高频开关磁芯与功率关系表

合集下载

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

功率铁氧体磁芯常用功率铁氧体材料牌号技术参数EI型磁芯规格及参数PQ型磁芯规格及参数EE型磁芯规格及参数EC、EER型磁芯规格及参数1,磁芯向有效截面积:Ae2,磁芯向有效磁路长度:le3,相对幅值磁导率:μa4,饱和磁通密度:Bs1磁芯损耗:正弦波与矩形波比较一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。

涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。

对于高电阻率的磁性材料如类似铁氧体,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。

材料中存在高的涡流损耗(如大一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。

但在元件存在铜损的情况下,这是不正确的。

在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。

高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。

举个例子,在20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激励磁芯损耗的两倍。

例如,对于许多开关电源来说,具有矩形波激励磁芯的5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。

2Q值曲线所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。

这些测试参数通常是用置于磁芯上的最适用的绕组完成的。

对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。

对于钼坡莫合金磁粉芯同样是正确的。

用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。

Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。

由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。

3电感量、AL系数和磁导率在正常情况下,磁芯制造厂商会发布电感器和滤波器磁芯的AL系数、电感量和磁导率等参数。

开关电源中磁粉芯认识, 铁氧体,粉芯, EMC,滤波电感

开关电源中磁粉芯认识, 铁氧体,粉芯, EMC,滤波电感

一). 粉芯类1. 磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。

由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。

主要用于高频电感。

磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。

常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。

磁芯的有效磁导率me及电感的计算公式为: me = DL/4N2S ´ 109其中: D为磁芯平均直径(cm),L为电感量(享),N为绕线匝数,S为磁芯有效截面积(cm2)。

(1). 铁粉芯常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。

在粉芯中价格最低。

饱和磁感应强度值在1.4T左右;磁导率范围从22~100; 初始磁导率mi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。

(2). 坡莫合金粉芯坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。

MPP是由81%Ni, 2%Mo, 及Fe粉构成。

主要特点是: 饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550; 在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。

主要应用于300KHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用, 粉芯中价格最贵。

高磁通粉芯HF是由50%Ni, 50%Fe粉构成。

主要特点是: 饱和磁感应强度值在15000Gs左右;磁导率范围从14~160; 在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。

磁芯参数表

磁芯参数表

常用磁芯参数表【EER磁芯】■ 用途:高频开关电源变压器、匹配变压器、扼流变压器等。

【EE磁芯】■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

【ETD磁芯】■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。

【EI 磁芯】■ 用途:高频开关电源变压器、功率变压器、整流变压器、电压互感器等。

【ET 磁芯】■ 用途:滤波变压器【EFD 磁芯】■ 用途:高频开关电源变压器器、整流变压器、开关变压器等。

【UF 磁芯】■ 用途:整流变压器、脉冲变压器、扼流变压器、电源变压器等。

【PQ 磁芯】■ 用途高频开关电源变压器、整流变压器等。

【RM 磁芯】■ 用途:高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。

【EP 磁芯】■ 用途:功率变压器、宽频变压器、屏蔽变压器、脉冲变压器等。

【H 磁芯】■ 用途:宽带变压器、脉冲变压器、脉冲功率变压器、隔离变压器、滤波变压器、扼流变压器、匹配变压器等。

软磁铁氧体磁芯形状与尺寸标准(一)软磁铁氧体磁芯形状软磁铁氧体是软磁铁氧体材料和软磁铁氧体磁芯的总称。

软磁铁氧体磁芯是用软磁铁氧体材料制成的元件或零件,或是由软磁铁氧体材料根据不同形式组成的磁路。

磁芯的形状基本上由成型(形)模具决定,而成型(形)模具又根据磁芯的形状进行设计与制造。

磁芯按磁力线的路径大致可分两大类;磁芯按具体形状分,有各种各样:磁芯按磁力线路径分类磁芯按使用时磁化过程所产生磁力线的路径可分为开路磁芯和闭路磁芯两类。

第一类为开路磁芯。

这类磁芯的磁路是开启的(open magnetic circuits),通过磁芯的磁通同时要通过周围空间(气隙)才能形成闭合磁路。

开路磁芯的气隙占磁路总长度的相当部分,磁阻很大,磁路中的部分磁通在达到气隙以前就已离开磁芯形成漏磁通。

因而,开路磁芯在磁路各个截面上的磁通不相等,这是开路磁芯的特点。

变压器设计及磁芯相关资料

变压器设计及磁芯相关资料

磁性器件中磁芯的选用及设计开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。

不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。

(一)、高频功率变压器变压器铁芯的大小取决于输出功率和温升等。

变压器的设计公式如下:P=K*f*N*B*S*I×10-6T=hc*Pc+hW*PW其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数。

由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。

但B值的增加受到材料的Bs值的限制。

而频率f可以提高几个数量级,从而有可能使体积重量显著减小。

而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。

一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。

单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。

它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。

特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。

线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。

这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。

对于工作在±Bm 之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。

开关电源使用的磁性器件中磁芯的选用及设计

开关电源使用的磁性器件中磁芯的选用及设计

开关电源使用的磁性器件中磁芯的选用及设计开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。

不同的器件对材料的性能要求各不相同。

 (一)、高频功率变压器 变压器铁芯的大小取决于输出功率和温升等。

变压器的设计公式如下: P=KfNBSI×10-6T=hcPc+hWPW 其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积; B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数。

 由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。

但B值的增加受到材料的Bs值的限制。

而频率f可以提高几个数量级,从而有可能使体积重量显着减小。

而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。

一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。

单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。

它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大; 同时要求高的脉冲磁导率。

特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。

 线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。

这就要求材料有。

开关电源高频变压器的设计

开关电源高频变压器的设计

01
04
02
03
功率变压器根据拓扑结构分为三大类:
反激式变压器;
正激式变压器;
推挽式变压器(全桥/半桥变换器中的变压器) 磁芯结构适合的拓扑结构形式如下页表所示:
磁芯结构
变换器电路类型
反激式
正激式
推挽式
E cores
+
+
0
Planar E Cores
-
+
0
EFD Cores
-
+
+
ETD Cores
变压器基础知识 1、变压器组成: 原边绕组(初级primary side ) 副边绕组(次级secondary side ) 原边电感(励磁电感)--magnetizing inductance 漏感---leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流
按照功率变压器的设计方法,用面积积AP法设计变压器的一般步骤: 1 .选择磁芯材料,计算变压器的视在功率; 2. 确定磁芯截面尺寸AP,根据AP值选择磁芯尺寸; 3. 计算原副边电感量及匝数; 4. 计算空气隙的长度; 5. 根据电流密度和原副边有效值电流求线径; 6. 求铜损和铁损是否满足要求(比如:允许损耗和温升)
线圈参数:
线圈参数包括:匝数,导线截面(直径),导线形式,
绕组排列和绝缘安排。
导线截面(直径)决定于绕组的电流密度。通常取J为2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如必要,还要经过变压器温升校核后进行必要的调整。
4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反馈绕组逐渐向外排列。下面推荐两种绕组排列形式: 1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排; 2)如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有利于减小漏感。

开关式电源中的磁性元件

开关式电源中的磁性元件
100.00% 80.00% 60.00% 40.00% 20.00% 0.00%
1
2>
1>
3
5
Harmonic Number 谐波次数
7
9
11 13 15 17 19 21
1) CH1: 2) CH2:
2 00 V 5 ms 2 A 5 ms
In this case the harmonics are huge, because much of the power is concentrated in a short period of time in each cycle. 在这种情况下,谐波次数很大, 因为大部分的能量集中在每个周期一段很短 的时间内。
Preal 有功 (v ⋅ i )averaged over one cycle (一周期内的平均) PF = = Papparent 视在 Vrms ⋅ Irms
Where v and i are instantaneous values of voltage and current, and rms indicates the root-mean-squared value of the voltage or current. The apparent power (Vrms x Irms), in effect, limits the available output power. 其中v和i是电压和电流的瞬时值,rms代表电压或电流的均方根值 。视在功率( Vrms x Irms )实际上限制了可能的输出功率。
100,000
0.55
90
Mag. Am ps 磁 放大器
Note the wide range of permeability and power loss. 注意宽范围的磁导率和功耗。

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

功率铁氧体磁芯常用功率铁氧体材料牌号技术参数EI型磁芯规格及参数PQ型磁芯规格及参数EE型磁芯规格及参数EC、EER型磁芯规格及参数1,磁芯向有效截面积:Ae2,磁芯向有效磁路长度:le3,相对幅值磁导率:μa4,饱和磁通密度:Bs1磁芯:正弦波与矩形波比较一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。

涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。

对于高电阻率的如类似,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。

材料中存在高的涡流损耗(如大一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。

但在元件存在铜损的情况下,这是不正确的。

在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。

高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。

举个例子,在20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激励磁芯损耗的两倍。

例如,对于许多开关电源来说,具有矩形波激励磁芯的5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。

2Q值曲线所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。

这些测试参数通常是用置于磁芯上的最适用的绕组完成的。

对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。

对于钼坡莫合金磁粉芯同样是正确的。

用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。

Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。

由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。

3电感量、AL系数和在正常情况下,磁芯制造厂商会发布电感器和滤波器磁芯的AL系数、电感量和磁导率等参数。

机载高频开关电源工作原理及设计简介

机载高频开关电源工作原理及设计简介

机载高频开关电源工作原理及设计简介机载高频开关电源产品专门用于输入交流400Hz的场合,这是特意为了满足军用雷达、航空航天、舰船、机车以及导弹发射等专门用途所设计的。

应用户要求,研制出机载高频开关电源产品对电子武器装备系统的国产化,打破国际封锁,提高我军装备的机动性,高性能都有重要的意义。

机上可供选择的供电电源有两种输入方式:115V/400Hz中频交流电源和28V 直流电源。

两种输入方式各有优缺点,115V/400Hz电源波动小,需要器件的耐压相对较高;而28V直流电源却相反,一般不能直接提供给设备部件使用,必须将供电电源进行隔离并稳压成为需要的直流电源才能使用。

机载电源的使用环境比较恶劣,必须适应宽范围温度正常工作,并能经受冲击、震动、潮湿等应力筛选试验,因此设计机载电源的可靠性给我们提出了更高的要求。

下面主要介绍115V/400Hz中频交流输入方式所研制的开关电源,它的输出电压270~380Vdc可以调节,输出功率不小于3000W,环境温度可宽至-40℃~+55℃,完全适应军品级电源的需要。

系统构成及主回路设计图1所示为整机电路原理框图。

它的设计主要通过升压功率因数校正电路及DC/DC变换电路两部分完成。

115Vac/400Hz中频交流电源经输入滤波,通过升压功率因数校正(PFC)电路完成功率因数校正及升压预稳、能量存储,再通过DC/DC半桥变换、高频整流滤波器、输出滤波电路以及反馈控制回路实现270~380Vdc可调节输出稳压的性能要求。

图1 整机电路原理框图升压功率因数校正电路主要使输入功率因数满足指标要求,同时实现升压预稳功能。

本部分设计兼顾功率因数电路达到0.92的要求,又使DC/DC输入电压适当,不致使功率因数校正电路工作负担过重,因此设定在330~350Vdc。

隔离式DC/DC变换器电路拓扑结构形式主要有以下几种:正激、反激、全桥、半桥和推挽。

反激和正激拓扑主要应用在中小功率电源中,不适合本电源的3000W输出功率要求。

各种开关电源变压器 各种高频变压器参数 EE16 EE19 EE55 EI60 EI50等等的参数

各种开关电源变压器 各种高频变压器参数 EE16 EE19 EE55 EI60 EI50等等的参数

功率铁氧体磁芯常用功率铁氧体材料牌号技术参数EI型磁芯规格及参数PQ型磁芯规格及参数EE型磁芯规格及参数EC、EER型磁芯规格及参数1,磁芯向有效截面积:Ae2,磁芯向有效磁路长度:le3,相对幅值磁导率:μa4,饱和磁通密度:Bs1 磁芯损耗:正弦波与矩形波比较一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。

涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。

对于高电阻率的磁性材料如类似铁氧体,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。

材料中存在高的涡流损耗(如大型叠片式或大型切割磁芯)时,矩形波损耗是正弦波损耗的1/2~2/3。

D.Y.Chen提供的参考资料解释了这种现象。

一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。

但在元件存在铜损的情况下,这是不正确的。

在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。

高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。

举个例子,在20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激励磁芯损耗的两倍。

例如,对于许多开关电源来说,具有矩形波激励磁芯的5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。

2 Q值曲线所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。

这些测试参数通常是用置于磁芯上的最适用的绕组完成的。

对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。

对于钼坡莫合金磁粉芯同样是正确的。

用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。

Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。

由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。

开关电源磁性元件2

开关电源磁性元件2

“时钟频率”是控制IC芯片产生的时钟脉冲频率。

通常,开关频率与时钟频率相同,但不总是这样。

偶尔,控制IC芯片经分频获得低的开关频率。

特别将推挽IC控制芯片用于单端正激变换器,仅用两个开关驱动中的一个,保证最大占空度不超过50%。

在这种情况下,开关频率是时钟频率的一半通常发生混淆是推挽类拓扑。

推挽类(推挽,半桥和全桥)功率电路每个功率开关以1/2时钟频率驱动,电路的开关频率就是时钟频率。

变压器和单个功率开关和单个整流器都以“变压器频率f T”工作,它是开关频率的一半。

电路输出滤波工作在开关频率。

7.1.7 占空度占空度D定义为功率开关导通时间T on与开关周期T的比:D=T on/T。

在单端正激变换器中,这很容易明白。

但在双端双路交错正激和推挽类变换器中,时常发生混乱。

例如,双端双路交错正激变换器中,对于每一路,在输入电压最低U i min时最大占空度约为0.45,每路变压器在45%时间内传输功率,传输总功率的一半。

而对输出滤波电感占空度则为0.9。

在半桥电路工作于最低电压时,占空度接近90%(D=0.9)。

变压器在90%的时间传输功率,90%时间电压脉冲加在输入滤波器上等等。

但对于单个功率开关和单个整流器,总是交替导通,占空度仅45%。

输出滤波器可以看成D=0.5T on/0.5T=T on/T。

在整个电源设计中,应保持D的定义一致。

正激或推挽类变换器稳态时,当输入电压变化时,反馈控制电路根据输入电压的变化反比改变占空度D,以维持输出电压的稳定U o=U2’D。

U2’≈U i/n-滤波器输入电压,等于变压器次级电压减去整流二极管压降。

因此U T U DfnUfi oniso s==(7-1)式中f S=1/T-开关频率。

当输出电压恒定时,稳态情况下变压器线圈上的伏秒为常数,与电网电压和负载电流无关。

当输入电压最低(U i min)时,占空度最大,还要考虑到以下对最大占空度的限制:①根据输出电压调节范围,在输入电压最低时应保证输出最高电压。

开关电源高频变压器的设计

开关电源高频变压器的设计

入 (3) 式得 N 1 · I S = 116. 7 安匝。 因此 N 1 =
(N 1·I S) I S= 116. 7 1. 3= 89. 7 匝, 实取 N 1=
90 匝。 采用 <0. 31 mm 高强度漆包线绕制。
315 确定自馈线圈匝数 N 2、次级匝数 N 3
确定 N 1 之后, 利用下式可计算出N 2、N 3:
318 自馈线圈与次级线圈中的整流管选择 自馈线圈回路中可选 FR 309 型快恢复二
极管, 其耐压值为 1 000 V , 额定整流电流为 3 A。次级线圈回路宜选用肖特基二极管, 它属 于高频、大电流、低功耗器件, 其正向导通压降 还不到快恢复二极管V F 值的一半。D 80- 004 型肖特基二极管的主要参数如下: 平均整流电 流 I 0= 15 A , 最大正向压降V F = 0. 4 V , 反向恢 复时间 trr< 10 n s, 反向峰值电压 V R = 40 V 。
Key words Sw itch ing DC supp ly; p u lse w idth m odu lato r; h igh2frequency tran sfo rm er
开关式集成稳压电源被誉为“新型高效节 能电源”, 它代表着稳压电源的发展方向。 选用 带高频变压器的单端输出式脉宽调制器, 电源 效率可达 70%~ 80% 左右, 并可省掉工频变压 器, 制成功率为几十瓦的开关电源。高频变压器 是其核心部件之一, 而高频变压器的设计也是 研制开关电源的关键技术。
收稿日期: 1999204205; 责任编辑: 王士忠 3 工作单位: 河北科技大学信息科学与工程系 33 工作单位: 秦皇岛市无线电管理处 第一作者简介: 男, 1960 年出生, 工程师

关于大功率高频变压器的设计!

关于大功率高频变压器的设计!

关于大功率高频变压器的设计!高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。

在高频链的硬件电路设计中,高频变压器是重要的一环。

设计高频变压器首先应该从磁芯开始。

开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。

磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。

磁芯矫顽力低,磁滞面积小,则铁耗也少。

高的电阻率,则涡流小,铁耗小。

铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。

高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。

注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。

2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。

同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。

对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。

单片开关电源高频变压器的设计要点高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。

单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。

在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、T Otch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。

高频开关电源主要磁性元件的设计

高频开关电源主要磁性元件的设计

高频开关电源主要磁性元件的设计作者:刘明轩来源:《电子世界》2013年第17期【摘要】本文重点研究高频开关电源的磁性元件的设计,在高频开关电源设计过程中需要解决的一个关键问题,就是热的问题;而热主要来源是磁性元件,如何解决磁性元件的损耗及发热问题,减小磁性元件的尺寸也成为该课题的一个关键问题。

所以磁性元器件的设计自然成为整个设计关节中相当重要的一环。

【关键词】变压器;电抗器;磁芯1.概述在电力系统中的直流系统,由于普遍采用高频模块,而对于高频模块的设计也是功率越来越大,而体积却是越来越小,这就对其设计提出了一个关键的问题,那就是如何解决磁性元件的损耗及发热问题。

高频开关电源中大量使用各种各样的磁性元件,如输入/输出共模电感,功率变压器,饱和电感以及各种差模电感。

各种磁性元器件对磁性材料的要求各不相同,如差模电感希望μ值适中,但线性度好,不易饱和;共模电感则希望μ值要高,频带宽,功率变压器则希望μ值要适中,温度稳定好,剩磁小,损耗低等。

在非晶材料出现以前,共模电感主要采用高μ值(6K~10K)Mn-Zn合金,差模电感多采用铁粉芯或开气隙铁氧体材料,变压器则采用铁氧体材料等。

这些材料应用技术成熟,种类也很丰富,并有各种各样的产品形状供选择。

随着非晶材料的出现和技术不断成熟,在开关电源设计中,非晶材料表现出许多其它材料无法比拟的优点。

几种常用磁性材料基本性能比较如表1。

2.主变压器的设计对于高频开关电源的主要发热元件,主变压器的设计尤其重要,其尺寸的大小和材料的选择更是重要。

2.1 主变压器的磁芯必须具备的几个特点①低损耗②高的饱和磁感应强度且温度系数小③宽工作温度范围④μ值随B值变化小⑤与所选用功率器件开关速度相应的频响早前高频变压器一般选用铁氧体磁芯,下面对VITROPERM500F铁基超微晶磁芯与德国西门子公司生产的N67系列铁氧体磁芯的性能进行较:从以上图表可以看出两者有以下区别:(1)相同工作频率(200KHZ以下),非晶材料损耗明显低于铁氧体,工作频率越低,工作B值越高,非晶材料优势越明显。

磁材功率及损耗(PDF)

磁材功率及损耗(PDF)

高频电源变压器磁芯的设计原理摘要:开关电源正向高频化发展,作为主变压器使用的软磁铁氧体磁芯,从材料性能、尺寸形状等均应作相应改进。

本文讨论了磁芯设计中应考虑的通过功率、性能因子、热阻系数等参数,并提出了降低材料高频损耗的微观设计方法。

1.引言电子信息产业的迅速发展,对高频开关式电源不断提出新的要求。

据报导,全球开关电源市场规模已超过100亿美元。

通信、计算机和消费电子是开关电源的三大主力市场。

庞大的开关电源市场主要由AC/DC和DC/DC开关电源两部分组成。

据预测,AC/DC开关电源全球销售收入将从1999年的91亿美元增加到2004年的122亿美元,年平均增长率为5.9%。

低功率的AC/DC(0~300W)将面向增长平衡的消费电子和计算机市场;大功率的AC/DC电源(750~1500W)将面向增长强劲的电信市场。

DC/DC电源约占整个开关电源市场的30%,但计算机与通信技术的快速融合,带动了DC/DC模块式电源的迅速增长,预计今后几年,DC/DC电源模块增长速度将超过AC/DC电源,如有人估计,中国今后五年,DC/DC电源模块市场年增长将达15%,增长主要是在电信部门。

开关式电源技术发展趋势是高密度、高效率、低噪声,以及表面贴装化。

无论是AC/DC或 DC/DC电源,除了功率晶体管外,由软磁铁氧体磁芯制成的主变压器、扼流圈及其它电感器(如抗噪声滤波器)是极重要的元件,其磁性能和尺寸直接关系到电源的转换效率和功率密度等。

在变压器设计中,主要包括绕组设计和磁芯设计。

本文拟重点讨论涉及主要变压器磁芯设计中应考虑的通过功率、性能因子、热阻等参数,并对降低磁芯总损耗提出了材料微观设计应考虑的方法。

2.电源变压器磁芯性能要求及材料分类为了满足开关电源提高效率和减小尺寸重量的要求,需要一种高磁通密度和高频低损耗的变压器磁芯。

虽然有高性能的非晶态软磁合金竞争,但从性能价格比考虑,软磁铁氧体材料仍是最佳的选择;特别在100kHz到1MHz的高频领域,新的低损耗的高频功率铁氧体材料,更有其独特的优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档