5种辅助稳定剂说明

合集下载

1塑料热稳定剂种类划分

1塑料热稳定剂种类划分

1塑料热稳定剂种类划分热稳定剂是一类能防止或减少聚合物在加工使用过程中受热而发生降解或交联,延长复合材料使用寿命的添加剂。

常用的稳定剂按照主要成分分类可分为盐基类、脂肪酸皂类、有机锡化合物、复合型热稳定剂及纯有机化合物类。

1)盐基类热稳定剂:盐基类稳定剂是指结合有“盐基”的无机和有机酸铅盐,这类稳定剂具有优良的耐热性、耐候性和电绝缘性,成本低,透明性差,有一定毒性,用量一般在0.5%~5.0%。

(文章来源环球聚氨酯网)2)脂肪酸类热稳定剂:该类热稳定剂是指由脂肪酸根与金属离子组成的化合物,也称金属皂类热稳定剂,其性能与酸根及金属离子的种类有关,一般用量为0.1%~3.0%。

3)有机锡类热稳定剂:该类热稳定剂可与聚氯乙烯分子中的不稳定氯原子形成配位体,而且在配位体中有机锡的羧酸酯基与不稳定的氯原子置换。

这类热稳定剂的特点是稳定性高、透明性好、耐热性优异,不足之处是价格较贵。

4)复合型热稳定剂:该类热稳定剂是以盐基类或金属皂类为基础的液体或固体复合物以及有机锡为基础的复合物,其中金属盐类有钙—镁—锌、钡—钙—锌、钡—锌和钡—镉等;常用的有机酸如有机脂肪酸、环烷酸、油酸、苯甲酸和水杨酸等。

5)有机化合物热稳定剂:该类热稳定剂除少数可单独使用的主稳定剂(主要是含氮的有机化合物)外,还包括高沸点的多元醇及亚磷酸酯,亚磷酸酯常与金属稳定剂并用,能提高复合材料的耐候性、透明性,改善制品的表面色泽。

2PVC热稳定剂的作用机理1)吸收中和HCL,抑制其自动催化作用。

这类稳定剂包括铅盐类、有机酸金属皂类、有机锡化合物、环氧化合物、酚盐及金属硫醇盐等。

它们可与HCL反应,抑制PVC脱HCL的反应。

2)置换PVC分子中不稳定的烯丙基氯原子抑制脱PVC。

如有机锡稳定剂与PVC分子的不稳定氯原子发生配位结合,在配位体中,有机锡与不稳定氯原子置换。

3)与多烯结构发生加成反应,破坏大共轭体系的形成,减少着色。

不饱和酸的盐或酯含有双键,与PVC分子中共轭双键发生双烯加成反应,从而破坏其共轭结构,抑制变色。

emulsogen epa 1963 产品说明书

emulsogen epa 1963 产品说明书

emulsogen epa 1963 产品说明书一、产品简介Emulsogen EPA 1963是一种高效的乳化剂,主要用于油水混合体系的辅助稳定剂。

它能够在水中形成稳定的乳化液,并且具有出色的分散性能。

该产品广泛应用于各个领域,包括涂料、油漆、染料、胶黏剂等工业制造过程中的乳化反应。

二、产品特点1.高效乳化性能:Emulsogen EPA 1963具有出色的乳化性能,能够有效地将油水混合体系分散,并形成稳定的乳化液。

2.良好的分散性能:Emulsogen EPA 1963具有良好的分散能力,可以有效地使颗粒物质在水中分散,并保持稳定。

3.减少粘度:Emulsogen EPA 1963能够有效地降低油水混合体系的粘度,使其更易于处理和应用。

4.提高涂料和油漆的稳定性:通过添加Emulsogen EPA 1963,可以显著提高涂料和油漆的稳定性,避免液体分层或沉淀的问题。

5.环保性:Emulsogen EPA 1963符合环保要求,不含有害物质,对环境无污染。

三、使用方法1.使用前请先将Emulsogen EPA 1963与水充分混合,按照比例加入需要乳化的油类物质中。

2.使用时可根据需要适量调整使用浓度。

3.使用时请注意避免与皮肤接触,如不慎接触,请及时用水冲洗。

四、安全注意事项1.使用时请佩戴好手套、防护眼镜等个人防护装备,避免直接接触。

2.如不慎接触皮肤,请立即用大量清水冲洗,并及时就医。

3.请将Emulsogen EPA 1963放在儿童无法接触的地方,避免误食。

4.存放时请避免高温、阳光暴晒等极端环境,确保产品安全。

五、包装规格Emulsogen EPA 1963常见的包装规格有1L、5L和20L等。

六、总结Emulsogen EPA 1963是一种高效的乳化剂,具有乳化性能、分散性能好、降低粘度、提高涂料和油漆稳定性等特点。

使用时应注意个人防护,避免皮肤接触,并将其放置在儿童无法接触的地方。

PVC稳定剂简介

PVC稳定剂简介

PVC稳定剂简介英文化工术语:Stabilizer, Inhibiter.什么是稳定剂?1、广义地讲,能增加溶液、胶体、固体、混合物的稳定性能化学物都叫稳定剂。

它可以减慢反应,保持化学平衡,降低表面张力,防止光、热分解或氧化分解等作用。

广义的化学稳定剂来源非常广泛,主要根据配方设计者的设计目的,可以灵活的使用任何化学物以达到产品品质稳定的目的.2、狭义地讲,主要是指保持高聚物塑料、橡胶、合成纤维等稳定,防止其分解、老化的试剂。

纯的PVC树脂对热极为敏感,当加热温度达到90Y:以上时,就会发生轻微的热分解反应,当温度升到120C后分解反应加剧,在150C,10分钟,PVC树脂就由原来的白色逐步变为黄色—红色—棕色—黑色。

PVC树脂分解过程是由于脱HCL反应引起的一系列连锁反应,最后导致大分子链断裂。

防止PVC热分解的热稳定机理是通过如下几方面来实现的。

通过捕捉PVC热分解产生的HCl,防止HCl的催化降解作用。

铅盐类主要按此机理作用,此外还有金属皂类、有机锡类、亚磷酸脂类及环氧类等。

•置换活泼的烯丙基氯原子。

金属皂类、亚磷酸脂类和有机锡类可按此机理作用。

•与自由基反应,终止自由基的反应。

有机锡类和亚磷酸脂按此机理作用。

•与共扼双键加成作用,抑制共扼链的增长。

有机锡类与环氧类按此机理作用。

•分解过氧化物,减少自由基的数目。

有机锡和亚磷酸脂按此机理作用。

•钝化有催化脱HCl作用的金属离子。

同一种稳定剂可按几种不同的机理实现热稳定目的。

铅盐类铅盐类是PVC最常用的热稳定剂,也是十分有效的热稳定剂,其用量可占PVC 热稳定剂的70%以上。

铅盐类稳定剂的优点:热稳定性优良,具有长期热稳定性,电气绝缘性能优良,耐候性好,价格低。

铅盐类稳定剂的缺点:分散性差、毒性大、有初期着色性,难以得到透明制品,也难以得到鲜明色彩的制品,缺乏润滑性,易产生硫污染。

常用的铅盐类稳定剂有:(1)三盐基硫酸铅分子式为3PbO.PbSO.H20,代号为TLS,简称三盐,白色粉末,密度6.4 g/cm’。

稳定剂

稳定剂

Sn +
Cl Cl
Cl CH2 CH CH2
Cl CH CH2
Y CH CH2
Y CH
对热稳定剂的要求
能置换高分子链中存在的活泼原子,以得到更为
稳定的化学键和减少引发脱HCl反应的可能性;
能够迅速结合脱落下来的HCl,抑制其自动催化作用; 通过与高分子材料中存在的不饱和键进行加成反应
而生成饱和的高分子链,以提高热稳定性;
Cd皂有毒,一般使用低毒性的Ba/Zn、Ca/Zn 类稳定剂
锌烧:随着受热过程的延长,发生急速变黑的现象 在以锌皂为基础的配合中,既要保持其热稳定效 果,又要抑制其锌烧现象的发生。 从以下两方面来进行考虑: (1)高锌配合:使用足够量的锌皂,并使用添 加剂(如亚磷酸盐、环氧化合物、多元醇等)
(2)低锌配合:减少锌皂的使用量来抑制锌烧 ,并用添加剂(如β-二酮类化合物)改善初期的 着色。
对叔辛基苯酚硫代双叔辛基苯酚硫代双辛基苯酚镍2二硫代氨基甲酸镍nn二正丁基二硫代氨基甲酸镍nbcncni光稳定剂nbcnaoh2030二丁胺二丁基二硫代氨基甲酸钠制备方法具有十分优良的光稳定作用在丁苯氯丁氯磺化聚乙烯等合成橡胶中有防止日光下龟裂臭氧龟裂的作用用量一般为0305是近20年来聚合物稳定化助剂开发研究领域的热门课题产量和消耗量增长速度远远超过了其他助剂7受阻胺类中间体三丙酮胺2266四甲基哌啶4酮催化剂3h三丙酮胺taa丙酮宁22446五甲基2345四氢嘧啶哌啶吡啶嘧啶2266四甲基哌啶4酮naoh4氨基哌啶三丙酮胺taa受阻胺类光稳定剂典型品种hnohchhnohchoh4氨基哌啶ls770国外hals品种开发的发展趋势1高分子量化光稳定剂主要适用于户外用的聚合物制品挥发或介质抽提是影响其持久稳定效果的重要因素

PVC各类稳定剂的作用机理及用途

PVC各类稳定剂的作用机理及用途

PVC各类稳定剂的作用机理及用途PVC稳定剂、作用机理及用途铅盐稳定剂1铅盐稳定剂可分为3类:(1)单纯的铅盐稳定剂,多半是含有PbO的盐基性盐;(2)具有润滑作用的热稳定剂,主要是脂肪酸的中性和盐基性盐;(3)复合铅盐稳定剂,以及含有铅盐和其它稳定剂与组分的协同混合物的固体和液体复合稳定剂。

铅盐稳定剂的热稳定作用较强,具有良好的介电性能,且价格低廉,与润滑剂合理配比可使PVC树脂加工温度范围变宽,加工及后加工的产品质量稳定,是目前最常用的稳定剂。

铅盐稳定剂主要用在硬制品中。

铅盐类稳定剂具有热稳定剂好、电性能优异,价廉等特点。

但是铅盐有毒,不能用于接触食品的制品, 也不能制得透明的制品, 而且易被硫化物污染生成黑色的硫化铅。

金属皂类稳定剂2硬脂酸皂类热稳定剂一般是碱土金属(钙、镉、锌、钡等)与硬脂酸、月桂酸等皂化制取。

产品种类较多,各有其特点。

一般来说润滑性硬脂酸优于月桂酸,而与PVC相容性月桂酸优于硬脂酸。

金属皂由于能吸收HCl,某些品种还能通过其金属离子的催化作用以脂肪酸根取代活性部位的Cl原子,因此可以对PVC起到不同程度的热稳定作用。

PVC工业中极少是有单一的金属皂化合物,而通常是几种金属皂的复合物。

常见的是钙锌皂类稳定剂。

根据Frye-horst机理,钙/锌复合稳定剂稳定机理可认为:首先锌皂与PVC链上烯丙基氯反应,然后钙皂、锌皂与氯化氯反应生成不稳定的金属氯化物。

这时,作为中间媒介的辅助稳定剂再把氯原子转移到钙皂中去,使锌皂再生,延迟了具有促进脱氯化氢作用的氯化锌的生成。

钙锌类稳定剂可作为无毒稳定剂,用在食品包装与医疗器械、药品包装,但其稳定性相对教低,钙类稳定剂用量大时透明度差,易喷霜。

钙锌类稳定剂一般多用多元醇和抗氧剂来提高其性能,近年来,国内环保要求越来越严,钙锌稳定剂正如火如荼广泛兴起。

有机锡稳定剂3有机锡中的烷基锡通常是甲基、正丁基、正辛基等三种。

日本生产的大多是丁基锡类,欧洲辛基锡类更普遍一些,这是欧洲认可的标准无毒稳定剂,美国则甲基锡用的较为多一些。

稳定剂的分类与用途

稳定剂的分类与用途

稳定剂的分类与用途稳定剂是指一类用于稳定药物、食品、化妆品等过程或产品性质的化学物质。

稳定剂的分类与用途可以从不同的角度进行划分。

一、根据作用机制的分类1.抗氧化剂:抗氧化剂是一类可以阻止氧气与其他物质发生反应的稳定剂,可以延缓或防止物质的氧化、变质和腐败。

常见的抗氧化剂有维生素C、维生素E、单宁酸等。

抗氧化剂广泛应用于食品、化妆品、医药等领域,可以延长产品的保质期和稳定性。

2.防腐剂:防腐剂是一类用于抑制或杀灭微生物的稳定剂,包括抗菌剂、防霉剂和防腐剂等。

常见的防腐剂有苯甲酸、山梨酸钠、对羟基苯甲酸酯等。

防腐剂在食品和化妆品等领域中广泛使用,可以延长产品的使用寿命和品质。

3.pH调节剂:pH调节剂用于调节溶液或体内液体的酸碱度,使其维持在一定的稳定范围内。

常见的pH调节剂有柠檬酸、乳酸、磷酸盐等。

pH调节剂在食品、化妆品和医药等领域中广泛应用,可以控制产品的酸碱度,改善其稳定性和口感。

4.缓冲剂:缓冲剂是一类可以稳定液体或体内液体的酸碱平衡的化学物质,可以防止酸碱度的剧烈变化。

常见的缓冲剂有磷酸盐、氯化物等。

缓冲剂广泛应用于生产、实验和医药等领域,可以维持液体的稳定性和储存过程中的酸碱平衡。

5.界面活性剂:界面活性剂是一类可以降低液体与固体、液体与气体之间表面张力的稳定剂。

常见的界面活性剂有十二烷基硫酸钠、十二烷基苯磺酸钠等。

界面活性剂广泛应用于工业和生产领域,可以调整液体的界面性质,提高产品的稳定性和均匀性。

二、根据应用领域的分类1.食品稳定剂:食品稳定剂主要用于调节、控制和提高食品的质量和稳定性,包括增稠剂、乳化剂、抗结剂、安定剂等。

2.药物稳定剂:药物稳定剂主要用于控制和延长药物的保质期,保证药物的治疗效果和安全性,包括防腐剂、抗氧化剂、缓冲剂等。

3.化妆品稳定剂:化妆品稳定剂主要用于提高化妆品的稳定性和延长其保质期,包括抗氧化剂、防腐剂、pH调节剂等。

4.工业稳定剂:工业稳定剂主要用于工业生产过程中,以提高产品的稳定性和质量,包括增稠剂、界面活性剂、缓冲剂等。

常用塑料助剂简介

常用塑料助剂简介

常用塑料助剂简介一、稳定助剂1.热稳定剂热稳定剂聚氯乙烯由于能和许多其它材料如增塑剂、填料及其它聚合物相容,因而被认为是最通用的聚合物之一。

其主要缺点就是热稳定性差。

添加剂的使用可改变聚氯乙烯(PVC)的物理外观和工作特性,但不能防止聚合物的分解。

虽然在物理的(如热、辐射)和化学的(氧,臭氧)因素作用下总是会使聚合物材料逐渐地破坏,但叫做稳定剂的一类物质可有效地阻止、减少甚至基本停止材料的降解。

关于PVC的破坏过程,人们提出了各种机理:热氧化分解;无氧情况下增长大自由基的交联;立构规性对降解的影响;光降解;氧化脱氯化氢;辐射降解;加工过程引入的临界应力导致的分子链断裂;以及PVC分子中支化点对降解的影响等。

从化学上来说这些机理是非常相似的,并且可以直接与PVC的物理状态相联系。

PVC 降解的最重要的原因是脱氧化氢,表示如下:随着脱氯化氢过程的继续,出现共轭双键,聚合物吸收光的波长发生变化,当在一个共轭体系中出现6或7个多烯结构时,PVC分子吸收紫外光,从而呈现黄色。

这里最多能产生0.1%的氯化氢。

随着降解过程的继续,双键增加,吸收光波长变化,PVC的颜色也逐渐变深,深黄色,摇拍色,红棕色,直至完全变黑。

当聚合物进一步受损时,继而发生氧化,链断裂,最后交联。

为了最大限度地弥补PVC均聚物和共聚物的严重缺陷,需要用稳定剂消除引起开始脱氯化氢的不稳定部位;或作为氯化氢的清除剂;或当自由基产生时便与之反应;或作为抗氧剂;或改变多烯结构以阻止颜色变化、分子链断裂和交联。

稳定剂必须与PVC体系相容,不会损害材料体系整体的美感,并且还应具有调节润滑的性能。

对某一具体的树脂、复合组份、最终用途选定好稳定剂,可得到优良的PVC掺混物。

PVC 树脂的敏感性以及各种添加剂的稳定作用或有害效应可能是多种多样的,这需要逐一加以注意。

因此,必须注意到像树脂的锌敏感性,金属皂润滑剂的稳定性能,环氧及磷类增塑剂的工作特性,以及各种颜料及其它组份的影响等现象。

热稳定剂

热稳定剂

热稳定剂目录一、铅盐类 (2)二、金属皂类 (2)三、有机锡稳定剂 (2)四、有机锑类稳定剂 (3)五、稀土稳定剂 (3)六、有机热稳定剂 (4)七、复合稳定稳定剂 (4)(一) 无机铅盐和有机铅盐稳定剂 (4)(二) 金属皂和金属盐稳定剂 (6)(三) 有机锡稳定剂 (7)(四) 有机锑稳定剂 (8)(五) 有机辅助稳定剂 (9)(六) 复合稳定剂 (9)热稳定剂一、铅盐类这是最老的PVC热稳定剂品种,稳定效率高,不吸水,电绝缘性好,价廉。

与润滑剂合理配比,可使PVC树脂加工温度范围变宽,加工或后加工的产品质量稳定,是目前应用最普遍的稳定剂。

常用的有三碱式硫酸铅(3PbO·PbSO4)、二碱式亚磷酸铅(2PbO· PbPO3) 及二碱式硬脂酸铅(2PbO·PbSt.) 等。

二盐热稳定性不及三盐,但耐候性好于“三盐”。

“二硬铅” 不如“二盐”,“三盐” 常用,但具润滑性,这三种铅盐常复合使用,主要用于不透明PVC 制品中,用量在2~7PHR,“二盐” 并用时,用量约为“三盐” 的5%,“二硬铅” 并用时,用量为0.5~1.5PHR,铅盐稳定剂对AC 发泡剂的分解温度及发气量有影响。

铅盐有毒,遇硫将着色,应当指出的是在欧洲推荐的PVC自来水管配方中,常用到铅盐,这是因为在PVC硬管配方中的铅盐,不会渗透或被萃取,经大量研究,认为是安全的。

二、金属皂类一般是Ca、Mg、Zn、Ba、Cd等的硬脂酸、棕榈酸盐。

这类稳定剂具有热稳定性,有的具有光稳定性,还具有一定的润滑性,其中如钙、锌皂类是无毒的,大多能用于半透明制品,应用广泛。

最好同环氧酯类、螯合剂等并用,效果更佳。

镉盐光稳定性好,可制透明制品。

镉钡盐有毒,现在国外倾向于用锌、钙、锶的皂盐。

三、有机锡稳定剂它是各种羧酸及硫醇盐的含锡衍生物,其热稳定性和加工初期着色性优良,制品透明性好。

缺点是价格贵,加工时有气味析出。

与Ca-Zn稳定剂合用效果更佳。

低分子溶液剂的三种稳定剂以及特点

低分子溶液剂的三种稳定剂以及特点

一、低分子溶液剂的定义低分子溶液剂是指分子量相对较小的有机物,可以在溶液中形成结晶点,从而提高溶液的溶解度和稳定性。

低分子溶液剂在药物、食品、化妆品等领域有着广泛的应用。

然而,由于其分子量小、易挥发、易氧化等特点,容易造成溶液的不稳定性,因此在使用低分子溶液剂时需要添加稳定剂来提高溶液的稳定性。

二、防护稳定剂1. 防护稳定剂是一种可以与低分子溶液剂形成配伍物质,形成的化合物能够提高溶液的抗氧化性,延缓氧化反应的进行,从而保护低分子溶液剂的稳定性。

防护稳定剂通常是一些含有酚醛结构、硫醚结构等的有机物,能够与低分子溶液剂发生反应,形成稳定的络合物,从而提高溶液的稳定性。

2.防护稳定剂的特点包括良好的抗氧化性、较长的半衰期、与低分子溶液剂的相容性好等,是目前常用的低分子溶液剂稳定剂之一。

三、抗结晶剂1.抗结晶剂是一种可以抑制低分子溶液剂结晶的物质,可以防止结晶产生,从而提高溶液的稳定性。

抗结晶剂通常是一些高分子有机物,能够与低分子溶液剂形成复合物,并且能够改变溶液的结构,阻止结晶的形成。

2.抗结晶剂的特点包括良好的抗结晶性能、与溶剂的相容性好、能够延长溶液的稳定周期等,是目前常用的低分子溶液剂稳定剂之一。

四、分散剂1. 分散剂是一种可以使低分子溶液剂的分散性增强,形成均匀分散系统的物质,从而提高溶液的稳定性。

分散剂通常是一些表面活性剂、高分子物质等,能够改善溶液中溶质或粒子的分散性,防止其聚集沉淀。

2. 分散剂的特点包括良好的分散性能、与溶剂的相容性好、能够提高溶液的稳定性等,是目前常用的低分子溶液剂稳定剂之一。

五、总结低分子溶液剂在各个领域有着广泛的应用,但是由于其自身的一些特性,容易造成溶液的不稳定性。

在使用低分子溶液剂时,需要添加稳定剂来提高溶液的稳定性。

防护稳定剂、抗结晶剂、分散剂是目前常用的低分子溶液剂稳定剂,具有各自独特的特点,能够提高溶液的稳定性,保证低分子溶液剂在各个领域的应用效果。

希望通过对低分子溶液剂稳定剂的研究和应用,能够更好地推动低分子溶液剂的发展,为人类的健康和生活提供更好的保障。

常用热稳定剂

常用热稳定剂

+
HOO
C CH3
CH3
CH3
R2SnO
+
C8H17OOCCH2S
SCH 2 COOC8 H 17
+
HO
C CH3
CH3
性能特点
类别 性能特点
脂肪酸盐
润滑性和加工性能良好,但热稳定性和透 明差,单独使用时有明显的初期着色。
耐热和耐候性良好,主要用作PVC硬质透 明制品的主稳定剂,能防止初期着色,但 缺乏润滑性,易喷霜
环氧大豆油
硬脂酸钙
5
0.5
发泡剂AC
钛白粉
3
适量
1.3 有机锡稳定剂
有机锡的通式为RmSnY4-m(R为烷基,Y是通过氧原子 或硫原子与Sn连接的基团)。根据Y的不同,有机锡稳定 剂主要有下列三种类型:脂肪酸盐型、马来酸盐型和硫 醇盐型。
稳定作用机理:
⑴ 与氯化氢的反应
R2Sn(OOCR') 2 + 2HCl R2SnCl2 + 2R'COOH
硬脂酸钙
CaSt
金属皂的代表品种
名称
硬脂酸铅
缩写
PbSt
性能特点
其性质介于钡、镉皂之间,具有良好的热稳 定性作用,可兼做PVC的润滑剂使用,与镉、 钡和有机锡配合使用有良好的协同作用。但 塑化性能差,容易析出,透明性差、不但 有毒且硫化污染严重 本品活化性极高,少量添加可改善PVC的初 期着色,切有显著防硫化污染和抗析出的优 点,但后期稳定性差,容易引起“锌烧”, 故配用时应特别小心,应钙、钡皂等并用。
马来酸盐
硫醇盐
突出的耐热性和良好的透明性,没有初期 着色,特别适用于硬质透明制品,加工性 能良好,但价格较高

稳定和凝固剂

稳定和凝固剂

稳定和凝固剂
稳定剂和凝固剂是在不同领域中使用的化学物质,其作用是分别增加化合物的稳定性或促使液体变为固体。

以下是一些常见的稳定剂和凝固剂:
稳定剂:
1. 抗氧化剂:用于延缓食物、油脂和其他化学物质的氧化反应,防止其变质和腐败。

例如,维生素C和维生素E。

2. 防腐剂:用于保护食品和其他消费品免受微生物的侵害。

常见的防腐剂包括苏糖、山梨酸钠等。

3. 稳定剂:在制药、化妆品和其他产品中使用,以防止化学反应的发生,保持产品的稳定性和品质。

4. 光稳定剂:用于塑料和涂料中,可以吸收或分散紫外线光,防止材料的降解和褪色。

凝固剂:
1. 凝固剂(食品加工):用于食品加工中,促使液体变为固体。

例如,明胶、琼脂等。

2. 水凝固剂:用于处理水,帮助去除水中的悬浮物质。

聚合氯化铝是一种常见的水凝固剂。

3. 混凝土凝固剂:用于混凝土制备中,促使混凝土在一定时间内凝固和硬化。

水泥是最常见的混凝土凝固剂。

4. 卫生用品凝固剂:在卫生用品中,如尿不湿和卫生巾中,使用吸水性聚合物作为凝固剂,以吸收和凝固体液。

5. 医学凝固剂:在医学领域,一些药物和材料被设计为凝固剂,用于促使血液凝固,控制出血。

请注意,这只是一些例子,具体的稳定剂和凝固剂取决于其应用
领域。

在任何特定应用中使用这些化学物质时,应该根据具体需求和条件选择合适的剂型。

稳定剂的品种

稳定剂的品种

稳定剂的品种稳定剂的品种聚氯⼄烯主稳定剂是指那些单独使⽤时就有稳定效果的化合物,⽽副稳定剂是那些单独⽤⽆效⽽与主稳定剂配合时却起增效作⽤的化合物。

某些主稳定剂之间或某些主副稳定剂之间选择使⽤后会起协同作⽤。

(⼀)盐基性铅盐盐基性铅盐是⽤于聚氯⼄烯之最早也是最⼴泛的⼀种热稳定剂,呈碱性,故能与产⽣的HCL反应⽽起稳定作⽤。

从毒性、抗污性和制品透明性来看,铅盐并不理想。

但它的稳定效果好、价格低廉,故仍⼤量⽤于廉价的PVC挤出和压延制品中。

因它有优良的电性能和低吸⽔性,故⼴泛地⽤作PVC的电绝缘制品、唱⽚和泡沫塑料的稳定剂。

1、三盐基硫酸铅(也称三碱式硫酸铅)⽩⾊粉末,⽐重7.10,甜味有毒,易吸湿,⽆可燃性和腐蚀性。

不溶于⽔,但能溶于热的醋酸胺,,潮湿时受光后会变⾊分解。

折射率2.1,常⽤作电绝缘产品的稳定剂.2、⼆盐基亚磷酸铅这是⼀种细微针状结晶粉末;⽐重6.1,味甜有毒;200℃左右变成灰⿊⾊,450℃左右变成黄⾊。

本品不溶于⽔和有机溶剂,溶于盐酸。

折射率2.25,有抗氧剂作⽤,是⼀种优良的耐⽓候性稳定剂。

(⼆)⾦属皂类⾦属皂类也是⼀类⼴泛使⽤的聚氯⼄烯热稳定剂。

以羧酸钡、羧酸镉、羧酸锌、羧酸钙的单质或混合物使⽤。

其稳定作⽤是由于它能在聚氯⼄烯分⼦链上开始分解的地⽅起酯化作⽤。

稳定作⽤的强弱与⾦属皂中的⾦属⽐、羧酸类型以及配⽅中是否存在诸如亚磷酸酯、环氧化油、抗氧剂等协合剂有关。

其中镉皂和锌皂的稳定作⽤最⼤。

1、硬脂酸铅这是⼀种细微粉末,它不溶于⽔,溶于热的⼄醇和⼄醚,在有机溶剂中加热溶解,再经冷却成为胶状物。

遇强酸分解为硬脂酸和相应的铅盐,易受潮。

有良好润滑性,熔点低⽽确保其有良好分散性。

2、2—⼄基⼄酸铅它可溶于溶剂和增塑剂。

通常配成57-60%的矿物油或增塑剂的溶液出售。

⼴泛⽤作泡沫塑料中发泡剂偶氮⼆甲酰胺的活化剂。

3、⽔杨酸铅这是⼀种⽩⾊结晶粉末,⽐重2.36,折射率1.76。

兼有PVC热稳定剂和光稳定剂作⽤。

塑料助剂—热稳定剂的特性及应用

塑料助剂—热稳定剂的特性及应用

热稳定剂
种类
热稳定机理
中和HCl
(RCOO)2M + HCl
RCOOH + RCOOMCl
RCOOMCl + HCl
RCOOH +
MCl2
置换活泼的烯丙基氯原子
H
CCCC
H2 H
H
Cl
+
RCOO M
2
H
CCCC
H2 H
H
O
O CR
+ RCOOMCl
热稳定剂
种类
金属皂类的主要代表
品种 缩写
特性
热稳定剂
协同效应
协同机理
以硬酯酸钡/硬酯酸镉并用体系为例,反应如下:
CH CH CH Cl
+ 1/2Cd(OOCR)2
CH CH CH OCOR
+ 1/2 CdCl2
1/2 CdCl2 + 1/2Ba(OOCR)2
1/2Cd(OOR)2 + 1/2 BaCl2
热稳定剂
协同效应
金属皂与环氧化合物之间的协同作用
热稳定剂
应用
理想的热稳定剂应具备以下基本条件:
热稳定效能高,并具有良好的光稳定性。 与PVC相容性好,不挥发,不迁移,不喷霜,不容易被水、
油及其它溶剂抽出。 有适当的润滑性,在挤出过程中无压析现象发生,不结垢。 不与其它助剂反应,不被硫与铜等物质污染。
热稳定剂
应用
不降低制品的电性能及印刷性等二次加工性能。 无毒、无异常气味、不污染,可以制得透明制品。 加工使用方便,价格低。
Cl
Cl
CH CH CH2 CH
Cl CH CH CH2 CH
+ Cl

关于稳定剂的一些知识(收藏)

关于稳定剂的一些知识(收藏)

关于稳定剂的⼀些知识(收藏)关于稳定剂的⼀些知识(收藏)铅盐类铅盐类是PVC最常⽤的热稳定剂,其⽤量可占PVC热稳定剂的⼀半以上。

铅盐类稳定剂的优点:热稳定性优良,具有长期热稳定性,电⽓绝缘性能优良,耐候性好。

铅盐类稳定剂的缺点:分散性差,毒性⼤,有初期着⾊性,难以得到透明制品,也难以得到鲜艳⾊彩的制品,缺乏润滑性,以产⽣硫、隔污染。

常⽤的铅盐类稳定剂有三碱式硫酸铅,分⼦式为:3PbO·PbSO4·H2O,代号TLS,⽩⾊粉末,密度6.4g/cm3。

三碱式硫酸铅是常⽤的稳定剂品种,⼀般与⼆碱式亚磷酸铅⼀起并⽤,因⽆润滑性⽽需配⼊润滑剂。

主要⽤于PVC硬质不透明制品中,⽤量⼀般为2~7份。

⼆碱式亚磷酸铅,分⼦式:2PbO·PbHPO3·1/2H2O,代号DL,⽩⾊粉末,密度6.1g/cm3。

⼆碱式亚磷酸铅的热稳定性稍低于三碱式硫酸铅,但耐候性能好于三碱式硫酸铅。

⼆碱式亚磷酸铅常与三碱式硫酸铅并⽤,⽤量⼀般为三碱式硫酸铅的⼀半左右。

⼆碱式硬脂酸铅,代号为DLS,不如三碱式硫酸铅、⼆碱式亚磷酸铅常⽤,具有润滑性。

常与三碱式硫酸铅、⼆碱式亚磷酸铅并⽤,⽤量为0.5~1.5份。

为了防⽌有毒的粉状铅盐稳定剂飞散,严重污染⽣产环境,提⾼稳定剂的分散效果,国内外已开发应⽤了⽆尘复合铅盐热稳定剂。

其制造⼯艺为:有资料介绍,制造⽆尘铅盐复合稳定剂,采⽤的铅盐稳定剂粒⼦细微,从⽽与氯化氢反应的表⾯积增⼤。

并因与内外润滑剂复配,使其分散性优良,热稳定效率明显提⾼,⽤量可减少。

⾦属皂类⽤量仅次于铅盐的第⼆⼤类主稳定剂,其热稳定性虽不如铅盐类,但兼有润滑性,除Cd、Pb外都⽆毒,除Pb、Ca外都透明,⽆硫化污染,因⽽⼴泛⽤于软质PVC中,如⽆毒类、透明类等。

⾦属皂类可以是脂肪酸(⽉桂酸、硬脂酸、环烷酸等)的⾦属(铅、钡、镉、锌、钙等)盐,其中以硬脂酸盐最为常⽤,其热稳定性⼤⼩顺序为:锌盐>镉盐>铅盐>钙盐/钡盐。

稳定剂

稳定剂

能增加溶液、胶体、固体、混合物的稳定性能化学物都叫稳定剂。

它可以减慢反应,保持化学平衡,降低表面张力,防止光、热分解或氧化分解等作用。

广义的化学稳定剂来源非常广泛,主要根据配方设计者的设计目的,可以灵活的使用任何化学物以达到产品品质稳定的目的. 狭义地讲,主要是指保持高聚物塑料、橡胶、合成纤维等稳定,防止其分解、老化的试剂。

纯的PVC树脂对热极为敏感,当加热温度达到90℃以上时,就会发生轻微的热分解反应,当温度升到120℃后分解反应加剧,在150℃,10分钟,PVC树脂就由原来的白色逐步变为黄色—红色—棕色—黑色。

PVC树脂分解过程是由于脱HCL反应引起的一系列连锁反应,最后导致大分子链断裂。

防止PVC热分解的热稳定机理是通过如下几方面来实现的。

通过捕捉PVC热分解产生的HCl,防止HCl的催化降解作用。

铅盐类主要按此机理作用,此外还有金属皂类、有机锡类、亚磷酸脂类及环氧类等。

•置换活泼的烯丙基氯原子。

金属皂类、亚磷酸脂类和有机锡类可按此机理作用。

•与自由基反应,终止自由基的反应。

有机锡类和亚磷酸脂按此机理作用。

•与共轭双键加成作用,抑制共轭链的增长。

有机锡类与环氧类按此机理作用。

•分解过氧化物,减少自由基的数目。

有机锡和亚磷酸脂按此机理作用。

•钝化有催化脱HCl作用的金属离子。

同一种稳定剂可按几种不同的机理实现热稳定目的。

铅盐类是PVC最常用的热稳定剂,也是十分有效的热稳定剂,其用量可占PVC热稳定剂的70%以上。

铅盐类稳定剂的优点:热稳定性优良,具有长期热稳定性,电气绝缘性能优良,耐候性好,价格低。

铅盐类稳定剂的缺点:分散性差、毒性大、有初期着色性,难以得到透明制品,也难以得到鲜明色彩的制品,缺乏润滑性,易产生硫污染。

常用的铅盐类稳定剂有:(1)三盐基硫酸铅分子式为3PbO.PbSO.H20,代号为TLS,简称三盐,白色粉末,密度6.4g/cm’。

三盐基硫酸铅是最常用的稳定剂品种,一般与二盐亚磷酸铅一起并用,因无润滑性而需配人润滑剂。

稳定剂主要成分

稳定剂主要成分

稳定剂主要成分稳定剂是一种常用的食品添加剂,它可以提高食品的稳定性和保持其质量。

稳定剂主要通过改变食品的物理和化学性质来实现这一目标。

本文将详细介绍稳定剂的主要成分,包括其种类、功能和应用。

1. 稳定剂的种类根据其化学结构和功能,稳定剂可以分为多个不同的类别。

以下是一些常见的稳定剂种类:1.1 酸类稳定剂酸类稳定剂主要是指有机酸和无机酸,如柠檬酸、乙酸、亚硫酸等。

它们能够调节食品的pH值,抑制微生物生长,并增强抗氧化性能。

1.2 多糖类稳定剂多糖类稳定剂包括明胶、果胶、卡拉胶等。

它们具有良好的增稠性能,可用于制作果冻、果酱等食品。

1.3 蛋白质类稳定剂蛋白质类稳定剂主要是指明胶、明胶酶、卵磷脂等。

它们能够增强食品的黏性和乳化性,改善食品的质感和口感。

1.4 脂肪类稳定剂脂肪类稳定剂主要是指甘油脂肪酸酯、大豆磷脂等。

它们可以增加食品的黏性和乳化性,改善食品的质感和口感。

1.5 抗氧化剂抗氧化剂主要是指维生素C、维生素E等。

它们能够延缓食品的氧化反应,提高食品的稳定性和保鲜期。

2. 稳定剂的功能稳定剂在食品加工中起到了重要的作用,其主要功能包括以下几个方面:2.1 增加黏度和乳化性某些稳定剂具有增加食品黏度和乳化性能的作用,使得食品更加浓稠和均匀。

这种特性常用于制作奶油、冰淇淋等乳制品。

2.2 增强抗氧化性能抗氧化剂是一种常见的稳定剂,它们能够延缓食品的氧化反应,提高食品的稳定性和保鲜期。

这对于防止食品变质和保持其新鲜度非常重要。

2.3 调节pH值酸类稳定剂可以调节食品的pH值,使其处于适宜的酸碱平衡状态。

这对于抑制微生物生长、改善口感和保持食品质量起到了重要作用。

2.4 增加乳化性能蛋白质类稳定剂具有良好的乳化性能,可以使油水混合物更加稳定,并提高食品的质感和口感。

2.5 提高凝胶性多糖类稳定剂具有良好的增稠性能,可以形成坚实而有弹性的凝胶结构。

这对于制作果冻、果酱等食品非常重要。

3. 稳定剂的应用稳定剂广泛应用于各种食品加工过程中,以提高食品的质量和稳定性。

五水偏硅酸钠 双氧水稳定剂

五水偏硅酸钠 双氧水稳定剂

五水偏硅酸钠双氧水稳定剂1.引言1.1 概述概述部分的内容应包括对五水偏硅酸钠双氧水稳定剂的简要介绍和其在工业和化学领域的应用背景。

可以参考以下内容进行撰写:概述五水偏硅酸钠是一种重要的化学物质,在双氧水稳定剂中具有广泛的应用。

双氧水是一种常见且重要的化学品,具有氧化、漂白和杀菌等多种功能。

然而,双氧水在储存和使用过程中容易分解,失去有效性。

为了解决这一问题,研究人员发现了五水偏硅酸钠这种化合物可以作为双氧水稳定剂,有效延长双氧水的保鲜期,并提高其稳定性。

因此,五水偏硅酸钠双氧水稳定剂在工业和化学领域得到了广泛的应用。

双氧水稳定剂主要用于各类含双氧水制品的储存和使用过程中,可以有效降低双氧水的分解速度,延长其使用寿命。

五水偏硅酸钠以其独特的化学特性,在双氧水稳定剂中具有以下几方面的应用:首先,五水偏硅酸钠能够与双氧水中的一氧化锰等金属离子发生络合反应,形成稳定的络合物,从而抑制双氧水的分解反应。

这种络合反应不仅能够提升双氧水的稳定性,还可以降低双氧水的酸碱性,减少对环境和人体的伤害。

其次,五水偏硅酸钠还具有优异的防腐性能。

在双氧水稳定剂中添加五水偏硅酸钠可以形成一层保护膜,有效防止储存容器内的双氧水受到外界的污染和氧化,从而提高产品的质量和稳定性。

此外,五水偏硅酸钠具有良好的溶解性和分散性,可以与双氧水均匀混合,从而更好地发挥其稳定作用。

这种特性使得五水偏硅酸钠成为双氧水制品中的理想添加剂。

总之,五水偏硅酸钠双氧水稳定剂以其独特的特性在工业和化学领域得到了广泛的应用。

通过采用五水偏硅酸钠稳定剂,可以提高双氧水的稳定性和使用寿命,降低使用过程中的成本和环境风险。

随着科学技术的不断发展,我们可以预见五水偏硅酸钠在双氧水稳定剂领域的发展前景将更加广阔。

1.2文章结构文章结构部分应该包含以下内容:文章结构是整篇文章的框架,它有助于读者更好地理解文章的内容和逻辑。

本文按照以下几个方面来组织:1. 五水偏硅酸钠的特性:首先介绍五水偏硅酸钠的基本特性,包括其化学成分、物理性质以及在化学领域的应用等方面。

5种辅助稳定剂说明

5种辅助稳定剂说明

3 辅助稳定剂锌皂稳定剂对PVC 的稳定性较差,属于短效热稳定剂,而且容易出现“锌烧”现象(主要原因是产生的ZnCl2为强路易斯酸,具有催化脱氯化氢的作用),但具有初期着色性优良、耐候性强等优点。

钙皂类热稳定剂属于长期热稳定剂,稳定性较差,着色性强,但无毒,具有优良的润滑性。

Ca/Zn 复合稳定剂就是利用二者具有的协同效应,使其成为近年来复合稳定剂中最活跃的领域。

为了提高其稳定性,在复配过程中通常要添加一些辅助稳定剂,如季戊四醇等多元醇、水滑石、亚磷酸酯、β-二酮和环氧大豆油等化合物来改善Ca/Zn 复合稳定剂的性能。

3.1 亚磷酸酯亚磷酸酯是Ca/Zn 复合稳定剂中应用最广的辅助稳定剂,在复合稳定剂中是不可缺少的成份。

用做辅助稳定剂的亚磷酸酯主要有亚磷酸三苯酯、亚磷酸三癸酯、亚磷酸三壬基苯酯、亚磷酸三辛酯等。

对于软质PVC,亚磷酸酯一般与β-二酮、环氧大豆油等配合使用。

亚磷酸酯具有增塑作用,不适用于硬质PVC;具有抗氧化能力,可以捕捉氯化氢,加成多烯烃,能大大提高PVC 稳定体系的稳定性能。

在液体稳定剂中添加量一般为10%~35%(质量分数),主要品种有亚磷酸苯二异辛酯、亚磷酸辛酯、亚磷酸二苯癸酯、亚磷酸二癸苯酯、亚磷酸三壬酯等。

目前国内多数选用水解亚磷酸苯二异辛酯,它能有效地改善PVC 制品的着色、热稳定性、透明性、防结垢和耐候性等效果。

亚磷酸酯是应用最广泛的辅助稳定剂,长期以来普遍用于钙锌无毒液体复合稳定剂应用中。

最有效的是亚磷酸烷基/芳基酯。

如日本Adeka -Argels 公司开发的Mark-1500 对稳定剂具有优良的初期着色性能。

3.2 环氧化合物在环氧化合物中,传统上被用作辅助稳定剂是环氧大豆油。

近年来的研究表明,双酚A 二缩水甘油醚、双酚F 二缩水甘油醚、酚醛树脂的缩水甘油醚、四苯基乙烷的缩水甘油醚、脂环族环氧树脂、偏苯三酸三缩水甘油酯、对苯二甲酸二环氧丙酯等都具有较高的稳定效率。

稳定剂的种类有哪些?

稳定剂的种类有哪些?

稳定剂的种类有哪些?稳定剂是指在化学反应过程中能够稳定化学反应体系,提高反应的选择性和产率,并减少不必要的副反应的化学物质。

稳定剂的种类非常多,下面将介绍几种常见的稳定剂。

1. 缓冲剂缓冲剂可以在化学反应体系中保持稳定酸度或碱度,从而防止生产不同pH值下产物的情况。

缓冲剂经常用于生物化学和分子生物学实验中。

常见的缓冲剂有磷酸盐缓冲液、三(羟甲基)氨基甲烷 (Tris)缓冲液、碳酸酐缓冲液等。

2. 防护剂防护剂是化学反应中的一种稳定剂,它们可以防止产物受到空气、水和光的影响而出现质量和量的改变。

对于易氧化或易发生光解物,防腐剂可以很好地保护产物的稳定性。

例如,对于油漆和涂料中的反应物,添加防腐剂可以防止它们降解,同时也可以延长产品的使用寿命。

3. 钯催化反应的配体钯催化反应中配体的作用相当于稳定剂一样。

例如,五羰基二茂钯作为一个催化剂时,需要添加磷或氮的配体来稳定反应物,以便反应能够进行。

常见的配体有三苯基膦、三(二甲氨基)甲烷、二乙基胺等。

4. 氧化剂氧化剂是一种稳定剂,它可以使物质通过氧化反应来稳定。

例如,黄钾长石中添加了铁元素后,可以使其更加稳定。

又如化学处理药品时,添加氧化剂可以稳定反应体系。

5. 熔盐熔盐不仅可以作为反应介质来传递化学反应,而且也可以作为稳定剂。

熔盐可以延长化学反应的周期,并降低反应体系产生的副反应。

例如,钠氰化物和氢氧化钾的熔融混合物可以稳定反应体系,防止其在反应期间失去活性。

综上所述,稳定剂是化学反应中必不可少的一部分,它们可以提高反应的效率和产率,并防止不必要的副反应。

学习稳定剂种类和适用场景对于化学工程学习有着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 辅助稳定剂
锌皂稳定剂对PVC 的稳定性较差,属于短效热稳定剂,而且容易出现“锌烧”现象(主要原因是产生的ZnCl2为强路易斯酸,具有催化脱氯化氢的作用),但具有初期着色性优良、耐候性强等优点。

钙皂类热稳定剂属于长期热稳定剂,稳定性较差,着色性强,但无毒,具有优良的润滑性。

Ca/Zn 复合稳定剂就是利用二者具有的协同效应,使其成为近年来复合稳定剂中最活跃的领域。

为了提高其稳定性,在复配过程中通常要添加一些辅助稳定剂,如季戊四醇等多元醇、水滑石、亚磷酸酯、β-二酮和环氧大豆油等化合物来改善Ca/Zn 复合稳定剂的性能。

3.1 亚磷酸酯
亚磷酸酯是Ca/Zn 复合稳定剂中应用最广的辅助稳定剂,在复合稳定剂中是不可缺少的成份。

用做辅助稳定剂的亚磷酸酯主要有亚磷酸三苯酯、亚磷酸三癸酯、亚磷酸三壬基苯酯、亚磷酸三辛酯等。

对于软质PVC,亚磷酸酯一般与β-二酮、环氧大豆油等配合使用。

亚磷酸酯具有增塑作用,不适用于硬质PVC;具有抗氧化能力,可以捕捉氯化氢,加成多烯烃,能大大提高PVC 稳定体系的稳定性能。

在液体稳定剂中添加量一般为10%~35%(质
量分数),主要品种有亚磷酸苯二异辛酯、亚磷酸辛酯、亚磷酸二苯癸酯、亚磷酸二癸苯酯、亚磷酸三壬酯等。

目前国内多数选用水解亚磷酸苯二异辛酯,它能有效地改善PVC 制品的着色、热稳定性、透明性、防结垢和耐候性等效果。

亚磷酸酯是应用最广泛的辅助稳定剂,长期以来普遍用于钙锌无毒液体复合稳定剂应用中。

最有效的是亚磷酸烷基/芳基酯。

如日本Adeka -Argels 公司开发的Mark-1500 对稳定剂具有优良的初期着色性能。

3.2 环氧化合物
在环氧化合物中,传统上被用作辅助稳定剂是环氧大豆油。

近年来的研究表明,双酚A 二缩水甘油醚、双酚F 二缩水甘油醚、酚醛树脂的缩水甘油醚、四苯基乙烷的缩水甘油醚、脂环族环氧树脂、偏苯三酸三缩水甘油酯、对苯二甲酸二环氧丙酯等都具有较高的稳定效率。

环氧化物与氯化氢反应生成氯乙醇,在钙、锌等金属皂催化作用下,取代PVC 中不稳定的氯原子而发挥稳定作用。

在静态稳定试验中,环氧化合物的作用是抑制PVC 变黄。

单独使用效果不佳,与亚磷酸酯并用时,其稳定效果可明显改善。

环氧类辅助热稳定剂一般有环氧大豆油、环氧亚麻籽油、环氧硬脂酸丁酯、辛酯等环氧类化合物等,它们与Ca/Zn体系配合使用有较高的协同作用,具有光稳定性和无毒之优点,适用于软质,特别是要暴露于阳光下的软质PVC制品,通常不用于硬质PVC制品,其缺点是易渗出。

协同作用机理[6]可认为是降解产生的HCl被环氧基团和金属皂盐吸收,HCl浓度减小,降低了PVC的脱HCl速度(HCl对PVC 降解有催化作用),从而使PVC的热稳定性得到提高。

另外,在Zn盐的催化下,环氧化合物还可以有效地取代烯丙基氯原子。

3.3 多元醇
作为Ca/Zn 复合体系的辅助稳定剂的多元醇主要有季戊四醇、二季戊四醇、聚乙烯醇、四羟甲基环己醇、二三羟甲基丙烷、卡必醇,以及山梨醇、甘露糖醇、木糖醇、麦芽糖醇、异麦芽糖醇、乳糖醇和它们的脱水、半脱水产物等,这类品种与β-二酮、环氧化合物、水滑石配合用于软质PVC 中时,具有极好的协同作用。

需要注意的是多元醇尽管有良好的热稳定性,但部分品种由于其自身在加工过程中的脱水着色,仍有不足之处。

新品种如菊粉、三(α-羟乙基)异氰脲酸酯可以克服上述缺陷。

另外,多元醇易升华,在加工过程中升华物沉积在设备上,妨碍加工。

为克服这些不足,现已开发了许多用脂肪酸部分酯化的多元醇,如日本推出的Tohtlixer-101,它是一种多元醇改性物,能较好地克服了一般多元醇的缺点,同Ca/Zn 稳定体系并用,表现出良好的光稳定性、加工性和贮存稳定性。

多元醇可以螯合金属离子,防止氯化物催化降解,同时在金属皂的存在下,可以置换烯丙基氯,从而使PVC 稳定。

此外,多元醇较多的羟基可以与金属离子形成无色的配位体,从而缓解了硬酯酸锌
的催化加速作用,阻止了金属离子与PVC多烯结构配合的有色配位体的形成,直到辅助稳定作用,伴随着羟基数目的增加,多元醇稳定效果增加。

多元醇类主要有季戊四醇、双季戊四醇、聚乙烯醇、四羟甲基环己醇、卡必醇等,以及山梨醇、甘露糖醇、木糖醇、麦芽糖醇、异麦芽糖醇、乳糖醇和它们的脱水、半脱水产物,这类品种与β-二酮、环氧化合物、水滑石配合用于软质PVC中,具有极好的协同作用。

关于其作用机理[9] ,一般认为季戊四醇与ZnSt2能形成络合物,然后络合物按下式进行取代反应,生成ZnCl2和季戊四醇络合物,从而抑制了ZnCl2对PVC的催化降解和“锌烧”现象,延长了PVC 的热稳定时间。

3.4 β-二酮
β-二酮是Ca/Zn 复合稳定剂体系中不可缺少的辅助稳定剂,它对提高热稳定性、光稳定性和抑制“锌烧”有着重要作用。

主要品种有硬脂酰苯甲酰甲烷、二苯甲酰甲烷、异戊酰苯甲酰甲烷、辛酰苯甲酰甲烷等,基本用量一般为Ca/Zn 复合稳定剂的8~12 份,或者为PVC 树脂的0.2~0.3 份。

β-二酮的突出作用是改善制品的着色性能,一般与其他组分无对抗作用。

这一类辅助稳定剂中,首推硬脂酰苯甲酰甲烷,这是一个由美国FDA(美国食品及药物管理局) 认可的用于食品包装材料的品种。

其次是二苯甲酰甲烷,它是一个经典的品种,目前国内也有生产,也有部分出口;除上述2 个固体品种外,液体β-二酮也有2 个主要品种,一个是由Rodia 公司开发的异戊酰苯甲酰甲烷,另一个品种是山西省化工研究所开发的液体β-二酮T-247。

近年来对β-二酮类的研究很活跃,如Ciba 公司开发了1.3-嘧啶二酮和多酮化合物(DATHP),Akcros 公司开发了吡咯啉-2.4 -二酮,其热稳定性效果和颜色控制效果均优于传统用的β-二酮[5]。

β-二酮是改善初期着色最有效的一类化合物。

主要品种有硬脂酰苯甲酰甲烷、二苯甲酰甲烷、异戊酰苯甲酰甲烷、辛酰苯甲酰甲烷等,基本用量一般为Ca/Zn 稳定剂的8%~12%,或者为PVC树脂的0.2%~0.3%。

β-二酮的突出作用是改善制品的着色性能,一般与其他组分无不良副作用。

其作用机理[7-8]可认为是夹在两个羰基之间的次甲基具有相当高的活性,容易失去质子,因此可通过碳烷基化反应置换出烯丙基氯,形成牢固的碳-碳结构,从而中止了因脱除HCl导致的共轭链增长,达到稳定效果,但由于反应速度缓慢,稳定效果不高。

当Ca/Zn体系中加入β-二酮时,一方面β-二酮会与体系中的锌盐络合生成β-二酮锌,继而β-二酮锌通过碳-烷氧基化(或称氧-烷基化)反应迅速置换出烯丙基氯原子;另一方面,ZnCl2又能催化上述的碳-烷基化反应,使其迅速进行。

2.3 多元醇类辅助热稳定剂
多元醇类主要有季戊四醇、双季戊四醇
3.5 氨基巴豆酸酯和α-苯基吲哚
氨基巴豆酸酯单独使用时,热稳定性一般,很少作为主稳定剂使用,氨基巴豆酸酯主要和Ca/Zn复合稳定剂及环氧化合物配合使用,能大大改进Ca/Zn 复合稳定剂的热稳定效果。

α-苯基吲哚单独使用时不是很好的稳定剂,尤其是初期着色性差,而且只能用于加碱稳定的乳液PVC。

在悬浮PVC 中α-苯基吲哚与Ca/Zn 体系化合物配合使用时,能够明显提高这一体系的性能。

3.6 水滑石类辅助热稳定剂
水滑石类层状双羟基复合金属氢氧化物(LDH)是具有特殊结构和性能的无机晶体材料,常见水滑石的化学组成包括镁铝复合氢氧化物、层板羟基、碳酸根离子和结晶水。

晶体结构特征为:纳米级层板有序排列,层板内原子以共价键连接,层板间以弱化学键(离子键、氢键)连接并具有可交换的阴离子,主体层板呈碱性。

特殊的化学组成和晶体结构,使其具有一系列独特的性能和功能。

其热稳定效果比钡皂、钙皂及它们的混合物好。

此外它还具有透明性、绝缘性、耐候性及加工性好的优点,不受硫化物的污染,无毒,能与锌皂及有机锡等热稳定剂起协同作用,是极有开发前景的一类无毒辅助热稳定剂。

水滑石在PVC加工过程中
的热稳定作用一般认为是由于其表面羟基吸收PVC热分解释放出的HCl气体,从而抑制HCl对PVC分解的催化作用。

此外,还有学者提出HCl与水滑石层间CO32-交换的作用机理,水滑石作为PVC热稳定剂时,其热分解生成的HCl与水滑石层间的CO32-反应,同样会有效抑止PVC的分解。

相关文档
最新文档