函数单调性教案(经典总结)
函数的单调性教案()
函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。
教学内容:(1) 引入函数单调性的概念。
(2) 讲解函数单调增和单调减的定义。
(3) 举例说明函数单调性的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。
(2) 采用提问法,引导学生思考函数单调性的含义和应用。
教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。
(2) 讲解函数单调增和单调减的定义,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。
(4) 总结函数单调性的应用,如解不等式、求最值等。
1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。
教学内容:(1) 讲解函数单调性的传递性。
(2) 讲解函数单调性的同增异减性质。
(3) 举例说明函数单调性性质的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的性质。
(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。
教学步骤:(1) 讲解函数单调性的传递性,举例说明。
(2) 讲解函数单调性的同增异减性质,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。
(4) 总结函数单调性性质的应用,如解不等式、求最值等。
第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。
教学内容:(1) 讲解导数与函数单调性的关系。
(2) 讲解利用导数判断函数单调性的方法。
(3) 举例说明利用导数判断函数单调性的应用。
教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。
(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。
教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。
(2) 讲解利用导数判断函数单调性的方法,举例说明。
函数的单调性教案(获奖)
函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。
章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。
2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。
3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。
2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。
3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。
章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。
2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。
3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。
章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。
2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。
3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。
4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。
函数的单调性教案(获奖)
函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。
举例说明函数单调性的两种类型:单调递增和单调递减。
1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。
通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。
第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。
引导学生学会识别函数图像中的单调区间。
2.2 导数法介绍导数与函数单调性的关系。
教授如何利用导数的正负来判断函数的单调性。
第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。
通过例题让学生掌握求解极值的方法。
3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。
通过例题让学生理解最值的求解过程。
第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。
通过例题展示导数在单调区间判断中的应用。
4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。
通过实际例子让学生学会如何运用单调性解决实际问题。
第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。
引导学生学会如何运用所学知识来解决问题。
5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。
提供一些拓展问题,激发学生的学习兴趣和思考能力。
第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。
通过例题展示函数单调性在其他数学领域的应用。
6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。
通过实际例子让学生学会如何运用函数单调性来解决优化问题。
函数的单调性教案()
函数的单调性教案(优秀)第一章:引言1.1 教学目标了解函数单调性的概念及其在数学中的重要性。
理解单调性对解决实际问题的重要作用。
1.2 教学内容介绍函数单调性的概念。
通过实际例子说明单调性在解决实际问题中的应用。
1.3 教学方法使用多媒体演示和实际例子来讲解函数单调性的概念。
引导学生通过思考和讨论来理解单调性的重要性。
1.4 教学评估通过课堂提问和小组讨论来评估学生对函数单调性的理解程度。
第二章:函数单调性的定义与性质2.1 教学目标理解函数单调性的定义及其性质。
学会判断函数的单调性。
2.2 教学内容介绍函数单调性的定义。
讲解函数单调性的性质,如单调递增和单调递减。
2.3 教学方法使用数学定义和示例来解释函数单调性的概念。
引导学生通过自主学习和小组讨论来掌握函数单调性的性质。
2.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性定义和性质的理解程度。
第三章:函数单调性的应用3.1 教学目标学会使用函数单调性解决实际问题。
理解函数单调性在数学和其他领域中的应用。
3.2 教学内容介绍函数单调性在解决实际问题中的应用。
讲解函数单调性在其他领域中的应用,如经济学和物理学。
3.3 教学方法使用实际例子和应用问题来展示函数单调性的使用。
引导学生通过思考和讨论来理解函数单调性在实际问题中的应用。
3.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性应用的理解程度。
第四章:函数单调性的证明4.1 教学目标学会使用数学方法证明函数的单调性。
理解证明函数单调性的重要性和方法。
4.2 教学内容介绍证明函数单调性的方法和技巧。
讲解不同类型的函数单调性证明。
4.3 教学方法使用示例和练习来讲解证明函数单调性的方法。
引导学生通过自主学习和小组讨论来掌握证明函数单调性的技巧。
4.4 教学评估通过课堂练习和小组讨论来评估学生对证明函数单调性的理解程度。
5.1 教学目标拓展对函数单调性的深入理解。
5.2 教学内容介绍函数单调性的进一步研究和发展。
《函数的单调性》教学设计[合集5篇]
《函数的单调性》教学设计[合集5篇]第一篇:《函数的单调性》教学设计《函数的单调性》教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标(1)知识与技能目标:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;(2)过程与方法目标:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.三、教法学法分析教法分析:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.学法分析:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.四、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答. [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,这一情形进行描述.引导学生回答:对于自变量8<10,f(t1)=1,t2=10时,f(t2)=4”对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1<t2时,是否都有f(t1)<f(t2)呢? [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当x1<x2时,都有f(x1)<f(x2)”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明f(x)=1在区间(0,+ ∞)上是单调减函数.x[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念 [教师活动]给出一组题:1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R 上的单调增函数还是单调减函数?2、若定义在R上的单调减函数f(x)满足f(1+a)<f(3-a),你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P29例1、2(2)书面作业:必做:教材作业选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数b的值唯一吗?探究:函数y=x在定义域内是增函数,函数y=1有两个单调减区间,由这两个基本函x数构成的函数y=x+1的单调性如何?请证明你得到的结论.x[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.五、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.第二篇:函数单调性教学设计函数单调性教学设计关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。
函数的单调性教案
函数的单调性教案第一章:函数单调性的基本概念1.1 引入:引导学生回顾初中阶段学过的函数概念,复习一次函数、二次函数的图像和性质。
提问:函数的图像是否具有单调性?如何描述函数的单调性?1.2 单调性的定义:讲解函数单调性的定义,引导学生理解单调递增和单调递减的概念。
举例说明:如y=x,y=2x+1等函数的单调性。
1.3 单调性的判断:教授如何判断函数的单调性,引导学生掌握利用导数或图像判断单调性的方法。
第二章:单调递增函数的性质2.1 单调递增的定义:复习单调递增的定义,强调函数值随着自变量的增加而增加的特点。
举例说明:如y=x,y=2x+1等函数的单调递增性质。
2.2 单调递增函数的图像:讲解单调递增函数的图像特点,引导学生理解函数图像随着x的增加而上升的趋势。
2.3 单调递增函数的性质:教授单调递增函数的性质,如凹凸性、极值等。
第三章:单调递减函数的性质3.1 单调递减的定义:复习单调递减的定义,强调函数值随着自变量的增加而减少的特点。
举例说明:如y=-x,y=-2x-1等函数的单调递减性质。
3.2 单调递减函数的图像:讲解单调递减函数的图像特点,引导学生理解函数图像随着x的增加而下降的趋势。
3.3 单调递减函数的性质:教授单调递减函数的性质,如凹凸性、极值等。
第四章:单调性的应用4.1 最大值和最小值:讲解如何利用函数的单调性求解最大值和最小值问题。
4.2 函数的单调区间:讲解如何确定函数的单调递增区间和单调递减区间。
4.3 函数的单调性与方程的解:讲解如何利用函数的单调性来解决方程的解的问题。
第五章:单调性的综合应用5.1 函数图像的变换:讲解如何利用单调性来分析和理解函数图像的平移、翻折等变换。
5.2 函数的单调性与实际问题:引导学生将函数的单调性应用于解决实际问题,如优化问题、经济问题等。
5.3 单调性的进一步探讨:引导学生思考单调性的局限性,如非单调函数的特殊情况。
第六章:复合函数的单调性6.1 复合函数的概念:引导学生回顾复合函数的定义,理解复合函数是由两个或多个基本函数通过函数运算组合而成的。
函数的单调性教案(获奖)
函数的单调性教案(获奖)第一章:函数单调性的概念及定义1.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如商品价格的变化、物体运动的速度等。
1.2 讲解:单调性的定义,函数单调递增和单调递减的概念。
1.3 练习:判断几个简单函数的单调性,如f(x)=x, f(x)=-x, f(x)=x^2等。
第二章:函数单调性的判断方法2.1 引入:通过实际例子,让学生理解单调性判断的重要性。
2.2 讲解:利用导数、图像、定义等方法判断函数的单调性。
2.3 练习:判断一些复杂函数的单调性,并进行验证。
第三章:函数单调性的应用3.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如最优化问题、不等式的证明等。
3.2 讲解:函数单调性在解决最优化问题、不等式证明等方面的应用。
3.3 练习:解决一些实际问题,如求函数的最值、证明不等式等。
第四章:函数单调性的性质与定理4.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的周期性、奇偶性等。
4.2 讲解:函数单调性的性质与定理,如拉格朗日中值定理、柯西中值定理等。
4.3 练习:运用性质与定理解决一些实际问题。
第五章:函数单调性与导数的关系5.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的极值点。
5.2 讲解:函数单调性与导数的关系,如单调递增的充分必要条件是导数大于0,单调递减的充分必要条件是导数小于0。
5.3 练习:判断函数的单调性,并找出其极值点。
第六章:复合函数的单调性6.1 引入:通过实际例子,让学生感受复合函数单调性在实际生活中的应用,如温度随高度和纬度的变化。
6.2 讲解:复合函数单调性的定义和判断方法。
6.3 练习:判断复合函数的单调性,并进行验证。
第七章:反函数的单调性7.1 引入:通过实际例子,让学生感受反函数单调性在实际生活中的应用,如坐标系的转换。
7.2 讲解:反函数单调性的性质和判断方法。
《函数单调性教案》word版
教案名称:《函数单调性教案》课时安排:2课时教学目标:1. 理解函数单调性的概念;2. 学会判断函数的单调性;3. 能够运用函数单调性解决实际问题。
教学内容:第一课时一、导入(10分钟)教师通过生活中的实例引入函数单调性的概念,如商品打折问题,让学生感受函数单调性在实际生活中的应用。
二、新课讲解(30分钟)1. 引导学生回顾一次函数、二次函数的图像特点,分析其单调性;2. 讲解函数单调性的定义,并通过具体例子进行解释;3. 引导学生总结判断函数单调性的方法。
三、案例分析(15分钟)教师给出几个具有代表性的案例,让学生判断其单调性,并解释判断过程。
四、课堂练习(10分钟)学生独立完成练习题,教师巡回指导。
第二课时五、复习导入(10分钟)教师通过复习上节课的内容,引导学生回顾函数单调性的概念及判断方法。
六、深入学习(30分钟)1. 讲解函数单调性的性质,如单调增函数的图像特点;2. 引导学生探讨函数单调性在实际问题中的应用,如最大值、最小值问题。
七、拓展延伸(15分钟)教师给出一些拓展问题,引导学生思考函数单调性在其他数学领域的应用。
八、课堂练习(10分钟)学生独立完成练习题,教师巡回指导。
教学评价:1. 课后作业:检查学生对函数单调性的理解及应用能力;2. 课堂练习:观察学生在课堂练习中的表现,了解其掌握情况;3. 学生反馈:收集学生对教学内容的意见和建议,以便改进教学方法。
教案名称:《函数单调性教案》课时安排:2课时教学目标:1. 理解函数单调性的概念;2. 学会判断函数单调性;3. 能够运用函数单调性解决实际问题。
教学内容:第一课时四、课堂练习(10分钟)1. 学生独立完成练习题,教师巡回指导;2. 选取部分学生的作业进行点评,讲解正确答案和解题思路。
五、总结与反思(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点;2. 学生分享学习心得,提出疑问;3. 教师解答学生疑问,为下一节课的学习做好铺垫。
函数的单调性教案(获奖)
函数的单调性教案(获奖)第一章:引言1.1 现实生活中的单调性1.引入概念:单调性是指函数在定义域内的变化趋势。
2.举例说明:(1)商品价格随时间的变化;(2)物体的高度随时间的变化。
1.2 函数单调性的意义1.函数单调性在实际生活中的应用:(1)优化问题;(2)经济决策。
2.函数单调性在数学领域的应用:(1)导数的定义;(2)最值问题的求解。
第二章:函数单调性的定义与性质2.1 函数单调性的定义1.单调递增函数:若对于定义域内的任意x1<x2,都有f(x1)<f(x2),则函数f(x)为单调递增函数。
2.单调递减函数:若对于定义域内的任意x1<x2,都有f(x1)>f(x2),则函数f(x)为单调递减函数。
2.2 函数单调性的性质1.若函数f(x)在定义域内单调递增,则在任意子区间内也单调递增;2.若函数f(x)在定义域内单调递减,则在任意子区间内也单调递减;3.单调递增函数的导数大于等于0;4.单调递减函数的导数小于等于0。
第三章:函数单调性的判断与证明3.1 函数单调性的判断1.利用导数判断:若函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则函数f(x)在定义域内单调递增(或单调递减)。
2.利用图像判断:观察函数图像,若图像随着x的增大而上升,则为单调递增函数;若图像随着x的增大而下降,则为单调递减函数。
3.2 函数单调性的证明1.利用导数证明:假设函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则对于定义域内的任意x1<x2,有f(x1)<f(x2)(或f(x1)>f(x2)),从而证明函数f(x)单调递增(或单调递减)。
2.利用数学归纳法证明:对于定义域内的任意x1<x2,证明f(x1)<f(x2)(或f(x1)>f(x2)),从而得出函数f(x)单调递增(或单调递减)。
第四章:函数单调性与最值问题4.1 函数单调性与最值的关系1.若函数f(x)在定义域内单调递增,则函数在定义域内的最小值出现在定义域的左端点;2.若函数f(x)在定义域内单调递减,则函数在定义域内的最大值出现在定义域的左端点。
函数的单调性教案()
函数的单调性教案(优秀)第一章:函数单调性的引入1.1 概念理解引导学生回顾初中阶段的一次函数、二次函数的图像,理解函数值随着自变量变化的大致趋势。
引出函数单调性的概念:在某区间内,若函数值随着自变量的增大(或减小)而增大(或减小),则称该函数在该区间内单调递增(或单调递减)。
1.2 实例分析通过具体的一次函数、二次函数图像,让学生识别函数的单调递增区间和单调递减区间。
分析实际问题中的应用场景,如商品价格随销量变化的关系等,让学生感受函数单调性的实际意义。
第二章:函数单调性的证明2.1 概念理解引导学生掌握单调递增和单调递减的定义,理解其数学表达式。
引出函数单调性证明的方法:定义法、图像法、导数法。
2.2 证明方法学习通过具体例子,让学生学会使用定义法、图像法、导数法证明函数的单调性。
分析各种方法的优缺点,让学生在实际问题中能灵活选用合适的证明方法。
第三章:函数单调性与最值3.1 概念理解引导学生理解函数最值的概念,即函数在定义域内的最大值和最小值。
引出函数单调性与最值的关系:在单调递增区间内,函数值随着自变量增大而增大,在单调递减区间内,函数值随着自变量增大而减小。
3.2 实例分析通过具体例子,让学生学会利用函数单调性求解最值问题。
分析实际问题中的应用场景,如成本控制、收益最大化等,让学生感受函数单调性与最值在实际问题中的重要性。
第四章:函数单调性的应用4.1 概念理解引导学生理解函数单调性在实际问题中的应用,如优化问题、经济问题等。
引出函数单调性在解不等式、求解实际问题中的作用。
4.2 实例分析通过具体例子,让学生学会运用函数单调性解决实际问题。
分析实际问题中的应用场景,如利润最大化、成本最小化等,让学生感受函数单调性在实际问题中的价值。
第五章:函数单调性的综合练习5.1 练习题解析提供一系列关于函数单调性的练习题,让学生独立解答。
对学生解答过程中遇到的问题进行讲解和指导,帮助学生巩固函数单调性的知识点。
函数的单调性教学设计(经典)
1.3.1函数的性质(一)函数的单调性教学设计一、教材内容分析本节课《函数的单调性》是人教A版《高中数学必修1》第一章第三节的内容,函数的性质由研究函数单调性开始,它既是函数基本特征之一,为后面基本初等函数的研究提供了一般方法,为研究不等关系提供了重要依据。
探究方法对研究函数的其他性质有很强的启发与示范作用。
函数单调性的实质是对函数两个变量运动趋势相关性的研究,研究函数单调性是从观察具体图象的变化趋势入手,通过图象分析数值之间的关系,最终抽象出用数学符号表述的定义。
二、教学目标知识目标(学习目标)(1)能通过函数图象分析函数的单调性。
掌握一次函数、二次函数、反比例函数的单调性。
(2)准确概括出增、减函数的定义并理解。
(3)会用增、减函数的定义证明函数的单调性。
能力目标培养学生数形结合的数学思想,指导学生形成研究问题从特殊到一般,从具体到抽象的研究方法。
指导学生形成科学的利用时间进行有效复习的学习方法。
情感态度与价值观目标通过对函数单调性的探究过程培养学生细心观察图象并进行分析最后严谨论证的良好思维习惯,并激发学生利用现代的设备技术去探索数学问题的兴趣。
三、教学(学习)重点难点重点:形成增、减函数的形式化定义。
难点:形成增、减函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的数学符号语言表达;用定义证明函数的单调性。
四、学情分析所教授的班级学生为高一学生,在初中通过三类简单的函数图象分析已经对函数的单调性有了一定的直观认识,但是还欠缺对函数单调性用数学符号的定义概括和进一步去理解函数的单调性。
学生思维活跃,小组合作探究已经比较默契。
课前学生可以利用ipad观看微课并检测自学效果,也可以利用图形计算器绘制函数图象,对初中没有接触的函数的图象有直观认识。
但学生欠缺规范表述函数的单调性和单调区间。
五、教学策略选择与设计教学设计思路:通过对函数单调性的研究让学生经历从直观到抽象,从图形语言到数学语言,理解增函数、减函数,单调区间概念的过程。
函数单调性优秀教案
函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。
为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。
在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。
【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
他是高中数学中相当重要的一个基础知识点。
是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。
《函数单调性教案》
《函数单调性教案》word版章节一:引言1.1 课程背景本节课主要讲解函数的单调性。
函数单调性是数学中的一个重要概念,也是高中数学的核心内容之一。
通过学习函数单调性,学生可以更好地理解函数的性质,提高解决问题的能力。
1.2 教学目标1. 理解函数单调性的概念及意义。
2. 学会判断函数的单调性。
3. 能够应用函数单调性解决实际问题。
章节二:单调性的定义与性质2.1 单调性的定义本节课我们将引入单调性的定义。
一个函数在某个区间内,如果对于任意的x1和x2,当x1 < x2时,都有f(x1) ≤f(x2),则称该函数在区间内是单调递增的;如果对于任意的x1和x2,当x1 < x2时,都有f(x1) ≥f(x2),则称该函数在区间内是单调递减的。
2.2 单调性的性质本节课我们将学习单调性的几个重要性质。
如果函数在某个区间内是单调递增的,它在该区间内的任意子区间内也是单调递增的;同样地,如果函数在某个区间内是单调递减的,它在该区间内的任意子区间内也是单调递减的。
如果两个函数在某个区间内具有相同的单调性,它们的和函数在该区间内也具有相同的单调性。
章节三:判断单调性3.1 判断单调性的方法本节课我们将介绍几种判断函数单调性的方法。
可以通过求导数来判断函数的单调性。
如果函数在某个区间内的导数大于0,则函数在该区间内是单调递增的;如果函数在某个区间内的导数小于0,则函数在该区间内是单调递减的。
可以通过观察函数的图像来判断函数的单调性。
如果函数的图像在某个区间内是上升的,则函数在该区间内是单调递增的;如果函数的图像在某个区间内是下降的,则函数在该区间内是单调递减的。
3.2 判断单调性的应用本节课我们将通过一些实际问题来应用单调性的判断方法。
例如,我们可以通过判断函数的单调性来确定函数的最大值和最小值所在的区间,或者判断两个函数的交点位置等。
章节四:单调性与实际应用4.1 单调性与最值本节课我们将学习单调性与函数最值的关系。
函数单调性优秀教案
函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。
为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。
在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。
【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
他是高中数学中相当重要的一个基础知识点。
是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。
函数的单调性教案(获奖)
函数的单调性教案(获奖)第一章:引言1.1 现实背景(1) 学生通过观察生活中的实例,如商品价格与销售量的关系,了解函数的单调性在实际问题中的应用。
(2) 引导学生思考:如何判断一个函数在其定义域内的单调性?1.2 知识准备(1) 回顾函数的定义及其图像表示。
(2) 复习导数的概念及其性质。
第二章:函数单调性的定义与性质2.1 函数单调性的定义(1) 介绍函数单调递增和单调递减的定义。
(2) 引导学生通过实例理解单调性的概念。
2.2 函数单调性的性质(1) 分析单调性在函数图像上的表现。
(2) 引导学生总结单调性的基本性质。
第三章:利用导数判断函数单调性3.1 导数与单调性的关系(1) 讲解导数在判断函数单调性方面的应用。
(2) 引导学生理解导数正负与函数单调性的关系。
3.2 利用导数判断函数单调性(1) 举例说明如何利用导数判断函数的单调性。
(2) 学生分组讨论,尝试自行判断给定函数的单调性。
第四章:单调性在实际问题中的应用4.1 实际问题建模(1) 引导学生将实际问题转化为函数单调性问题。
(2) 分析实际问题中函数单调性的应用。
4.2 求解最值问题(1) 讲解如何利用函数单调性求解最值问题。
(2) 学生练习求解具有单调性的最值问题。
第五章:总结与拓展5.1 课堂小结(1) 引导学生回顾本章所学内容,总结函数单调性的概念、性质及应用。
(2) 学生分享自己在实际问题中应用函数单调性的心得体会。
5.2 课后拓展(1) 布置课后习题,巩固函数单调性的相关知识。
(2) 鼓励学生探索函数单调性在其他领域的应用。
第六章:函数单调性的进一步探讨6.1 连续函数的单调性(1) 引入连续函数的概念,讨论连续函数的单调性。
(2) 引导学生理解连续函数单调性的重要性。
6.2 单调函数的图像特征(1) 分析单调函数图像的形状和位置。
(2) 学生通过绘制函数图像,加深对单调性的理解。
第七章:利用单调性解决实际问题7.1 最大值和最小值问题(1) 讲解如何利用单调性求解函数的最大值和最小值。
《函数单调性教案》
《函数单调性教案》教案章节:一、函数单调性的概念教学目标:1. 了解函数单调性的概念;2. 学会判断函数的单调性;3. 能够应用函数单调性解决实际问题。
教学内容:1. 引入函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 引入实例,引导学生思考函数的单调性;2. 给出函数单调性的定义,解释单调递增和单调递减的概念;3. 讲解函数单调性的判断方法,引导学生进行判断;4. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;5. 总结本节课的重点内容,布置作业。
教案章节:二、函数单调性的判断方法教学目标:1. 学会判断函数的单调性;2. 掌握函数单调性的判断方法;3. 能够应用函数单调性解决实际问题。
教学内容:1. 回顾函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 复习函数单调性的概念,引导学生回顾上一节课的内容;2. 讲解函数单调性的判断方法,如导数法、图像法等;3. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;4. 练习判断函数的单调性,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。
教案章节:三、函数单调性与最优化问题教学目标:1. 了解函数单调性与最优化问题的关系;2. 学会应用函数单调性解决最优化问题;3. 能够应用函数单调性解决实际问题。
教学内容:1. 引入函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 引入实例,引导学生思考函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用,如求函数的最大值、最小值等;3. 举例说明函数单调性在实际问题中的应用,如成本最小化问题、收益最大化问题等;4. 练习解决最优化问题,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。
函数的单调性教案()
函数的单调性教案(优秀)第一章:函数单调性的概念与定义1.1 引入通过现实生活中的例子(如商品价格随数量的变化)引出函数单调性的概念。
提问:如何描述函数值随自变量变化的速度和方向?1.2 单调性的定义讲解单调递增和单调递减的定义。
举例说明单调递增和单调递减的函数。
1.3 单调性示意图绘制几个单调递增和单调递减的函数图像,让学生直观理解单调性。
1.4 练习题设计一些练习题,让学生判断给定函数的单调性。
第二章:函数单调性的判断方法2.1 导数与单调性引入导数的概念,讲解导数与函数单调性的关系。
证明导数大于0时函数单调递增,导数小于0时函数单调递减。
2.2 单调性区间讲解如何找出函数的单调递增和单调递减区间。
举例说明如何找出函数的单调区间。
2.3 练习题设计一些练习题,让学生判断给定函数的单调区间。
第三章:函数单调性的应用3.1 最大值和最小值讲解如何利用函数单调性求函数的最大值和最小值。
举例说明如何求函数的最大值和最小值。
3.2 应用实例通过实际问题,讲解如何运用函数单调性解决实际问题。
3.3 练习题设计一些练习题,让学生运用函数单调性解决问题。
第四章:函数单调性的拓展4.1 多元函数单调性引入多元函数的概念,讲解多元函数的单调性。
举例说明多元函数的单调性。
4.2 函数的周期性讲解函数周期性与单调性的关系。
举例说明周期函数的单调性。
4.3 练习题设计一些练习题,让学生判断多元函数和周期函数的单调性。
第五章:总结与提高5.1 总结回顾本章内容,让学生总结函数单调性的概念、判断方法和应用。
提问:如何运用函数单调性解决实际问题?5.2 提高讲解一些函数单调性的高级应用,如函数的凹凸性、拐点等。
举例说明高级应用的实际意义。
5.3 练习题设计一些练习题,让学生运用函数单调性解决实际问题。
第六章:函数单调性的综合应用6.1 经济增长模型通过一个实际的经济增长模型,展示如何利用函数单调性分析经济增长的速度和趋势。
函数单调性教案函数单调性教学设计(6篇)
函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。
《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。
把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。
从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。
从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。
函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。
【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。
函数的单调性教案()
函数的单调性教案(优秀)第一章:函数单调性的概念与基本性质1.1 教学目标1. 了解函数单调性的概念;2. 掌握函数单调性的基本性质;3. 学会判断函数的单调性。
1.2 教学内容1. 函数单调性的定义;2. 函数单调性的基本性质;3. 函数单调性的判断方法。
1.3 教学步骤1. 引入函数单调性的概念,通过具体例子让学生感受函数单调性的含义;2. 引导学生探究函数单调性的基本性质,如单调递增和单调递减的性质;3. 教授判断函数单调性的方法,如导数法和图像法。
1.4 课后作业1. 判断给定函数的单调性,并说明理由;2. 利用导数法判断函数的单调性;3. 利用图像法判断函数的单调性。
第二章:函数单调性的应用2.1 教学目标1. 学会利用函数单调性解决实际问题;2. 掌握函数单调性在最大值和最小值问题中的应用;3. 学会利用函数单调性进行函数的单调区间分析。
2.2 教学内容1. 函数单调性在实际问题中的应用;2. 函数单调性在最大值和最小值问题中的应用;3. 函数单调性在函数单调区间分析中的应用。
2.3 教学步骤1. 通过实际问题引入函数单调性的应用,让学生感受函数单调性在解决问题中的重要性;2. 引导学生学习函数单调性在最大值和最小值问题中的应用,如利用单调性求解最值问题;3. 教授函数单调性在函数单调区间分析中的应用,如利用单调性分析函数的单调区间。
2.4 课后作业1. 利用函数单调性解决实际问题;2. 求解给定函数的最大值和最小值问题;3. 利用函数单调性进行函数的单调区间分析。
第三章:函数单调性的进一步探究3.1 教学目标1. 掌握函数单调性的进一步性质;2. 学会利用函数单调性进行函数的图像分析;3. 掌握函数单调性在实际问题中的应用。
3.2 教学内容1. 函数单调性的进一步性质;2. 函数单调性在函数图像分析中的应用;3. 函数单调性在实际问题中的应用。
3.3 教学步骤1. 引导学生学习函数单调性的进一步性质,如单调性的保持性和传递性;2. 教授利用函数单调性进行函数图像分析的方法,如单调区间与图像的关系;3. 通过实际问题引导学生掌握函数单调性在实际问题中的应用,如利用单调性解决优化问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课题】函数的单调性
【教学类型】新知课
【教学目的】
1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.
2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念、判断及证明.
【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.【教学方法】教师启发讲授,学生探究学习.
【教学手段】多媒体教学设备、黑板.
【教学过程】
一、创设情境,引入课题
德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究.他经过测试,得到了以下一些数据:
引导学生识图,捕捉信息,启发学生思考.
以上数据表明,记忆保留量y是时间t的函数.
艾宾浩斯根据这些数据描绘出了著名的“艾宾
浩斯遗忘曲线”,如图.
问题:观察“艾宾浩斯遗忘曲线”,你能发
现什么规律?图像上有什么特征?
二、归纳探索,形成概念
对于自变量变化时,函数值是变大还是变小,
初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.
1.借助图象,直观感知
问题1:分别作出函数x
y x y x y x y 1,,2,22=
=+-=+=的图象,并且观察自变量变化时,函数值有什么变化规律?
预案:
(1)函数1+=x y 在整个定义域内 y 随x 的增大而增大;函数2+-=x y 在整个定义域内 y 随x 的增大而减小.
(2)函数2x y =在),0[+∞上 y 随x 的增大而增大,在)0,(-∞上y 随x 的增大而减小.
引导学生进行分类描述 (增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.
问题2:能不能根据自己的理解说说什么是增函数、减函数?
预案:如果函数()f x 在某个区间上随自变量x 的增大,y 也越来越大,我们说函数()f x 在该区间上为增函数;如果函数()f x 在某个区间上随自变量x 的增大,y 越来越小,我们说函数()f x 在该区间上为减函数.
教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.
2.探究规律,理性认识
通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.
引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量21,x x .
3.抽象思维,形成概念
问题:你能用准确的数学符号语言表述出增函数的定义吗?
方案1:在区间),0[+∞上取自变量1,2,∵1<2, f(1)<f(2) ∴f(x)在),0[+∞上, 图象逐渐上升
方案2:),0[+∞取无数组自变量,验证随着x 的增大,f(x)也增大。
方案3:在),0[+∞内取任意的x1,x2 且x1<x2时,都有f(x1)<f(x2)
师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.
(1)板书定义
(2)巩固概念
通过判断题,强调三点:
①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.
②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).
③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在B A 上是增(或减)函数.
三、掌握证法,适当延展
1. 例证明函数 f(x) = 3x +2在区间R 上是增函数.数.
2.归纳解题步骤
引导学生归纳证明函数单调性的步骤:设值、作差、变形、断号、定论. 练习:证明函数x x f =)(在),0[+∞上是增函数.
四、归纳小结及作业布置
学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.
1.小结
(1) 概念探究过程:直观到抽象、特殊到一般、感性到理性.
(2) 证明方法和步骤:设值、作差、变形、断号、定论.
(3) 数学思想方法和思维方法:数形结合,等价转化,类比等.
2.作业
书面作业:课本第52页 习题3.2.1 第1,2题.
【课后探究】: 研究函数x y 1=的单调区间并证明,并结合描点法画出函数的草图.。