高分子合成工艺学论文

合集下载

高分子合成技术

高分子合成技术

高分子合成技术高分子合成技术是一种重要的化学工艺,其应用广泛,可以制备出多种功能性高分子材料,如塑料、橡胶、纤维、涂料等。

本文将介绍高分子合成技术的基本原理、分类、合成方法以及应用领域等方面的知识。

一、高分子合成技术的基本原理高分子合成技术是指将单体(也称为单体物质)通过化学反应转化为高分子的过程。

单体是指可以通过化学反应形成高分子的单元分子,如乙烯、苯乙烯、丙烯酸等。

高分子是由许多单体分子通过共价键连接而成的大分子,其分子量通常在几千到数百万之间。

高分子合成的基本原理是通过化学反应将单体分子连接起来,形成高分子链。

这种连接方式通常是通过共价键连接,而不是通过物理吸附或静电作用连接。

高分子的合成过程通常需要催化剂的参与,以促进反应的进行和提高反应速率。

催化剂可以是酸、碱、金属或有机物等。

二、高分子合成技术的分类高分子合成技术可以根据反应方式、单体种类、反应条件等多个方面进行分类。

以下是常见的分类方式:1. 反应方式:高分子合成反应可以分为自由基聚合、阴离子聚合、阳离子聚合、离子交换聚合等几种方式。

其中自由基聚合是应用最广泛的一种方式,其反应速率快、反应条件温和、产物纯度高等优点,因此被广泛应用于塑料、橡胶等材料的制备中。

2. 单体种类:根据单体的化学结构和性质,高分子合成可以分为低聚物合成、共聚物合成、交联聚合物合成等几种方式。

低聚物合成是指将单体的聚合反应停留在一定程度,形成分子量较小的聚合物。

共聚物合成是指将两种或两种以上的单体进行聚合反应,形成具有不同性质的高分子。

交联聚合物合成是指通过交联剂将聚合物链连接起来,形成具有强度和韧性的高分子材料。

3. 反应条件:高分子合成反应的条件包括温度、压力、催化剂种类和用量等多个方面。

根据反应条件的不同,高分子合成可以分为常温聚合、高温聚合、压力聚合等几种方式。

三、高分子合成技术的合成方法高分子合成技术的合成方法有很多种,根据反应方式和单体种类的不同,可以选择不同的合成方法。

高分子材料生产工艺

高分子材料生产工艺

高分子材料生产工艺高分子材料生产工艺是指将原材料经过一系列的加工和处理工序,制成高分子材料产品的过程。

以下是一个典型的高分子材料生产工艺流程。

1. 原料准备:首先需要准备好高分子材料的原料。

通常情况下,高分子材料的原料主要由单体和辅助物质组成。

单体是高分子材料的主要成分,可以通过化学合成或提取方法获得。

辅助物质包括催化剂、稳定剂、填料等,用于改善材料的性能。

2. 单体合成:对于需要化学合成的高分子材料,单体合成是一个重要的工序。

该工序一般包括原料与催化剂的混合、加热反应、冷却等步骤。

通过控制反应条件,可以实现单体的聚合,生成高分子链。

3. 成型加工:得到的高分子材料通常是一种无定形的物质,需要通过成型加工得到所需的形状。

常见的成型加工方法包括挤出、注塑、压延、吹塑等。

在成型加工过程中,高分子材料需要经过加热、加压、冷却等步骤,以实现形状的塑性变形和固化。

4. 表面处理:某些高分子材料产品需要进行表面处理,以改善其表面性能。

例如,可以通过喷涂、镀膜、离子束处理等方法,给高分子材料的表面增加一层保护层或改善其光滑度、耐磨性等特性。

5. 检测与质量控制:在高分子材料生产工艺中,检测与质量控制是一个不可或缺的环节。

通过使用各种物理、化学、机械等检测手段,对高分子材料的成品进行检测,以确保其质量符合标准要求。

检测项目包括密度、硬度、拉伸强度、耐热性、化学稳定性等。

6. 包装与运输:高分子材料成品需要进行包装,以保护其不受外界环境的危害。

常见的包装材料包括塑料袋、纸箱、木箱等。

在运输过程中,需要注意避免高温、潮湿等不利因素对成品的影响。

7. 储存与销售:高分子材料成品通过储存和销售环节,进入市场。

在储存过程中,需要注意适宜的环境条件,以防止成品的老化、变形等问题。

销售环节需要通过有效的市场营销手段,将成品宣传和推广给潜在的客户。

以上是一个典型的高分子材料生产工艺流程。

根据具体的高分子材料种类和产品要求,实际的生产工艺可能会有所不同。

高分子材料的新型合成方法研究

高分子材料的新型合成方法研究

高分子材料的新型合成方法研究近年来,高分子材料的研究和应用在各个领域取得了重要的进展。

高分子材料广泛应用于塑料、橡胶、涂料、纤维、制药等工业和科学领域,对社会经济的发展起到了重要的推动作用。

然而,传统的高分子材料合成方法存在着一些问题,例如反应条件苛刻、产率低、顺序控制困难等,因此,研究人员一直致力于寻找更加高效、环保和经济的合成方法。

一种新型的高分子材料合成方法是可控合成技术。

该技术主要通过调控反应条件和催化剂等因素来控制高分子链的结构和分子量。

以催化剂为例,通过设计合适的催化剂结构和添加剂,可以实现链转移和活性中心的选择性控制,从而提高合成高分子材料的效率和性能。

例如,通过引入生物催化剂,可以实现对高分子材料的高效催化合成;通过添加硫化剂或有机合成试剂,可以实现高分子材料的顺序控制,得到具有特定结构和性能的材料。

另一种新型的高分子材料合成方法是自组装技术。

自组装即指分子在特定的条件下,通过自身的相互吸引力和排斥力,形成有序的结构。

高分子材料的自组装方法主要有研磨法、溶剂蒸发法和模板法等。

例如,通过研磨法可实现高分子材料的纳米级分散,提高材料的强度和耐用性;通过溶剂蒸发法可以制备具有特定纹理和形态的高分子材料薄膜;通过模板法可以制备具有微米级孔隙的高分子材料,用于催化和分离等领域。

此外,还有一种新型的高分子材料合成方法是基于生物技术的方法。

随着生物技术和合成生物学的发展,利用生物体或生物体代谢产物作为原料合成高分子材料的方法逐渐成为研究热点。

例如,利用细菌、真菌、酵母等微生物合成高分子材料,可以实现对高分子链结构的精确控制和环境友好型合成。

与传统的高分子材料合成方法相比,这些新型的合成方法具有很多优势。

首先,可控合成技术可以实现高分子链结构和分子量的准确控制,得到具有特定性能的材料;其次,自组装技术可以制备具有特定结构和形态的高分子材料,扩展了材料的应用范围;最后,基于生物技术的方法具有环境友好型合成、高效利用资源等优点,未来有望应用于高分子材料的大规模合成。

聚氨酯论文

聚氨酯论文

聚氨酯综述摘要聚氨酯是各种高分子材料中唯一一种在塑料、橡胶、泡沫、纤维、涂料、胶粘剂和功能高分子七大领域均有重大应用价值的合成高分子材料,已成为当前高分子材料中品种最多、用途最广、发展最快的特种有机合成材料,并不断地应用于高铁和新能源等新兴领域。

本文综述了聚氨酯的研发历史、理化性质、合成原料、合成工艺、主要品种及应用、回收,展望了聚氨酯的行业发展。

关键词:研发历史性质合成品种发展及应用目录一、发展历程 (3)二、聚氨酯简介 (4)(一)聚氨酯概述 (4)(二)理化性质 (5)三、合成 (5)(一)合成原理 (5)(二)合成原料 (6)(三)合成方法 (9)(四)回收 (12)四、聚氨酯结构对性能的影响 (15)(一)软段 (15)(二)硬段 (16)(三)交联 (16)(四)微相分离结构 (16)(五)氢键 (17)五、聚氨酯的主要品种及应用 (17)(一)聚氨酯泡沫塑料 (17)(二)聚氨酯橡胶 (18)(三)聚氨酯涂料 (18)(四)聚氨酯胶粘剂 (19)(五)聚氨酯合成革 (19)(六)聚氨酯弹性体 (20)(七)聚氯酯弹性纤维 (20)(八)PU皮 (21)六、行业发展 (22)结束语 (23)致谢语 (24)参考文献 (24)聚氨酯一、发展历程20世纪40年代,德国Bayer实验室用二异氰酸酯及多元醇为原料,制得了硬质泡沫塑料等聚氨酯样品。

美国于1946年起开展了硬质聚氨酯泡沫塑料的研究,产品用于飞机夹心板材部件;1952年,Bayer公司报道了聚酯型软质聚氯酯泡沫塑料中试研究成果;1952~1954年,又开发连续方法生产聚酯型软质聚氨酯泡沫塑料技术,并开发了相应的生产设备;1961年,采用蒸气压较低的多异氰酸酯PAPI制备硬质聚氨酯泡沫塑料,提高了硬质制品的性能和减少了施工时的毒性,并应用于现场喷涂工艺,使硬质泡沫塑料的应用范围进一步扩大;由于价格较低的聚醚多元醇在60年代的大量生产,以及一步法和连续法软泡生产工艺及设备的开发,聚氨酯软泡获得应用;60年代中期,冷熟化半硬泡和自结皮模塑泡沫被开发;70年代在高活性聚醚多元醇的基础上开发了冷熟化高回弹泡沫;70年代开发了聚氨酯软泡的Maxfoam平顶发泡工艺、垂直发泡工艺,使块状聚氨酯软泡的工艺趋于成熟;后来,随着各种新型聚醚多元醇及匀泡剂的开发,还开发了各种模塑聚氨酯泡沫塑料。

聚碳酸酯

聚碳酸酯

高聚物合成工艺学论文题目:光气法生产聚碳酸酯的工艺流程*名:***专业:08高分子材料与工程学号:************摘要:聚碳酸酯是一种工程塑料。

20世纪30年代已制得脂肪族聚碳酸酯,但只有双酚A型的芳香族聚碳酸酯最有使用价值。

在1958年首先获得工业生产,60代发展成为一种新型的热塑性工程塑料。

他的产量在工程塑料已跃居为第二位,仅次于尼龙。

本文主要是介绍利用光气法来生产双酚A型的聚碳酸酯。

关键词:光气法聚碳酸酯双酚A 通用工程塑料一、聚碳酸酯简介聚碳酸酯结构式:常用缩写PC(Polycarbonate)化学名:2,2-双(4- 羟基苯基)丙烷聚碳酸酯,它是一种无味、无毒、透明的无定性热塑性材料,是分子链中含有碳酸酯链一类高分子化合物的总称。

聚碳酸酯可分为脂肪族、脂环族、芳香族等几大类[1]。

双酚A 型聚碳酸酯是目前产量最大、用途最广的一种聚碳酸酯,也是发展最快的工程塑料之一[2]。

因为在所有聚碳酸酯中只有双酚A型聚碳酸酯最有使用价值,因此本文所述聚碳酸酯即为双酚A型聚碳酸酯。

PC(Polycarbonate)与PA(尼龙,Polyamide,聚酰胺)、POM(Polyacetal, Polyoxy Methylene,聚甲醛)、PBT(Polybutylece Terephthalate,聚对苯二甲酸丁二醇酯)及改性PPO(Poly Phenylene Oxide,聚苯醚)一起被称为五大通用工程塑料。

聚碳酸酯由于具有优异的综合性能,尤其以耐冲击强度高而被誉为塑料之“冠”,是使用范围十分广泛、性能优异、备受欢迎的主要热塑性工程塑料品种之一。

聚碳酸酯是五十年代末开始发展的合成材料。

聚碳酸酯树脂的可见光透过率在90﹪以上,具有突出的抗冲击能力,耐蠕变,尺寸稳定性好及耐化学腐蚀性,耐热、吸水率低、无毒、介电性能优良,还有自熄、易增强阻燃性等优良性能。

被广泛用于电子电气、电动工具、交通运输、汽车、机械、仪表、建筑、信息存储、光学材料、医疗器械、体育用品、民用制品、保安、航空航天及国防军工等领域,是五大工程塑料中唯一具有良好透明性的产品,也是近年来增长速度最快的通用工程塑料。

高分子合成材料范文

高分子合成材料范文

高分子合成材料范文高分子合成材料是一种由化学合成而成的大分子化合物,通常具有高分子量、高强度和高导电性等特点。

高分子合成材料广泛应用于各个领域,如塑料、橡胶、纤维、涂料、胶黏剂等。

在本篇文章中,将会探讨高分子合成材料的特点、分类以及应用领域。

1.高分子量:高分子合成材料的分子量通常在10^4-10^6之间,因此具有较高的物理强度和化学稳定性。

2.可塑性:高分子合成材料具有较好的塑性,可以通过热加工、注塑等方法加工成不同形状的制品。

3.耐磨性:高分子合成材料通常具有较好的耐磨性能,可以用于制造耐磨部件,如轮胎、刷子等。

4.耐化学性:高分子合成材料通常具有较好的耐化学性,不易受到化学药品的侵蚀。

1.聚合物:聚合物是一种由同种或不同种化学单体通过聚合反应合成的高分子化合物,可以进一步分为塑料和橡胶。

塑料是一种具有可塑性的高分子合成材料,可以根据聚合单体的不同特性,如聚乙烯、聚丙烯、聚氯乙烯等分类。

橡胶是一种具有高弹性的高分子合成材料,可以根据其硬度和化学结构的不同,如天然橡胶、丁苯橡胶等。

2.高分子复合材料:高分子复合材料由高分子基质和增强材料组成,可以提高材料的力学性能。

常见的高分子复合材料包括聚合物基复合材料、纳米复合材料和纤维增强复合材料等。

3.高分子溶液:高分子溶液是指高分子化合物在溶剂中形成的溶液。

通过调整高分子溶液的浓度、溶剂的种类和温度等条件,可以使其具有不同的性质和应用前景。

1.医疗领域:高分子合成材料被广泛用于医疗器械的制造,如医用塑料制品、人工骨骼和人工器官等。

此外,高分子合成材料还被用于制造药物缓释系统和生物医学材料。

2.电子领域:高分子合成材料被广泛应用于电子器件的制造,如电子电缆、绝缘材料和电子芯片等。

3.环保领域:高分子合成材料被广泛应用于环保材料的研发和生产,如可降解塑料和水处理材料等。

4.能源领域:高分子合成材料被应用于太阳能电池板、燃料电池和锂离子电池等能源领域。

总之,高分子合成材料具有高分子量、可塑性、耐磨性和耐化学性等特点,广泛应用于医疗、电子、环保和能源等领域。

高分子材料论文3000字

高分子材料论文3000字

高分子材料论文3000字近年来,高分子材料处于不断变化发展中,并且随着它的不断发展,已经渗透到人类生活中的方方面面。

因此,高分子材料在日常生活中的生产和生活活动中发挥着重要作用。

高分子材料又称之为聚合物材料,主要是由无数个小分子化合物通过化学键,进而形成的大分子化合物,称之为聚合物材料。

在日常的生产生活中常见的高分子材料主要有合成橡胶、合成纤维、合成塑料等,并且在新中国成立之后,上述高分子材料在日常生活中得到了广泛应用,例如服装业、日用品,以及各种工业材料中,满足了各行业对高分子材料的需求。

此外,在未来高分子材料将会运用于纳米高分子材料复合应用、生物可降解高分子材料、高分子材料功能化,以及航空航天领域。

二、高分子材料的发展高分子材料是一种聚合物大分子化学品,其组成主要是由半人工和人工合成的高分子材料,与其他化合物的主要区别是高分子材料在化学性质和物理性质上均能发生较大变化,可以有一些特殊功能,例如光学、电学等功能。

此外,随着科学技术的不断进步,新能源开发、微电子和生物医药的不断发展,高分子材料得到了更广泛的应用,其作用主要表现在以下结果方面。

其一,使用高分子材料设计合成新能物质,并且具有新功能,例如研制出的新型非晶质光盘,具有较好的耐腐蚀性,几乎不会被腐蚀,这一特性主要是来自于非晶质合金表面生成的耐腐性保护膜。

其二,高分子材料利用特别的加工方式来增加磁疗的特殊功能,如利用高分子膜和塑料光纤使高分子材料更加容易加工成型,并且降低其加工成本。

其三,使用两种或者两种以上性能不同的高分子材料,经过复合化学反应形成新的高分子材料,如屏蔽导电、塑料以及复合层的复合填料。

当前,随着高分子材料在生产生活中的应用日益加深,其与众不同之处逐渐凸显出来,它可以代替日常生产生活中的许多材料,并且可以通过高分子材料来改善其他材料的功能和性能,使他们成为一种全新材料,进而更好的发挥他们的功能。

进而,我国也对高分子材料这一领域的研究较为重视,在自我研发的基础上,不断加强了国际研究领域的沟通交流。

合成高分子材料

合成高分子材料

合成高分子材料高分子材料是一类分子量较大的聚合物材料,由于其独特的结构和性能,在工业、医学、电子、航空航天等领域得到了广泛的应用。

合成高分子材料是指通过化学方法将单体分子进行聚合反应,形成大分子链结构的材料。

合成高分子材料的方法多种多样,下面将介绍几种常见的合成方法。

首先,聚合反应是合成高分子材料的重要方法之一。

聚合反应是指将单体分子通过共价键连接成长链分子的化学反应。

例如,乙烯单体可以通过聚合反应形成聚乙烯高分子材料。

在聚合反应中,需要选择合适的催化剂和反应条件,控制反应的温度、压力和时间,以获得所需的高分子材料。

其次,共聚反应是另一种常见的合成高分子材料的方法。

共聚反应是指两种或多种不同的单体分子在同一反应体系中发生聚合反应,形成共聚物材料。

例如,苯乙烯和丙烯腈可以通过共聚反应形成丙烯腈-苯乙烯共聚物。

在共聚反应中,需要控制不同单体的摩尔比例和反应条件,以获得所需的共聚物材料。

另外,环氧树脂是一类重要的高分子材料,其合成方法是通过环氧化合物的开环聚合反应得到。

环氧树脂具有优异的粘接性能和耐化学腐蚀性能,广泛应用于涂料、粘接剂、复合材料等领域。

此外,高分子材料的合成还包括物理交联和化学交联两种方法。

物理交联是指通过物理作用力将高分子链结构连接在一起,如氢键、范德华力等;化学交联是指通过化学方法在高分子链上引入交联点,形成三维网状结构。

这两种方法可以改善高分子材料的力学性能和热性能。

综上所述,合成高分子材料的方法多种多样,每种方法都有其特点和适用范围。

在实际应用中,需要根据所需材料的性能要求和制备工艺条件选择合适的合成方法,以获得具有优异性能的高分子材料。

希望本文介绍的内容能够对合成高分子材料的研究和应用提供一定的参考和帮助。

高分子合成工艺学

高分子合成工艺学

第一章绪论高分子合成材料:塑料、合成纤维、合成橡胶、涂料、粘合剂、离子交换树脂等材料。

三大合成材料:塑料、合成纤维、合成橡胶高分子合成工业的任务:将基本有机合成工业生产的单体,经过聚合反应合成高分子化合物,从而为高分子合成材料成型工业提供基本原料。

塑料的原料:是合成树脂和添加剂(包括稳定剂、润滑剂、着色剂、增塑剂、填料以及根据不同用途而加入的防静电剂、防霉剂、紫外线吸收剂等)。

塑料成型方法:注塑成型、挤塑成型、吹塑成型、模压成型等。

合成橡胶:高弹性体,制造橡胶制品时加入的添加物通常称为配合剂(硫化剂、硫化促进剂、助促进剂、防老剂、软化剂、增强剂、填充剂、着色剂等)。

自由基聚合方法:本体聚合、乳液聚合、悬浮聚合、溶液聚合离子聚合及配位聚合实施方法主要有本体聚合、溶液聚合两种方法。

在溶液聚合方法中,如果所得聚合物在反应温度下不溶于反应介质中而称为淤浆聚合。

1、简述高分子化合物的生产过程。

(1)原料准备与精制过程:包括单体、溶剂、去离子水等原料的贮存、洗涤、精制、干燥、调整浓度等过程相设备。

(2)催化剂(引发剂)配制过程:包括聚合用催化剂、引发剂和助剂的制造、溶解、贮存、调整浓度等过程与设备。

(3)聚合反应过程:包括聚合和以聚合釜为中心的有关热交换设备及反应物料输送过程与设备。

(4)分离过程:包括未反应单体的回收、脱除溶剂、催化剂,脱除低聚物等过程与设备。

(5)聚合物后处理过程:包括聚合物的输送、干燥、造粒、均匀化、贮存、包装等过程与设备。

(6)回收过程:主要是未反应单体和溶剂的回收与精制过程及设备。

此外三废处理和公用工程如供电、供气、供水等设备。

2、比较连续生产和间歇生产工艺的特点。

间歇聚合:聚合物在聚合反应器中分批生产的,当反应达到要求的转化率时,将聚合物从聚合反应器中卸出。

间歇聚合的特点a.不易实现操作过程的全部自动化,每一批产品的规格难以控制严格一致。

b.反应器单位容积单位时间内的生产能力受到影响,不适于大规模生产。

高分子合成工艺

高分子合成工艺

高分子合成工艺高分子合成工艺是指将单体分子通过化学反应连结在一起,形成高分子化合物的过程。

高分子合成工艺是一项复杂而关键的技术,广泛应用于塑料制品、橡胶制品、纤维材料等行业。

高分子合成通常分为两种方法:聚合反应和缩聚反应。

聚合反应是将单体分子通过共价键连接在一起,形成高分子链。

这种反应常见的形式有自由基聚合、阴离子聚合和阳离子聚合。

自由基聚合是指通过自由基引发剂引发的聚合反应,如自由基聚合聚乙烯。

阴离子聚合和阳离子聚合是通过阴离子或阳离子引发剂引发的聚合反应,如阴离子聚合聚苯乙烯和阳离子聚合丙烯酸乙酯。

缩聚反应是指通过活性官能团或官能基将单体分子连接在一起,形成高分子化合物。

这种反应常见的形式有醚化缩聚、酯化缩聚和胺化缩聚。

醚化缩聚是通过醚键将单体分子连接在一起,形成醚类高分子。

酯化缩聚是通过酯键将单体分子连接在一起,形成酯类高分子。

胺化缩聚是通过胺键将单体分子连接在一起,形成胺类高分子。

高分子合成工艺的关键步骤包括单体选择、反应条件控制和产物回收。

单体选择是根据所需高分子的性质和应用选择适当的单体,以确保合成的高分子具有所需的性能。

反应条件的控制包括温度、压力、反应时间和反应物配比等参数的选择,以确保反应进行顺利和产物的质量稳定。

产物回收是指将合成的高分子从反应体系中分离出来,并采用合适的方法进行后处理,以得到纯净的高分子产品。

高分子合成工艺还需要考虑环境友好性和经济性。

为了减少对环境的影响,可以采用绿色合成方法,如催化剂催化、溶剂替代和废物利用等。

为了经济生产,可以提高反应的产率和选择性,降低原料成本和能耗,并改进生产工艺和设备。

总之,高分子合成工艺是一项复杂而关键的技术,在众多工业应用中起着重要作用。

通过合理选择单体、优化反应条件和改进工艺,可以实现高分子合成的高效、环保和经济生产。

不断推动高分子合成工艺的发展是现代化工领域中一个重要的研究方向。

通过不断改进合成方法和优化工艺条件,可以提高高分子材料的性能和应用范围。

【材料学论文】聚乳酸-乙醇酸(PLGA)的合成工艺及结构性能研究(精彩论文,免费分享!)

【材料学论文】聚乳酸-乙醇酸(PLGA)的合成工艺及结构性能研究(精彩论文,免费分享!)
The chain extension of PLGA was carried out in melt state with 2,4-toluene diisocyanate (TDI) as chain extension agent. The [η] of PLGA was increased to 2.65 times in the proper condition (NCO/OH=1∶1 mol ratio; time: 60min; temperature:160℃). The results of IR、DSC and X-Ray investigations showed that through chain-extension reaction, the TDI was introduced in PLGA chain and the Tg was moderately increased. However, the polymer is still non-crystalline.
但实际上由于乙交酯和丙交酯具有不同的竞聚率ranplga的无规程度和组成的重现性难困北京服装学院硕十学位论文以尸e格控制特别是乙交酯含量较高进行共聚时由于其竞聚率高于丙交酯易生成少量溶解性差的pga难以得到组成均一乙醇酸含量较高的rajlplga323311222开环均聚法为了得到组成均一的plga利用laga或它们的衍生物先合成六元环状交酯再开环聚合反应式12这样得到的plga通常称为交替共聚物altplgaaltplga结构规整组成固定降解性能稳定更便于应用尤其是用作药物缓释载体
若有不实之处,本人完全意识到本声明的法律结果由本人承担。
学位论文作者签名:
签字日期: 年 月 日
学位论文版权使用授权书
学位论文作者完全了解北京服装学院有关保留和使用学位论文的规定,即:研究生在 校攻读学位期间论文工作的知识产权单位属北京服装学院。学校有权保留并向国家有关部 门或机构送交论文的复印件和电子版,允许学位论文被查阅、借阅和复印;学校可以公布 学位论文的全部或部分内容公开或编入有关数据库进行检索,可以允许采用影印、缩印或 其它复制手段保存、汇编学位论文。

丙烯酸钠的合成工艺流程设计论文

丙烯酸钠的合成工艺流程设计论文

丙烯酸钠的合成工艺流程设计论文引言丙烯酸钠,化学式为C3H3NaO2,是一种重要的有机化工原料,广泛应用于合成高分子材料、涂料、粘合剂等领域。

本论文旨在设计丙烯酸钠的合成工艺流程,提出可行的合成方案,并讨论影响合成过程的关键参数和优化策略。

1. 合成工艺流程设计根据丙烯酸钠的化学结构和合成原理,我们设计了以下的合成工艺流程。

步骤1: 丙烯酸酯的酯化反应首先,将丙烯酸与醇(如甲醇、乙醇等)在催化剂(如硫酸)存在下进行酯化反应,生成丙烯酸酯。

这一步骤是合成丙烯酸钠的关键步骤,其反应方程式如下所示:丙烯酸 + 醇→ 丙烯酸酯 + 水步骤2: 丙烯酸酯的水解反应将步骤1得到的丙烯酸酯与水在碱性条件下进行水解反应,得到丙烯酸钠。

这一步骤的反应方程式如下所示:丙烯酸酯 + 水→ 丙烯酸钠 + 醇步骤3: 丙烯酸钠的纯化通过过滤、结晶、离心等工艺步骤,将合成得到的丙烯酸钠进行纯化,得到符合要求的丙烯酸钠产品。

2. 关键参数的优化在丙烯酸钠的合成工艺流程中,以下几个关键参数对合成效果有重要影响,需要进行优化。

2.1 反应温度反应温度对于丙烯酸酯的酯化和丙烯酸酯的水解反应速率都有一定影响。

较高的温度可以提高反应速率,但过高的温度可能导致副反应的发生,影响产率和产物纯度。

因此,需要通过实验确定合适的反应温度。

2.2 醇的选择选择不同的醇对于丙烯酸酯的酯化反应和水解反应速率都有影响。

同时,醇的选择也会对产物的纯度和质量有一定的影响。

因此,在设计合成工艺时,需要综合考虑醇的相对价格、反应速率以及所得产物的性质等因素进行合理选择。

2.3 催化剂的种类和用量催化剂的种类和用量会直接影响丙烯酸酯的酯化反应速率和丙烯酸酯的水解反应速率。

合适的催化剂选择和用量控制是确保反应高效进行的关键。

具体的催化剂种类和用量需要通过实验进行确定。

2.4 纯化工艺丙烯酸钠的纯化工艺对于最终产品的纯度和质量至关重要。

在纯化工艺中,过滤、结晶和离心等工艺步骤的设计和优化,以及溶剂的选择和用量控制等都会影响产品的纯度和质量,需要综合考虑进行优化。

高分子合成原理及工艺学

高分子合成原理及工艺学

高分子合成原理及工艺学
高分子合成原理及工艺学是讲解高分子化学中合成原理及工艺学知识的学科,是高分子材料制备,结构设计和性能测试的主要基础。

合成原理及工艺学研究的基本目的是使用有序的分子链标准制备出高分子材料。

高分子合成原理及工艺学的内容主要包括:
1、高分子材料的种类和主要结构类型:可以概括的说,高分子物质的主要类型是聚合物(单聚物和共聚物)、共聚物、共聚物体系、超支化高分子、聚合物复合体等;
2、高分子合成工艺原理:高分子合成方法可以分为合成溶剂法、溶剂蒸馏法、共聚物体系法、低温合成放热法、溶液热力学法等;
3、工艺流程及其控制要点:不同工艺流程及其控制要点之间有着密切的关系,如温度、压力、时间等都会影响合成结果,从而产生不同的有序结构、形状、晶型、尺寸等关键指标。

高分子合成原理及工艺术在理解高分子材料的结构和性能调节,设计合成聚合物体系,调节合成过程及结果的应用方面都发挥着重要的作用。

对于合成的高分子物质还可以直接应用于改性、组装和深入研究,以实现高分子材料的结构和性能优化。

聚碳酸酯、聚氨酯的绿色合成工艺探索

聚碳酸酯、聚氨酯的绿色合成工艺探索
A novel green synthesis approach of polyurethane and polycarbonate urethanes has been
ii
河北工业大学硕士学位论文
proposed through the reaction of carbonate with diols and diamine. The experimental results indicate that it is feasible to prepare polyurethane and polycarbonate urethanes through this novel green synthesis approach. The results based on gel permeation chromatography (GPC) and thermogravimetric analysis (TGA) show that the degree of polymerization is up to 160 and the maximum temperature of maximum decomposition rate is up to 529℃. Key Words:non-phosgene, non-isocyanate,bisphenol A , dimethyl carbonate , bisphenol A polycarbonate, polyurethane, polycarbonate urethanes
域,而且正迅速地扩展到航空、航天、电子计算机等高新技术领域。同时PC还可与其他塑料共混而形 成共混物,改善其抗溶性及耐磨性等较差的缺点,性能会更加完善,适应更多特定领域要求[3]。

高密度聚乙烯的合成工艺研究

高密度聚乙烯的合成工艺研究

绵阳职业技术学院材料工程系高分子材料应用技术专业毕业论文论文题目:高密度聚乙烯的合成工艺研究学院:绵阳职业技术学院系部:材料工程系班级:高分子111班学生:石鑫指导老师:唐云、王燕时间:2013.9.30——2013.11.05高密度聚乙烯的合成工艺研究摘要:自1953 年在低压下使乙烯聚合生成HDPE, 迄今已有50 多年, 高密度聚乙烯的开发生产突飞猛进, 技术进展突出表现在催化剂开发的进展、生产工艺技术的进展。

本文介绍了高密度聚乙烯在工业生产中所采用的技术、所采用的设备及其用途、发展前景等内容。

主要研究高密度聚乙烯的合成方法及工艺条件。

关键词:高密度聚乙烯,合成工艺Abstract: Since 1953, in the ethylene polymerization under pressure HDPE, far more than 50 years, the development of high-density polyethylene.Production by leaps and bounds, technological advances outstanding performance in catalyst development progresses, the progress of production technology. This article describes the high-density polyethylene used in the industrial production of the latest technology, using equipment and its use, development prospects and so on.The synthesis and processing conditions of high density polyethylene.Keywords: high-density polyethylene synthesis process目录1.聚乙烯介绍 (2)1.1聚乙烯结构 (1)1.2聚乙烯性质 (2)2.高密度聚乙烯介绍 (3)2.1高密度聚乙烯特性 (3)2.2高密度聚乙烯历史发展背景 (4)3.高密度聚乙烯的生产方法 (5)3.1浆液聚合法 (5)3.2气相聚合法 (7)3.3溶液聚合法 (8)3.4三种HDPE技术比较 (9)4.高密度聚乙烯的生产工艺 (9)5. 高密度聚乙烯制品生产工艺和质量影响因素分析 (12)5.1加工成型生产工艺分类 (12)5.2影响塑料制品(聚乙烯)产品的质量相关因素 (14)5.3机械设备的性能和模具的质量与精度分析 (14)6.高密度聚乙烯市场应用 (15)参考文献 (16)致谢 (17)1.聚乙烯介绍1.1聚乙烯结构简写:nCH2=CH2→—[CH2—CH2]n—聚乙烯的分子是长链线型结构或支结构,为典型的结晶聚合物。

丙烯酸钠的合成工艺流程设计论文

丙烯酸钠的合成工艺流程设计论文

常熟理工学院------材料科学与工程专业聚合物合成工艺课程设计题目:聚丙烯酸-丙烯酸钠的合成工艺流程设计姓名:田江学号:Z15114128专业:材料科学与工程专业班级:高分子材料141班指导教师耿飞起止日期2016.12.08—2016.12.28目录第1章前言 (1)1.2 聚丙烯酸钠简介 (1)1.3 聚丙烯酸-丙烯酸钠的应用 (2)1.4 高分子量聚丙烯酸钠的需求、生产和应用前景 (4)第2章 聚丙烯酸-丙烯酸钠合成原理 (6)2.1 合成原理 (6)2.2 合成反应方程式 (6)2.3合成原料以及各原料的性质 (6)2.4分散剂的选择 (7)2.5 反相悬浮聚合及相关高分子化学及物理的原理 (8)2.6选用反向乳液聚合的原因 (9)第3章 聚合物合成工艺设计 (10)3.1聚合物生产工艺流程图 (10)3.2聚合物合成工艺流程图 (11)3.3工艺流程分析 (12)第4章 聚合物合成工艺的物料衡算及效益估算 (14)4.1主要原料丙烯酸(COOH CH CH -=2)的投料量 (14)4.2 V102(中和罐)物料衡算 (14)4.3(NaOH 溶液调配罐)物料衡算 (15)4.4 V103(分散介质调配罐)物料衡算 (16)4.5 R101(聚合反应器)物料衡算 (17)4.6 V104(引发剂调配罐)物料衡算 (17)4.7整理并校核计算结果 (18)第5章 聚合反应反应设备的设计 (20)5.1反应器形式的选择 (20)5.2釜式反应器的选择原因 (21)5.3反应器体积的计算 (21)5.4外形尺寸的设计 (23)5.5搅拌器的设计 (24)5.6分离设备 (21)5.7干燥设备 (25)第6章 建设工程及公用、辅助工程说明 (27)6.1建设工程说明 (27)6.2生产车间布置 (27)6.3给水、排水系统 (27)6.4电力供应及生产控制 (28)6.5车间布置图 (28)第7章 概算与技术经济 (29)7.1成本预算 (29)7.1.1原料成本 (29)7.1.2其他成本 (29)7.2利润预算 (30)7.3应用前景 (30)7.5产品的销售市场 (31)第8章环境保护、劳动安全与工业卫生 (33)8.1丙烯酸的安全使用和储存 (33)8.2环保治理措施 (35)第8章设计总结 (37)设计总结: (37)参考文献 (38)第1章前言1.1 聚丙烯酸简介聚丙烯酸,英文名是Polyacrylic acid,缩写为PAA,结构式为[-CH2-CH(COOH)]n -;无色或淡黄色液体。

高分子化学课程论文:聚酯纤维的合成及应用汇总

高分子化学课程论文:聚酯纤维的合成及应用汇总

学号:********高分子化学课程论文学院化学化工学院专业化学年级201级化学班姓名论文(设计)题目聚酯纤维的合成及应用指导教师彭琪职称讲师成绩2016年6月17日目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)引言 (1)1.聚酯纤维的结构与性能 (1)1.1聚酯纤维的结构 (1)1.2聚酯纤维的性能 (2)1.2.1物理性质 (2)1.2.2力学性能 (2)1.2.3化学稳定性 (2)1.2.4耐微生物性 (2)2.聚酯纤维的合成 (2)2.1主要原料 (3)2.2聚酯纤维的合成原理与工艺 (3)2.2.1聚酯纤维的合成原理 (3)2.2.2聚酯纤维的生产工艺 (4)3.聚酯纤维的应用 (5)3.1家纺用品方面 (5)3.2交通运输方面 (5)3.3工业方面 (6)参考文献 (6)聚酯纤维的合成及应用学生姓名:学号:20135051化学化工学院201级化学专业班指导教师:彭琪职称:讲师摘要:本文首先对聚酯纤维的结构与性能进行综述,然后介绍它的合成方法,最后介绍聚酯纤维的应用。

关键词:聚酯纤维;结构;性能;合成;应用Abstract: In this paper,the structure and properties of polyester fiber are summarized. The synthesis methods and the application of polyester fiber are introduced. Keywords: polyester fiber; structure; properties; synthesis; application引言聚酯纤维是由大分子链中的各链节通过酯基相连的成纤聚合物纺制而成的合成纤维,目前,所谓聚酯纤维通常是指聚对苯二甲酸乙二酯纤维(PET),是以对苯二甲酸二甲酯、乙二醇为原料,经酯交换、缩聚、纺丝和纤维后加工等四个步骤而制得。

聚丙烯 毕业论文

聚丙烯 毕业论文

聚丙烯毕业论文聚丙烯是一种重要的合成塑料,广泛应用于包装、纺织、建筑等领域。

本文将从聚丙烯的性质、制备工艺、应用以及环境影响等方面进行探讨。

一、聚丙烯的性质聚丙烯是由丙烯单体聚合而成的高分子化合物,具有优良的物理性质和化学稳定性。

它具有较高的熔点和熔融粘度,可以通过调整聚合条件得到不同分子量的聚丙烯。

此外,聚丙烯还具有良好的耐腐蚀性、耐热性和耐候性,是一种重要的工程塑料。

二、聚丙烯的制备工艺聚丙烯的制备主要通过聚合反应完成。

常见的聚合方法有催化剂聚合和无催化剂聚合两种。

催化剂聚合是指在聚合反应中引入催化剂,加速聚合反应的进行。

无催化剂聚合则是直接通过高温条件下的热聚合反应进行。

此外,还可以通过改变聚合条件和添加其他助剂来调控聚丙烯的分子量和性能。

三、聚丙烯的应用由于聚丙烯具有良好的物理性质和化学稳定性,被广泛应用于各个领域。

在包装行业,聚丙烯可以制成薄膜、瓶盖、容器等,用于食品、药品等产品的包装。

在纺织行业,聚丙烯纤维可以制成绳索、织物等,用于制作袋子、地毯等产品。

此外,聚丙烯还可以制成管道、板材等用于建筑和工程领域。

四、聚丙烯的环境影响虽然聚丙烯在各个领域得到广泛应用,但其对环境的影响也不容忽视。

首先,聚丙烯是一种不可降解的塑料,长时间存在于自然环境中,对土壤和水体造成污染。

其次,聚丙烯的制备过程中会产生大量的废气和废水,对大气和水体环境造成污染。

因此,在聚丙烯的生产和使用过程中,需要加强环境保护措施,减少对环境的影响。

综上所述,聚丙烯是一种重要的合成塑料,具有良好的物理性质和化学稳定性,被广泛应用于包装、纺织、建筑等领域。

然而,聚丙烯的制备和使用过程中也会对环境造成一定的影响,因此需要加强环境保护工作。

未来,随着科技的发展,我们有望研发出更环保的替代品,以减少对聚丙烯的依赖,实现可持续发展。

高分子材料与工程毕业论文文献综述

高分子材料与工程毕业论文文献综述

高分子材料与工程毕业论文文献综述在现代材料科学与工程领域中,高分子材料作为一种重要的材料类别,具有广泛的应用前景。

本文将对高分子材料与工程的相关文献进行综述,旨在全面了解该领域的最新研究进展和发展趋势。

一、高分子材料的定义与分类高分子材料是由大分子化合物(分子量通常在10^4至10^6量级)构成的材料系统。

根据其结构和性质的不同,高分子材料可分为线性高分子、交联高分子、支化高分子等多种类型。

二、高分子材料的合成方法高分子材料的合成方法多种多样,常见的有聚合反应、缩合反应、开环聚合、改性反应等。

每种方法都有其独特的特点和适用范围,研究人员根据具体需求选择不同的方法进行材料合成。

三、高分子材料的性质与表征高分子材料的性质与表征是研究该领域的关键内容之一。

其中,高分子材料的力学性质、热学性质、电学性质等是研究的重点。

通过使用各种表征手段,如拉伸试验、差示扫描量热法、电导率测试等,可以对高分子材料的性质进行全面而准确的评估。

四、高分子材料在工程领域中的应用高分子材料在工程领域有着广泛的应用。

其中,聚合物材料在塑料工业、橡胶工业、纤维工业等行业中扮演着重要的角色;高分子复合材料在航空航天、汽车制造、电子器件等领域中展现出巨大的潜力;生物材料作为一种新兴的材料类型,被广泛应用于医疗、生物工程等领域。

五、高分子材料领域的新兴研究方向为了满足日益增长的科技需求,高分子材料领域的研究也在不断发展。

其中,纳米复合材料、生物可降解材料、功能性高分子材料等成为了研究的热点。

这些新兴研究方向的涌现为高分子材料的应用与发展提供了更多的可能性。

六、高分子材料领域的挑战与展望虽然高分子材料在各个领域中都有广泛应用,但仍存在一些挑战。

如高分子材料的工艺性能、稳定性、可持续性等问题仍有待解决。

因此,考虑到环境保护和可持续发展的要求,高分子材料研究需要在解决这些问题的基础上不断创新,为材料科学与工程的发展做出贡献。

综上所述,高分子材料与工程领域是一门重要的学科,具有广阔的研究前景和应用潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PET的合成及生产工艺高分子09-2摘要:聚对苯二甲酸乙二醇酯化学式为-[OCH2-CH2OCOC6H4CO]-,简称PET,为高分子聚合物,由对苯二甲酸乙二醇酯发生脱水缩合反应而来。

对苯二甲酸乙二醇酯是由对苯二甲酸和乙二醇发生酯化反应所得。

聚对苯二甲酸二乙酯作为纤维原料已有50多年的历史,本文对PET 的研究,生产和应用进行了详细的概述,阐述了其在化学工业中的作用和地位,并介绍了PET的制备方法和工艺流程。

关键词:聚对苯二甲酸乙二醇酯对苯二甲酸乙二醇直接酯化法PET的结构及性能聚对苯二甲酸乙二醇酯化学式为-[OCH2-CH2OCOC6H4CO]-,简称PET,为高分子聚合物,由对苯二甲酸乙二醇酯发生脱水缩合反应而来。

对苯二甲酸乙二醇酯是由对苯二甲酸和乙二醇发生酯化反应所得。

PET 是乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽。

在较宽的温度范围内具有优良的物理机械性能,长期使用温度可达120℃,电绝缘性优良,甚至在高温高频下,其电性能仍较好,但耐电晕性较差,抗蠕变性,耐疲劳性,耐摩擦性、尺寸稳定性都很好。

PET塑料分子结构高度对称,具有一定的结晶取向能力,故而具有较高的成膜性和成性。

PET塑料具有很好的光学性能和耐候性,非晶态的PET塑料具有良好的光学透明性。

另外PET塑料具有优良的耐磨耗摩擦性和尺寸稳定性及电绝缘性。

PET做成的瓶具有强度大、透明性好、无毒、防渗透、质量轻、生产效率高等因而受到了广泛的应用。

PET的应用玻璃纤维增强PET适用于电子电气和汽车行业,用于各种线圈骨架、变压器、电视机、录音机零部件和外壳、汽车灯座、灯罩、白热灯座、继电器、硒整流器等。

PET工程塑料目前几个应用领域的耗用比例为:电器电子26%,汽车22%,机械19%,用具10%,消费品10%,其他为13%。

目前PET工程塑料的总消耗量还不大,仅占PET总量的1.6%。

1.薄膜片材方面:各类食品、药品、无毒无菌的包装材料;纺织品、精密仪器、电器元件的高档包装材料;录音带、录象带、电影胶片、计算机软盘、金属镀膜及感光胶片等的基材;电气绝缘材料、电容器膜、柔性印刷电路板及薄膜开关等电子领域和机械领域。

2.包装瓶的应用:其应用已由最初的碳酸气饮料发展到现在的啤酒瓶、食用油瓶、调味品瓶、药品瓶、化妆品瓶等。

3.电子电器:制造连接器、线圈绕线管、集成电路外壳、电容器外壳、变压器外壳、电视机配件、调谐器、开关、计时器外壳、自动熔断器、电动机托架和继电器等。

4.汽车配件:如配电盘罩、发火线圈、各种阀门、排气零件、分电器盖、计量仪器罩壳、小型电动机罩壳等,也可利用PET 优良的涂装性、表面光泽及刚性,制造汽车的外装零件。

5.机械设备:制造齿轮、凸轮、泵壳体、皮带轮、电动机框架和钟表零件,也可用作微波烘箱烤盘、各种顶棚、户外广告牌和模型等。

.6.PET 塑料的成型加工可以注塑、挤出、吹塑、涂覆、粘接、机加工、电镀、真空镀金属、印刷。

PET 的工艺流程1.PET 原料准备与精制过程1.1精对苯二甲酸加氢精制法该法以高纯PX 为原料,醋酸为溶剂,醋酸钴、醋酸锰为催化剂,溴化氢或四溴乙烷为促进剂,空气作氧化剂,使用大型单台连续搅拌式氧化反应器,使PX 在氧化反应器中生成对苯二甲酸粗制品。

为了进一步氧化中间产物,缓和主氧化反应器的操作条件,增加产物的收率,减少溶剂的消耗,提高产品质量,使主氧化反应器出来的氧化液进入第一结晶器,同时将占整个气体体积2 %的空气通入第一结晶器中进行二次氧化。

结晶分离出的粗对苯二甲酸用水配成约31 %的浆料,经增压、预热后进入加氢反应器。

浆料经反应器下部的钯/ 碳(Pd/ C)催化剂床层流到反应器底部的过程中,粗对苯二甲酸中的杂质对羧基苯甲醛在催化剂床层进行动态加氢反应,还原成对甲基苯甲酸。

对甲基苯甲酸较易溶于水,在过滤母液时,从系统中除掉。

加氢反应器中的浆料经5 级连续结晶、分离洗涤、干燥即得产品TPA 。

1.2 EG 的用量加入适量的EG ,使TPAEG =1.3~1.8,或低于1.3,以抑制醚化反应。

1.3 加入Co 、Zn 、Mn 等金属的化合物可以抑止醚化反应。

2 .催化剂(或引发剂)配制过程目前世界绝大多数PET 聚酯生产装置仍采用锑类的催化剂,锑催化剂用量约占90%,其它还有锗和钛类催化剂,尽管这些锑类催化剂的催化效果很好,但随着人们认识的提高,锑的毒性问题愈来愈受到人们关注。

因此近年来PET 非锑催化剂研究非常活跃。

随着人类对环保的认识和要求的提高,这类催化剂开发将有广阔的前景。

反应采用三氧化二锑作为催化剂,在反映前用160度的高温乙二醇进行溶解,冷却到120度进入反应系统;为保证反应顺利进行,产物品质稳定,用磷酸作为稳定剂,另算也用乙二醇稀释后进入反应系统。

反应所需要的热量来源于重油燃烧,燃烧重油给导热油加热,通过管路将一定温度的导热油送入反应系统。

3 .聚合过程如果采用TPA 为原料,PET 聚酯聚合物的生产主要有以下两步反应:第一步是TPA 与EG 进行酯化反应,生成对苯二甲酸乙 二酯(BHET);第二步是BHET 在催化剂作用下发生缩聚反应生成PET 。

酯化反应阶段,为了缩短反应时间,酯化反应的反应压力要高于大气压力,反应温度要高于醇的沸点。

具体反应中所用的醇与PTA 的摩尔比为1.1:1-2:1,反应采用的温度为258-263℃。

缩聚反应的反应温度须高于聚合物的熔化温度(260-265℃),低于300℃(当温度达到这个值时,聚合物开始出现降解),因此缩聚反应最合适的温度范围是275-290℃。

缩聚反应的反应时间至少为2个小时,具体视反应器不同而有所不同。

这个反应的反应常数较小,因此在反应过程中还须尽快地除去反应所生成的乙二醇,打破反应平衡,促使反应继续向右进行,否则不但会影响反应速度,而且聚合度也提不高。

因此缩聚要求在真空下进行,特别是缩聚后期要求在高真空度下进行,同时应尽量增加蒸发表面。

在酯化反应的初始阶段,固态PTA 和EG 之间进行的酯化反应分为如下两步:固态粉末状的PTA 溶解于EG/酯化物的混合物中,已溶解的PTA 在高温下与EG 发生酯化反应,生成酯化物;其中主要的酯化物是对苯二甲酸双羟乙酯(简称BHET )。

反应的方程式如下:TPA (固体)→ TPA (液体)(包括2~5聚体)缩聚反应是聚酯合成过程中的链增长反应。

通过这一反应,两个β-羟基乙酯基之间发生缩聚并脱去一分子的EG 。

反应式如下: +2CH 2OH CH 2OH COOH COOH+2 H 2O HOCH 2CH 2O C O CH 2CH 2OH O C O +CH 2CH 2O C O CH 2CH 2OH O C O HO x yOO CH 2CH 2O C OCH 2CH 2OH O C O HO4. 分离过程在反应过程中产生了酯化反应产物——水,只有不断排除反应产物,才能使酯化反应进行下去,故在酯化反应同时必须伴随着水分离过程,水的排除速率影响到酯化总速率。

在水分从反应混合物中分离出去同时,EG及生成的副产物乙醛和DEG也会挥发出去,TPA也会发生升华进入气相,聚合物也会被气体夹带出反应器。

进入的浆料和回流EG造成了反应器内局部的浓度不均匀。

所以酯化反应过程除化学反应外,还包括分离、溶解、混合、传热等过程以及对理想流动的偏离。

在酯化反应器中生成的水和蒸发的EG进入工艺塔进行分离,水和少量的EG、乙醛从塔顶分离出去,排出系统外,EG和少量的水、DEG、夹带的齐聚物等回入酯化反应器。

5.聚合物后处理过程由于处于反应后期,游离EG浓度减小,虽然温度的升高可使反应平衡常数变小,但随着缩聚反应程度的增加,反应平衡常数也增加。

因此,在终缩聚阶段,反应温度应进一步提高,为保证反应物料粘度达到要求,同时应尽可能将真空度降至应有的程度。

停留时间相对延长,有利于提高聚合物粘度。

但是,如果停留时间过长,又会导致降解反应发生,使聚合物粘度降低,同时停留时间过长,还会导致DEG的增加。

因此,停留时间有一个最佳值,应根据实际情况进行调整。

6.回收过程从聚酯废料中分离和回收对苯二甲酸二甲酯和乙二醇,其特征在于含有作为主要成分的聚对苯二甲酸乙二酯以及夹杂物的聚酯废料依次经过下列步骤(a)-(f):步骤(a),其中,把聚酯废料混入到含有聚酯解聚催化剂的乙二醇中,所得的混合物在175-190℃、在0.1-0.5MPa的压力下处理,通过浮法分离法从所得的反应溶液中含有的固体夹杂物中除去已经飘浮到溶液表面的固体夹杂物部分;步骤(b),其中,通过固/液分离法从来自步骤(a)的溶液部分中除去在该溶液中含有的并且在步骤(a)没有飘浮到表面的残余固体夹杂物;步骤(c),其中,蒸馏并浓缩来自步骤(b)的残余溶液部分,以回收所蒸馏出的乙二醇;步骤(d),其中,来自步骤(c)的蒸馏残液与酯基转移反应催化剂和甲醇混合,导致在蒸馏残液与甲醇之间的发生酯基转移反应并产生对苯二甲酸二甲酯和乙二醇,所得的反应混合物经过再结晶处理,然后离心分离,以便把反应混合物分离成对苯二甲酸二甲酯滤饼和混合溶液,所述滤饼经过蒸馏提纯,以回收具有高纯度的蒸馏出的对苯二甲酸二甲酯;步骤(e),其中,来自步骤(d)的所述混合溶液经过蒸馏处理,以回收蒸馏出的甲醇,步骤(f),其中,来自步骤(e)的蒸馏残液经过蒸馏处理,以回收蒸馏出的乙二醇。

PET聚合机理采用TPA为原料,PET聚酯聚合物的生产主要有以下两步反应:第一步是TPA与EG进行酯化反应,生成对苯二甲酸乙二酯(BHET);第二步是BHET在催化剂作用下发生缩聚反应生成PET。

PET聚合主要设备主要设备:反应釜辅助设备:往复式压缩机蒸发器离心分离器风干机冷凝器造粒机等。

PET(增强PET)主要采取注射成型法加工,其他方法还有挤出、吹塑、涂覆和焊接、封接、机加工、真空镀膜等二次加工方法。

成型前须充分干燥。

主要应用为电子电器方面有:电气插座、电子连接器、电饭煲把手、电视偏向轭,端子台,断电器外壳、开关、马达风扇外壳、仪表机械零件、点钞机零件、电熨斗、电磁灶烤炉的配件;汽车工业中的流量控制阀、化油器盖、车窗控制器、脚踏变速器、配电盘罩;机械工业齿轮、叶片、皮带轮、泵零件、另外还有轮椅车体及轮子、灯罩外壳、照明器外壳、排水管接头、拉链、钟表零件等。

TPA法生产流程图PET塑料的回收德国PET废瓶回收成为“中国毛衣”也值得大家深思,德国市场上每年流动800多万个PET瓶子。

垃圾回收公司收去这些瓶子,压成团或粉碎成片,然后以相对来说相当高的价格出售给中国。

根据相关人士计算,能装16升饮料的瓶子可以做成一件毛衣。

回顾1993年前,所有塑料瓶都进了垃圾箱,一小部分回收利用。

自从4年前实施了押罐费,超市必须回收空瓶,PET瓶子踏上了万里征途:远赴中国,变成合成粗尼毛衣后,再返回德国,衣锦荣归。

相关文档
最新文档