高三数学一轮基础知识复习 人教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012届高三数学一轮基础知识复习第一部分 集合
1.理解集合中元素的意义.....
是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ;
2.数形结合....
是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;
3.(1)含n 个元素的集合的子集数为2n ,真子集数为2n -1;非空真子集的数为2n -2;
(2);B B A A B A B A =⇔=⇔⊆ 注意:讨论的时候不要遗忘了φ=A 的情况。
4.φ是任何集合的子集,是任何非空集合的真子集。
第二部分 函数与导数
1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;
⑤换元法 ;⑥利用均值不等式 2
222b a b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(x a 、x sin 、x cos 等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出
② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =; ②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....
; ⑵)(x f 是奇函数⇔f(-x)=-f(x);)(x f 是偶函数⇔f(-x)= f(x)
⑶奇函数)(x f 在原点有定义,则0)0(=f ;
⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; ⑸若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
6.函数的单调性
⑴单调性的定义:
①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <;
②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >;
⑵单调性的判定
① 定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号; ②导数法(见导数部分);③复合函数法;④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性
(1)周期性的定义:对定义域内的任意x ,若有)()(x f T x f =+ (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期
①π2:sin ==T x y ;②π2:cos ==T x y ;③π==T x y :tan ; ④|
|2:)cos(),sin(ωπϕωϕω=
+=+=T x A y x A y ;⑤||:tan ωπω==T x y ; (3)与周期有关的结论 )()(a x f a x f -=+或)0)(()2(>=-a x f a x f ⇒)(x f 的周期为a 2;
8.基本初等函数的图像与性质
⑴幂函数:αx y = ()R ∈α ;⑵指数函数:)1,0(≠>=a a a y x
; ⑶对数函数:)1,0(log ≠>=a a x y a ;⑷正弦函数:x y sin =;
⑸余弦函数:x y cos = ;(6)正切函数:x y tan =;⑺一元二次函数:02=++c bx ax ; ⑻其它常用函数:
① 正比例函数:)0(≠=k kx y ;②反比例函数:)0(≠=
k x k y ;③函数)0(>+=a x
a x y ; 9.二次函数:
⑴解析式:
① 一般式:c bx ax x f ++=2)(;②顶点式:k h x a x f +-=2)()(,),(k h 为顶点; ③零点式:))(()(21x x x x a x f --= 。
⑵二次函数问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。 二次函数c bx ax y ++=2的图象的对称轴方程是a b x 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,。
10.函数图象:
⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法 ⑵图象变换:
① 平移变换:ⅰ))()(a x f y x f y ±=→=,)0(>a ———左“+”右“-”; ⅱ))0(,)()(>±=→=k k x f y x f y ———上“+”下“-”;
② 对称变换:ⅰ)(x f y =−−→−)0,0()(x f y --=;ⅱ)(x f y =−→−=0y )(x f y -=;
ⅲ )(x f y =−→−=0x )(x f y -=; ⅳ)(x f y =−−→−=x y ()x f y =;
③ 翻转变换:
ⅰ)|)(|)(x f y x f y =→=———右不动,右向左翻()(x f 在y 左侧图象去掉); ⅱ)|)(|)(x f y x f y =→=———上不动,下向上翻(|)(x f |在x 下面无图象);
11.函数图象(曲线)对称性的证明
(1)证明函数)(x f y =图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明函数)(x f y =与)(x g y =图象的对称性,即证明)(x f y =图象上任意点关于对称中心(对称轴)的对称点在)(x g y =的图象上,反之亦然;
注:①曲线C 1:f(x,y)=0关于点(0,0)的对称曲线C 2方程为:f(-x,-y)=0;
②曲线C 1:f(x,y)=0关于直线x=0的对称曲线C 2方程为:f(-x, y)=0;
曲线C 1:f(x,y)=0关于直线y=0的对称曲线C 2方程为:f(x, -y)=0;
曲线C 1:f(x,y)=0关于直线y=x 的对称曲线C 2方程为:f(y, x)=0
③f(a+x)=f(b-x) (x∈R)→y=f(x)图像关于直线x=2
b a +对称; 特别地:f(a+x)=f(a -x) (x∈R)→y=f(x)图像关于直线x=a 对称;
12.函数零点的求法:
⑴直接法(求0)(=x f 的根);⑵图象法;⑶二分法.
(4)零点定理:若y=f(x)在[a,b]上满足f(a)f(b)<0,则y=f(x)在(a,b)内至少有一个零点。
13.导数
⑴导数定义:f(x)在点x 0处的导数记作x x f x x f x f y x x x ∆-∆+='='→∆=)()(lim
)(00000; ⑵常见函数的导数公式: ①'C 0=;②1')(-=n n nx
x ;③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(;⑦a
x x a ln 1)(log '=;