教育实施情况,若每个村最多去2个人,则不同的分配方法有______种.三.简答题(每题10分,共40分)21.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置;(2)全体排成一行,男生不能排在一起;(3)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;(4)全体排成一行,甲、乙两人中间必须有3人.22.对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止.若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能?23.6位同学站在一排照相,按下列要求,各有多少种不同排法?①甲、乙必须站在排头或排尾②甲、乙.丙三人相邻③甲、乙、丙三人互不相邻④甲不在排头,乙不在排尾⑤若其中甲不站在左端,也不与乙相邻.24.7名男生5名女生中选5人,分别求符合下列的选法总数.(以下问题全部用数字作答)(1)A,B必须当选;(2)A,B不全当选;(3)选取3名男生和2名女生分别担任班长,体育委员等5种不同的工作,但体育必须有男生来担任,班长必须有女生来担任.参考答案一.单选题(共__小题)1.将标号为1,2,3,4,5,6的6个小球放入3个不同的盒子中.若每个盒子放2个,其中标号为1,2的小球放入同一盒子中,则不同的方法共有()A.12种B.16种C.18种D.36种答案:C解析:解:先从3个盒子中选一个放标号为1,2的小球,有3种不同的选法,2=6种放法,再从剩下的4个小球中选两个,放一个盒子有C4余下放入最后一个盒子,2=18∴共有3C4故选C.2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有()A.60种B.63种C.65种D.66种答案:A解析:解:由题意知,要得到四个数字的和是奇数,需要分成两种不同的情况,当取得3个偶数、1个奇数时,有=20种结果,当取得1个偶数,3个奇数时,有=40种结果,∴共有20+40=60种结果,故选A.3.由数字1、2、3、4、5组成没有重复数字,且3与4相邻,1与2不相邻的五位数的个数为()A.1120 B.48 C.24 D.12答案:C解析:解:先把3和4捆绑在一起,当做一个数,这样,5个数变成立4个数,方法有种.再把1和2单独挑出来,其余的2个数排列有种方法.再把1和2插入2个数排列形成的3个空中,方法有种.根据分步计数原理,五位数的个数为••=24种,故选C.4.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的数有()A.360个B.720个C.300个D.240个答案:C解析:解:法一:如果末位为0,则只需再选取2个奇数和1个偶数作前三位,其方法数有C41C42A33=144如果末位为5,先假设首位可以为0,则共有C31C52A33=180,再排除首位为0的个数:C31C41A22=24.∴符合要求的四位数共有144+180-24=300.法二:如果末位为0,同上,共有144个;如果末位为5,分两种情况:数字中含有0,且它不作首位:C31C41•2•2•1=48(因千位、百位、十位的选法依次有2、2、1种);数字中不含0:C31C42A33=108.∴总计有144+48+108=300.5.某校3名艺术生报考三所院校,其中甲、乙两名学生填报不同院校,则填报结果共有()A.18种B.19种C.21种D.24种答案:A解析:解:由题意可得,甲的填报结果有3种,乙的填报结果有2种,第三个学生的填报结果有3种,再根据分步计数原理,填报结果共有3×2×3=18种,故选A.6.有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有()A.1120种B.1136种C.1600种D.2736种答案:B解析:解:没有一等品的取法有=4种,而所有的取法有=1140种,故至少有1个一等品的不同取法有 1140-4=1136 种,故选B.7.一排座位共8个,3人去坐,要求每人的左右两边都有空位置的坐法种数为()A.6种B.24种C.60种D.120种答案:B解析:解:根据题意,两端的座位要空着,中间6个座位坐三个人,再空三个座位,这三个座位之间产生四个空,可以认为是坐后产生的空.3=24种,故共有A4故选B.8.有8人排成一排照相,要求A、B两人不相邻,C,D,E三人互不相邻,则不同的排法有()A.11520 B.8640 C.5640 D.2880答案:A解析:解:分三类:第一类:先排没有限制条件的3人(设为F、G、H),有种,再用“插空法”排A、B、C,有种,最后用“插空法”排A、B,有种,∴第一类共有••=6 048种排法.第二类:先排没有限制条件的3人(设为F、G、H),有种,再将C,D,E中选两个捆在一起有种捆法,把捆在一起的两人看作一人和另外一人用“插空法”排在四个空隙中,有种排法,然后从D、E中选一个放在捆在一起的两元素之间有种方法,最后一个元素安排在剩余的6个空隙中有种方法,故第二类共有••••=5 184种排法.第三类:先排没有限制条件的3人(设为F、G、H),有种排法,再把C,D,E三个人“捆绑”在一起有种“捆法”,看作一个元素安排在四个空隙中,有种放法,然后再把A、B利用“插空法”安排在C,D,E之间的两个空隙中,有种方法,故第三类共有•••=288种方法.综上所述,符合条件的所有排法共有6 048+5 184+288=11520种.故选A.9.有5名毕业生站成一排照相,若甲乙两人之间至多有2人,且甲乙不相邻,则不同的站法有()A.36种B.12种C.60种D.48种答案:C解析:解:分两种不同情况:第一种情况是甲、乙两人间恰有两人,不同的站法有:种;第二种情况是甲、乙两人间恰有一人,不同的站法有:种.∴由分类计数原理知不同的站法有+=60(种).故选C.10.有5个不同的红球和2个不同的黑球排成一排,在两端都是红球的排列中,其中红球甲和黑球乙相邻的排法有()A.1440种B.960种C.768种D.720种答案:C解析:解:假设红球甲恰好在两端,则它和黑球乙可以看成一个整体考虑,先从非甲红球中选一个放在两端,有种排法,再考虑两端的全排列种,最后再将除了两个红球和黑球乙以外的4个球的全排列有种,故这种情况的排列种类有=192如果红球甲不在两端,则红球甲和黑球乙看成一个整体要考虑内部的排列(即红球在左还是在右),先从非甲红球中选出两个放在两端排列数为,再考虑红球甲和黑球乙的全排列有种,最后2个红球1个黑球以及红球甲和黑球乙看作1个整体的四个元素的全排列数为,故此种排列种类有=576所以总的情况一共是768.故选C.二.填空题(共__小题)11.0,1,3,4四个数可组成______不同的无重复数字的四位数.答案:18解析:解:间接法:先对4个数字全排列共=24种,去掉其中0在首位的共=6种,故总共组成的无重复数字的四位数有24-6=18个,故答案为:1812.已知口袋里装有同样大小、同样质量的16个小球,其中8个白球、8个黑球,则从口袋中任意摸出8个球恰好是4白4黑的概率为______.(结果精确到0.001)答案:0.381解析:解:所有的摸法共有=12870种,从口袋中任意摸出8个球恰好是4白4黑的摸法共有•=4900种,故从口袋中任意摸出8个球恰好是4白4黑的概率为=≈0.381,故答案为 0.381.13.从甲、乙等6名同学中挑选3人参加某公益活动,要求甲、乙至少有1人参加,不同的挑选方法共有______种.答案:16解析:解:甲乙二人都没有参加的方法有=4种,所有的方法有=20种,故甲、乙至少有1人参加的挑选方法共有20-4=16种,故答案为16.14.山东省某中学,为了满足新课改的需要,要开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有______种不同的选修方案.(用数值作答)答案:75解析:解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门有C31•C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:7515.在由数字1,2,3,4组成的所有没有重复数字的4位数中,大于2314的数共有______个.答案:15解析:解:前2位是23的,只有1个,是2341.前2位是24的,有2个.最高位是3或4的,共有2×=12 个,综上,大于2314的数共有 1+2+12=15个.故答案为15.16.甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包一项,丙、丁公司各承包2项,则共有______种承包方式.(用数字作答)答案:1680解析:解;第一步,甲选,从8项工程中任选3项,有C83种选法,第二步,乙选,从剩下的5项工程中任选1项,有C51种选法,第三步,丙选,从剩下的4项工程中任选2项,有C42种选法,第四步,丁选,从剩下的2项工程中任选2项,有C22种选法共有C83C51C42C22=1680种故答案为168017.从7个同学中选出3人参加校代会,其中甲、乙两人至少选一人参加,不同选法有______种.答案:25解析:解:7个同学中选出3人参加校代会,总的选法有C73==35种甲、乙两人都不参数的选法有C53==10种故事件“甲、乙中至少有1人参加”包含的基本事件数是35-10=25故答案为:2518.用数字0,1,2,3,4组成没有重复数字的五位数,则其中五位数为偶数有______个(用数字作答).答案:60解析:解:若末位是0,则有=24个,若末位是2或4,则先排末位,方法有=2种,再把0排在第二、或第三、或第四位上,方法有3种,再把其余的3个数排在剩余的3个位上,方法有=6种.再根据分步计数原理,求得五位数为偶数有 2×3×6=36种.综上,五位数为偶数有24+36=60个,故答案为 60.19.从1,3,5中任取2数,从2,4,6中任取2数,一共可以组成______个无重复数字的四位数.答案:216解析:解:由题意,先取后排,可得=216个无重复数字的四位数.故答案为:216.20.三位老师分配到4个贫困村调查义务教育实施情况,若每个村最多去2个人,则不同的分配方法有______种.答案:60解析:解:一个贫困村去一位老师,有=24种;一个村有两个老师,另一个村有一个老师,有×=36种,∴不同的分配方法有60种故答案为:60.三.简答题(共__小题)21.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置;(2)全体排成一行,男生不能排在一起;(3)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;(4)全体排成一行,甲、乙两人中间必须有3人.答案:解:(1)利用元素分析法,甲为特殊元素,先安排甲左、右、中共三个位置可供甲选择.有种,其余6人全排列,有种.由乘法原理得=2160种;(2)插空法.先排女生,然后在空位中插入男生,共有=1440种.(3)定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此=N×,∴N==840种.(4)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有种,甲、乙和其余2人排成一排且甲、乙相邻的排法有,最后再把选出的3人的排列插到甲、乙之间即可,共有=720种.22.对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止.若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能?答案:解:第5次必测出一次品,余下3件在前4次被测出,从4件中确定最后一件品有C41种方法;前4次中应有1正品、3次品,有C61C33种,前4次测试中的顺序有A44种,由分步计数原理得这样的测试方法有C41(C61C33)A44=576种可能.23.6位同学站在一排照相,按下列要求,各有多少种不同排法?①甲、乙必须站在排头或排尾②甲、乙.丙三人相邻③甲、乙、丙三人互不相邻④甲不在排头,乙不在排尾⑤若其中甲不站在左端,也不与乙相邻.答案:解:①甲、乙必须站在排头或排尾,则有=48种不同排法;②甲、乙、丙三人相邻,则有=144种不同排法;③甲、乙、丙三人互不相邻,则有=144种不同排法;④甲不在排头,乙不在排尾,则有-2+=264种不同排法;⑤6个人站成一排,有种,甲在左端的有种,甲和乙相邻的有种,甲既在左端也和乙相邻的有,所以甲不在左端也不和乙相邻,则不同的排法共有--+=384种.24.7名男生5名女生中选5人,分别求符合下列的选法总数.(以下问题全部用数字作答)(1)A,B必须当选;(2)A,B不全当选;(3)选取3名男生和2名女生分别担任班长,体育委员等5种不同的工作,但体育必须有男生来担任,班长必须有女生来担任.答案:解:(1)根据题意,先选出A、B,再从其它10个人中再选3人即可,共有的选法种数为C103=120种,(2)根据题意,按A、B的选取情况进行分类:①,A、B全不选的方法数为C105=252种,②,A、B中选1人的方法数为C21C104=420,共有选法252+420=672种;(3)先选取3名男生和2名女生C73C52种情况,再根据体育必须有男生来担任,班长必须有女生来担任,有C31C21种情况,用分步计数原理可得到所有方法总数为:C73C52C31C21A33=12600种.。
高中数学_排列组合100题(附解答)
4
12. 若 x 2 x 1 1 a1 x a2 x 2 x38 ﹐求 a1 和 a2 的值﹒
19
13. 某一场舞会将 4 位男生与 4 位女生配成 4 对﹐每一对皆含一位男生与一位女生﹐试问总共有几种配对法﹕
14. 0﹑1﹑1﹑2﹑2﹑2﹑2 七个数字全取排成七位数﹐有____________种方法﹒
1 3 15. 2 2 i 展开式中﹐各实数项和为____________﹒
10
1
16. 有一数列 an 满足 a1 1 且 an1 1
2an ﹐ n 为正整数﹐求 3 an ____________﹒ 3 n 1
高中数学_排列组合 100 题
一、填充题
1. (1)设 A 3, 8 ﹐ B 8, 3x 6 ﹐若 A B ﹐则 x ____________﹒ (2)设 A x | x 2 3x 2 0 ﹐ B 1, a ﹐若 A B ﹐则 a ____________﹒
a1 3 9. 已知数列 an 定义为 ﹐ n 为正整数﹐求 a100 ____________﹒ an 1 an 2n
10. 设 A ﹑ B ﹑ T 均为集合﹐ A a, b, c, d ﹐ B c, d , e, f , g ﹐则满足 T A 或 T B 的集合 T 共有 ____________个﹒ 11. 李先生与其太太有一天邀请邻家四对夫妇围坐一圆桌聊天﹐试求下列各情形之排列数: (1)男女间隔而坐且夫妇相邻____________﹒ (2)每对夫妇相对而坐____________﹒ 12. 体育课后﹐阿珍将 4 个相同排球﹐5 个相同篮球装入三个不同的箱子﹐每箱至少有 1 颗球﹐则方法有 ____________种﹒ 13. 如图﹐由 A 沿棱到 G 取快捷方式(最短路径)﹐则有____________种不同走法﹒
排列组合题目精选(附答案)
排列组合高考试题精选(二)1、,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有()A、60种B、48种C、36种D、24种2、七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3、将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种4、将四封信投入5个信箱,共有多少种方法?5、12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()6、6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()A、36种B、120种C、720种D、1440种7、8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?8、7人排成一排照相,若要求甲、乙、丙三人不相邻,有多少种不同的排法?9、10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?10、某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?11、由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种B、300种C、464种D、600种12、从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?13、从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?14、从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有()A、140种B、80种C、70种D、35种15、9名乒乓球运动员,其中男5名,女4名,现在要选出4人进行混合双打训练,有多少种不同的分组方法?16、以正方体的顶点为顶点的四面体共有()A、70种B、64种C、58种D、52种17、四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有()A、150种B、147种C、144种D、141种18、5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?19、设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?20、三边长均为整数,最长边为8 的三角形有多少个?21、由1,2,3,4,5,6这六个数可组成多少个无重复且是6的倍数的五位数?22、7个节目,甲、乙、丙三个节目按给定顺序出现,有多少种排法?23、5名运动员争夺3个项目的冠军(没有并列),所以可能的结果有多少种?24、有3个男生,3个女生,排成一列,高矮互不相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有( )种。
2、某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有( )种3、(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军(各项目冠军都只有一人),共有多少种可能的结果?4、从集合{1,2,…,10}中任选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()5、有4位教师在同一年级的四个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )种。
A .8 B .9 C .10 D .116、3人玩传球游戏,由甲开始并做为第一次传球,经过4次传球后,球仍回到甲手中,有多少种不同的传球方式呢?7、集合A ={a,b,c,d},B={1,2,3,4,5}。
(1)从集合A 到集合B 可以建立多少个不同的映射?(2)从集合A 到集合B 的映射中,要求集合A 中元素的象不同,这样的映射有多少个8、对一个各边长都不相等的凸五边形的各边进行染色,每条边都可以染红、黄、蓝三种不同的颜色,但是不允许相邻相邻的边染相同的颜色,则不同的染色方法共有( )种。
9、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有( )种不同的涂色方案。
10、将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,如图是一种填法,则不同的填写方法共有 A .6种 B .12种 C .24种 D .48种11、如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A .64B .72C.84 D .9612、(13山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .27913、(13福建)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( ) A .14 B .13 C .12 D .1014、(16全国)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数。
若m =4,则不同的“规范01数列”共有(A )18(B )16(C )14(D )1215、有5本不同的书,从中选3本送给3名同学,每人一本,则选法共有多少种?16、某足球联赛共有12支球队参加,每队都要与其余各队在主客场分别比赛1次,则一共进行的比赛的场次为17、4444A A ⨯是下列那一个问题的答案:A 、4男4女排成一列,同性别的都不相邻B 、4男4女排成一列,女生都不相邻C 、4男4女分别到4个不同的兴趣小组,每组一男一女D 、4男4女分成两组,每组二男二女18、有6道选择题,答案分别为A 、B 、C 、D 、D 、D ,在安排题目顺序时,要求三道选D 的题目任意两道不能相邻,则不同的排序方法的种数为19、从-9,-5,0,1,2,3,7七个数中,每次选不重复的三个数作为直线方程0=++c by ax 的系数,则倾斜角为钝角的直线共有多少条?20、某人练习打靶,一共打了8枪,中了3枪,其中恰有2枪连中,则中靶的方式共有多少种?21、从包括甲乙两名同学在内的7名同学中任选出5名同学排成一列。
(1)甲不在首位的排法有多少种?(2)甲既不在首位,又不在末位的排法有多少种?(3)甲与乙既不在首位,又不在末位的排法有多少种?(4)甲不在首位,同时乙不在末位的排法有多少种?22、(15四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()个23、(14重庆)某次联欢会要安排三个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是24、(14四川)6个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有多少种?25、某种产品的加工需要A 、B 、C 、D 、E 五道工艺,其中A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有多少种?26、已知身穿红黄两种颜色衣服的各有两人,穿蓝色衣服的有一人,现将这5人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有多少种27、将编号为1,2,3,4的4个小球放入3个不同的盒子中,每个盒子中至少放一个,则恰有1个盒子中放2个连号小球的不同放法有( )种。
28、(13四川)从1,3,5,7,9这5个数字中,每次取出两个不同的数分别记为a ,b,共得到lga -lgb 的不同值的个数为29、(12安徽)6位同学在毕业聚会活动中进行纪念品的交换,任意两同学之间最多交换1次,进行交换的两同学互赠一份纪念品。
已知6位同学共进行了13次交换,则收到4份纪念品的同学人数为( )30、(12新课标)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )31、(14北京)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.32、(14广东)设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60 B .90 C .120 D .13033、(14浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)34、(13浙江)将A B C D E F ,,,,,六个字母排成一排,且A B ,均在C 的同侧,则不同的排法共有( )种(用数字作答).35、已知7292210=++n n n n n C C C Λ,则=+++n n n n C C C Λ2136、已知8822108)1()1()1(-++-+-+=x a x a x a a x Λ,则=7a37、求52323⎪⎪⎭⎫ ⎝⎛+x x 的展开式中二项式系数最大的项,及系数最大的项38、(13新课标Ⅱ)已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )39、(14新课标Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.40、(13大纲)()()8411+x y +的展开式中22x y 的系数是( )41、(13陕西)设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩,则当x >0时,[()]f f x 表达式的展开式中常数项为 42、(16上海)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_____ 43、(13新课标1)设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )44、(12全国Ⅰ理)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 45、(15新课标2)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.46、(15上海)在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 47、(15新课标1)25()x x y ++的展开式中,52x y 的系数为( )48、若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为________.1、(15山东)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1 分;若能被10整除,得1分。
(I )写出所有个位数字是5的“三位递增数”;(II )若甲参加活动,求甲得分X 的分布列和数学期望EX 。
2、(15四川)某市A,B 两中学的学生组队参加辩论赛,A 中学推荐3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队。
(1)求A 中学至少有1名学生入选代表队的概率。
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 的分布列和数学期望。
3、某人提出一个问题,规定由甲先答,答对的概率为0.4,若答对,则问题结束;若答错,则由乙接着答,但乙能否答对与甲的回答无关系,已知两人都答错的概率是0.2,求问题由乙答对的概率为_________.4、(15新课标1)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )5、(16山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分。
已知甲每轮猜对的概率是43,乙每轮猜对的概率是32;每轮活动中甲、乙猜对与否互不影响。
各轮结果亦互不影响。
假设“星队”参加两轮活动,求:(I )“星队”至少猜对3个成语的概率;(II )“星队”两轮得分之和为X 的分布列和数学期望EX 。
6、排球赛决赛在中国队与日本队之间展开,据以往统计,中国队在每局比赛中胜日本队的概率为32,比赛采取五局三胜制,即谁先胜三局谁就获胜,并停止比赛。
(1)求中国队以3:1获胜的概率;(2)设X 表示比赛的局数,求X 的分布列。
10.、[2014·福建卷] 用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)(2013年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.错误!未指定书签。