半导体物理学(刘恩科第七版)课后习题解第一章习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章习题

1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量

E V (k)分别为:

E c =0

2

20122021202236)(,)(3m k h m k h k E m k k h m k h V -

=-+ 0m 。试求:

为电子惯性质量,nm a a

k 314.0,1==

π

(1)禁带宽度;

(2)导带底电子有效质量; (3)价带顶电子有效质量;

(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)

eV

m k E k E E E k m dk E d k m k

dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43

(0,060064

3

382324

3

0)(2320

212102220

202

02022210

1202==-==<-===-==>=+===-+ 因此:取极大值

处,所以又因为得价带:

取极小值处,所以:在又因为:得:由导带:

04

32

2

2*8

3)2(1

m dk E d m

k k C nC

===

s

N k k k p k p m dk E d m

k k k k V nV

/1095.704

3

)()

()4(6

)3(25104

3002

2

2*1

1

-===⨯=-=-=∆=-

== 所以:准动量的定义:

2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算

电子自能带底运动到能带顶所需的时间。 解:根据:t

k

h

qE f ∆∆== 得qE k t -∆=∆

s

a

t s

a

t 137

19

282

1911027.810

10

6.1)0(102

7.810106.1)

0(----⨯=⨯⨯--

=∆⨯=⨯⨯--

=

∆π

π

补充题1

分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提

示:先画出各晶面内原子的位置和分布图)

Si 在(100),(110)和(111)面上的原子分布如图1所示:

(a )(100)晶面 (b )(110)晶面

(c )(111)晶面

补充题2

一维晶体的电子能带可写为)2cos 81

cos 8

7()2

2ka ka ma k E +-= (, 式中a 为 晶格常数,试求

(1)布里渊区边界; (2)能带宽度;

(3)电子在波矢k 状态时的速度;

(4)能带底部电子的有效质量*

n m ;

(5)能带顶部空穴的有效质量*p m

解:(1)由

0)(=dk k dE 得 a

n k π

= (n=0,±1,±2…) 进一步分析a

n k π

)

12(+= ,E (k )有极大值,

2

142

2142

2

142

822/1083.73422

32

212414111/1059.92422124142110/1078.6)

1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯

+⨯+⨯=⨯==⨯

+-):():

():(

2

22)ma

k E MAX

=( a

n

k π

2=时,E (k )有极小值

所以布里渊区边界为a

n k π

)

12(+=

(2)能带宽度为2

22)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 4

1

(sin 1ka ka ma dk dE v -== (4)电子的有效质量

)2cos 21(cos 2

22*

ka ka m

dk

E

d m n

-==

能带底部 a

n k π2=

所以m m n 2*

= (5)能带顶部 a

n k π

)12(+=, 且*

*

n p m m -=,

所以能带顶部空穴的有效质量3

2*

m

m p =

相关文档
最新文档