半导体物理学(刘恩科第七版)课后习题解第一章习题及答案

合集下载

半导体物理学(刘恩科第七版)前五章课后习题解答

半导体物理学(刘恩科第七版)前五章课后习题解答

半导体物理学(刘恩科第七版)前五章课后习题解答( ) 半导体物理学(刘恩科第七版)前五章课后习题解答第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h 2 k 2 h 2 ( k ? k1 ) 2 h 2 k 21 3h 2 k 2 Ec= + , EV (k ) = ? 3m0 m0 6m 0 m0 m0 为电子惯性质量,k1 =(1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:由2? 2 k 2? 2 (k ? k1 ) + =0 3m0 m0π, a = 0.314nm。

试求:a3 k14 d 2E 2? 2 2? 2 8? 2 又因为:2c = + = >0 3m0 m0 3m0 dk 得:k = 所以:在k = 价带:3 k处,Ec取极小值4dEV 6? 2 k =? = 0得k = 0 dk m0 d 2 EV 6? 2 又因为=? < 0, 所以k = 0处,EV 取极大值m0 dk 22 k123 因此:E g = EC ( k1 ) ? E V (0) = = 0.64eV4 12m0 ?2 = 2 d EC dk 2 3 = m0 83 k = k1 4(2)m* nC* (3)mnV =2 d 2 EV dk 2=?k = 01m0 6(4)准动量的定义:p = ?k 所以:?p = (?k )3 k = k1 43 ? (?k ) k =0 = ? k1 ? 0 = 7.95 × 10 ? 25 N / s 42. 晶格常数为0.25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:f = qE = h ? (0 ??k ?t 得?t = ??k ? qEπ ) a ?t1 = = 8.27 × 10 ?8 s ?19 2 ? 1.6 × 10 × 10 π ? (0 ? ) a ?t 2 = = 8.27 × 10 ?13 s ?19 7 ? 1.6 × 10 × 10第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案_百(精)

半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案_百(精)

第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k和价带极大值附近能量EV(k分别为:Ec=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:得补充题1分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si在(100),(110)和(111)面上的原子分布如图1所示:(a)(100晶面(b)(110晶面(c)(111晶面补充题2一维晶体的电子能带可写为,式中a为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k状态时的速度;(4)能带底部电子的有效质量;(5)能带顶部空穴的有效质量解:(1)由得(n=0,1,2…)进一步分析,E(k)有极大值,时,E(k)有极小值所以布里渊区边界为(2能带宽度为(3)电子在波矢k状态的速度(4)电子的有效质量能带底部所以(5能带顶部,且,所以能带顶部空穴的有效质量半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。

(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。

2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。

As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。

半导体物理学[刘恩科]第七版完整课后题答案解析

半导体物理学[刘恩科]第七版完整课后题答案解析

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案

半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科第七版)课后习题解第一章习题及答案

半导体物理学(刘恩科第七版)课后习题解第一章习题及答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =。

半导体物理学(刘恩科第七版)课后习题解第1章习题解

半导体物理学(刘恩科第七版)课后习题解第1章习题解

半导体物理学第一章习题(公式要正确显示,请安装字体MTextra)1.设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E V(k)分别为:........................................................................................1...2.晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

...............................................3.1.设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E V(k)分别为:Ec2222223k(k k)k11,E(k)V3mm6m0002km2m为电子惯性质量,k1,a0.314nm。

试求:a(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化1解:10k 1=109a0.31410(1) 导带:由dE C dk 2 2 k 3m0 2 2 (k mk)1 0得: k3 4 k12 dE 2c 又因为: dk2 2 3m 0 2 2 m 0 2 8 3m0 所以:在 k 3 4 k 处,Ec 取极小值Ec 122 k 14m0 (1.054 1049.110 1031 10 ) 2 3.05 * 10 17J 价带:dEV dk6 2 km 00 得 k0 又因为 2 dE V 2 dk2 6 m0 0, 所以 k 0 处, E 取极大值 V E(k V ) 22k 1 6m 0因此: E g E C ( 3 4 k) 1 E(0) V 22 k 1 4m 0 22 k 1 6m 0 22 k 1 12m 0 (1.054 12 34 10 9.108 10 10 31 10 ) 2 1.02 * 10 17 J *(2)m nC d2 3 2E 8C m 0dk 2 k 34 k 1*(3)mnV d 2 2 EV m 0 62 dkk0 (4)pk准动量的定义:所以:p(k) k 3 4 k 1 ( k) k 0 3 4 k 1 0 3 4 6.625 2 1034 0.314109 3 41.541034 10 107.95 10 25 N /s 23.晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

半导体物理学(刘恩科)第七版第一章到第七章完整课后题答案

半导体物理学(刘恩科)第七版第一章到第七章完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k )分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a)(100)晶面 (b )(110)晶面(c)(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科)第七版完整课后题答案讲课稿

半导体物理学(刘恩科)第七版完整课后题答案讲课稿

3. 以 Ga掺入 Ge中为例,说明什么是受主杂质、受主杂质电离过程和 p 型半导
体。
Ga有 3 个价电子,它与周围的四个 Ge原子形成共价键,还缺少一个电子,于是
在 Ge晶体的共价键中产生了一个空穴, 而 Ga原子接受一个电子后所在处形成一
个负离子中心, 所以, 一个 Ga原子取代一个 Ge原子, 其效果是形成一个负电中
载流子有效质量 m* n m *p。计算 77K时的 NC 和 NV。 已知 300K时,Eg=0.67eV。77k
时 Eg=0.76eV。求这两个温度时锗的本征载流子浓度。② 77K 时,锗的电子浓度 为 1017cm-3 ,假定受主浓度为零,而 Ec-ED=0.01eV,求锗中施主浓度 ED为多少?
E(C k) EC
h2
k
2 x
k
2 y
(
k
2 z
)
状态数。
令 kx'
2 mt
ml
(
ma
1
)2
kx
,k
' y
(
ma
)
1 2
ky
,k
' z
(
ma
)
1 2
k
即d
z
z
g(k ' ) ? Vk'
g(k ' ) ? 4 k ' 2dk
3
1
2
mt 则: Ec (k ' ) Ec
mt
ml
h2
(
k
'2 x
k '2 y
价带:
dEV
6 2k
dk
m0
又因为
d 2 EV dk 2

半导体物理学(刘恩科第七版)习题集标准答案(比较完全)

半导体物理学(刘恩科第七版)习题集标准答案(比较完全)

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科第七版)课后答案(完整版)-阳光大学生网

半导体物理学(刘恩科第七版)课后答案(完整版)-阳光大学生网


1000 3L3
欢迎光临阳光大学生网,提供最全面的大学生课后习题答案和复习试题免费下载,/
2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6) 。
2.证明:si、Ge 半导体的E(IC) ~ K关系为
2 2 h 2 k x k y k z2 E( EC ( ) C k) 2 mt ml ' 令k x ( 1 ma m 1 m 1 ' ) 2 kx , ky ( a ) 2 k y , k z' ( a ) 2 k z mt mt ml
2 8 mn l
1 Z0 V 4 (
Ec
100 h 2
2 8 mn l
EC * n
g ( E )dE
3 2
EC

2
4 (
1 * 3 2m n 2 2 ) ( E E ) dE C 2 h
2m ) h2
2 ( E EC ) 3
3
Ec Ec
100h 2 2 8mn L
欢迎光临阳光大学生网,提供最全面的大学生课后习题答案和复习试题免费下载,/
第三章习题
1. 计算能量在 E=Ec 到 E E C 解:
100h 2 之间单位体积中的量子态数。 2 8m * nL
1 * 3 2m n 2 g ( E ) 4 ( 2 ) ( E EC ) 2 V h dZ g ( E )dE dZ 单位体积内的量子态数Z 0 V Ec 100 h 2
所以布里渊区边界为 k ( 2n 1)

a 2 2 ma 2
(2)能带宽度为 E(k ) MAX E ( k ) MIN (3)电子在波矢 k 状态的速度 v (4)电子的有效质量

半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案-百(精)

半导体物理学(刘恩科)第七版第一章到第五章完整课后题答案-百(精)

第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k和价带极大值附近能量EV(k分别为:Ec=〔1〕禁带宽度;〔2〕导带底电子有效质量;〔3〕价带顶电子有效质量;〔4〕价带顶电子跃迁到导带底时准动量的变化解:〔1〕2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:得补充题1分别计算Si〔100〕,〔110〕,〔111〕面每平方厘米内的原子个数,即原子面密度〔提示:先画出各晶面内原子的位置和分布图〕Si在〔100〕,〔110〕和〔111〕面上的原子分布如图1所示:〔a〕(100晶面〔b〕(110晶面〔c〕(111晶面补充题2一维晶体的电子能带可写为,式中a为晶格常数,试求〔1〕布里渊区边界;〔2〕能带宽度;〔3〕电子在波矢k状态时的速度;〔4〕能带底部电子的有效质量;〔5〕能带顶部空穴的有效质量解:〔1〕由得〔n=0,1,2…〕进一步分析,E〔k〕有极大值,时,E〔k〕有极小值所以布里渊区边界为(2能带宽度为(3〕电子在波矢k状态的速度〔4〕电子的有效质量能带底部所以(5能带顶部,且,所以能带顶部空穴的有效质量半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:〔1〕理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

〔2〕理想半导体是纯洁不含杂质的,实际半导体含有假设干杂质。

〔3〕理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。

2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。

As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。

半导体物理学(刘恩科第七版)习题答案(比较完全)

半导体物理学(刘恩科第七版)习题答案(比较完全)

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEkt -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0, 1, 2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科)第七版第一章到第七章完整课后题答案

半导体物理学(刘恩科)第七版第一章到第七章完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科)第七版第一章到第七章完整课后题答案

半导体物理学(刘恩科)第七版第一章到第七章完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ηηηηηηηη因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===ηsN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-==ηηηηη所以:准动量的定义:2. 晶格常数为的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆ηsat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππηη补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=η(, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,1,2…)进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAXη=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()mak E k E MIN MAX η=-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==ηη (4)电子的有效质量)2cos 21(cos 222*ka ka m dkEd m n-==η能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科)第六第七版第一章到第八章完整课后题答案

半导体物理学(刘恩科)第六第七版第一章到第八章完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dkE d mk k k k VnV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dkk dE 得 a n k π=(n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科第七版)前五章课后习题解答(1)(精)

半导体物理学(刘恩科第七版)前五章课后习题解答(1)(精)

半导体物理学(刘恩科第七版)前五章课后习题解答第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k−k1)2h2k213h2k2Ec=+,EV(k)=−3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2ℏ2k2ℏ2(k−k1)由+=03m0m03k14d2Ec2ℏ22ℏ28ℏ22=+=>03m0m03m0dk得:k=所以:在k=价带:3k处,Ec取极小值4π,a=0.314nm。

试求:adEV6ℏ2k=−=0得k=0dkm0d2EV6ℏ2又因为=−<0,所以k=0处,EV取极大值m0dk2ℏ2k123因此:Eg=EC(k1)−EV(0)==0.64eV412m0ℏ2=2dECdk23=m083k=k14(2)m*nC(3)m*nVℏ2=2dEVdk2=−k=01m06(4)准动量的定义:p=ℏk所以:∆p=(ℏk)3k=k143−(ℏk)k=0=ℏk1−0=7.95×10−25N/s42.晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:f=qE=hℏ(0−∆k∆t得∆t=ℏ∆k−qEπ)−8a∆t1==8.27×10s−192−1.6×10×10πℏ(0−)−13a∆t2==8.27×10s−197−1.6×10×10第二章习题1.实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。

半导体物理学(刘恩科)第七版第一章到第七章完全课后题目解析

半导体物理学(刘恩科)第七版第一章到第七章完全课后题目解析

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC=== sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a)(100)晶面(b)(110)晶面(c)(111)晶面214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatomaaacmatomaaacmatomaa⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=(, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()mak E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学(刘恩科)第七版第一章到第七章完整课后题答案

半导体物理学(刘恩科)第七版第一章到第七章完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=022012202122236)(,)(3m kh m k h k E m k kh m kh V 0m 。

试求:为电子惯性质量,nm a ak 314.0,1(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)eVm k E k E E E km dkE d k m kdk dE Ec k k m m m dk E d k k m k k m kV C gV V V c64.012)0()43(0,06006433823243)(23202121022202222221122因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dkE d mk k C nCsN k k k pk p m dkE d mkk k k V nV/1095.7043)()()4(6)3(2514300222*11所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tk hqEf得qEk tsat sat 137192821911027.810106.1)0(1027.810106.1)0(补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面(b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka kamak E (,式中a 为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*pm解:(1)由0)(dkk dE 得an k(n=0,1,2…)进一步分析an k)12(,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatom aaa cmatom a a a cmatom a a):():():(222)mak E MAX(ank 2时,E (k )有极小值所以布里渊区边界为an k )12((2)能带宽度为222)()mak E k E MINMAX((3)电子在波矢k 状态的速度)2sin 41(sin 1ka kamadkdE v(4)电子的有效质量)2cos 21(cos 222*ka ka m dkE d mn能带底部a n k2所以mmn2*(5)能带顶部an k)12(,且**n pmm,所以能带顶部空穴的有效质量32*m mp半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章习题
1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量
E V (k)分别为:
E c =0
2
20122021202236)(,)(3m k h m k h k E m k k h m k h V -
=-+ 0m 。

试求:
为电子惯性质量,nm a a
k 314.0,1==
π
(1)禁带宽度;
(2)导带底电子有效质量; (3)价带顶电子有效质量;
(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)
eV
m k E k E E E k m dk E d k m k
dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43
(0,060064
3
382324
3
0)(2320
212102220
202
02022210
1202==-==<-===-==>=+===-+ 因此:取极大值
处,所以又因为得价带:
取极小值处,所以:在又因为:得:由导带:
04
32
2
2*8
3)2(1
m dk E d m
k k C nC
===
s
N k k k p k p m dk E d m
k k k k V nV
/1095.704
3
)()
()4(6
)3(25104
3002
2
2*1
1
-===⨯=-=-=∆=-
== 所以:准动量的定义:
2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算
电子自能带底运动到能带顶所需的时间。

解:根据:t
k
h
qE f ∆∆== 得qE k t -∆=∆
s
a
t s
a
t 137
19
282
1911027.810
10
6.1)0(102
7.810106.1)
0(----⨯=⨯⨯--
=∆⨯=⨯⨯--
=
∆π
π
补充题1
分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提
示:先画出各晶面内原子的位置和分布图)
Si 在(100),(110)和(111)面上的原子分布如图1所示:
(a )(100)晶面 (b )(110)晶面
(c )(111)晶面
补充题2
一维晶体的电子能带可写为)2cos 81
cos 8
7()2
2ka ka ma k E +-= (, 式中a 为 晶格常数,试求
(1)布里渊区边界; (2)能带宽度;
(3)电子在波矢k 状态时的速度;
(4)能带底部电子的有效质量*
n m ;
(5)能带顶部空穴的有效质量*p m
解:(1)由
0)(=dk k dE 得 a
n k π
= (n=0,±1,±2…) 进一步分析a
n k π
)
12(+= ,E (k )有极大值,
2
142
2142
2
142
822/1083.73422
32
212414111/1059.92422124142110/1078.6)
1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯
+⨯+⨯=⨯==⨯
+-):():
():(
2
22)ma
k E MAX
=( a
n
k π
2=时,E (k )有极小值
所以布里渊区边界为a
n k π
)
12(+=
(2)能带宽度为2
22)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 4
1
(sin 1ka ka ma dk dE v -== (4)电子的有效质量
)2cos 21(cos 2
22*
ka ka m
dk
E
d m n
-==
能带底部 a
n k π2=
所以m m n 2*
= (5)能带顶部 a
n k π
)12(+=, 且*
*
n p m m -=,
所以能带顶部空穴的有效质量3
2*
m
m p =。

相关文档
最新文档