基本不等式的几何证明

合集下载

基本不等式几何证明方法

基本不等式几何证明方法

基本不等式几何证明方法宝子,今天咱来唠唠基本不等式的几何证明方法,可有趣啦。

咱先说说基本不等式是啥哈,就是对于正实数a、b,有(a + b)/(2) ≥ √(ab),当且仅当a = b时等号成立。

那它的几何证明可形象了呢。

想象一个直角三角形,设直角边为a和b。

我们以a + b为边长构造一个正方形。

这个正方形的面积就是(a + b)^2。

然后呢,我们把这个正方形进行分割。

在这个正方形里,有四个直角三角形,每个直角三角形的直角边就是a和b。

那这四个直角三角形的面积总和就是4×(1)/(2)ab = 2ab。

中间还剩下一个小正方形,这个小正方形的边长就是a - b(假设a>b哈),它的面积就是(a - b)^2。

所以整个大正方形的面积(a + b)^2就等于四个直角三角形面积加上中间小正方形面积,也就是(a + b)^2=4×(1)/(2)ab+(a - b)^2。

化简一下就得到(a + b)^2≥4ab,两边同时除以4,就有((a + b)^2)/(4)≥ ab,再开个方,就得到(a + b)/(2) ≥ √(ab)啦。

你看,当中间小正方形面积为0的时候,也就是a = b的时候,这个等号就成立了呢。

就好像这个正方形被分割得特别规整的时候。

还有一种几何证明也很有意思哦。

我们画一个半圆,直径是a + b。

然后在直径上取一点,把直径分成a和b两段。

从这点作一条垂直于直径的弦。

根据圆的性质,这条弦长的一半就是√(ab)。

而半圆的半径就是(a + b)/(2)。

因为弦长的一半肯定小于等于半径呀,所以又一次证明了(a + b)/(2) ≥ √(ab)。

当这条弦刚好是直径的时候,也就是a = b的时候,等号就成立啦。

宝子,这么看基本不等式的几何证明是不是超级好理解,就像看一幅画一样,一下子就明白这个不等式为啥是成立的啦。

基本不等式的证明_课件

基本不等式的证明_课件
证:∵ a2 b2 2ab
b2 c2 2bc c2 a2 2ca 以上三式相加:2(a2 b2 c2 ) 2ab 2bc 2ca
当且仅当a=b=c时等号成立
∴ a2 b2 c2 ab bc ca
例3:1.已知a,b, c都是正数,
求证(a b)(b c)(c a) 8abc.
猜想:对任意两个正数a、b,
ab a b (a 0,b 0) 2
此不等式是可以证明的,而且证明方法有很多种。
证法1:a
2
b
ab
1 [( a )2 ( b)2 2 a b] 2
1 ( a b)2 0
2
当且仅当 a b 即 a b 时,取“ ”。
证法2:要证
ab a b 2
基本不等式
不等式的一些常用结论: 1、如果a b,则a - b 0,反之也成立; 如果a<b,则a - b<0,反之也成立; 如果a=b,则a - b=0,反之也成立; 2、a 2 0; | a | 0;
问题引入 ab
• 1、两个正数a,b的等差中项是__2___;
• 两个正数a,b的等比中项是___a_b_;
cos x
cos x
x 0 ,则 x 4 2 x 4 4
x
x
(4)若 x 0
2x 2x 2 2x 2x 2
其中正确的有 (3),(4)
回顾小结:
1.基本不等式其应用条件; 2.不等式证明的三种常用方法; 3.利用基本不等式去证明其它不等式或求最值。
•2、对两个正数a,b, a b又叫做正数a与b的
___算__术__平___均_.数
2
ab •3、对两个正数a,b, 又叫做正数a与b的
___几__何__平___均_.数

基本不等式 2022-2023学年高一上学期数学人教A版(2019)必修第一册

基本不等式 2022-2023学年高一上学期数学人教A版(2019)必修第一册
x2 4
分析:利用函数 y t 1 (t>0)的单调性.
t
t (0,1] 单调递减, t [1, ) 单调递增
解: y x2 5 x2 4 1 x2 4
x2 4
x2 4
令t x2 4 则y t 1 (t 2) t
当t
2,即:
x
0时,
ymin
5 2
1 x2 4
练习
等号成立.
ab a b 2
因此,基本不等式
ab a b 2
的几何意义是“半径不小于半弦”
基本不等式 ab a b 代数意义
2
如果把 a b看作是正数a、b的等差中项,把 ab
2
看作是正数a、b的等比中项,那么该定理可以叙 述为:两个正数的等差中项不小于它们的等比中项.
a b 为a、b的算术平均数, ab 为几何平均数, 那么 2
当直角三角形变为等腰直角三角形,即a=b时, 正方形EFGH缩为一个点,这时有
a2 b2 2ab
结论1:
若a, b R,则a2 b2 2ab(当且仅当 a b时“”成立).
证明: 作差比较 a2+b2-2ab=(a-b)2
当ab时,(a-b)2>0 得 a2+b2>2ab
当a=b时,(a-b)2=0 得 a2+b2=2ab
x y x bx x b(x a) ab (x a) ab a b
xa
xa
xa
2 ab a b ( a b)2
解2 : x y (x y)( a b ) xy
a b a y b x a b 2 ab ( a b)2 xy
例5.求函数 y x 2 5 的最小值.
解:(1)设矩形菜园的长为x m,宽为y m,则 xy=100,篱笆的长为2(x+y)m.由

基本不等式

基本不等式

基本不等式基本不等式是数学中一个重要的概念。

其中,重要不等式指的是a²+b²≥2ab,当且仅当a=b时等号成立。

而基本不等式则是指a+b≥2√(ab),当且仅当a=b时等号成立。

此外,还有一条基本不等式是任意两个正数的算术平均数不小于它们的几何平均数。

在利用基本不等式求函数的最大值、最小值时,需要注意函数式中各项必须都是正数,含变数的各项的积或者必须是常数,等号成立条件必须存在。

举例来说,如果0<a<b且a+b=1,则a²+b²>2ab,a+b≥2√(ab),2ab<2(1/2-a)²,a²+b²>(1/2-a)²+(1/2-b)²,因此b 最大。

又如,如果a、b、c都是正数,则(a+b+c)(1/a+1/b+1/c)≥9,即a/b+b/a+b/c+c/b+c/a+a/c≥6,证明过程中利用了基本不等式。

例3、已知$a,b,c$为不等正实数,且$abc=1$。

求证:$a+b+c<\sqrt{a}+\sqrt{b}+\sqrt{c}$。

证明:根据柯西不等式,$(1+1+1)(a+b+c)\geq(\sqrt{a}+\sqrt{b}+\sqrt{c})^2$,即$3(a+b+c)\geq(a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca})$。

因为$abc=1$,所以$2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=2\sqrt{abc}(1/\sqrt{a}+1/\sqrt {b}+1/\sqrt{c})\leq3\sqrt[3]{abc}\cdot3=9$。

所以$3(a+b+c)\geq(a+b+c+9)$,即$2(a+b+c)\geq9$,即$a+b+c\geq\frac{9}{2}$。

又因为$a,b,c$不全相等,所以$a+b+c>\frac{9}{2}$。

不等式的证明

不等式的证明

不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。

a3+b3的基本不等式

a3+b3的基本不等式

a3+b3的基本不等式A3+b3的基本不等式是一个常见的数学推理题,是对于三个实数a、b的立方和进行判定的问题。

该不等式可以通过多种方法进行证明,其中一种方法是将a3+b3转化为一个或多个平方的和,进而进行比较。

首先,我们来回顾一下三次方和的展开公式:(a + b)(a2 - ab + b2) = a3 + b3,根据该公式可得a3 + b3 = (a + b)(a2 - ab + b2)。

我们可以利用这个公式进行证明,现将a + b与a2 - ab + b2进行比较。

我们将利用两种方法进行证明,分别是几何方法和代数方法。

1.几何方法我们可以用几何方法来证明a + b与a2 - ab + b2的关系。

首先,假设a和b是正实数,画出两个正方形,一个边长为a,一个边长为b。

那么a + b就是这两个正方形所组成的长方形的周长。

接下来,我们将b的正方形进行旋转,使得b的正方形的一条边恰好与a的正方形的一条边重合。

这样,我们可以看到两个正方形所组成的图形是一个大的正方形,它的边长为a + b。

同时,还有两个小的正方形,一个边长为a,一个边长为b。

根据这个图形,我们可以得出结论:由于大的正方形的边长是a + b,所以它的面积是(a + b)2。

而小的两个正方形的面积分别是a2和b2。

从而我们可以推出:(a + b)2 = a2 + b2 + 2ab。

进一步化简得到:a2 + b2 = (a + b)2 - 2ab。

现在我们将这个等式代入a3 + b3中,得到:a3 + b3 = (a +b)(a2 - ab + b2) = (a + b)[(a + b)2 - 3ab]。

因此,我们可以得到不等式关系:a3 + b3 ≥ (a + b)[(a + b)2 - 3ab]。

2.代数方法接下来我们来看代数方法,我们将对a3 + b3进行简化处理。

将a3 + b3进行因式分解得:a3 + b3 = (a + b)(a2 - ab + b2)。

基本不等式几何证明

基本不等式几何证明

基本不等式几何证明1. 引言基本不等式是初中数学中的重要概念之一,它是解决不等式问题的基础。

在几何中,我们可以通过基本不等式来证明一些关于线段、角度和面积的性质。

本文将介绍基本不等式在几何证明中的应用。

2. 基本不等式回顾在初中数学中,我们学习了以下两个基本不等式:•对于任意实数a和b,有a + b ≥ 2√(ab)。

•对于任意实数a和b,有a² + b² ≥ 2ab。

这两个不等式在解决一元二次方程、证明三角形性质以及推导其他数学公式时起到了重要作用。

3. 线段长度的比较基本不等式可以用来比较线段的长度。

考虑以下问题:已知直线上有三个点A、B和C,且B位于AC之间。

如何判断AB与BC的长度关系?我们可以使用基本不等式来解决这个问题。

设AB = a,BC = b,则根据基本不等式a + b ≥ 2√(ab)可得:AB + BC ≥ 2√(AB * BC)即a + b ≥ 2√(ab)。

若a + b > 2√(ab),则AB + BC > 2√(AB * BC),即AB + BC > AC;若a + b = 2√(ab),则AB + BC = 2√(AB * BC),即AB + BC = AC;若a + b < 2√(ab),则AB + BC < 2√(AB * BC),即AB + BC < AC。

因此,通过基本不等式的比较,我们可以得出线段长度的大小关系。

4. 角度的比较基本不等式还可以用来比较角度的大小。

考虑以下问题:已知有两条射线OA和OB,如何判断∠AOB与直角(90°)的大小关系?我们可以使用基本不等式来解决这个问题。

设∠AOB = θ,则根据余弦定理可得:cosθ = (OA² + OB² - AB²) / (2OA * OB)由于直角的余弦值为0,所以有:cos90° = (OA² + OB² - AB²) / (2OA * OB) ≤ 0化简可得:OA² + OB² - AB² ≤ 0即OA² + OB² ≤ AB²。

几何法证明不等式(精选多篇)

几何法证明不等式(精选多篇)

几何法证明不等式(精选多篇)^2(a,b∈r,且a≠b)设一个正方形的边为c,有4个直角三角形拼成这个正方形,设三角形的一条直角边为a,另一条直角边为b,(b>a)a=b,刚好构成,若a不等于b时,侧中间会出现一个小正方形,所以小正方形的面积为(b-a)^2,经化简有(b+a)^2=4ab,所以有((a+b)/2)^2=ab,又因为(a^2+b^2)/2>=ab,所以有((a+b)/2)^2<=(a^2+b^2)/2,又因为a不等与b,所以不取等号可以在直角三角形内解决该问题=^2-(a^2+b^2)/2=/4=-(a-b)^2/4<0能不能用几何方法证明不等式,举例一下。

比如证明sinx不大于x(x范围是0到兀/2,闭区间)做出一个单位圆,以o为顶点,x轴为角的一条边任取第一象限一个角x,它所对应的弧长就是1*x=x那个角另一条边与圆有一个交点交点到x轴的距离就是sinx因为点到直线,垂线段长度最小,所以sinx小于等于x,当且尽当x=0时,取等已经有的方法:第一数学归纳法2种;反向归纳法(特殊到一般从2^k过渡到n);重复递归利用结论法;凸函数性质法;能给出其他方法的就给分(a1+a2+...+an)/n≥(a1a2...an)^(1/n)一个是算术,一个是几何。

人类认认识算术才有几何,人类吃饱了就去研究细微的东西,所以明显有后者小于前者的结论,这么简单都不懂,叼佬就是叼佬^_^搞笑归搞笑,我觉得可以这样做,题目结论相当于证(a1+a2+...+an)/n-(a1a2...an)^(1/n)≥0我们记f(a1,a2,……,an)=(a1+a2+...+an)/n-(a1a2...an)^(1/n)这时n看做固定的。

我们讨论f的极值,它是一个n元函数,它是没有最大值的(这个显然)我们考虑各元偏导都等于0,得到方程组,然后解出a1=a2=……=an再代入f中得0,从而f≥0,里面的具体步骤私下聊,写太麻烦了。

3不等式的性质证明和基本不等式

3不等式的性质证明和基本不等式

3.分析法: 由结论到条件,注意格式规范→步
步可逆即充要
x Ex:已知:
y 0 ,比较:
x y x y

x x
2 2
y y
2 2
的大小.
Ex:比较
x
2
与 2 x 的大小。
1 a b 1 b c 1 a c
ab 2
Ex:已知 a
b c ,求证:

Ex:已知 a , b
R , a b , 求证: a b b ( a b ) a

( Ex:已知 a , b R , 求证:
a
2
1
)2 (

b
2
1
1
1
)2 a 2 b 2
b
a
Ex:已知
求证: lg
2
a,b,c R ,
lg b c 2

且不全相等
a c 2 lg a lg b lg c
2

且可推广:

a,b,c R ,
a b c 3


3
abc 仅 当 a b c 0时 取 等 号
n
且进一步:
ai R ,
a1 a 2 a n n
a1 a n
称作:n个正数的算术平均数不小于它的几何平均数 且变形为:
1 a,b
二、不等式的基本性质
(1)传递性:a
b,b c a c
a (2)加法单调性:
a (3)乘法单调性:
b a c b c
b, c 0 ac bc b, c d a c b d b 0, c d 0 ac bd

不等式证明的基本方法

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法一、教学目的1、掌握绝对值的三角不等式;2、掌握不等式证明的基本方法二、知识分析定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立;几何说明:1当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和;2如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释;|a-b|表示a-b与原点的距离,也表示a到b之间的距离;定理2 设a,b,c为实数,则,等号成立,即b落在a,c之间;推论1推论2不等式证明的基本方法1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的;比较法有差值、比值两种形式,但比值法必须考虑正负;比较法证不等式有作差商、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证;2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用;所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述;综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用;3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法;4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法;典型例题例1、已知函数,设a、b∈R,且a≠b,求证:思路:本题证法较多,下面用分析法和放缩法给出两个证明:证明:证法一:①当ab≤-1时,式①显然成立;当ab>-1时,式①②∵a≠b,∴式②成立;故原不等式成立;证法二:当a=-b时,原不等式显然成立;当a≠-b时,∴原不等式成立;点评:此题还可以用三角代换法,复数代换法、数形结合等证明,留给读者去思考;例2、设m等于|a|、|b|和1中最大的一个,当|x|>m时,求证:;思路:本题的关键是对题设条件的理解和运用,|a|、|b|和1这三个数中哪一个最大如果两两比较大小,将十分复杂,但我们可以得到一个重要的信息:m≥|a|、m≥|b|、m≥1;证明:故原不等式成立;点评:将题设条件中的文字语言“m等于|a|、|b|、1中最大的一个”转化为符号的语言“m≥|a|、m≥|b|、m≥1”是证明本题的关键;例3、函数的定义域为0,1且;当∈0,1,时都有,求证:;证明:不妨设,以下分两种情形讨论;若则,若则综上所述点评:对于绝对值符号内的式子,采用加减某个式子后,重新组合,运用绝对值不等式的性质变形,是证明绝对值不等式的典型方法;例4、已知a>0,b>0,求证:;思路:如果用差值比较法,下一步将是变形,显然需要通分,是统一通分,还是局部通分从题目结构特点看,应采取局部通分的方法;证明:①②∴原不等式成立;点评:在上面得到①式后,其分子的符号可由题设条件作出判断,但它没有②明显,所以,变形越彻底,越有利于最后的判断,本题还可以用比值比较法证明,留给读者去完成;例5、设x>0,y>0,且x≠y,求证:思路:注意到x、y的对称性,可能会想到重要不等式,但后续思路不好展开,故我们可采用分析法,从消去分数指数幂入手;证明:∵x>0,y>0,且x≠y,点评:在不便运用比较法或综合法时,应考虑用分析法;应注意分析法表述方法,其中寻求充分条件的语句常用符号“”表述;本题应用了分析法,既找到了解题思路,又使问题完满地得到了解决,可谓一举两得;例6、已知a、b、c∈R+,求证:;思路:因不等式的左边的两个因式都可以进行因式分解;结合a、b、c∈R+的条件,运用重要不等式,采用综合法进行证明;解析:即点评:用重要不等式证明不等式,一要注意重要不等式适用的条件,二要为运用重要不等式创造条件;另外,同向不等式相加或相乘,在综合法中常用到;例7、证明:对于任意实数x、y,有思路:采取分析法和比较法二者并用的方法来处理;证明:用分析法不等式②显然成立,下面证明不等式①同号,即点评:上述证明中,前半部分用的是分析法,后半部分用的是比较法,两种方法结合使用,使问题较容易解决,这一点应加以注意;例8、1用反证法证明以下不等式:已知,求证p+q≤2;2试证:n≥2;思路:运用放缩法进行证明;证明:1设p+q>2,则p>2-q,这与=2矛盾,2,又;将上述各式两边分别相加得点评:用放缩法证明不等式过程中,往往采用添项或减项的“添舍”放缩,拆项对比的分项放缩,函数的单调性放缩,重要不等式放缩等;放缩时要注意适度,否则不能同向传递;模拟试题1、设a、b是满足ab<0的实数,那么A、B、C、D、2、设ab>0,下面四个不等式①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|中,正确的是A、①和②B、①和③C、①和④D、②和④3、下面四个式子①;②;③;④中,成立的有A、1个B、2个C、3个D、4个4、若a、b、c∈R,且,则下列不等式成立的是A、B、C、D、5、设a、b、c∈R,且a、b、c不全相等,则不等式成立的一个充要条件是A、a、b、c全为正数B、a、b、c全为非负实数C、D、6、已知a<0,-1<b<0则A、B、C、D、7、设实数x、y满足,若对满足条件的x、y,x+y+c≥0恒成立,c 的取值范围是A、B、C、D、8、对于任意的实数x,不等式恒成立,则实数a的取值范围是_________;9、若a>c>b>0,则的值的符号为__________;10、设a、b、c∈R+,若,则__________;11、已知x,y∈R,且,则z的取值范围是__________;12、设,求证:;13、已知a、b是不等正数,且,求证:;14、已知,求证:中至少有一个不小于;15、设a、b为正数,求证:不等式①成立的充要条件是:对于任意实数x>1,有②试题答案1、B2、C3、C4、B5、C6、D7、A8、-∞,39、负10、911、12、证明:13、证明:a、b是不等正数,且而一定成立,故成立;14、证明:用反证法;假设都小于,则,而,相互矛盾,中至少有一个不小于;15、证明:设,那么不等式②对恒成立的充要条件是函数的最小值大于b;当且仅当,时,上式等号成立;故的最小值是;因此,不等式②对x>1恒成立的充要条件是>b;。

高一数学不等式证明的基本方法

高一数学不等式证明的基本方法

不等式证明的基本方法一、基本不等式定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。

定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。

即两个正数的算术平均不小于它们的几何平均。

结论:已知x, y 都是正数, (1)如果积xy 是定值p ,那么当x=y 时,和x+y2; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。

二、三个正数的算术-几何平均不等式三、不等式证明的基本方法知识点一:比较法比较法是证明不等式的最基本最常用的方法,可分为作差比较法和作商比较法。

1、作差比较法:常用于多项式大小的比较,通过作差变形(分解因式、配方、拆、拼项等)判断符号(判断差与0的大小关系)得结论(确定被减式与减式的大小. 理论依据: ①;②;③。

一般步骤如下:第一步:作差;第二步:变形;常采用配方、因式分解等恒等变形手段;第三步:判断差的符号;就是确定差是大于零,还是等于零,小于零. 如果差的符号无法确定,应根据题目的要求分类讨论. 第四步:得出结论。

注意:其中判断差的符号是目的,变形是关键。

2、作商比较法常用于单项式大小的比较,当两式同为正时,通过作商变形(约分、化简)判断商与1的大小得结论(确定被除式与除式的大小). 理论依据:若、,则有①;② ;③ .基本步骤:第一步:判定要比较两式子的符号 第二步:作商第三步:变形;常采用约分、化简等变形手段;第四步:判定商式大于1或等于1或小于1。

如果商与1的大小关系无法确定,应根据题目的要求分类讨论.2a b+≥214s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么时,等号成立。

即:三个正数的算术平均不小于它们的几何平均。

21212,,,,n n nn a a a a a a a a n++≥===11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

2 第2讲 不等式的证明

2 第2讲 不等式的证明

第2讲 不等式的证明1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等.若a >b >1,证明:a +1a >b +1b.证明:a +1a -⎝⎛⎭⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0, 所以(a -b )(ab -1)ab >0.即a +1a -⎝⎛⎭⎫b +1b >0, 所以a +1a >b +1b.已知a >0,b >0,c >0,且a ,b ,c 不全相等,求证:bc a +ac b +abc >a +b +c .证明:因为a ,b ,c ∈(0,+∞),所以bc a +acb≥2bc a ·acb=2c . 同理ac b +ab c ≥2a ,ab c +bca≥2b .因为a ,b ,c 不全相等,所以上述三个不等式中至少有一个等号不成立,三式相加,得2⎝⎛⎭⎫bc a +ac b +ab c >2(a +b +c ),即bc a +ac b +abc>a +b +c .用综合法、分析法证明不等式(师生共研)(一题多解)(2017·高考全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【证明】 法一(综合法):(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24·(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.法二(分析法):(1)因为a >0,b >0,a 3+b 3=2. 要证(a +b )(a 5+b 5)≥4,只需证(a +b )(a 5+b 5)≥(a 3+b 3)2, 再证a 6+ab 5+a 5b +b 6≥a 6+2a 3b 3+b 6, 再证a 4+b 4≥2a 2b 2,因为(a 2-b 2)2≥0,即a 4+b 4≥2a 2b 2成立. 故原不等式成立.(2)要证a +b ≤2成立,只需证(a +b )3≤8, 再证a 3+3a 2b +3ab 2+b 3≤8, 再证ab (a +b )≤2, 再证ab (a +b )≤a 3+b 3,再证ab (a +b )≤(a +b )(a 2-ab +b 2),即证ab ≤a 2-ab +b 2显然成立. 故原不等式成立.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.1.(2019·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6,解得-1<x <9,所以m =-1,n =9. (2)证明:由(1)知9x +y =1,又x >0,y >0, 所以⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,所以1x +1y≥16,即x +y ≥16xy .2.(2019·长春市质量检测(一))设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.解:(1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2得-1<x <1,即A ={x |-1<x <1}.(2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,只需证1+a 2b 2c 2>a 2b 2+c 2,只需证1-a 2b 2>c 2(1-a 2b 2), 只需证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立.综上,⎪⎪⎪⎪⎪⎪1-abc ab -c>1.放缩法证明不等式(师生共研)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1. (2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.反证法证明不等式(师生共研)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎢⎡⎦⎥⎤(1-a )+a 22=14.同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论.(2)从假设出发,导出矛盾. (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0. 证明:①设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. ②若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.[基础题组练]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立,只需证a +b a +a +b b ≥4成立,即证b a +a b ≥2成立,因为a >0,b >0,所以b a +ab≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2. 3.(2019·长春市质量检测(二))已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎨⎧3-2x +6-3x ⎝⎛⎭⎫x <322x -3+6-3x ⎝⎛⎭⎫32≤x ≤22x -3+3x -6(x >2)=⎩⎨⎧-5x +9⎝⎛⎭⎫x <32-x +3⎝⎛⎭⎫32≤x ≤25x -9(x >2),其图象如图,由图象可知:f (x )<2的解集为⎝⎛⎭⎫75,115.(2)证明:由图象可知f (x )的最小值为1,由基本不等式可知a +b2≤a +b2=14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 4.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12,所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.[综合题组练]1.设a ,b ,c ∈(0,+∞),且a +b +c =1. (1)求证:2ab +bc +ca +c 22≤12;(2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a≥2.证明:(1)要证2ab +bc +ca +c 22≤12,只需证1≥4ab +2bc +2ca +c 2,即证1-(4ab +2bc+2ca +c 2)≥0,而1-(4ab +2bc +2ca +c 2)=(a +b +c )2-(4ab +2bc +2ca +c 2)=a 2+b 2-2ab =(a -b )2≥0成立,所以2ab +bc +ca +c 22≤12.(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bca,所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +ca +c ⎝⎛⎭⎫ab +b a ≥2a +2b +2c =2(当且仅当a =b =c =13时,等号成立). 2.(2019·新疆自治区适应性检测)设函数f (x )=|2x +1|-|2x -4|,g (x )=9+2x -x 2. (1)解不等式f (x )>1;(2)证明:|8x -16|≥g (x )-2f (x ).解:(1)当x ≥2时,f (x )=2x +1-(2x -4)=5>1恒成立,所以x ≥2. 当-12≤x <2时,f (x )=2x +1-(4-2x )=4x -3>1,得x >1,所以1<x <2.当x <-12时,f (x )=-2x -1-(4-2x )=-5>1不成立.综上,原不等式的解集为(1,+∞).(2)证明:|8x -16|≥g (x )-2f (x )⇔|8x -16|+2f (x )≥g (x ),因为2f (x )+|8x -16|=|4x +2|+|4x -8|≥|(4x +2)-(4x -8)|=10,当且仅当-12≤x ≤2时等号成立,所以2f (x )+|8x -16|的最小值是10,又g (x )=-(x -1)2+10≤10,所以g (x )的最大值是10,当x =1时等号成立. 因为1∈⎣⎡⎦⎤-12,2,所以2f (x )+|8x -16|≥g (x ), 所以|8x -16|≥g (x )-2f (x ).3.(2019·四川成都模拟)已知函数f (x )=m -|x -1|,m ∈R ,且f (x +2)+f (x -2)≥0的解集为[-2,4].(1)求m 的值;(2)若a ,b ,c 为正数,且1a +12b +13c =m ,求证:a +2b +3c ≥3.解:(1)由f (x +2)+f (x -2)≥0得,|x +1|+|x -3|≤2m , 设g (x )=|x +1|+|x -3|,则g (x )=⎩⎪⎨⎪⎧-2x +2,x ≤-1,4,-1<x <3,2x -2,x ≥3,数形结合可得g (-2)=g (4)=6=2m ,得m =3. (2)证明:由(1)得1a +12b +13c=3.由柯西不等式,得(a +2b +3c )⎝⎛⎭⎫1a +12b +13c ≥⎝⎛⎭⎫a ·1a+2b ·12b+3c ·13c 2=32, 所以a +2b +3c ≥3.4.(2019·高考全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值.(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.解:(1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)]≤3[(x -1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2],故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。

(完整版)基本不等式链

(完整版)基本不等式链

均值不等式链基本不等式链:若b a 、都是正数,则2211222b a b a ab b a +≤+≤≤+,当且仅当b a =时等号成立。

注:算术平均数---2b a +;几何平均数---ab ;调和平均数---b a ab ba +=+2112;平方平均数---222b a +。

证明1(1 (2 (3 证明2如图,图1:图2:图3:综上,2211222b a b a ab ba +≤+≤≤+,当且仅当b a =时”“=成立。

证明3:(几何法)作梯形ABCD ,使CD BC AD B BC AD =+︒=∠,,90//,令)(a b b BC a AD >==,,,F E 、分别是CD AB 、的中点,过E 作CD EG ⊥于G ,过G 作AB GH ⊥于H ,在EB 上截取2a b EN -=,则F E 、分别是CD AB 、的中点,2a b EF +=⇒,ED 平分ADC ∠ab AB EA EG ===⇒21, b a DG BC CG AD GH b a GC DG BC GC DA DG +⋅+⋅=⇒=⇒==,,即b a ab GH +=2, 2a b EN -=222b a NF +=⇒, 显然,FN EF EG GH <<<,∴22222b a b a ab b a ab +≤+≤≤+ 当“b a =”时,22222b a b a ab b a ab +=+==+。

证明4:(几何法)作梯形ABCD ,使AB BC AD B BC AD =+︒=∠,,90//,令)(a b b BC a AD >==,,,在AB 上截取b BC AF a AD AE ====,,则a BF b BE ==,H , 过E 作AB EG ⊥交CD 于G ,过F 作CD FO ⊥于O ,过O 作AB OH ⊥于在GO EH 、上分别取点N M 、,使梯形EGNM 与梯形MNOH 相似,则BC AF BF AD ==,,2212222b a CD OF DO CO b a CF DF +====⇒+==⇒, 22b a BC AD OH OD OC +=+=⇒=,ba ab b a AE BC BE AD EG b BE a AE +=+⋅+⋅=⇒==2,, 梯形EGNM 与梯形MNOH 相似ab OH EG MN OH MN MN EG =⋅=⇒=⇒ 显然,OF OH MN EG <<<,∴22222b a b a ab b a ab +≤+≤≤+ 当“b a =”时,22222b a b a ab b a ab +=+==+。

基本不等式的方法

基本不等式的方法

基本不等式的方法基本不等式是数学中常用的一种方法,用于证明和推导不等式。

通过应用基本不等式,可以得到许多重要的数学结论和不等式定理。

本文将介绍基本不等式的概念、应用和证明方法。

一、基本不等式的概念基本不等式是指在一定条件下,两个数或多个数之间的大小关系。

常见的基本不等式有:算术平均-几何平均不等式、柯西-施瓦茨不等式、均值不等式等。

二、基本不等式的应用1. 算术平均-几何平均不等式:对于任意非负实数a1、a2、...、an,有(a1+a2+...+an)/n >= (a1*a2*...*an)^(1/n)这个不等式常用于证明其他不等式的推导过程中。

2. 柯西-施瓦茨不等式:对于任意实数a1、a2、...、an和b1、b2、...、bn,有(a1*b1+a2*b2+...+an*bn)^2 <= (a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)这个不等式常用于证明向量之间的关系,以及求解最优化问题。

3. 均值不等式:对于任意非负实数a1、a2、...、an,有(a1+a2+...+an)/n >= sqrt(a1*a2*...*an)这个不等式常用于证明其他不等式的推导过程中。

三、基本不等式的证明方法1. 数学归纳法:通过证明基本不等式在某个特定条件下成立,然后推导出在一般情况下也成立。

2. 数学推导法:通过数学运算和推导,将不等式转化为等式或已知的不等式,从而证明原始的不等式成立。

3. 几何法:通过几何图形的性质和关系,推导出相应的不等式。

四、基本不等式的应用举例1. 证明算术平均-几何平均不等式:设a、b为非负实数,且a≠b,则有(a+b)/2 >= sqrt(ab)通过数学推导,可以得到等式左边减去右边的结果大于等于0,从而证明不等式成立。

2. 证明柯西-施瓦茨不等式:设a1、a2、...、an和b1、b2、...、bn为实数,则有(a1*b1+a2*b2+...+an*bn)^2 <= (a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)通过数学推导,可以将等式右边展开,然后应用基本的数学运算,最终得到等式左边减去右边的结果大于等于0,从而证明不等式成立。

基本不等式公式四个几何证明

基本不等式公式四个几何证明

基本不等式公式四个几何证明好的,以下是为您生成的关于“基本不等式公式四个几何证明”的文章:在咱们数学的世界里,基本不等式公式就像是一座坚固的桥梁,连接着不同的数学知识和解题思路。

今天,咱们就来好好聊聊基本不等式公式的四个几何证明,这可是相当有趣的哟!先来说说基本不等式公式到底是啥。

它是这样的:对于任意的正实数 a 和 b ,都有a + b ≥ 2√(ab) ,当且仅当 a = b 时,等号成立。

那这四个几何证明到底是怎么回事呢?我给您慢慢道来。

第一个证明,咱们可以借助矩形的面积来说明。

假设咱们有一个矩形,它的长和宽分别是 a 和 b 。

那这个矩形的面积就是 ab 。

然后呢,我们再以这个矩形的对角线为边长,构造一个正方形。

这个正方形的面积就是 (a + b)² / 4 。

因为正方形的面积肯定大于等于矩形的面积,所以就有(a + b)² / 4 ≥ ab ,整理一下就得到了a + b ≥ 2√(ab) 。

记得有一次,我给学生们讲这个证明的时候,有个调皮的小家伙举手说:“老师,我还是不太明白。

”我就走到他身边,拿起他桌上的尺子和铅笔,重新给他画了一遍那个矩形和正方形,边画边解释:“你看啊,这个正方形把矩形包在里面了,是不是正方形的面积更大呀?”小家伙眼睛一下子亮了起来,兴奋地说:“老师,我懂啦!”那一刻,我心里别提多有成就感了。

第二个证明,咱们可以用圆的半径来帮忙。

想象有两个圆,它们的半径分别是√a 和√b 。

那么这两个圆的面积之和就是πa + πb 。

而以 a+ b 为直径的圆的面积是π(a + b) / 4 。

因为大圆的面积肯定大于等于两个小圆的面积之和,所以就有π(a + b) / 4 ≥ πa + πb ,同样能推出基本不等式公式。

第三个证明,咱们可以通过三角形的边长关系来搞定。

假设有一个直角三角形,两条直角边分别是√a 和√b ,斜边就是√(a + b) 。

根据三角形的三边关系,斜边肯定大于等于两条直角边的算术平均值,也就是√(a + b) ≥ (√a + √b) / 2 ,两边平方一下,也能得到基本不等式公式。

基本不等式及应用

基本不等式及应用

基本不等式的推导和证明过程
Step 1
通过数学推导和运算,将不等式简化,并且保持其等价性。
Step 2
使用数学定律和性质,对不等式进行变形和化简,以达到所需的形式。
Step 3
通过合理的推理和论证,证明不等式的正确性和有效性。
基本不等式的应用举例
数学竞赛
基本不等式是解决数学竞赛问题中常用的工具,它 能够帮助我们证明数学论断,并找到最优解。
基本不等式及应用
在这个演示中,我们将探讨基本不等式的定义、性质、推导和证明过程。还 将展示它在数学竞赛和实际问题中的重要性,以及其发展和拓展。
基本不等式的定义和性质
1 定义
基本不等式是描述两个数或表达式之间相对大小关系的不等式。
2 性质
基本不等式满足数学运算的性质,如传递性、加减法的保持性和乘除法的保持性。
基本不等式在实际问题中的应用
资源分配
通过基本不等式,我们可以合 理分配资源,以满足不同需求。
最优决策
基本不等式可以帮助我们做出 最优决策,以最大化效益。
风险评估
利用基本不等式,我们可以评 估风险和潜在损失,从而做出 明智的决策。
基本不等式的发展和拓展
1
古希腊时期
欧几里得的《几何原本》中首次提出了基本的几何不等式。
实际问题
在实际生活中,我们可以运用基本不等式来解决各 种问题,如优化资源分配、最大化收益等。
基本不等式在数学竞赛中式帮助竞赛选手 在有限时间内快速解决问 题,获得高分。
2 拓展思维能力
通过应用基本不等式,选 手可以培养逻辑思考和问 题解决的能力。
3 提高竞争力
熟练掌握基本不等式的应 用,能够在竞争激烈的数 学竞赛中占据优势。

也谈基本不等式组的几何证法

也谈基本不等式组的几何证法

也谈基本不等式组的几何证法基本不等式组是数学中常见的一种不等式组,它在几何证明中起着重要的作用。

本文将介绍基本不等式组在几何证明中的应用,并探讨几何证明中常用的基本不等式组的几何证法。

我们来了解一下基本不等式组。

基本不等式组是指由一组基本不等式构成的不等式组。

常见的基本不等式包括三角不等式、柯西-施瓦茨不等式、均值不等式等。

这些基本不等式在几何证明中经常被用到,因为它们能够简洁地描述几何图形的性质。

在几何证明中,基本不等式组的几何证法通常可以分为以下几种:1. 利用三角不等式进行证明。

三角不等式是几何证明中常用的基本不等式,它可以用来证明三角形的边长关系。

例如,要证明一个三角形的两边之和大于第三边,可以利用三角不等式中的“两边之和大于第三边”这个基本不等式进行证明。

2. 利用柯西-施瓦茨不等式进行证明。

柯西-施瓦茨不等式是几何证明中常用的基本不等式,它可以用来证明向量的内积关系。

例如,要证明两个向量的内积大于等于零,可以利用柯西-施瓦茨不等式中的“向量的内积大于等于零”这个基本不等式进行证明。

3. 利用均值不等式进行证明。

均值不等式是几何证明中常用的基本不等式,它可以用来证明数列的平均值关系。

例如,要证明一组数的算术平均值大于等于几何平均值,可以利用均值不等式中的“算术平均值大于等于几何平均值”这个基本不等式进行证明。

以上是几何证明中常用的基本不等式组的几何证法。

在实际的几何证明中,我们可以根据具体的证明目标选择合适的基本不等式组和对应的几何证法。

通过灵活运用基本不等式组的几何证法,我们可以简洁地证明几何图形的性质,提高证明的效率。

总结起来,基本不等式组在几何证明中具有重要的应用价值。

通过利用基本不等式组的几何证法,我们可以简洁地证明几何图形的性质,提高证明的效率。

在实际的几何证明中,我们应根据具体的证明目标选择合适的基本不等式组和对应的几何证法,以达到最佳的证明效果。

希望本文对读者理解和运用基本不等式组的几何证法有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档