第七章 色谱分离技术

合集下载

色谱分离技术的原理与应用

色谱分离技术的原理与应用

色谱分离技术的原理与应用色谱分离技术是一种广泛应用于化学、生物、药学等领域的重要分析方法。

它通过将混合物中的化合物在固定相上的不同亲和力进行逐渐分离,以达到提取、检测和定量目的。

本文将主要介绍色谱分离技术的原理和常见应用。

一、色谱分离技术的原理色谱分离技术的原理基于样品中的化合物在固定相上的亲和力不同,通过固定相和流动相的相互作用力达到分离目的。

常见的色谱分离技术包括液相色谱、气相色谱和超临界流体色谱。

1. 液相色谱(Liquid Chromatography, LC)液相色谱是利用固定在填料上的液体或溶胶吸附或交换作用对溶液中的化合物进行分离的技术。

在液相色谱中,流动相为液体,样品通过固定相对化合物进行分离。

常用的固定相材料包括疏水性材料、离子交换树脂、正相材料等。

2. 气相色谱(Gas Chromatography, GC)气相色谱是利用固定在填料上的固体吸附剂或液体涂层对气相中的化合物进行分离的技术。

在气相色谱中,流动相为惰性气体,样品通过固定相对化合物进行分离。

常用的固定相材料包括硅胶、分子筛等。

3. 超临界流体色谱(Supercritical Fluid Chromatography, SFC)超临界流体色谱是利用介于气态和液态之间的超临界流体对样品中的化合物进行分离的技术。

超临界流体具有较高的溶解度、较低的粘度和较高的扩散系数,使其具有较好的分离能力和较快的分离速度。

二、色谱分离技术的应用色谱分离技术具有广泛的应用领域,包括药物分析、环境监测、食品安全、天然产物提取等。

1. 药物分析色谱分离技术被广泛应用于药物的分析和质量控制。

通过色谱分离技术,可以对药物中的各种成分进行分离、定量和纯化,以保证药物的质量和安全性。

2. 环境监测色谱分离技术在环境监测中起到了至关重要的作用。

它可以对环境中的有机物、重金属、农药等进行定性和定量分析,为环境保护和生态安全提供科学依据。

3. 食品安全色谱分离技术在食品安全领域的应用越来越重要。

第七章 色谱分离技术

第七章 色谱分离技术
固定相和流动相、操作条件。
④ 设备简单,操作方便,且不含强烈的操作条件, 因而不容易使物质变性,特别适于不稳定的大分子 有机化合物。
缺点: 处理量小、操作周期长、不能连续操作,因此 主要用于实验室,工业生产上应用较少。
3.色谱法的分类 吸附色谱法
分配色谱法
分离机理
离子交换色谱法 凝胶色谱法
亲和色谱法
(一)基本原理
溶液中某组分的分子在运动中碰到一个固体表 面时,分子会贴在固体表面上,发生吸附作用。
1.发生吸附作用的原理:
固体表面分子(或原子)与固体内部分子(或原子) 所处的状态不同:
固体内部分子(或原子)受临近四周分子的作用力是 对称的,作用力总和为零,即彼此互相抵消,故分子处 于平衡状态。
界面上的分子所受的力不对称,作用力总和不等于零, 合力指向固体内部。
小分子
(二)凝胶过滤介质
基本要求:
不能与原料组分发生除排阻之外的任何其他相 互作用,如电荷作用、化学作用、生物学作用
高物理强度、高化学稳定性 耐高温高压、耐强酸强碱 高化学惰性 内孔径分布范围窄 颗粒大小均一度高
常用的凝胶过滤介质 葡聚糖凝胶 琼脂糖凝胶 聚丙烯酰胺凝胶
1. 葡聚糖凝胶
pH、缓冲液浓度、离子强度
③ 柱操作 柱的大小、长短 ④ 流速的控制 高速度、高效率 ⑤ 清洗 除去不结合的所有物质 ⑥ 洗脱 特异性洗脱(竞争性置换目的物) ⑦ 柱的再非生特异性洗脱(调节pH、离子强度和种类、温度)
(五)亲和色谱法的应用
1.亲和色谱法的特点: 专一、高效、简便、快速
2.应用 ① 分离和纯化各种生物分子 纯化生物大分子,适于从组织或发酵液中分离
色谱法应运而生。
色谱分离是一组相关技术的总称,又叫做色 谱法、层析法,是一种高效而有用的生物分离 技术。

色谱分离技术

色谱分离技术

二、离子交换树脂的性能 1. 交联度(degree of cross linking): 离子交换 交联度( ): 树脂上胶联剂的含量称为交联度。 树脂上胶联剂的含量称为交联度。交联度用重量百分 比表示, 标号树脂, 比表示,如“×4”标号树脂,其交联度为 标号树脂 其交联度为4%。应根据 。 试样性质进行选择。 试样性质进行选择。 2.交换容量:每千克干树脂能参加交换反应的活 交换容量: 交换容量 性基团数, 表示。 性基团数,用mmol/g or mmol/ml表示。 表示 粒度:离子交换树脂颗粒的大小, 粒度:离子交换树脂颗粒的大小,用树脂溶胀态 所能通过的筛孔数表示。 所能通过的筛孔数表示。 三、流动相 离子交换色谱流动相最常用的是水缓冲液。 离子交换色谱流动相最常用的是水缓冲液。有酸 性缓冲溶液和碱性缓冲液,有时也用有机溶剂(甲醇、 性缓冲溶液和碱性缓冲液,有时也用有机溶剂(甲醇、 乙醇)同水缓冲液混合使用。流动相的pH, 乙醇)同水缓冲液混合使用。流动相的 ,缓冲液的 类型,离子强度, 类型,离子强度,以及加入的有机溶剂都会影响组分 的分离。 的分离。
二、纸色谱法 (一)基本原理 纸色谱法是用滤纸作载体的平面色谱法。 纸色谱法是用滤纸作载体的平面色谱法 。 固定相 为纸纤维吸附的水或吸留的甲醇胺、缓冲液等。 为纸纤维吸附的水或吸留的甲醇胺 、 缓冲液等 。 流动 相为与水不相混溶的有机溶剂。 相为与水不相混溶的有机溶剂 。 因为吸附在纤维上 20%的水分中,有约 的水分中, 的水分中 有约6%可通过氢键与纸纤维素上的羟 可通过氢键与纸纤维素上的羟 基结合生成复合物,与亲水性溶剂可形成两相。 基结合生成复合物 , 与亲水性溶剂可形成两相 。 纸色 谱法属分配色谱, 谱法属分配色谱 , 是利用样品组分在两相间分配系数 的不同达到分离的目的。实际上,纸色谱的分离机制 的不同达到分离的目的。 实际上, 较复杂,除分配外, 较复杂 , 除分配外 , 可能还有溶质与纸纤维素间的吸 附作用,与纸纤维素上某些基团( 附作用 , 与纸纤维素上某些基团 ( 造纸时引入到纤维 素上的)之间的离子交换作用。 素上的)之间的离子交换作用。

色谱分离技术

色谱分离技术

亲和色谱亲和色谱是专门用于纯化生物大分子的色谱分离技术,它是基于固定相的配基与生物分子间的特殊生物亲和能力的不同来进行相互分离的。

亲和色谱的显著特点:具有其他分离技术所不能比拟的高选择性,且色谱过程操作条件温和,能有效地保持生物大分子高级结构的稳定性,活性样品的回收率也比较高。

所以亲和色谱被广泛用于酶、治疗蛋白、抗体、核酸、辅助因子等生物大分子以及细胞、细胞器、病毒等超分子物质的分离与纯化。

特别是对分离含量极少而又不稳定的活性物质最有效,经一步亲和色谱即可提纯几百至几千倍。

亲和色谱的基本过程:把具有特异亲和力的一对分子的任何一方作为配基,在不伤害其生物功能情况下,与不溶性载体结合,使之固定化,装入色谱柱,然后把含有目的物质的混合液作为流动相,在有利于固定相配基和目的物质形成络合物的条件下进入色谱柱。

目的物质被吸附,杂质直接流出。

变换过柱溶液,使配基与其亲和物分离,获纯化的目的产物。

亲和色谱分离中经常采用的生物亲和关系①酶:底物、底物类似物、抑制剂、辅酶、金属离子;②抗体:抗原、病毒、细胞;③激素、维生素:受体蛋白、载体蛋白;④外源凝集素:多糖、糖蛋白、细胞表面受体蛋白、细胞;⑤核酸:互补碱基链段、组蛋白、核酸聚合酶、核酸结合蛋白;⑥细胞:细胞表面特异蛋白、外源凝集素。

亲和色谱操作中的洗脱方法在亲和色谱洗脱操作中,洗脱方法有两类,即普通洗脱法和专一性洗脱法。

普通洗脱法:与其他色谱分离方法一样,可以通过改变溶剂或缓冲液的类型,改变缓冲液的pH和离子强度,改变洗脱温度,以及添加促溶剂等措施进行洗脱。

专一性洗脱法:是指溶液中的配基、抑制剂或半抗原等物质与亲和层析剂上的配基,同时对生物活性物质产生竞争性的结合,从而达到洗脱的目的。

一般说来,专一性洗脱可以获得很高的分辨能力。

但是,专一性洗脱剂的价格都比较昂贵,所以常与普通洗脱条件配合作用。

离子交换色谱离子交换色谱利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。

第7章 色谱分离技术

第7章  色谱分离技术
(4) 酚-醛型树脂 主要由水杨酸、苯酚和甲醛 缩聚而成,水杨酸和甲醛形成线状结构,苯酚作 为交联剂。
2. 按树脂骨架的物理结构
(1) 凝胶型树脂 (2) 大网格树脂 (3) 均孔树脂
3. 按活性基团分类
1) 阳离子交换树脂 活性基团为酸性, 对阳离子具有交换能力。
(1) 强酸性阳离子交换树脂
超临界流体色谱—流动相是在接近它 的临界温度和压力下工作的液体
三、色谱法的分类
根据固定相的附着方式分类 —固定相装在圆柱管中—柱色谱 —液体固定相涂在纸上—纸色谱(平板色谱)
—固定相涂敷在玻璃或金属板上—薄层色谱
三、色谱法的分类
按分离机理不同,可分为: 吸附色谱法 分配色谱法 离子交换色谱法 凝胶色谱法 亲和色谱法
第7章 色谱分离技术
一、色谱分离技术的概念 色谱(chromatography)分离技术是 一类分离方法的总称,又称色谱法、层析法、 层离法等。它是利用不同组分在固定相和流 动相中的物理化学性质的差别,使各组分在 两相中以不同的速率移动而进一步分离的技 术。
二、色谱分离系统的组成
在色谱法中,表面积较大的固体或附着 在固体上且不运动的液体,静止不动的 一相(称为固定相 ;自上而下运动的一 相(一般是气体或液体)称为流动相 。
展开剂
常用溶剂极性次序为:己烷<环己烷<四 氯化碳<甲苯<苯<氯仿<乙醚<乙酸乙酯< 丙酮<正丙醇<乙醇<甲醇<水<冰醋酸
(2)柱色谱的吸附剂与洗脱剂
吸附剂的选择
一般地说,所选的吸附剂应有最大的比 表面积和足够的吸附能力,它对欲分离 的不同物质应该有不同的解吸能力;与 洗脱剂、溶剂及样品组分不会发生化学 反应;还要求所选的吸附剂颗粒均匀, 在操作过程中不会破裂。

现代分离方法与技术第7章 制备色谱技术

现代分离方法与技术第7章 制备色谱技术
第7章 制备色谱技术
7.1 制备薄层色谱技术 7.2 常规柱色谱技术 7.3 加压液相色谱技术 7.4 逆流色谱法 7.5 超临界流体色谱法 7.6 模拟床移动色谱法 7.7 制备气相色谱法 7.8 径相色谱法 7.9 顶替色谱法 7.10 离子交换与吸附
制备色谱技术
制备色谱的特点:
最有效的制备性分离技术;
实验室规模、小批量生产、产业化制备;
不同领域产品量不一样,阐明化学结构和
生物活性,30-50 mg足够,分析用标准
品100 mg以上,有机合成通常需要g级以
上;
薄层色谱
柱色谱
制备色谱技术
7.1 制备薄层色谱技术
设备简单,操作方便、分离快速、灵敏度及 分辨率高; a. 切割谱带更加方便; b. 自动化:自动点样仪、自动程序展开仪、 薄层扫描仪、多种强制流动技术、多种联 用技术如傅立叶变换红外、拉曼、质谱等。
50-300
2-7
50-500
2-12
制备色谱技术
7.2 常规柱色谱技术
可使用较大直径的色谱柱,更多的固定相,
因此样品量可以更大;
分离速度较慢,样品可能被不可逆吸附;
不适合小颗粒的吸附剂?
改进方法:减压、加压等
制备色谱技术
柱色谱常用固定相
(1)硅胶:官能团和分子的几何形状,对异构
比表面积
制备色谱技术
大孔吸附树脂使用:
用前需预处理除去杂质:
回流法、水蒸气蒸馏法;
渗漉法----乙醇丙酮等有机溶剂湿法装柱,浸泡12
h后洗脱2-3倍柱体积,再浸泡3-5 h后洗脱2-3倍柱体
积,重复直到流出的有机溶剂与水混合不呈现白色乳 浊现象为止,用大量蒸馏水洗去乙醇即可。如单独采 用有机溶剂洗不尽杂质,则可用酸碱处理,2-5%盐 酸、2-5%NaOH溶液浸泡,洗脱,水洗。

色谱分离技术及其应用

色谱分离技术及其应用

色谱分离技术及其应用色谱分离技术是指利用固定相和流动相间的相互作用,在物质混合物中将各种组分分离开的技术。

色谱分离技术已成为分离、检测和分析生物、化学和环境样品中物质的重要工具。

色谱分离技术的基本原理是将混合物分离成若干性质相近或相同,但成分不同的组分。

这是通过固定相和流动相的相互作用来实现的。

在固定相和流动相的相互作用中,固定相可以是一种具有表面活性、具有亲疏水性、或化学亲和作用的材料。

而流动相则可以是一种液体或气体,它们可以通过了固定相,使得混合物中的组分在固定相上吸附或溶解,从而实现各组分的分离。

色谱分离技术在生物、化学和环境科学等领域应用广泛。

例如,在生物学和医学中,在基因显微分析、捕获蛋白质、酶和细胞的单细胞检测中,广泛采用了色谱分离技术。

此外,还可以用于药物筛选、质量控制和制造的过程控制。

在环境领域,色谱分离技术可用于寻找化学毒物和环境污染物,并对环境废物进行检测和处理。

高效液相色谱(HPLC)是最常用的色谱分离技术之一,它可以处理各种类型的混合物,并对具有取向和激发导向性分子进行分离。

在HPLC分离中,利用固定相与流动相间的相互作用来移动样品混合物。

固定相一般是一种高度纯化的压缩载体,使得各个样品成分分离时可以得到更高的纯度。

而流动相一般应适合所需要分离的物质类型。

在汽相色谱(GC)中,气相与液相的相互作用,使得分子在流动相中具有更高的活性和协同性。

此外,它还可以用于食品质量检测中。

例如,气相色谱技术常用于检测食品中的农药、有机物和污染物。

而在高效液相色谱技术中,可以利用蛋白质和植物次生物质进行分离,用于食品中的物质鉴定和质量评估。

总之,色谱分离技术已成为一个广泛应用的分析和分离技术。

随着科技的不断进步,色谱分离技术将更好地应用于各个领域的分析和分离中,为人类的健康和环境保证做出重要贡献。

色谱分离的技术

色谱分离的技术
是所有分离纯化技术中最高的(不计电泳)。 若用理论塔板数来表示柱效率,每米柱长可达103~105块塔板。 通常色谱柱长一般只有几厘米至几十厘米。 从极性到非极性、离子型到非离子型、小分 子到大分子、无机到有机及生物活性物质,以及热稳定到热不稳 定的化合物,都可用色谱法分离。 色谱分离有很强的选择性, 可通过多种途径 选择不同的操作参数,以适应各种不同样品的分离要求。
7.1.2.2 按固定相形状不同分类
(1)柱色谱
进样量大,回收容易。 除用于分析外,还广泛用于生物样品 的制备和工业生物产品的分离与纯化。
(2)纸上色谱 广泛用于定性与定量分析,不用于制备和生产。
(3)薄层色谱
主要用于分析,也可用于小量样品的制备。
7.1.2.3 其他分类方法
(1) 根据流动相的物态分类 气相色谱 、液相色谱和超临界色谱
Ve Vo K d Vi

(7-29) (7-30)
Ve Vo Kd Vi
Kd=1,溶质分子完全不被排阻, 可自由进入所有凝胶颗粒微孔。 Kd=0,溶质分子完全被排阻于凝胶颗粒微孔之外,最先被洗脱。 对于中等分子,能进入部分凝胶空间,0<Kd<1。 当具有不同分子量物质的混合液流经凝胶柱时,其Kd值的大小就 决定了物质的流出顺序,即Kd值小的先流出,Kd值大的后流出。
7.1.4.2 吸附色谱
吸附色谱分离就是根据吸附剂(固定相)对不同物质的吸 附力不同而使混合物分离的。
离子交换色谱和亲和色谱也可归类于吸附色谱,前者主要 是静电引力的作用,而后者是生物专一亲和力的作用。
在一定温度下,分离物质在液相和固相中的浓度关系可用吸附 方程式来表示:
Ka A B A B Kd
极高的分辨率;
1944年 出现纸层析;

色谱分离技术

色谱分离技术

色谱分离技术色谱分离技术是一种非常有用的分离技术,它可以用来分离和测定各种化学物质和生物物质的构成成分。

这种技术的应用非常广泛,在分析科学、医药、食品和环境科学等多个领域都有重要的应用价值。

色谱是一种将一种物质分离成一个或几个组份的分离技术。

它是一种以溶剂混合物为分析对象的分离技术,分析动力学模型中,将一个复杂混合物分开成单一成分,或者将从同一样品收集到的多个成份分离开来,以便进行更详细的分析。

一般来说,色谱技术分为液相色谱、气相色谱和固相色谱三大类。

液相色谱(LC)是一种将混合物分离成单个部分的分离技术,它的分离原理是将混合物在某一特定流动相系统中进行分离,使混合化合物进入不同的体积比空间,从而实现分离。

一般情况下,使用液相色谱来分离复合物,并在高效液相色谱系统中加以鉴定。

它主要应用于复杂混合物的分离和分析,以得到单价结构或复杂组成物质。

气相色谱技术(GC)是一种利用混合物中不同物质之间比较大的分子质量来分离分析它们的技术。

分析时,气相混合物的各组分被溶解在柱的吸附剂中,在充满气体的情况下,根据其分子质量的大小,其分子在柱内移动的速度也不同,从而实现分离。

一般而言,气相色谱技术是极具灵敏性的,而且可以在较短的时间内获得较高的精度,因此,它在可控性和灵敏性等方面都明显优于其它技术。

最后是固相色谱技术(SPE),它也是一种分离技术,该技术主要用于纯化复杂混合物,它的操作步骤是将混合化合物放置在一种特殊的吸附剂上,利用温度的变化和物理因素,从而使其分离出单一的化合物。

与液相和气相色谱相比,固相色谱技术具有较高的纯度和较低的成本,而且该技术可以用于分离、测定、调节和表征诸如碳水化合物、蛋白质、核酸、有机酸和其他有机物等复杂物质。

色谱分离技术是当今分析科学领域中一种重要的技术,其应用非常广泛,可用于各种化学和生物物质的分离和测定。

液相、气相和固相色谱技术在很多领域都发挥了重要作用,为医药、食品、环境等领域的研究提供了强大的技术支持。

色谱分离技术原理及其的应用

色谱分离技术原理及其的应用

色谱分离技术原理及其的应用色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。

此时,玻璃管的上端立即出现几种颜色的混合谱带。

然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。

色谱法也由此而得名。

现在的色谱法早已不局限于色素的分离,其方法也早已得到了极大的发展,但其分离的原理仍然是一样的。

我们仍然叫它色谱分析。

一、色谱分离基本原理:由以上方法可知,在色谱法中存在两相,一相是固定不动的,另一相则不断流过固定相,我们把它叫做流动相。

色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。

使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。

当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。

由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。

与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。

二、色谱分类方法:色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。

从两相的状态分类:色谱法中,流动相可以是气体,也可以是液体,由此可GCLC)。

固定相既可以是固体,也可以是涂在固体上的液体,由此又可将气相色谱法和液相色谱法分为气-液色谱、气-固色谱、液-固色谱、液-液色谱。

70年代初期发展起来的一种以液体做流动相的新色谱技术。

高效液相色谱是在气相色谱和经典色谱的基础上发展起来的。

现代液相色谱和经典液相色谱没有本质的区别。

不同点仅仅是现代液相色谱比经典液相色谱有较高的效率和实现了自动化操作。

生物工程下游技术第七章_生物大分子的色谱分离和纯化

生物工程下游技术第七章_生物大分子的色谱分离和纯化

有关,塔板数越多,柱效能越高。
色谱柱的塔板数可以用理论塔板数和有效
塔板数来表示。
1.理论塔板数n:
tR 2 n 5.54( ) 16( ) Y1/ 2 Y
2
tR
式中:tR为某组分的保留时间;
Y1/2为某组分色谱峰的半宽度; Y为色谱峰的峰底宽度。
由式可见,柱子的理论塔板数与峰宽和保留时间
有关。保留时间越长,峰越窄,理论塔板数就越
描述色谱柱中组分在两相间的分配状况及评 价色谱柱的分离效能的一种半经验式的理论 。塔板理论将一根色谱柱当作一个由许
多塔板组成的精馏塔,用塔板概念来描
述组分在柱中的分配行为。该 理论成功
地解释了色谱流出曲线呈正态分布。
(一)塔板理论假定:
1)塔板之间不连续; 2)塔板之间无分子扩散; 3)组分在各塔板内两相间的分配瞬间达至平衡, 达一次平衡所需柱长为理论塔板高度H; 4)某组分在所有塔板上的分配系数相同; 5)流动相以不连续方式加入,即以一个一个的塔 板体积加入。
在色谱分析中,尤其是GC中广泛用于定性的依据!
h. 色谱峰的高度、宽度及面积:
标准偏差:峰高0.607 倍处峰宽度的一半。
半峰宽Y1/2:峰高一半处的峰宽。Y1/2=2.355
峰底宽Y:色谱峰两侧拐点上切线与基线的交点间
的距离。Y= 4
峰面积A:色谱定量的依据。A=1.065hY1/2
,[A=1.065h(Y0.15+Y0.85)/2]。
Vr' :某组份的保留体积扣 f. 调整保留体积 除死体积后的体积。
V Vr V0 t Fco
' r ' r
g. 相对保留值2,1或i,s :组份2的调整保留值 与组份1的调整保留值之比。

第七章 色谱分析基础

第七章 色谱分析基础

3.分配比k
分配比又称容量因子、容量比,它是指在一 定温度和压力下,组分在两相间分配达平衡时, 分配在固定相和流动相中的质量比。即 :
组分在固定相中的质量 ms k 组分在流动相中的质量 mM
k值越大,说明组分在固定相中的量越多,相当于 柱的容量大,因此又称分配容量或容量因子。它是衡量 色谱柱对被分离组分保留能力的重要参数。
三、 速率理论—影响柱效的因素
1. 速率方程(也称范.弟姆特方程式)
H = A + B/u + C· u
H:理论塔板高度,
u:载气的线速度(cm/s) 减小A、B、C三项可提高柱效; 存在着最佳流速; A、B、C三项各与哪些因素有关?
t R ( B) k ( B) K ( B) t R ( A) k ( A) K ( A)
上式表明:通过选择因子α把实验测量值k与热力学性质的分 配系数K直接联系起来,α对固定相的选择具有实际意义。 如果两组分的K或k值相等,则α=1,两个组分的色谱峰必将重 合,说明分不开。两组分的K或k值相差越大,则分离得越好。因 此两组分具有不同的分配系数是色谱分离的先决条件。
7.2 色谱流出曲线及有关术语
一、流出曲线和色谱峰
二、基线
柱中仅有流动相通过时,检测器响应讯号的记录值,即 图18-3中O—t线.稳定的基线应该是一条水平直线。
三、峰高
色谱峰顶点与基线之间的垂直距离,以h表示,如图B′A
四、保留值
1.死时间tM 不被固定相吸附或溶解的物质进入色谱 柱时,从进样到出现峰极大值所需的时间 称为死时间,如图O′A′。
体),称为流动相。
二、色谱法分类
1.按两相状态分类
(1)气相色谱:流动相为气体(称为载气)。

色谱分离技术

色谱分离技术

五、色谱图及基本概念
色谱图: 色谱图:混合液中各种 组分经色谱柱随流动相 依次流出,在检测器上 依次流出, 检测到的信号随时间的 变化曲线或随流动相的 体积的变化曲线为色谱 图。
1. 基线 色谱柱出口没有组分流出, 色谱柱出口没有组分流出,仅有纯流动相流 过监测器,即无试样通过检测器时, 过监测器,即无试样通过检测器时,检 测到的信号即为基线。 测到的信号即为基线。稳定的基线应是 一条平行于横坐标的直线。 一条平行于横坐标的直线。
分离度R的物理意义 分离度 的物理意义 分离度R综合考虑了保留值的差值与峰宽 分离度 综合考虑了保留值的差值与峰宽 两方面的因素对柱效率的影响, 两方面的因素对柱效率的影响,可衡量色 谱柱的总分离效能,R值越大 值越大, 谱柱的总分离效能,R值越大,两色谱峰 的距离越远,分离效果越好。 的距离越远,分离效果越好。
噪声:使基线发生细小波动的现象称为~, 噪声:使基线发生细小波动的现象称为~, 如空气峰。 如空气峰。
2、色谱峰 当样品中的组分随流动相流入检测器时,检 当样品中的组分随流动相流入检测器时, 测器的相应信号大小随时间变化所形成的 峰形曲线称为色谱峰, 峰形曲线称为色谱峰,峰的起点和终点的 连接直线称为峰底。 连接直线称为峰底。
色谱技术(分配色谱)--概念 色谱技术(分配色谱)--概念: 概念:
色谱技术是一组相关分离方法的总称, 色谱技术是一组相关分离方法的总称,色 谱柱的一般结构含有固定相(多孔介质) 谱柱的一般结构含有固定相(多孔介质) 和流动相,根据物质在两相间的分配行为 和流动相, 不同(由于亲和力差异),经过多次分配 不同(由于亲和力差异),经过多次分配 ), 吸附-解吸-吸附-解吸…),达到分离 (吸附-解吸-吸附-解吸…),达到分离 的目的。 的目的。

气相色谱法

气相色谱法

B、固定液的分离特征
被测组分在固定液中溶解度或分配系数的大小与 被测组分和固定液两种分子之间相互作用力的大小有 关。分子间作用力 ①静电力(定向力) ②诱导力 ③色散力 ④氢键例 (不同固定液的分离性质用麦氏常数表征——表2-6麦 氏常数 )
C、固定液的选择
固定液选择——相似相溶原理
选择固定液的基本原则: ①分离非极性物质 选用非极性固定液——鲨鱼烷、甲基硅油、阿批松。 被分离组分和固定液之间的作用力是色散力。各组分按 沸点顺序先后流出色谱柱。沸点低的组分先流出,沸点 高的组分后流出。如果被分离组分是同系物,由于色散 力与分子量成正比,各组分按碳顺序分离。
n 有效 5 .54 ( H 有效 L n 有效
' Βιβλιοθήκη RY1 / 2) 16 (
2
' tR
Y
)2
( 2 18 ) ( 2 19 )
有效塔板数和有效塔板高度较为真实的反应了柱效能的好坏。 成功处:解释流出曲线的形状(呈正态分布)、浓度极大点的位 置以及计算评价柱效能等方面。 不足处:基本假设是不当 。
O
Fe
O
有吸附性,担体需加以钝化处理。处理方法:酸洗, 碱洗,硅熔 。
2、固定液
A、对固定液的要求
①挥发性小 ②热稳定性好 操作温度下有较低蒸气压,以免流失; 操作温度下不发生分解;
③对试样各组分有适当的溶解能力。 ④具有高的选择性 对沸点相同或相近的不同物质有 尽可能高的溶解能力; ⑤化学稳定性好 不与被测物质起化学反应。
Dg—组分在气相中的扩散系数(单位为cm2·-1) s
纵向扩散与组分在柱内的保留时间有关,保留时 间越长,分子扩散项对色谱峰扩张的影响就越显著。 相对分子质量较大的载气(如氨气)可使B项降低。 Dg随柱温增高而增加,但反比与柱压。 弯曲因子r:空心毛细管柱r=1、填充柱中扩散程 度降低r<1、硅藻土担体r=0.5~0.7

仪器分析 第7章 高效液相色谱法

仪器分析 第7章 高效液相色谱法

由非极性固定相和极性流动相所组成的 液相色谱体系,与正相 HPLC 体系正好相反。 其代表性的固定相是十八烷基键合硅胶 (ODS 柱),代表性的流动相是甲醇和乙腈。 是当今液相色谱的最主要分离模式。
液-液分配色谱固定相的液体往往容易溶解到流 动相中去,所以重现性很差,不大为人们所采用。 后来发展起来的键合固定相以化学键合的方法 将功能分子结合到惰性载体上,固定相就不会溶解 到流动相中去了。
(3)工作温度: 气相色谱一般都在较高温度下进行的,而 高效液相色谱法则经常可在室温条件下工作。
高效液相色谱法主要类型
类 型 液固吸附色谱 主要分离机理 吸附能,氢键 主要分析对象或应用领域 异构体分离、族分离,制备
液液分配色谱 凝胶色谱 离子交换色谱
手性色谱 亲和色谱
疏水分配作用 溶质分子大小 库仑力
由于离子对化合物A-B+具有疏水性,因而 被非极性固定相(有机相)提取。组分离 子的性质不同,它与反离子形成离子对的 能力大小不同以及形成的离子对疏水性质 不同,导致各组分离子在固定相中滞留时 间不同,因而出峰先后不同。
B. 键合相反相离子对色谱法
离子对色谱法类型很多,根据流动相和 固定相的极性可分为反相离子对和正相离子 对色谱法。其中以键合相离子对色谱法最重 要。这种色谱法的固定相采用非极性的疏水 键合相[如十八烷基键合相( ODS )等], 流动相为加有平衡离子(反离子)的极性溶 液(如甲醇—水或乙睛—水)。
抑制柱离子色谱的原理:
以阴离子分析为例:
分析柱反应:
R—Cl + NaOH R—OH + NaCl
抑制柱反应: + NaOH
R—Na + H2O
以阳离子分析为例:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




耐高温高压、耐强酸强碱
高化学惰性 内孔径分布范围窄 颗粒大小均一度高
常用的凝胶过滤介质 葡聚糖凝胶
琼脂糖凝胶
聚丙烯酰胺凝胶
1. 葡聚糖凝胶
应用最广泛的一类凝胶。

由葡聚糖Dextran交联而得。
在制备凝胶时添加不同比例的交联剂可得到交联度 不同的凝胶。交联剂在原料总质量中所占的百分数叫 做交联度。 交联度大:网状结构紧密,吸水量小 交联度小:网状结构疏松,吸水量多
固定相和流动相、操作条件。
④ 设备简单,操作方便,且不含强烈的操作条件, 因而不容易使物质变性,特别适于不稳定的大分子 有机化合物。
缺点: 处理量小、操作周期长、不能连续操作,因此 主要用于实验室,工业生产上应用较少。
3.色谱法的分类
分离机理
操作方法
吸附色谱法 分配色谱法 离子交换色谱法 凝胶色谱法 亲和色谱法 柱色谱法 纸色谱法 薄层色谱法 气相色谱法 液相色谱法
第七章 色谱分离技术
产生的必然性
随着科学的进步,某些关系到人们生命安全 的生物药品,尤其是注射药品和生物工程产品 等,都需要高度纯化。但是,经典的分离方法 (如萃取、结晶等)很难满足需要。
色谱法应运而生。
色谱分离是一组相关技术的总称,又叫做色 谱法、层析法,是一种高效而有用的生物分离 技术。
是产品的最后纯化工序(精制),即在用色 谱纯化之前需要经过其他方法进行提取和初步 纯化。 近40年来,色谱技术已成为生物大分子分离 和纯化技术中极重要的组成部分。 胰岛素、干扰素、疫苗、抗凝血因子、生长 激素等。

化学性质比较稳定,不溶于水、弱酸、碱和盐溶液
2. 琼脂糖凝胶

来源于一种海藻多糖琼脂,是一种天然凝胶,
不是共价交联,而是以氢键交联,键能较弱。

孔隙度通过改变琼脂糖浓度而达到(与葡聚糖不同)
(联系琼脂糖凝胶电泳)

化学稳定性:琼脂糖凝胶 < 葡聚糖凝胶

没有干胶,必须在溶胀状态保存。

能分离几万至几千万高相对分子质量的物质,
凝胶色谱法:以凝胶为固定相、基于分子大
小不同而进行分离的一种方法。因其整个过程
和过滤相似,又称凝胶过滤、分子筛过滤等。
凝胶:一种不带电荷的具有三维空间的多孔 网状结构的物质,凝胶的每个颗粒的细微结构 就如一个筛子。
(一)原理
利用有一定孔径的多孔的亲水性凝胶作为载体, 当分子大小不同的混合物通过这种凝胶柱时,直径
大于凝胶孔径的大分子由于不能进入胶粒内部,便 随着溶剂在胶粒间隙向下移动并最先流出柱外;直 径小于凝胶孔径的分子能不同程度的自由出入凝胶 珠的内外。这样不同大小的分子由于所经的路径不 同从而得到分离,大分子物质先被洗脱下来,小分 子物质后被洗脱下来。
小分子
(二)凝胶过滤介质
基本要求:

不能与原料组分发生除排阻之外的任何其他相 互作用,如电荷作用、化学作用、生物学作用 高物理强度、高化学稳定性
分离范围随着凝胶浓度上升而下降,颗粒强度随 浓度上升而提高。 适用于核酸、多糖和蛋白质类物质的分离。
3. 聚丙烯酰胺凝胶

人工合成,在溶剂中能自动吸水溶胀成凝胶。
对芳香族、杂环化合物有不同程度的吸附作用。
凝胶的预处理
层析柱的选择
(三)操作方法
凝胶柱的装填 样品处理和加样
洗脱与收集
凝胶的保存
pH = pI; pH < pI; pH > pI ?
溶液pH偏离pI越远,则净电荷量越大。
由于各种蛋白质等生物大分子的等电点不同, 可以通过改变溶液的pH和离子强度来影响它们与
离子交换树脂的吸附作用,从而将它们分离。
离子交换树脂(固定相)的性质、种类、选择 依据、离子交换色谱的操作及应用
五、凝胶色谱法
② 主要杂质,特别是分子结构、大小和理化特
性与目的产物相近的杂质成分与含量;
③ 目的产物在色谱分离过程中的生理活性的稳
定性。
四、离子交换色谱法
与离子交换法的区别?
离子交换法:应用离子交换剂作为吸附剂,通过静 电引力将溶液中带相反电荷的物质吸附在离子交换剂 上,然后用合适的洗脱剂将吸附物从离子交换剂上洗 脱下来,从而达到分离、浓缩、纯化的目的。 离子交换树脂 组成 活性离子
流动相的物态 实验技术
迎头法 顶替法 洗脱分析法
4.色谱分离方法的选择
初级代谢产物:氨基酸、有机酸、核苷酸、 目 的 次级代谢产物:生物碱、萜类、糖苷、色素、 产 鞣质类、抗生素 物 生物大分子:蛋白质、酶、多肽、核酸、多糖
单糖类、脂肪酸
色谱分离方法的选择依据:
① 目的产物的分子结构、物理化学性质及相对 分子质量;
离子交换色谱法的固定相应该是什么?
离子交换色谱法:利用离子交换树脂作为固定 相,以适宜的溶剂作为流动相,使溶质按它们的 离子交换亲和力的不同而得到分离的方法。 利用离子交换原理和液相色谱技术的结合来测 定溶液中阳离子和阴离子的一种分离方法。
基本原理:
带电物质因电荷力作用而在固定相和流动相之 间分配得以相互分离。 两性电解质(蛋白质、氨基酸)在不同溶液中 所带的净电荷的种类和数量不同:
(1)概念 色谱法是一种物理的分离方法,利用不同物 质在两相中具有不同的分配系数,并通过两相 不断的相对运动而实现分离的方法。 其中一相是固定相,通常是表面积很大的或
多孔性固体;另一相是流动相,是液体或气体。
流动相流经固定相时,由于物质在两相间的
分配情况不同,经过多次差别分配而达到分离; 或者说,易分配于固定相中的物质移动速度慢, 易分配于流动相中的物质移动速度快,因而逐 步分离。
概述
吸附色谱法 分配色谱法 离子交换色谱法 凝胶色谱法 高效液相色谱法 亲和色谱法
一、概述
1.发展史
创始人:茨维特(Tsweet)1906 纸色谱 薄层色谱 气相色谱 高效液相色谱
石油醚
植物色 素的石 油醚提 取液 菊根粉或 碳酸钙
连续色带—色层或色谱 色谱法得名
离子色谱、凝基本特点: ① 分离效率高。其效率是所有分离纯化技术中最高
的,这种高效的分离尤其适于极复杂混合物。
② 应用范围广。(非)极性、(非)离子型、小分
子和大分子、无机和有机及生物活性物质、热(不)稳 定化合物;尤其是对生物大分子的分离,其他方法无法 取代。
③ 选择性强。可变参数很多:不同的色谱分离方法、
相关文档
最新文档