湖南省邵阳市中考数学试卷含答案解析版

合集下载

2022年湖南省邵阳市中考数学试卷和答案

2022年湖南省邵阳市中考数学试卷和答案

2022年湖南省邵阳市中考数学试卷和答案一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.(3分)下列四种图形中,对称轴条数最多的是()A.等边三角形B.圆C.长方形D.正方形3.(3分)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元12,则a的值是()A.0.11B.1.1C.11D.11000 4.(3分)下列四个图形中,圆柱体的俯视图是()A.B.C.D.5.(3分)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上(正,反),如此类推,出现(正,正)()A.1B.C.D.6.(3分)下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.4cm,5cm,10cm D.6cm,9cm,2cm7.(3分)如图是反比例函数y=的图象,点A(x,y),过点A作AB⊥x轴于点B,连接OA()A.1B.C.2D.8.(3分)在直角坐标系中,已知点A(,m),点B(,n)(k <0)上的两点,则m()A.m<n B.m>n C.m≥n D.m≤n 9.(3分)如图,⊙O是等边△ABC的外接圆,若AB=3()A.B.C.D.10.(3分)关于x 的不等式组有且只有三个整数解,则a的最大值是()A.3B.4C.5D.6二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)因式分解:x2﹣4y2=.12.(3分)若有意义,则x的取值范围是.13.(3分)某班50名同学的身高(单位:cm)如下表所示:155156157158159160161162163164165166167168身高351221043126812人数则该班同学的身高的众数为.14.(3分)分式方程﹣=0的解是.15.(3分)已知矩形的一边长为6cm,一条对角线的长为10cm,则矩形的面积为cm2.16.(3分)已知x2﹣3x+1=0,则3x2﹣9x+5=.17.(3分)如图,在等腰△ABC中,∠A=120°,已知∠1=40°,则∠2=.18.(3分)如图,在△ABC中,点D在AB边上,请添加一个条件,使△ADE∽△ABC.三、答案题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.答案应写出必要的文字说明、演算步骤或证明过程)19.(8分)计算:(π﹣2)0+(﹣)﹣2﹣2sin60°.20.(8分)先化简,再从﹣1,0,1,中选择一个合适的x值代入求值.(+)÷.21.(8分)如图,在菱形ABCD中,对角线AC,点E,F在对角线BD上,OE=OA.求证:四边形AECF是正方形.22.(8分)2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,请你根据统计图提供的信息答案以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.23.(8分)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,求购进的“冰墩墩”挂件不能超过多少个?24.(8分)如图,已知DC是⊙O的直径,点B为CD延长线上一点,点A为切点,且AB=AC.(1)求∠ACB的度数;(2)若⊙O的半径为3,求圆弧的长.25.(8分)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60°方向上,这时测得灯塔C 在北偏东45°方向上,已知在灯塔C的四周40km内有暗礁(提示:≈1.414,≈1.732)26.(10分)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D 重合),将△PQD沿PQ所在的直线翻折得到△PQD',求线段CD'长度的最小值.答案一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【知识点】绝对值.【答案】解:﹣2022的绝对值是2022.故选:C.2.【知识点】轴对称图形;轴对称的性质.【答案】解:A.等边三角形是轴对称图形;B.圆是轴对称图形;C.长方形是轴对称图形;D.正方形是轴对称图形;故对称轴条数最多的图形是圆.故选:B.3.【知识点】科学记数法—表示较大的数.【答案】解:11000亿=1100000000000=1.1×1012,∴a=7.1,故选:B.4.【知识点】简单几何体的三视图.【答案】解:从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆,故选:D.5.【知识点】列表法与树状图法.【答案】解:画树状图如下:共有4种等可能的结果,其中出现(正,∴出现(正,正)的概率为,故选:D.6.【知识点】三角形三边关系.【答案】解:根据三角形的三边关系,得:A、1+2=3;B、3+4>2;C、4+5<10;D、8+6<9.故选:B.7.【知识点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;反比例函数的图象.【答案】解:∵A(x,y),∴OB=x,AB=y,∵A为反比例函数y=图象上一点,∴xy=1,∴S△ABO=AB•OB=5=,故选:B.8.【知识点】一次函数图象上点的坐标特征.【答案】解:点A(,m),n)是直线y=kx+b上的两点,∴一次函数y随着x增大而减小,∵>,∴m<n,故选:A.9.【知识点】三角形的外接圆与外心;等边三角形的性质.【答案】解:连接OB,过点O作OE⊥BC,∵⊙O是等边△ABC的外接圆,∴OB平分∠ABC,∴∠OBE=30°,又∵OE⊥BC,∴BE=BC=,在Rt△OBE中,cos30°=,∴,解得:OB=,故选:C.10.【知识点】一元一次不等式组的整数解.【答案】解:,由①得:x>1,由②得:x<a,解得:5<x<a,∵不等式组有且仅有三个整数解,即2,3,6,∴4<a≤5,∴a的最大值是3,故选:C.二、填空题(本大题有8个小题,每小题3分,共24分)11.【知识点】因式分解﹣运用公式法.【答案】解:x2﹣4y5=(x+2y)(x﹣2y).12.【知识点】二次根式有意义的条件;分式有意义的条件.【答案】解:∵有意义,∴,解得x>0.故答案为:x>2.13.【知识点】众数.【答案】解:身高160的人数最多,故该班同学的身高的众数为160.故答案为:160.14.【知识点】解分式方程.【答案】解:去分母,得:5x﹣3(x﹣5)=0,整理,得:2x+3=0,解得:x=﹣3,经检验:x=﹣3是原分式方程的解,故答案为:x=﹣3.15.【知识点】矩形的性质.【答案】解:∵长方形的一条对角线的长为10cm,一边长为6cm,∴另一边长==8cm,∴它的面积为8×2=48cm2.故答案为:48.16.【知识点】代数式求值.【答案】解:∵x2﹣3x+5=0,∴x2﹣7x=﹣1,则原式=3(x8﹣3x)+5=﹣4+5=2.故答案为:2.17.【知识点】平行四边形的性质;等腰三角形的性质.【答案】解:∵等腰△ABC中,∠A=120°,∴∠ABC=30°,∵∠1=40°,∴∠ABE=∠1+∠ABC=70°,∵四边形ODEF是平行四边形,∴OF∥DE,∴∠5=180°﹣∠ABE=180°﹣70°=110°,故答案为:110°.18.【知识点】相似三角形的判定.【答案】解:∵∠A=∠A,∴当∠ADE=∠B或∠AED=∠C或=时,△ADE∽△ABC,故答案为:∠ADE=∠B或∠AED=∠C或=(答案不唯一).三、答案题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.答案应写出必要的文字说明、演算步骤或证明过程)19.【知识点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【答案】解:原式=1+4﹣8×=4+4﹣=2﹣.20.【知识点】分式的化简求值.【答案】解:原式=•=,又∵x≠﹣1,6,1,∴x可以取,此时原式==.21.【知识点】正方形的判定;全等三角形的判定与性质;菱形的性质.【答案】证明:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,∵BE=DF,∴OE=OF,∴四边形AECF是菱形;∵OE=OA=OF,∴OE=OF=OA=OC,即EF=AC,∴菱形AECF是正方形.22.【知识点】条形统计图;用样本估计总体;扇形统计图.【答案】解:(1)5÷12.5%=40 (人),答:此次共调查了40人;(2)体育类有40×25%=10(人),文艺类社团的人数所占百分比:15÷40×100%=37.7%,阅读类社团的人数所占百分比:10÷40×100%=25%,将条形统计图补充完整如下:(3)1600×12.5%=200(人),答:估计喜欢兴趣类社团的学生有200人.23.【知识点】一元一次不等式的应用;二元一次方程组的应用.【答案】解:(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y 个,依题意得:,解得:.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,依题意得:(60﹣50)m+(100﹣80)(180﹣m)≥2900,解得:m≤70.答:购进的“冰墩墩”挂件不能超过70个.24.【知识点】切线的性质;弧长的计算;圆周角定理.【答案】解:(1)连接OA,∵AB是⊙O的切线,点A为切点,∴∠BAO=90°,又∵AB=AC,OA=OC,∴∠B=∠ACB=∠OAC,设∠ACB=x°,则在△ABC中,x°+x°+x°+90°=180°,解得:x=30,∴∠ACB的度数为30°;(2)∵∠ACB=∠OAC=30°,∴∠AOC=120°,∴=2π.25.【知识点】解直角三角形的应用﹣方向角问题.【答案】解:安全,理由如下:过点C作CD垂直AB,由题意可得,∠CAD=90°﹣60°=30°,AB=30×1=30km,在Rt△CBD中,设CD=BD=xkm,在Rt△ACD中,tan30°=,∴,∴,解得:x=15+15≈40.98>40,所以,这艘轮船继续向正东方向航行是安全的.26.【知识点】二次函数综合题.【答案】解:在直线y=2x+2中,当x=3时,y=2,当y=0时,x=﹣4,∴点A的坐标为(﹣1,0),5),把点A(﹣1,0),5),0)代入y=ax2+bx+c,,解得,∴抛物线的解析式为y=﹣x8+x+4;(2)①当△AOB≌△DPC时,AO=DP,又∵四边形OPDE为正方形,∴DP=OP=AO=1,此时点P的坐标为(1,2),②当△AOB≌△CPD时,OB=DP,又∵四边形OPDE为正方形,∴DP=OP=OB=2,此时点P的坐标为(2,4),综上,点P的坐标为(1,0);(3)如图,点D′在以点P为圆心,DP为半径的圆上运动,∴当点D′′,点P,CD′′有最小值,由(2)可得点P的坐标为(8,0)或(2,且C点坐标为(8,∴CD′′的最小值为1.。

2022年湖南邵阳中考数学试卷真题及答案详解(精校打印版)

2022年湖南邵阳中考数学试卷真题及答案详解(精校打印版)

2022年邵阳市初中学业水平考试试题卷数学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有理数﹣2022的绝对值为()A .﹣2022B .12022C .2022D .﹣120222.下列四种图形中,对称轴条数最多的是()A .等边三角形B .圆C .长方形D .正方形3.5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ,则a 的值是()A .0.11B .1.1C .11D .110004.下列四个图形中,圆柱体的俯视图是()A .B .C .D .5.假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是()A .1B .34C .12D .146.下列长度的三条线段能首尾相接构成三角形的是()A .1cm ,2cm ,3cmB .3cm ,4cm ,5cmC .4cm ,5cm ,10cmD .6cm ,9cm ,2cm7.如图是反比例函数y =1x的图象,点A (x ,y )是反比例函数图象上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是()A .1B .12C .2D .328.在直角坐标系中,已知点3,2A m ⎛⎫⎪⎝⎭,点2B n ⎛⎫ ⎪ ⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是()A .m n<B .m n>C .m n≥D .m n≤9.如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是()A .32B .2C D .5210.关于x 的不等式组()1233111222x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩有且只有三个整数解,则a 的最大值是()A .3B .4C .5D .6二、填空题(本大题有8个小题,每小题3分,共24分)11.因式分解:224a b -=_____.12x 的取值范围是_________.13.某班50名同学的身高(单位:cm )如下表所示:身高155156157158159160161162163164165166167168人数351221043126812则该班同学的身高的众数为_________.14.分式方程5302x x-=-的根为_____15.已知矩形的一边长为6cm ,一条对角线的长为10cm ,则矩形的面积为_________2cm .16.已知2310x x -+=,则2395x x -+=_________.17.如图,在等腰ABC 中,120A ∠=︒,顶点B 在ODEF 的边DE 上,已知140∠=︒,则2∠=_________.18.如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.三、解答题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19.计算:21(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒.20.先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ +--⎝⎭.21.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在对角线BD 上,且BE DF =,OE OA =.求证:四边形AECF 是正方形.22.2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图(1)、图(2)所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.23.2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?24.如图,已知DC 是O 的直径,点B 为CD 延长线上一点,AB 是O 的切线,点A 为切点,且AB AC =.(1)求ACB ∠的度数;(2)若O 的半径为3,求圆弧 AC 的长.25.如图,一艘轮船从点A 处以30km/h 的速度向正东方向航行,在A 处测得灯塔C 在北偏东60︒方向上,继续航行1h 到达B 处,这时测得灯塔C 在北偏东45︒方向上,已知在灯塔C 的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈)1.414≈ 1.73226.如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B 在y轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.【分析】根据绝对值的意义,先添加绝对值符号,再化去绝对值符号即可.【详解】-=.解:由绝对值的意义得,20222022故选:C.【点睛】本题考查了绝对值的意义,一个数的绝对值就是在这个数添上“||”号;一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值是0.2.B【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.3.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:因为1亿=108,所以11000亿用科学记数法表示为1.1×104×108=1.1×1012.故选:B.【点睛】此题考查了科学记数法表示绝对值大于1的数.解题的关键是关键知道1亿=108,要正确确定a的值以及n的值.【分析】根据俯视图是从上面看到的视图进而得出答案即可.【详解】解:竖直放置的圆柱体,从上面看是圆,所以俯视图是圆.故选∶D.【点睛】此题考查了简单几何体的三视图,解题的关键是熟练掌握圆柱体的三视图.5.D【分析】由列举法可得:掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,然后利用概率公式求解即可求得答案.【详解】∵掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,∴P(正,正)=1 4.故选∶D.【点睛】此题考查了列举法求概率,解题的关键是知道概率=所求情况数与总情况数之比.6.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故选项错误,不符合题意;B、3+4>5,能够组成三角形,故选项正确,符合题意;C、5+4<10,不能组成三角形,故选项错误,不符合题意;D、2+6<9,不能组成三角形,故选项错误,不符合题意;【点睛】此题考查了三角形的三边关系.解题的关键是看较小的两个数的和是否大于第三个数.7.B 【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是12.【详解】解:设A (x ,y )则OB =x ,AB =y ,∵A 为反比例函数y =1x图象上一点,∴xy =1,∴S △ABO =12AB •OB =12xy =12×1=12,故选:B .【点睛】本题考查反比例函数的几何意义,即k 的绝对值,等于△AOB 的面积的2倍,数形结合比较直观.8.A 【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∴y 随着x 的增大而减小,∵32>2,∴32>∴m <n ,故选:A .此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.9.C 【分析】作直径AD ,连接CD ,如图,利用等边三角形的性质得到∠B =60°,关键圆周角定理得到∠ACD =90°,∠D =∠B =60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD ,连接CD ,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD ,∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD∴OA =OB =12AD 故选:C .【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质、圆周角定理和含30度的直角三角形三边的关系.10.C【分析】分别对两个不等式进行求解,得到不等式组的解集为1x a <<,根据不等式组有且只有三个整数解的条件计算出a 的最大值.【详解】解不等式1233x x ->-,1233x x -+>,∴2233x >,∴1x >,解不等式111(2)22x a -<-,得11(2)122x a <-+,∴x a <,∴1233111(2)22x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩的解集为1x a <<,∵不等式组有且只有三个整数解,∴不等式组的整数解应为:2,3,4,∴45a <≤,∴a 的最大值应为5故选:C .【点睛】本题考查不等式组的整数解,解题的关键是熟练掌握不等式组的相关知识.11.()()22a b a b +-【分析】本题利用平方差公式进行因式分解即可.【详解】解:原式=(a +2b )(a -2b ).故答案为:(a +2b )(a -2b )12.x>2##2<x【分析】根据二次根式有意义的条件:被开方数是非负数和分式有意义的条件:分母不为0即可求出结论.【详解】解:由题意可得x-2>0,解得:x>2,故答案为:x>2.【点睛】本题考查的是分式及二次根式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0解题的关键.13.160【分析】根据众数的定义求解.【详解】在这一组数据中160出现了10次,次数最多,故众数是160.故答案为:160.【点睛】此题考查了众数,解题的关键是掌握众数的定义.14.x=-3【详解】解:5302x x-=-,去分母得:5x-3(x-2)=0,解得:x=-3,检验:当x=-3时,x(x-3)≠0,所以,原分式方程的解为x=-3,故答案是:x=-3.15.48【分析】如图,先根据勾股定理求出8cm AB =,再由ABCD S AB BC =⨯矩形求解即可.【详解】解:在矩形ABCD 中,6cm BC =,10cm AC =,∴在Rt ABC △中,8AB =(cm),∴28648(cm )ABCD S AB BC =⨯=⨯=矩形.故答案为:48.【点睛】此题考查了矩形的性质,勾股定理,解题的关键是熟知上述知识.16.2【分析】将2395x x -+变形为23(31)+2x x -+即可计算出答案.【详解】22239539323(31)+2x x x x x x -+=-++=-+∵2310x x -+=∴23950+2=2x x -+=故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.17.110º【分析】先根据等腰三角形的性质求出∠ABC 的度数;再根据平行四边形对边平行和两直线平行同旁内角互补的性质,得出∠2+∠ABE =180º,代入求解即可.【详解】解:∵ABC是等腰三角形,∠A=120º,∴∠ABC=∠C=(180º-∠A)÷2=30º,∵四边形ODEF是平行四边形,∴OF∥DE,∴∠2+∠ABE=180º,即∠2+30º+40º=180º,∴∠2=110º.故答案为:110º.【点睛】此题考查了等腰三角形的性质和平行四边形的性质,解题的关键是数形结合,熟练运用上述知识求解.18.∠ADE=∠B(答案不唯一).【分析】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定.【详解】解∶∵∠A=∠A,∴根据两角相等的两个三角形相似,可添加条件∠ADE=∠B或∠AED=∠C证ADE ABC△△∽相似;根据两边对应成比例且夹角相等,可添加条件AD AEAB AC=证ADE ABC△△∽相似.故答案为∶∠ADE=∠B(答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法.19.【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】解:21(2)2sin602π-⎛⎫-+--⎪⎝⎭︒【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则.20.11x +,12.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值.【详解】解:211111x x x x ⎛⎫+÷ +--⎝⎭11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦1(1)(1)x x x x x-=⋅+-=11x +,∵x +1≠0,x -1≠0,x ≠0,∴x ≠±1,x ≠0当x 时,原式==【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.21.证明过程见解析【分析】菱形的两条对角线相互垂直且平分,再根据两条对角线相互垂直平分且相等的四边形是正方形即可证明四边形AECF 是正方形.【详解】证明:∵四边形ABCD 是菱形∴OA=OC,OB=OD且AC⊥BD,又∵BE=DF∴OB-BE=OD-DF即OE=OF∵OE=OA∴OA=OC=OE=OF且AC=EF又∵AC⊥EF∴四边形DEBF是正方形.【点睛】此题考查了菱形的性质和正方形的判定,解题的关键是掌握上述知识.22.(1)抽取参加调查的学生人数为40人(2)统计图见解析(3)估计该校报兴趣类社团的学生人数有200人【分析】(1)从两个统计图中可知,报兴趣类社团有5人,占调查人数的12.5%,可求出抽取参加调查的学生人数;(2)求出报体育类社团的人数即可补全条形统计图,求出文艺类和阅读类所占百分比可补全扇形统计图;(3)用1600去乘报兴趣类社团的学生所占的比例即可.(1)解:5÷12.5%=40(人)答:抽取参加调查的学生人数为40人.(2)解:40×25%=10(人),补全条形统计图如图所示:15100%40⨯=37.5%,10100%25%40⨯=,补全扇形统计图如图所示:(3)解:1600×12.5%=200(人)答:估计该校报兴趣类社团的学生人数有200人.【点睛】此题考查了条形统计图、扇形统计图的意义和制作方法以及用样本估计总体,解题的关键是从两个统计图中获取数量和数量关系式.23.(1)购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;(2)购进的“冰墩墩”挂件不能超过70个.【分析】(1)设购进“冰墩墩”摆件x件,“冰墩墩”挂件的y件,利用总价=单价×数量,结合购买“冰墩墩”摆件和“冰墩墩”挂件共180个且共花费11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买“冰墩墩”挂件m个,则购买“冰墩墩”摆件(180-m)个,利用总价=单价×数量,结合至少盈利2900元,即可得出关于m的不等式,解之即可得出结论.【详解】(1)解:设购进“冰墩墩”摆件x件,“冰墩墩”挂件的y件,依题意得:180805011400x y x y +=⎧⎨+=⎩,解得:80100x y =⎧⎨=⎩,答:购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;(2)解:设购买“冰墩墩”挂件m 个,则购买“冰墩墩”摆件(180-m )个,依题意得:(100-80)(180-m )+(60-50)m ≥2900,解得:m ≤70,答:购进的“冰墩墩”挂件不能超过70个.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)30︒(2)2π【分析】(1)证明ADO ∆是等边三角形,得到60ADO ︒∠=,从而计算出ACB ∠的度数;(2)计算出圆弧 AC 的圆心角,根据圆弧弧长公式计算出最终的答案.【详解】(1)如下图,连接AO∵AB 是O 的切线∴OA AB⊥∴90OAB ︒∠=∵90DAC ︒∠=∴DAC OAB∠=∠∵AB AC=∴B C∠=∠∴ABO ACD∆∆≌∴AD AO DO==∴ADO ∆是等边三角形∴60ADO ︒∠=∵90DAC ︒∠=∴30ACB ︒∠=(2)∵60AOD ︒∠=∴120AOC ︒∠=圆弧 AC 的长为:12032180ππ︒︒⨯⨯=∴圆弧 AC 的长为2π.【点睛】本题考查全等三角形、等腰三角形、等边三角形和圆的性质,解题的关键是熟练掌握全等三角形、等腰三角形、等边三角形和圆的相关知识.25.这艘轮船继续向正东方向航行是安全的,理由见解析【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可.【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ),在Rt △BCD 中,∠CDB =90°,∠DBC =45°,tan∠DBC=CDBD,即CD BD=1∴CD=BD设BD=CD=x km,在Rt△ACD中,∠CDA=90°,∠DAC=30°,∴tan∠DAC=CDAD,即303xx=+解得x,∵40.98km>40km∴这艘船继续向东航行安全.【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义.26.(1)该抛物线的表达式为y=23-x2+43x+2;(2)点P的坐标为(1,0)或(2,0);(3)线段CD'长度的最小值为1.【分析】(1)先求得点A(-1,0),点B(0,2),利用待定系数法即可求解;(2)分两种情况讨论:△AOB≌△DPC和△AOB≌△CPD,利用全等三角形的性质求解即可;(3)按照(2)的结论,分两种情况讨论,当P、D'、C三点共线时,线段CD'长度取得最小值,据此求解即可.【详解】(1)解:令x=0,则y=2x+2=2,令y=0,则0=2x+2,解得x=-1,点A(-1,0),点B(0,2),把A(-1,0),B(0,2),C(3,0)代入y=ax2+bx+c,得9302a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得23432abc⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴该抛物线的表达式为y=23-x2+43x+2;(2)解:若△AOB和△DPC全等,且∠AOB=∠DPC=90°,分两种情况:①△AOB≌△DPC,则AO=PD=1,OB=PC=2,∵OC=3,∴OP=3-2=1,∴点P的坐标为(1,0);②△AOB≌△CPD,则OB=PD=2,∴正方形OPDE的边长为2,∴点P的坐标为(2,0);综上,点P的坐标为(1,0)或(2,0);(3)解:①点P的坐标为(1,0)时,∵△PQD'与△PQD关于PQ对称,∴PD'=PD,∴点D'在以点P为圆心,1为半径的圆上运动,当P、D'、C三点共线时,线段CD'长度取得最小值,最小值为2-1=1;②点P的坐标为(2,0)时,∵△PQD'与△PQD关于PQ对称,∴PD'=PD,∴点D'在以点P为圆心,2为半径的圆上运动,当P、C、D'三点共线时,线段CD'长度取得最小值,最小值为2-1=1;综上,线段CD'长度的最小值为1.【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,点和圆的位置关系,解题的关键是正确进行分类讨论.。

2023年湖南省邵阳市中考数学试卷(含答案)145113

2023年湖南省邵阳市中考数学试卷(含答案)145113

2023年湖南省邵阳市中考数学试卷试卷考试总分:118 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 的倒数是( )A.B.C.D.2. 下列图形是中心对称图形的是( )A.B.C.D.3. 太阳与地球的平均距离大约是千米,其中数用科学记数法表示为( )A.B.C.D.4. 下列计算正确的是( )A.=B.C.D.=5. 如图,已知,直角三角板的直角顶点在直线上,若,则下列结论错误的是( )2021−112021−120212021−20211500000001500000001.5×10815×1071.5×1070.15×109+a 3a 2a 5×=2–√3–√6–√5−=53–√3–√a 00a//b b ∠1=60∘A.B.C.D.6. 不等式组的解集在数轴上表示正确的是( ) A. B. C. D.7. 三角形三边长,,都是整数,且,,(注:表示,,的最小公倍数,表示,的最大公约数),则的最小值( )A.B.C.D.8. 一个正方形的边长若减小了,那么面积相应减小了,则原来这个正方形的边长为( )A.B.C.D.9. 在四边形中:①;②;③;④.从以上选择两个条件使四边形为平行四边形的选法共有( )A.种B.种C.种D.种∠2=60∘∠3=60∘∠4=120∘∠5=40∘{x−1≤0,x+1>0a b c [a,b,c]=60(a,b)=4(b,c)=3[a,b,c]a b c (a,b)a b a +b +c 303132333cm 45cm 26cm7cm8cm9cmABCD AB//CD AD//BC AB =CD AD =BC ABCD 345610. 函数的图象过,,,则,,的大小关系是( )A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11. 的算术平方根是________.12. 把因式分解是________.13. ________(填“是”或“不是”)方程的解.14. 李老师依次按照期中、期末的考试得分以及同学评价得分的比例确定学生期末综合素质分数,若小强同学的期中、期末的考试得分为分、分,同学对小强同学的评价得分分,则小强同学该学期末的综合素质得分是________.15. 如图,是的直径,与相切于点,交于点,若,则________.16. 圆锥的底面半径是,母线长是,则圆锥的侧面展开图的圆心角是________.17. 如图,在一块长,宽的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为,设道路的宽为,则根据题意,可列方程为________.18. 如图,矩形纸片,,,如果点在边上,将纸片沿折叠,使点落在点处,连结,当是直角三角形时,的长为________.y =−6x−c x 2A(−1,)y 1B(3,)y 2C(5,)y 3y 1y 2y 3>>y 1y 3y 2>>y 1y 2y 3>>y 2y 1y 3>>y 3y 1y 2164−−−√312y−3y x 4x 2x =1+1=x x−11x−13:5:2958690AB ⊙O BC ⊙O B AC ⊙O D ∠ACB =50∘∠BOD =40cm 100cm ∘12m 8m 77m 2xm ABCD AD =4AB =3E BC AE B F FC △EFC BE三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 )19. 计算题:(1)().(2).20. 化简求值.,其中.21. 已知中为边上高,为上一点,,的延长线与延长线交于点,求证:.22. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,本文学名著和本动漫书共需元,本文学名著比本动漫书多元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).求每本文学名著和动漫书各多少元?若学校要求购买动漫书比文学名著多本,而且文学名著不低于本,总费用不超过元,请求出所有符合条件的购书方案. 23. 月日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生参与某网络教育机构推出的“在线阅读”.该校文学社为了解学生在线阅读情况,校园小记者随机调查了本校部分同学,并统计他们平均每天的线上阅读时间(单位:),然后利用所得数据绘制成如图不完整的统计图表和在线阅读时间频数分布表.根据以上图表,解答下列问题:,;扇形统计图中扇形的圆心角的度数为________;若该校有名学生,则可以估计平均每天的在线阅读时间不少于的学生有________人;校园小记者想在每天在线阅读时间小于分钟的名同学中随机采访名同学以调查他们阅读时间少的原因,已知这名同学中只有名女生,请用列举法求小记者采访到女生的概率.24. 如图,某景区前竖立一块矩形鸟瞰图,米,为测量其高度,某同学在处测得点−+22−2cos +60∘−12cos −tan −30∘45∘[(x+2y −(x−2y −(x+2y)(x−2y)−4]÷2x)2)2y 2x =−2,y =12△ABC CE AB D AC DG ⊥BC GD BA H GF ⋅GH =GB ⋅GC 204016002020400(1)(2)20252000423t min (1)a =_______m=________(2)D (3)120050min (4)304241ACGE AE =3B A仰角,该同学沿方向后退米到处,此时测得矩形鸟瞰图上部灯杆顶端点仰角为.若该同学眼睛离地面的垂直距离为米,灯杆的高为米,求矩形鸟瞰图的高度(或的长).(结果精确到米,参考数据: ,)试判断四边形的形状,并说明理由.26. 将抛物线向左平移个单位,再向上平移个单位得到一个新的抛物线.(1)求新的抛物线的解析式.(2)过作直线,使得直线与新的抛物线仅有一个公共点,求直线的解析式及相应公共点的坐标.(3)请猜想在新的抛物线上是否有且仅有四个点、、、使得、、、分别与(2)中的所有公共点所围成的图形的面积均为?若有,请求出并直接写出、、、的坐标,若不存在,请说明理由.45∘GB 7F P 37∘1.7PE 2.5AC EG 1sin ≈0.637∘tan ≈0.7537∘(2)ABED y =−x 14x 224M(2,0)l l l P 1P 2P 3P 4P 1P 2P 3P 4S S P 1P 2P 3P 4参考答案与试题解析2023年湖南省邵阳市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】C【考点】倒数【解析】首先求出的倒数,再求其绝对值即可.【解答】解:根据倒数的定义,,所以它的倒数是.故选.2.【答案】D【考点】中心对称图形【解析】根据中心对称图形的概念和各图的性质求解.【解答】解:,不是中心对称图形,故此选项不合题意;,不是中心对称图形,故此选项不合题意;,不是中心对称图形,故此选项不合题意;,是中心对称图形,故此选项符合题意.故选.3.【答案】A【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】−12021=2021−1120212021C A B C D D此题暂无解答4.【答案】B【考点】合并同类项零指数幂二次根式的混合运算【解析】利用合并同类项对进行判断;根据二次根式的乘法法则对进行判断;根据二次根式的加减法对进行判断;根据零指数幂的意义对进行判断.【解答】、与不能合并,所以选项错误;、原式,所以选项正确;、原式=,所以选项错误;、当时,=,所以选项错误.5.【答案】D【考点】邻补角平行线的性质对顶角【解析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出,,,的度数,然后选出错误的选项.【解答】解:∵,,∴,,,∵三角板为直角三角板,∴.故选6.【答案】D【考点】解一元一次不等式组在数轴上表示不等式的解集【解析】A B C D A a 3a 2A B ==2×3−−−−√6–√B C 43–√C D a ≠0a 01D ∠2∠3∠4∠5a//b ∠1=60∘∠3=∠1=60∘∠2=∠1=60∘∠4=−∠3=180∘−=180∘60∘120∘∠5=−∠3=90∘−=90∘60∘30∘D.先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:解不等式,得:;解不等式,得: ,所以不等式组的解集为:,在数轴上表示为:.故选.7.【答案】B【考点】约数与倍数三角形三边关系【解析】首先分解,得出,,中含的因数有,,,由,得出的最小值是,的最小值是,进而得出的最小值是,从得出的最小值.【解答】解:∵,∵,,∴与是的倍数,,是的倍数,∵,即,,的最小公倍数是,∴,,中含的因数有,,,∴当,,时,的最小值是:.故选:.8.【答案】D【考点】完全平方公式与平方差公式的综合正方形的性质【解析】本题主要考查了平方差公式,正方形的性质.【解答】解:设原来的边长为,则,,,,解得.故选.9.x−1≤0x ≤1x+1>0x >−1−1<x ≤1D 60=3×4×5a b c 435(a,b)=4(b,c)=3a 4b 3×4c 3×5a +b +c 60=2×2×3×5(a,b)=4(b,c)=3a b 4b c 3[a,b,c]=60a b c 60a b c 435a =4b =4×3=12c =3×5=15a +b +c 4+4×3+3×5=31B xcm −=45x 2(x−3)2∴(x+x−3)(x−x+3)=45(2x−3)×3=45∴2x−3=15x =9D【答案】B【考点】平行四边形的判定【解析】根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有种,分别是:①②、②④、①③、③④.故选.10.【答案】A【考点】二次函数的性质二次函数图象上点的坐标特征【解析】二次函数抛物线向下,且对称轴为.根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:∵二次函数,∴该二次函数的抛物线开口向上,且对称轴为.∵点,,都在二次函数的图象上,且点在对称轴上,而三点横坐标离对称轴的距离按由远到近为:,,,∴.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11.【答案】【考点】算术平方根立方根【解析】【解答】4B x =−=3b 2ay =−6x−c x 2x =3(−1,)y 1(3,)y 2(5,)y 3y =−6x−c x 2(3,)y 2x =3(−1,)y 1(5,)y 3(3,)y 2>>y 1y 3y 2A 12−−−解:,的算术平方根是.故答案为:.12.【答案】【考点】提公因式法与公式法的综合运用【解析】先提公因式,得到继续用平方差公式分解因式.【解答】==13.【答案】不是【考点】解分式方程【解析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【解答】解:分式方程去分母得:,解得:,检验:当时,,不是原方程的解,原方程无解.故答案为:不是.14.【答案】分【考点】加权平均数【解析】暂无【解答】解:由题意,得(分),故小强同学该学期末的综合素质得分是分.故答案为:分.15.【答案】=164−−−√3141412123y(2x+1)(2x−1)x 23y x 24−1x 212y−3y x 4x 23y(4−1)x 2x 23y(2x+1)(2x−1)x 2x x+x−1=1x =1x =1x−1=0∴x =189.5=89.595×3+86×5+90×23+5+289.589.5【考点】圆周角定理切线的性质【解析】根据是圆的切线,可得,再求得,由圆周角定理可得,即可求得答案.【解答】解:是圆的切线,,∵,,由圆周角定理可得:.故答案为:.16.【答案】【考点】圆锥的计算扇形面积的计算【解析】根据圆锥的底面半径径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.【解答】解:∵圆锥的底面半径是,∴圆锥的侧面展开扇形的弧长为:,∵母线长,∴圆锥的侧面展开扇形的面积为:,∴,解得:.故答案为:.17.【答案】【考点】由实际问题抽象出一元二次方程【解析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的部分是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽为米,80∘BC ∠ABC =90∘∠A ∠BOD =2∠A ∵BC ∴∠ABC =90∘∠ACB =50∘∴∠A =−∠ACB 90∘=−90∘50∘=40∘∠BOD =2∠A=2×40∘=80∘80∘14440cm 2πr =80π100cm lr =×80π×100=4000π1212=4000πnπ×1002360n =144144(12−x)(8−x)=77x由题意得,.故答案为:.18.【答案】或【考点】矩形的性质翻折变换(折叠问题)【解析】分两种情况:①当=时,先判断出点在对角线上,利用勾股定理列式求出,设=,表示出,根据翻折变换的性质可得=,=,然后在中,利用勾股定理列出方程求解即可;②当=时,判断出四边形是正方形,根据正方形的四条边都相等可得=.【解答】解:分两种情况:①当时,如图:∵,,∴点、、共线,∵矩形的边,∴,在中,,设,则,由翻折的性质得,,,∴,在中,,即,解得,即;②当时,如图:由翻折的性质得,,∴四边形是正方形,∴,综上所述,的长为或.三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 )19.【答案】()(12−x)(8−x)=77(12−x)(8−x)=771.53∠EFC 90∘F AC AC BE x CE AF AB EF BE Rt △CEF ∠CEF 90∘ABEF BE AB ∠EFC =90∘∠AFE =∠B =90∘∠EFC =90∘A F C ABCD AD =4BC =AD =4Rt △ABC AC ===5A +B B 2C 2−−−−−−−−−−√+3242−−−−−−√BE =x CE =BC −BE =4−x AF =AB =3EF =BE =x CF =AC −AF =5−3=2Rt △CEF E +C =F 2F 2CE 2+=x 222(4−x)2x =1.5BE =1.5∠CEF =90∘∠AEB =∠AEF =×=1290∘45∘ABEF BE =AB =3BE 1.53−+22−2cos +60∘−1===;=(==.【考点】特殊角的三角函数值负整数指数幂实数的运算【解析】(1)直接利用特殊角的三角函数值以及负整数指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值分别化简得出答案.【解答】()===;=(==.20.【答案】解:原式,当 时,原式 .【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式,当 时,原式 .21.−4+3−2×+3−4+3−1+312cos −tan −30∘45∘2×−1−−1)−1−+10−+22−2cos +60∘−1−4+3−2×+3−4+3−1+312cos −tan −30∘45∘2×−1−−1)−1−+10=(8xy−)÷2x x 2=4y−x 12x =−2,y =12=4×12−×(−2)=4912=(8xy−)÷2x x 2=4y−x 12x =−2,y =12=4×12−×(−2)=4912证明:∵为高,∴,又∵,∴,∴,而,∴,∴,即 .【考点】相似三角形的判定与性质【解析】∵为高,∴,又∵,∴,∴,而,∴,∴,即 .【解答】证明:∵为高,∴,又∵,∴,∴,而,∴,∴,即 .22.【答案】解:设每本文学名著元,每本动漫书元,根据题意可得:解得:答:每本文学名著元,每本动漫书元;设学校要求购买文学名著本,则购买动漫书本,根据题意可得:解得:.因为为整数,所以可取,.方案一:文学名著本,动漫书本;方案二:文学名著本,动漫书本.【考点】二元一次方程组的应用——销售问题一元一次不等式组的应用【解析】(1)设每本文学名著元,每本动漫书元,列出方程组即可解决问题;(2)设学校要求购买文学名著本,动漫书为本,构建不等式组,求整数解即可;CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC GF ∶GB =GC ∶GH GF ⋅GH =GB ⋅GC CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC CF ∶GB =GC ∶CH GF ⋅GH =GB ⋅GC CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC GF ∶GB =GC ∶GH GF ⋅GH =GB ⋅GC (1)x y {20x+40y =1600,20x−20y =400,{x =40,y =20.4020(2)x (x+20){x ≥25,40x+20(x+20)≤2000,25≤x ≤2623x x 252625452646x y x (x+20)解:设每本文学名著元,每本动漫书元,根据题意可得:解得:答:每本文学名著元,每本动漫书元;设学校要求购买文学名著本,则购买动漫书本,根据题意可得:解得:.因为为整数,所以可取,.方案一:文学名著本,动漫书本;方案二:文学名著本,动漫书本.23.【答案】,设三个男生分别为,,,则从人中随机抽取人的情况有:,,女,,女,女共种情况,其中采访到女生的情况有种,则采访的女生的概率.【考点】频数(率)分布表扇形统计图用样本估计总体概率公式【解析】结合条形统计图和扇形统计图,先求出样本总数,再根据人数求占比或根据占比求人数.根据组人数,求出组占比,进而可求圆心角度数.根据样本中在线阅读时间不少于的人数占比估计全校阅读时间不少于的人数即可.将所有情况列举出来共种,包含女生的共种,根据概率公式即可求得.【解答】解:由题意可知,组的人数为人,占比为,则样本容量为(人),则组的人数为(人),即.组的占比为,即.故答案为:;.因为组人数为人,则占比为,则扇形的圆心角的度数为.故答案为:.该校学生在线阅读时间不少于的人数为:(人).故答案为:.设三个男生分别为,,,则从人中随机抽取人的情况有:,,女,,女,女共种情况,其中采访到女生的情况有种,则采访的女生的概率.24.(1)x y {20x+40y =1600,20x−20y =400,{x =40,y =20.4020(2)x (x+20){x ≥25,40x+20(x+20)≤2000,25≤x ≤2623x x 252625452646208115.2∘912(4)A B C 42AB AC A BC B C 63P ==3612(1)(2)D D (3)50min 50min (4)63(1)B 816%8÷16%=50C 50×40%=20a =20A ×100%=8%450m=8208(2)D 16×100%=32%1650D ×32%=360∘115.2∘115.2∘(3)50min 1200×=91220+16+250912(4)A B C 42AB AC A BC B C 63P ==3612解:由题意米,米, 米,如图,设直线交于,交于,则,设,则,在中,∵,∴.∵,则,在中,∵ ,∴,解得 ,∴(米),故矩形鸟瞰图的高度为米.【考点】解直角三角形的应用-仰角俯角问题【解析】此题暂无解析【解答】解:由题意米,米, 米,如图,设直线交于,交于,则,设,则,在中,∵,∴.∵,则,在中,∵ ,∴,解得 ,∴(米),故矩形鸟瞰图的高度为米.25.【答案】证明:∵是由在平面内绕点旋转而得,∴,,,∵,∴,∴,在和中,DH =BF =7DB =HF =1.7PE =2.5DH EG M AC N EM =AN AN =x PM =x+2.5Rt △AND ∠ADN =45∘AN =ND =x AE =MN =3MH =7+x+3=10+xRt △PHM tan =37∘PM MH ≈0.75x+2.5x+10x ≈20AC =AN +NC =20+1.7≈2222DH =BF =7DB =HF =1.7PE =2.5DH EG M AC N EM =AN AN =x PM =x+2.5Rt △AND ∠ADN =45∘AN =ND =x AE =MN =3MH =7+x+3=10+xRt △PHM tan =37∘PM MH ≈0.75x+2.5x+10x ≈20AC =AN +NC =20+1.7≈2222(1)△BAD △BEC B 60∘DB =CB ∠ABD =∠EBC ∠ABE =60∘AB ⊥BC ∠ABC =90∘∠DBE =∠ABD =∠CBE =30∘△BDE △BCE DB =CB,∵∴,∴.解:四边形为菱形,理由如下:由得,∵是由旋转而得,∴,∴,,又∵,∴四边形为菱形.【考点】全等三角形的性质与判定旋转的性质菱形的判定【解析】无无【解答】证明:∵是由在平面内绕点旋转而得,∴,,,∵,∴,∴,在和中,∵∴,∴.解:四边形为菱形,理由如下:由得,∵是由旋转而得,∴,∴,,又∵,∴四边形为菱形.26.【答案】中的所有公共点、、所围成的四边形面积均为.、、将抛物线分为三个部分,对于任意在上方的抛物线上必存在两个点.①当在下方的抛物线上时,∵轴,∴当为,时,.②当在下方的抛物线上时设为由待定系数法得直线解析式为:=作轴交于,则为,∴.∴ DB =CB,∠DBE =∠CBE,BE =BE,△BDE ≅△BCE(SAS)DE =CE (2)ABED (1)△BDE ≅△BCE △BAD △BEC △BAD ≅△BEC BA =BE AD =EC =ED BE =CE ABED (1)△BAD △BEC B 60∘DB =CB ∠ABD =∠EBC ∠ABE =60∘AB ⊥BC ∠ABC =90∘∠DBE =∠ABD =∠CBE =30∘△BDE △BCE DB =CB,∠DBE =∠CBE,BE =BE,△BDE ≅△BCE(SAS)DE =CE (2)ABED (1)△BDE ≅△BCE △BAD △BEC △BAD ≅△BEC BA =BE AD =EC =ED BE =CE ABED A B C S AB BC AC S AB P P AC AC//x P (0=×4×1=2S △PAC 12P BC P (t,+3)14t 2BC y 2xPD//y BC D D (t,2t)DP =−+2t−314t 2=×4(−+2t−3)=−+4t−6(2<t <6)S △PBC 1214t 212t 2∵它是一个开口向下,顶点为,的抛物线,∴当为,(1)时,=.∴=.∴此时,,(2),,(3);∵为=,、两点的横坐标之差的绝对值为,、两点的横坐标之差的绝对值为,到的距离为.∴将直线向上平移个单位得交抛物线于和两点,由,得,,此时,;综上所述,=,,(4),,(5),,.【考点】二次函数综合题【解析】(1)根据平移规律得到平移后抛物线的顶点坐标,根据该顶点坐标写出新抛物线解析式即可.(2)设.则,解得:=,=.利用的值,求得两条直线,由直线与抛物线解析式联立方程组求得交点坐标;另外过点且平行于轴的直线也与抛物线有一个交点;(3)在新的抛物线上有且仅有四个点、、、使其分别与(2)中的所有公共点、、所围成的四边形面积均为.需要分类讨论:①当在下方的抛物线上时,由于轴,则当为时,.②当在下方的抛物线上时,设,由待定系数法得直线解析式为:=.根据,所以根据二次 函数最值的求法知=.此时,故此时,,;由于直线为=,、两点的横坐标之差的绝对值为,、两点的横坐标之差的绝对值为,到的距离为.所以将直线向上平移个单位得交抛物线于和两点,由直线与抛物线交点的求法求得于和两点坐标.【解答】由,向左平移个单位,向上平移个单位后抛物线的顶点为,(4P (4S △PBC 最大值2S △PAC 最大值S △PBC 最大值S =×4×8+2=1812(0P 1(4P 2AB y x+6A B 8A C 4P AC 1AB 12l:y =x+l 132P 3P 4 y =x+132y =+314x 2 =2+3x 12–√=+3y 11722–√ =2−3x 22–√=−3y 21722–√(2+3,+3)P 32–√1722–√(2−3,−3)P 42–√1722–√S 18(0P 1(4P 2(2+3,+3)P 32–√1722–√(2−3,−3)P 42–√1722–√l:y =−x+b b 2−x+b =+3b 214x 2b 12b 2−6b l M y P 1P 2P 3P 4A B C S P AC AC//x P (0,3)=×4×1=2S △PAC 12P BC P(t,+3)14t 2BC y 2x =×4(−+2t−3)=−+4t−6(2<t <6)S △PBC 1214t 212t 2S △PAC 最大值S △PBC 最大值S =×4×8+2=1812(0,3)P 1(4,7)P 2AB y x+6A B 8A C 4P AC 1AB 12l:y =x+l 132P 3P 4P 3P 4y =−x(2,−1)14x 224(0,3)y =+31∴;设直线的解析式为:=,将代入得:∴=,∴.∴.∴,即=中==解得:=,=.当=时,直线为=,由得,即点的坐标是,当=时,直线为=,由得,即点的坐标是,如图,过点作直线轴,交抛物线于点,则直线为:=,公共点为综上所述:直线=与抛物线有唯一公共点直线=与抛物线有唯一公共点直线= 与抛物线有唯一公共点;答:在新的抛物线上有且仅有四个点、、、使其分别与(2)中的所有公共点、、所围成的四边形面积均为.、、将抛物线分为三个部分,对于任意在上方的抛物线上必存在两个点.①当在下方的抛物线上时,∵轴,∴当为时,.②当在下方的抛物线上时设为由待定系数法得直线解析式为:=作轴交于,则为,∴.∴∵它是一个开口向下,顶点为的抛物线,∴当为时,=.∴=.∴此时,,;∵为=,、两点的横坐标之差的绝对值为,、两点的横坐标之差的绝对值为,到的距离为.∴将直线向上平移个单位得交抛物线于和两点,由,得,,此时,;综上所述,=,,,,.:y =+314x 2l y kx+b M(2,0)2k +b 0k =−b 2l:y =−x+b b 2\becausey =−x+b b 2−x+b =+3b 214x 2+2bx+12−4b x 20△(2b −4×(12−4b))20b 12b 2−6b 2l y −x+2 y =−x+2y =+314x 2{ x =−2y =4A (−2,4)b 6l y 3x−6 y =3x−6y =+314x 2{ x =6y =12B (6,12)1M(2,0)l ⊥x C l x 2C (2,4)y −x+2A(−2,4)y 3x−6B(6,12)x 2C(2,4)P 1P 2P 3P 4A B C S AB BC AC S AB P P AC AC//x P (0,3)=×4×1=2S △PAC 12P BC P (t,+3)14t 2BC y 2x PD//y BC D D (t,2t)DP =−+2t−314t 2=×4(−+2t−3)=−+4t−6(2<t <6)S △PBC 1214t 212t 2(4,2)P (4,7)S △PBC 最大值2S △PAC 最大值S △PBC 最大值S =×4×8+2=1812(0,3)P 1(4,7)P 2AB y x+6A B 8A C 4P AC 1AB 12l:y =x+l 132P 3P 4 y =x+132y =+314x 2 =2+3x 12–√=+3y 11722–√ =2−3x 22–√=−3y 21722–√(2+3,+3)P 32–√1722–√(2−3,−3)P 42–√1722–√S 18(0,3)P 1(4,7)P 2(2+3,+3)P 32–√1722–√(2−3,−3)P 42–√1722–√。

湖南省邵阳市中考数学试题及解析

湖南省邵阳市中考数学试题及解析

20XX年湖南省邵阳市中考数学试题及解析20XX年湖南省邵阳市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)3.(3分)(2015?邵阳)20XX年3月,英国和新加坡研究人员制造出观测极限为0.000 000 05米的光学显微镜,其中0.000 000 05米用科学记数法表示正确的是()4.(3分)(2015?邵阳)如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是()5.(3分)(2015?邵阳)将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是())7.(3分)(2015?邵阳)如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()228.(3分)(2015?邵阳)不等式组的整数解的个数是()9.(3分)(2015?邵阳)如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()10.(3分)(2015?邵阳)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是())二、填空题(共8小题,每小题3分,满分24分)211.(3分)(2015?邵阳)多项式a﹣4因式分解的结果是.12.(3分)(2015?邵阳)如图,在?ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:.13.(3分)(2015?邵阳)下列计算中正确的序号是.①2﹣=2;②sin30°=;③|﹣2|=2.14.(3分)(2015?邵阳)某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是.15.(3分)(2015?邵阳)某正n边形的一个内角为108°,则n=.16.(3分)(2015?邵阳)关于x的方程x+2x﹣m=0有两个相等的实数根,则m= .17.(3分)(2015?邵阳)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米. 2 18.(3分)(2015?邵阳)抛物线y=x+2x+3的顶点坐标是.三、解答题(共3小题,满分24分)19.(8分)(2015?邵阳)解方程组:.2)20.(8分)(2015?邵阳)先化简(﹣)?,再从0,1,2中选一个合适的x的值代入求值.21.(8分)(2015?邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.四、应用题(共3个小题,每小题8分,共24分)22.(8分)(2015?邵阳)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中(1)a= ;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.)23.(8分)(2015?邵阳)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x (元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?24.(8分)(2015?邵阳)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.五、综合题(共2个小题,25题8分,26题10分,共18分)25.(8分)(2015?邵阳)已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.26.(10分)(2015?邵阳)如图,已知直线y=x+k和双曲线y=B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(k为正整数)交于A,)(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为Sn,若S1+S2+…+Sn=,求n的值.)20XX年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)3.(3分)(2015?邵阳)20XX年3月,英国和新加坡研究人员制造出观测极限为0.000 000 05米的光学显微镜,其中0.000 000 05米用科学记数法表示正确的是())4.(3分)(2015?邵阳)如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是()5.(3分)(2015?邵阳)将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是())227.(3分)(2015?邵阳)如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()8.(3分)(2015?邵阳)不等式组的整数解的个数是())9.(3分)(2015?邵阳)如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是())10.(3分)(2015?邵阳)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是())二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2015?邵阳)多项式a﹣4因式分解的结果是(a+2)(a ﹣2).12.(3分)(2015?邵阳)如图,在?ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:△ADF≌△BEC . 2 )13.(3分)(2015?邵阳)下列计算中正确的序号是.①2﹣=2;②sin30°=;③|﹣2|=2.14.(3分)(2015?邵阳)某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是.15.(3分)(2015?邵阳)某正n边形的一个内角为108°,则n=16.(3分)(2015?邵阳)关于x的方程x+2x﹣m=0有两个相等的实数根,则m=.)217.(3分)(2015?邵阳)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000 米.18.(3分)(2015?邵阳)抛物线y=x+2x+3的顶点坐标是.三、解答题(共3小题,满分24分)2)19.(8分)(2015?邵阳)解方程组:.20.(8分)(2015?邵阳)先化简(﹣)?,再从0,1,2中选一个合适的x的值代入求值.21.(8分)(2015?邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.)四、应用题(共3个小题,每小题8分,共24分)22.(8分)(2015?邵阳)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中(1)a= 35 ;(2)补全条形统计图;)(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.)23.(8分)(2015?邵阳)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x (元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?24.(8分)(2015?邵阳)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.)五、综合题(共2个小题,25题8分,26题10分,共18分)25.(8分)(2015?邵阳)已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.)26.(10分)(2015?邵阳)如图,已知直线y=x+k和双曲线y=(k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为Sn,若S1+S2+…+Sn=,求n的值.))。

2023年湖南省邵阳市中考数学试卷(含答案)010101

2023年湖南省邵阳市中考数学试卷(含答案)010101

2023年湖南省邵阳市中考数学试卷试卷考试总分:118 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 的倒数是( )A.B.C.D.2. 下列图形是中心对称图形的是( )A.B.C.D.3. 声音在空气中传播每小时约通过,将用科学记数法表示为 A.B.C.D.4. 若式子有意义,则一次函数的图象可能是()A.−33−13−3131200000m 1200000()12×1061.2×1061.2×1071.2×108+(2−k k −2−−−−√)∘y =(2−k)x+k −2B. C. D.5. 如图,已知,直角三角板的直角顶点在直线上,若,则下列结论错误的是( )A.B.C.D.6. 下列不等式组的解集,在数轴上表示为如图所示的是( )A.B.C.D.7. 的正约数的个数是( )A.B.a//b b ∠1=60∘∠2=60∘∠3=60∘∠4=120∘∠5=40∘{x−1>0,x+2≤0{x+1>0,x+2≤0{x+1>0,x−2≤0{x−1≤0,x+2<0200134C.D.8. 如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴负半轴上,点在第四象限的双曲线上,过点作轴交双曲线于点,则的长为 A.B.C.D.9. 在四边形中:①;②;③;④.从以上选择两个条件使四边形为平行四边形的选法共有( )A.种B.种C.种D.种10. 若点,,都在二次函数的图象上,则,,的大小关系是 A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11. 的算术平方根是________. 12. 因式分解:=________.13. 方程的解为________. 14. 某校女子排球队队员的年龄分布如下表:年龄人数则该校女子排球队队员的平均年龄是________岁.68ABCD A (1,1)B x D y =−8xC CE//x E CE ()2353.5585ABCD AB//CD AD//BC AB =CD AD =BC ABCD 3456(−3,)y 1(1,)y 2(3,)y 3y =(x+1+k )2y 1y 2y 3()<<y 1y 2y 3=>y 1y 3y 2=<y 1y 2y 3=>y 1y 2y 3164−−−√3−2x +12xm−18xm 2=1x−152x+113141547415. 如图,是的直径,与相切于点,交于点,若,则________.16. 圆锥的母线长为,侧面积为,则圆锥的底面圆半径________.17. 某药品经过两次降价,每瓶零售价由元降为元,已知两次降价的百分率相同,设每次降价的百分率为,根据题意列方程为________.18. 如图,矩形纸片,,,如果点在边上,将纸片沿折叠,使点落在点处,连结,当是直角三角形时,的长为________.三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 ) 19. 计算题:(1)().(2).20. 化简求值: ,其中 .21. 已知中为边上高,为上一点,,的延长线与延长线交于点,求证: .22. 年月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进、两种类型的便携式风扇到地摊一条街出售.已知台型风扇和台型风扇进价共元,台型风扇和台型风扇进价共元.求型风扇、型风扇进货的单价各是多少元?小丹准备购进这两种风扇共台,根据市场调查发现,型风扇销售情况比型风扇好,小丹准备多购进型风扇,但数量不超过型风扇数量的倍,购进、两种风扇的总金额不超过元.根据以上信息,小丹共有哪几种进货方案?哪种进货方案费用最低?最低费用为多少?23. 某保险的基本保费为(单位:元),继续购买该保险的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关系如下:AB ⊙O BC ⊙O B AC ⊙O D ∠ACB =50∘∠BOD =7cm 21πcm 2r =cm 168108x ABCD AD =4AB =3E BC AE B F FC △EFC BE −+22−2cos +60∘−12cos −tan −30∘45∘2x(2x−1)+4x(+x−1)−4(1+2)x 2x 2x =−2△ABC CE AB D AC DG ⊥BC GD BA H GF ⋅GH =GB ⋅GC 20205A B 2A 5B 1003A 2B 62(1)A B (2)100A B A B 3A B 1170a上年度出险次数保费该保险个续保人一年内出险次数的统计情况如下:一年内出险次数人数求一续保人本年度的保费高于基本保费的概率;求续保人本年度的平均保费与基本保费的比值.24. 如图,为了绘制学校平面图,某校数学社团的同学们利用无人机测量学校校园的南北宽度.当无人机飞行高度米时,在点测得学校最南端点的俯角为,继续水平飞行米到达处时,测得学校最北端点的俯角为,求学校校园的南北宽度(结果精确到米)(参考数据:,,,,)25. 如图,正方形的边长为,,上各有一点,,若的周长为.将绕点逆时针方向旋转交的延长线于点,画出相应的图形;猜想________,并写出证明过程;求的度数.26. 如图,在平面直角坐标系中,已知抛物线过,,三点,点的坐标是,点的坐标是.求此抛物线的函数解析式.点是抛物线上的一个动点,设点的横坐标为.①是否存在点,使得是以为直角边的直角三角形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由;②过动点作轴于点,交直线于点,过点作轴于点.连接.当线段的长度最短时,请求出点的坐标.01234≥50.85a a 1.25a 1.5a 1.75a 2a10001234≥530152020105(1)(2)88A P 78∘100B Q 30∘0.1sin ≈0.9878∘cos ≈0.2178∘tan ≈4.7078∘≈1.733–√≈1.412–√ABCD 1AB AD P Q △APQ 2(1)CQ C 90∘AB M (2)AM +AQ =(3)∠PCM y =+bx+c x 2A B C A (3,0)C (0,−3)(1)(2)P P m P △ACP AC P P PE ⊥y E AC D D DF ⊥x F EF EF P参考答案与试题解析2023年湖南省邵阳市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】B【考点】倒数【解析】此题暂无解析【解答】此题暂无解答2.【答案】B【考点】中心对称图形【解析】根据中心对称图形的概念求解.【解答】解:,是轴对称图形,不是中心对称图形,故错误;,是中心对称图形,故正确;,是轴对称图形,不是中心对称图形,故错误;,是轴对称图形,不是中心对称图形,故错误.故选.3.【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】解:将用科学记数法表示为:.故选.A AB BC CD D B a ×10n 1≤|a |<10n n a n >1n <1n 1200000 1.2×106B4.【答案】C【考点】一次函数的图象二次根式有意义的条件零指数幂【解析】本题考查了二次根式,零指数幂有意义的条件,一次函数的图像,熟练掌握二次根式,零指数幂有意义的条件,一次函数的图像是解题关键,先根据二次根式,零指数幂有意义的条件求得值范围,再结合一次函数的图像得到答案.【解答】解:式子有意义,,解得:,,一次函数的图象位于一、二、四象限.故选.5.【答案】D【考点】邻补角平行线的性质对顶角【解析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出,,,的度数,然后选出错误的选项.【解答】解:∵,,∴,,,∵三角板为直角三角板,∴.故选6.【答案】C【考点】在数轴上表示不等式的解集解一元一次不等式组k ∵+k −2−−−−√(2−k)0∴k −2≥0,2−k ≠0k >2∴2−k <0,k −2>0∴y =(2−k)x+k −2C ∠2∠3∠4∠5a//b ∠1=60∘∠3=∠1=60∘∠2=∠1=60∘∠4=−∠3=180∘−=180∘60∘120∘∠5=−∠3=90∘−=90∘60∘30∘D.【解析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:解得:则不等式组无解;解得:则不等式组无解;解得:则不等式组解集为:;解得:则不等式组解集为:.结合数轴,可知正确.故选.7.【答案】B【考点】约数与倍数【解析】先分解质因数,然后根据约数个数定理来解答.【解答】解:∵,∴的约数应为个:,,,,,,,.故选.8.【答案】A【考点】全等三角形的性质与判定正方形的性质反比例函数综合题待定系数法求反比例函数解析式【解析】{x−1>0,x+2≤0,{x >1,x ≤−2,{x+1>0,x+2≤0,{x >−1,x ≤−2,{x+1>0,x−2≤0,{x >−1,x ≤2,−1<x ≤2{x−1≤0,x+2<0,{x ≤1,x <−2,x <−2C C 2001=3×23×292001=3×23×29200181323293×233×2923×292001B此题暂无解析【解答】解:过作轴的平行线,过点作于,过作于,设,∵四边形是正方形,∴,,易得,∴,∴,∴,解得,∴,.∵,∴点的纵坐标为,当时,,∴,∴,∴.故选.9.【答案】B【考点】平行四边形的判定【解析】根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有种,分别是:①②、②④、①③、③④.故选.10.【答案】C【考点】二次函数的性质二次函数图象上点的坐标特征【解析】D DH ⊥x CE A AG ⊥GH G B BM ⊥HC M D(x,−)8x ABCD AD =CD =BC ∠ADC =∠DCB =90∘△AGD ≅△DHC ≅△CMB AG =DH =x−1DG =BM 1+=x−1+8x 8x x =2D(2,−4)CH =DG =BM =1+=582AG =DH =x−1=1E −5y =−5x =85E(,−5)85EH =2−=8525CE =CH−HE =5−=25235A 4B分别计算函数值,然后比较大小即可.【解答】解:当时,;当时,;当时,,所以.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11.【答案】【考点】算术平方根立方根【解析】【解答】解:,的算术平方根是.故答案为:.12.【答案】【考点】提公因式法与公式法的综合运用【解析】首先提公因式,再利用完全平方进行二次分解即可.【解答】原式==.13.【答案】=【考点】解分式方程【解析】方程两边都乘以最简公分母把分式方程化为整式方程,求解后进行检验.x =−3=(−3+1+k =4+ky 1)2x =1=(1+1+k =4+k y 2)2x =3=(3+1+k =16+k y 3)2=<y 1y 2y 3C 12=164−−−√314141212−2x(m−3)2−2x −2x(−6m+9)m 2−2x(m−3)2x 2(x−1)(2x+1)【解答】方程两边都乘以得,=,解得=,检验:当=时,==,所以,原方程的解是=.14.【答案】【考点】加权平均数【解析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.【解答】根据题意得:=(岁),15.【答案】【考点】圆周角定理切线的性质【解析】根据是圆的切线,可得,再求得,由圆周角定理可得,即可求得答案.【解答】解:是圆的切线,,∵,,由圆周角定理可得:.故答案为:.16.【答案】【考点】扇形面积的计算圆锥的计算【解析】由于圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式(x−1)(2x+1)2x+15(x−1)x 2x 2(x−1)(2x+1)(2−1)×(2×2+1)5≠0x 214(13×4+14×7+15×4)÷151480∘BC ∠ABC =90∘∠A ∠BOD =2∠A ∵BC ∴∠ABC =90∘∠ACB =50∘∴∠A =−∠ACB 90∘=−90∘50∘=40∘∠BOD =2∠A=2×40∘=80∘80∘32π×r ×7=21π1得到,然后解方程即可.【解答】解:根据题意得,即得,所以圆锥的底面圆半径为.故答案为:.17.【答案】【考点】由实际问题抽象出一元二次方程【解析】设每次降价的百分率为,根据降价后的价格=降价前的价格(降价的百分率),则第一次降价后的价格是,第二次后的价格是,据此即可列方程求解.【解答】解:因为某药品经过两次降价,每瓶零售价由元降为元,根据题意得:.故答案为:.18.【答案】或【考点】矩形的性质翻折变换(折叠问题)【解析】分两种情况:①当=时,先判断出点在对角线上,利用勾股定理列式求出,设=,表示出,根据翻折变换的性质可得=,=,然后在中,利用勾股定理列出方程求解即可;②当=时,判断出四边形是正方形,根据正方形的四条边都相等可得=.【解答】解:分两种情况:①当时,如图:∵,,∴点、、共线,∵矩形的边,∴,在中,,设,则,×2π×r ×7=21π12×2π×r ×7=21π12r =3r 3cm 3168(1−x =108)2x 1−168(1−x)168(1−x)2168108168(1−x =108)2168(1−x =108)21.53∠EFC 90∘F AC AC BE x CE AF AB EF BE Rt △CEF ∠CEF 90∘ABEF BE AB ∠EFC =90∘∠AFE =∠B =90∘∠EFC =90∘A F C ABCD AD =4BC =AD =4Rt △ABC AC ===5A +B B 2C 2−−−−−−−−−−√+3242−−−−−−√BE =x CE =BC −BE =4−x由翻折的性质得,,,∴,在中,,即,解得,即;②当时,如图:由翻折的性质得,,∴四边形是正方形,∴,综上所述,的长为或.三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 )19.【答案】()===;=(==.【考点】特殊角的三角函数值负整数指数幂实数的运算【解析】(1)直接利用特殊角的三角函数值以及负整数指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值分别化简得出答案.【解答】()===;=(==.AF =AB =3EF =BE =x CF =AC −AF =5−3=2Rt △CEF E +C =F 2F 2CE 2+=x 222(4−x)2x =1.5BE =1.5∠CEF =90∘∠AEB =∠AEF =×=1290∘45∘ABEF BE =AB =3BE 1.53−+22−2cos +60∘−1−4+3−2×+3−4+3−1+312cos −tan −30∘45∘2×−1−−1)−1−+10−+22−2cos +60∘−1−4+3−2×+3−4+3−1+312cos −tan −30∘45∘2×−1−−1)−1−+120.【答案】解:原式 ,当 时,原式 .【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式 ,当 时,原式 .21.【答案】证明:∵为高,∴,又∵,∴,∴,而,∴,∴,即 .【考点】相似三角形的判定与性质【解析】∵为高,∴,又∵,∴,∴,而,∴,∴,即 .【解答】证明:∵为高,∴,又∵,∴,∴,而,∴,∴,即 .22.【答案】解:设型风扇进货的单价是元,型风扇进货的单价是元,=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC GF ∶GB =GC ∶GH GF ⋅GH =GB ⋅GC CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC CF ∶GB =GC ∶CH GF ⋅GH =GB ⋅GC CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC GF ∶GB =GC ∶GH GF ⋅GH =GB ⋅GC (1)A x B y依题意,得:解得:答:型风扇进货的单价是元,型风扇进货的单价是元.设购进型风扇台,则购进型风扇台,依题意,得: 解得: .又∵为正整数,∴可以取、、、,∴小丹共有种进货方案,方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台.∵型风扇进货的单价大于型风扇进货的单价,∴方案:购进型风扇台,型风扇台的费用最低,最低费用为(元).【考点】二元一次方程组的应用——销售问题一元一次不等式组的应用【解析】(1)设型风扇进货的单价是元,型风扇进货的单价是元,根据“台型风扇和台型风扇进价共元,台型风扇和台型风扇进价共元”,即可得出关于,的二元一次方程组,解之即可得出结论;(2)设购进型风扇台,则购进型风扇台,根据“购进型风扇不超过型风扇数量的倍,购进、两种风扇的总金额不超过元”,即可得出关于的一元一次不等式组,解之即可得出的取值范围,再结合为正整数即可得出各进货方案.【解答】解:设型风扇进货的单价是元,型风扇进货的单价是元,依题意,得:解得:答:型风扇进货的单价是元,型风扇进货的单价是元.设购进型风扇台,则购进型风扇台,依题意,得: 解得: .又∵为正整数,∴可以取、、、,∴小丹共有种进货方案,方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台.∵型风扇进货的单价大于型风扇进货的单价,∴方案:购进型风扇台,型风扇台的费用最低,最低费用为(元).23.【答案】解:设表示事件:“一续保人本年度的保费高于基本保费”,则;续保人本年度的平均保费为,所以续保人本年度的平均保费与基本保费的比值为.【考点】{2x+5y =100,3x+2y =62,{x =10,y =16.A 10B 16(2)A m B (100−m){m≤3(100−m),10m+16(100−m)≤1170,71≤m≤7523m m 7273747541A 72B 282A 73B 273A 74B 264A 75B 25B A 4A 75B 2575×10+25×16=1150A x B y 2A 5B 1003A 2B 62x y A m B (100−m)A B 3A B 1170m m m (1)A x B y {2x+5y =100,3x+2y =62,{x =10,y =16.A 10B 16(2)A m B (100−m){m≤3(100−m),10m+16(100−m)≤1170,71≤m≤7523m m 7273747541A 72B 282A 73B 273A 74B 264A 75B 25B A 4A 75B 2575×10+25×16=1150(1)A P(A)==0.5520+20+10+5100(2)(0.85a ×30+a ×15+1.25a ×20+1.5a 1100×20+1.75a ×10+2a ×5)=1.23a 1.23概率公式加权平均数频数(率)分布表【解析】(1)根据各频数之和为进行计算,即可得到的值;(2)根据本年度保险费不高于基本保险费的频数除以,即可得到本年度保险费不高于基本保险费的概率;(3)根据人数与保费乘积的和除以总续保人数,可得本年度的平均保费估计值.【解答】解:设表示事件:“一续保人本年度的保费高于基本保费”,则;续保人本年度的平均保费为,所以续保人本年度的平均保费与基本保费的比值为24.【答案】解:作于,如图,在中,,(米).在中,,(米).(米).答:学校校园的南北宽度约为米.【考点】解直角三角形的应用-仰角俯角问题【解析】左侧图片未给出解析.【解答】解:作于,如图,100m 100(1)A P(A)==0.5520+20+10+5100(2)(0.85a ×30+a ×15+1.25a ×20+1.5a 1100×20+1.75a ×10+2a ×5)=1.23a1.23BM ⊥CQ M Rt △ACP tan ∠APC =AC CP∴CP =≈≈18.72AC tan ∠APC 884.70Rt △BMQ tan ∠BQM =BM QM ∴QM ==88≈152.24BMtan ∠BQM 3–√∴PQ =CM +MQ −CP =100+152.24−18.72=233.52≈233.5233.5BM ⊥CQ M ∠APC =AC在中,,(米).在中,,(米).(米).答:学校校园的南北宽度约为米.25.【答案】解:画图如图所示,∵的周长为,∴.∵,∴.∵,,∴ ,.【考点】全等三角形的性质与判定作图-旋转变换旋转的性质正方形的性质【解析】(2)解∵四边形是正方形∴,将绕着点跑时针旋转得到∴∴∴∴∵∴【解答】解:画图如图所示,∵四边形是正方形,∴,.将绕着点逆时针旋转得到,Rt △ACP tan ∠APC =AC CP ∴CP =≈≈18.72AC tan ∠APC 884.70Rt △BMQ tan ∠BQM =BM QM ∴QM ==88≈152.24BM tan ∠BQM3–√∴PQ =CM +MQ −CP =100+152.24−18.72=233.52≈233.5233.5(1)2(3)△APQ 2AP +AQ +PQ =2AQ +AP +PM =2PQ =PM CQ =CM CP =CP △CPQ ≅△CPM(SSS)∠PCQ =∠PCM =∠QCM =1245∘ABCD CD =CB CQ C 90∘CMCO =CM ∠QCM =∠DCB =90∘∠QCD =∠BCM △CDQ ≅△CBMDQ =BMAD+AB =2AM +AO =2(1)(2)ABCD CD =CB ∠DCB =90∘CQ C 90∘CM∴,,,∴ ,∴,∴.∵,∴.故答案为:.∵的周长为,∴.∵,∴.∵,,∴ ,.26.【答案】解:点的坐标是,则,将点代入中,得.解得.∴抛物线的解析式为.①由点,的坐标,得直线的函数表达式为,如图,当时,则直线的函数表达式为,联立解得,(与点重合,舍去),故点.如图,当时,设直线的函数表达式为,将,代中,得,则直线的函数表达式为,联立解得,与点重合,舍去),故点.综上所述,存在点或,使得是以为直角边的直角三角形.②如图,易得四边形为矩形,则.设点,则点,则,故当时,取得最小值,即点,将点的坐标代入,解得,故点或.【考点】二次函数综合题CQ =CM ∠QCM =∠DCB =90∘∠QCD =∠BCM △CDQ ≅△CBM DQ =BM AD+AB =2AM +AQ =AB+BM +AQ =AB+DQ +AQ=AB+AD =22(3)△APQ 2AP +AQ +PQ =2AQ +AP +PM =2PQ =PM CQ =CM CP =CP △CPQ ≅△CPM(SSS)∠PCQ =∠PCM =∠QCM =1245∘(1)C (0,−3)c =−3A(3,0)y =+bx−3x 20=+3b −332b =−2y =−2x−3x 2(2)A C AC y =x−3∠ACP =90∘CP y =−x−3{y =−2x−3,x 2y =−x−3,=1x 1=0x 2C P(1,−4)∠AC =P ′90∘AP ′y =−x+b x =3y =0y =−x+b b =3AP ′y =−x+3{y =−2x−3,x 2y =−x+3,=−2x 1=3(x 2A (−2,5)P ′P(1,−4)(−2,5)△ACP AC OEDF EF =OD D(n,n−3)P(m,n−3)E =O =+(n−3=2−6n+9=2(n−+F 2D 2n 2)2n 232)292n =32EF P(m,−)32P y =−2x−3x 2m=2±10−−√2P(,−)2+10−−√232(,−)2−10−−√222【解析】此题暂无解析【解答】解:点的坐标是,则,将点代入中,得.解得.∴抛物线的解析式为.①由点,的坐标,得直线的函数表达式为,如图,当时,则直线的函数表达式为,联立解得,(与点重合,舍去),故点.如图,当时,设直线的函数表达式为,将,代中,得,则直线的函数表达式为,联立解得,与点重合,舍去),故点.综上所述,存在点或,使得是以为直角边的直角三角形.②如图,易得四边形为矩形,则.设点,则点,则,故当时,取得最小值,即点,将点的坐标代入,解得,故点或.(1)C (0,−3)c =−3A(3,0)y =+bx−3x 20=+3b −332b =−2y =−2x−3x 2(2)A C AC y =x−3∠ACP =90∘CP y =−x−3{y =−2x−3,x 2y =−x−3,=1x 1=0x 2C P(1,−4)∠AC =P ′90∘AP ′y =−x+b x =3y =0y =−x+b b =3AP ′y =−x+3{y =−2x−3,x 2y =−x+3,=−2x 1=3(x 2A (−2,5)P ′P(1,−4)(−2,5)△ACP AC OEDF EF =OD D(n,n−3)P(m,n−3)E =O =+(n−3=2−6n+9=2(n−+F 2D 2n 2)2n 232)292n =32EF P(m,−)32P y =−2x−3x 2m=2±10−−√2P(,−)2+10−−√232(,−)2−10−−√222。

湖南省邵阳市2020年中考数学试题(解析版)

湖南省邵阳市2020年中考数学试题(解析版)

韦达定理提升解题效率.
5.已知正比例函数 y kx(k 0) 的图象过点 2,3 ,把正比例函数 y kx(k 0) 的图象平移,使它过点
1, 1 ,则平移后的函数图象大致是( )
A.
B.
C.
D.
【答案】D 【解析】 【分析】
先求出正比例函数解析式,再根据平移和经过点 1, 1 求出一次函数解析式,即可求解.
湖南省邵阳市 2020 年中考数学试题
一、选择题(本大题有 10 个小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,只 有一项是符合题目要求的)
1.2020 的倒数是( )
A. 2020
B. 2020
1
C.
2020
D. 1 2020
【答案】C 【解析】
【分析】
根据倒数的定义解答.
1
【详解】2020 的倒数是
故函数图象大致

故选:D
【点睛】本题考查了求正比例函数,一次函数解析式,一次函数图象与性质,根据正比例函数求出平移后
一次函数解析式是解题关键.
6.下列计算正确的是( )
A. 5 3 18 8 3
B. 2a2b 3 6a2b3
C. (a b)2 a2 b2
D. a2 4 a b a 2 ab a2

2020
故选:C.
【点睛】此题考查倒数的定义,熟记倒数的定义是解题的关键.
2.下列四个立体图形中,它们各自的三视图案】A 【解析】 【分析】 根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可. 【详解】A、球的三视图都是圆,故本选项正确; B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项错误; C、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项错误; D、三棱柱的主视图和左视图是矩形,俯视图是三角形,故本选项错误. 故选 A. 【点睛】本题考查的是几何体的三视图,理解主视图、左视图、俯视图是分别从物体正面、左面和上面看 所得到的图形是解题的关键. 3.2020 年 6 月 23 日,中国第 55 颗北斗号航卫星成功发射,标志着拥有全部知识产权的北斗导航系统全面 建成.据统计:2019 年,我国北斗卫星导航与位置服务产业总体产值达 3450 亿元,较 2018 年增长 14.4%.其

湖南省邵阳市中考数学试卷含解析版

湖南省邵阳市中考数学试卷含解析版

---2021 年湖南省邵阳市中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕25的算术平方根是〔〕A.5B.±5C.﹣5D.252.〔3分〕如下图,AB∥CD,以下结论正确的选项是〔〕A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠43.〔3分〕3﹣π的绝对值是〔〕A.3﹣πB.π﹣3C.3D.π4.〔3分〕以下立体图形中,主视图是圆的是〔〕A.B.C.D.5.〔3分〕函数y=√x-5中,自变量x的取值范围在数轴上表示正确的选项是〔〕A.B.C.D.6.〔3分〕如下图,要在一条公路的两侧铺设平行管道,一侧铺设的角度为120°,为使管道对接,另一侧铺设-------的角度大小应为〔〕A.120°B.100° C.80°D.60°7.〔3分〕如下图,边长为a的正方形中阴影局部的面积为〔〕A.a2﹣π〔a〕2B.a2﹣πa2C.a2﹣πaD.a2﹣2πa28.〔3分〕“救死扶伤〞是我国的传统美德,某媒体就“老人摔倒该不该扶〞进行了调查,将得到的数据经统计分析后绘制成如下图的扇形统计图,根据统计图判断以下说法,其中错误的一项为哪一项〔〕A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%-------D.认为该扶的占92%9.〔3分〕如下图的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,表示小徐离他家的距离.读图可知菜地离小徐家的距离为〔〕A.1.1千米B.2千米C.15千米D.37千米10.〔3分〕如下图,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为〔﹣1,1〕,〔﹣3,1〕,〔﹣1,﹣1〕,30秒后,飞机P飞到P′〔4,3〕位置,那么飞机Q,R的位置Q′,R′分别为〔〕A.Q′〔2,3〕,R′〔4,1〕B.Q′〔2,3〕,R′〔2,1〕C.Q′〔2,2〕,R′〔4,1〕D.Q′〔3,3〕,R′-------3,1〕二、填空题〔本大题共8小题,每题3分,共24分〕11.〔3 分〕将多项式mn2+2mn+m 因式分解的结果是.12.〔3分〕2021年,我国又有1240 万人辞别贫困,为世界脱贫工作作出了卓越奉献,将1240 万用科学记数法表示为a×10n的形式,那么a的值为.13.〔3分〕假设抛物线 y=ax2+bx+c的开口向下,那么a的值可能是.〔写一个即可〕14.〔3分〕我国南宋著名数学家秦九韶在他的著作?数书九章?一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角1[a2b2-( a2+b2-c2)2],现△ABC形的面积为S=√4 2 的三边长分别为1,2,√5,那么△ABC的面积为.-------15.〔3分〕如下图的正六边形ABCDEF ,连结FD ,那么∠FDC 的大小为.16.〔3分〕如下图,∠ AOB=40°,现按照以下步骤作图:①在OA ,OB 上分别截取线段OD ,OE ,使OD=OE ;②分别以D ,E 为圆心,以大于12DE 的长为半径画弧,在∠AOB 内两弧交于点C ;③作射线OC .那么∠AOC 的大小为.17.〔3分〕掷一枚硬币两次,可能出现的结果有四种,我-------们可以利用如下图的树状图来分析有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.18.〔3分〕如下图,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面 R处的雷达测得AR的距离是40km,仰角是 30°,n秒后,火箭到达B点,此时仰角是45°,那么火箭在这n秒中上升的高度是km.三、解答题〔本大题共8小题,共66 分〕1〕﹣1﹣√12.19 .〔8分〕计算:4sin60°﹣〔220 .〔8分〕如下图,平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.1〕求证:平行四边形ABCD是矩形;(2〕请添加一个条件使矩形ABCD为正方形.-------21 .〔8 分〕先化简,再在﹣ 3,﹣1,0,√2,2 中选择一个适宜的 x 值代入求值.x2x 2-9xx+3?x 2-2x+x-2.22 .〔8 分〕为提高节水意识,小申随机统计了自己家7天 的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如下图的统计图.〔单位:升〕1〕求这7天内小申家每天用水量的平均数和中位数;2〕求第3天小申家洗衣服的水占这一天总用水量的百分比;3〕请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月〔按30天计算〕的节约用水量.23.〔8分〕某校方案组织师生共300人参加一次大型公益-------活动,如果租用6辆大客车和5辆小客车恰好全部坐满,每辆大客车的乘客座位数比小客车多17个.1〕求每辆大客车和每辆小客车的乘客座位数;2〕由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.24.〔8分〕如下图,直线DP和圆O相切于点C,交直线AE 的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.1〕求证:DA=DC;2〕求∠P及∠AEB的大小.25.〔8分〕如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.-------【问题引入】1〕假设点O 是AC 的中点,AM BM =13,求BN CN的值;温馨提示:过点A 作MN 的平行线交BN 的延长线于点G .【探索研究】2〕假设点O 是AC 上任意一点〔不与A ,C 重合〕,求证:AMBNCOMB ?NC ?OA=1 ;【拓展应用】〔3〕如图2所示,点P 是△ABC 内任意一点,射线 AP , BP ,CP 分别交BC ,AC ,AB 于点D ,E ,F ,假设AF= 1 ,BD = 1 ,BF 3 CD 2求AE CE的值.26.〔10分〕如下图,顶点为〔1,﹣9〕的抛物线y=ax 2+bx+c 24过点M 〔2,0〕.1〕求抛物线的解析式;2〕点A 是抛物线与x 轴的交点〔不与点M 重合〕,点B是抛物线与 y 轴的交点,点C 是直线y=x+1上一点〔处于x-------轴下方〕,点D是反比例函数y=kx〔k>0〕图象上一点,假设以点A,B,C,D为顶点的四边形是菱形,求k的值.-------2021年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕〔2021?邵阳〕25的算术平方根是〔〕A.5B.±5 C.﹣5D.25【考点】22:算术平方根.菁优网版权所有【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,25的算术平方根是5.应选:A.【点评】此题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.2.〔3分〕〔2021?邵阳〕如下图,AB∥CD,以下结论正确的选项是〔〕A.∠1=∠2 B.∠2=∠3 C.∠1=∠4D.∠3=∠4 -------【考点】JA:平行线的性质.菁优网版权所有【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠4,应选C.【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.〔3分〕〔2021?邵阳〕3﹣π的绝对值是〔〕A.3﹣πB.π﹣3C.3D.π【考点】28:实数的性质;15:绝对值.菁优网版权所有【分析】直接利用绝对值的定义分析得出答案.【解答】解:∵3﹣π<0,|3﹣π|=π﹣3.应选B.【点评】此题主要考查了绝对值,正确把握定义是解题关键.4.〔3分〕〔2021?邵阳〕以下立体图形中,主视图是圆的是〔〕-------A.B.C.D.【考点】U1:简单几何体的三视图.菁优网版权所有【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、的主视图是圆,故A符合题意;B、的主视图是矩形,故B不符合题意;C、的主视图是三角形,故C不符合题意;D、的主视图是正方形,故D不符合题意;应选:A.【点评】此题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.5.〔3分〕〔2021?邵阳〕函数y=√x-5中,自变量x的取值范围在数轴上表示正确的选项是〔〕A.B.C.D.【考点】C4:在数轴上表示不等式的解集;E4:函数自变量的取值范围.菁优网版权所有【分析】根据被开方数大于等于0列式计算即可得解,然后在数轴上表示即可.【解答】解:由题意得,x﹣5≥0,-------解得x≥5.在数轴上表示如下:应选B.【点评】此题考查了函数自变量的范围及在数轴上表示不等式的解集,解题的关键是从三个方面考虑:1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.6.〔3分〕〔2021?邵阳〕如下图,要在一条公路的两侧铺设平行管道,一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为〔〕A.120°B.100° C.80°D.60°【考点】JA:平行线的性质.菁优网版权所有【分析】根据两直线平行,同旁内角互补解答.【解答】解:∵铺设的是平行管道,∴另一侧的角度为180°﹣120°=60°〔两直线平行,同-------旁内角互补〕.应选D .【点评】此题考查了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.7.〔3分〕〔2021?邵阳〕如下图,边长为a 的正方形中阴影局部的面积为〔〕A .a 2﹣π〔a 〕2B .a 2﹣πa 2C .a 2﹣πaD .a 2﹣2πa2【考点】32:列代数式.菁优网版权所有【分析】根据图形可知阴影局部的面积是正方形的面积减去直径为a 的圆的面积,此题得以解决.【解答】解:由图可得,阴影局部的面积为:a 2﹣π?(a )2,2应选A .【点评】此题考查列代数式,解答此题的关键是明确题意,列出相应的代数式.-------8.〔3分〕〔2021?邵阳〕“救死扶伤〞是我国的传统美德,某媒体就“老人摔倒该不该扶〞进行了调查,将得到的数据经统计分析后绘制成如下图的扇形统计图,根据统计图判断以下说法,其中错误的一项为哪一项〔〕A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【考点】VB:扇形统计图.菁优网版权所有【分析】根据百分比和圆心角的计算方法计算即可.【解答】解:认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1﹣27%﹣65%=8%,故C正确;认为该扶的占65%,故D错误;应选D.-------【点评】此题考查了扇形统计图,掌握百分比和圆心角的计算方法是解题的关键.9〔.3分〕〔2021?邵阳〕如下图的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为〔〕A.千米B.2千米C.15千米D.37千米【考点】E6:函数的图象.菁优网版权所有【分析】小徐第一个到达的地方应是菜地,也应是第一次路程不再增加的开始,所对应的时间为15分,路程为千米.【解答】解:由图象可以看出菜地离小徐家千米,应选:A.【点评】此题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题关键.-------10.〔3分〕〔2021?邵阳〕如下图,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为〔﹣1,1〕,〔﹣3,1〕,〔﹣1,﹣1〕,30秒后,飞机P飞到P′〔4,3〕位置,那么飞机Q,R的位置Q′,R′分别为〔〕A.Q′〔2,3〕,R′〔4,1〕B.Q′〔2,3〕,R′〔2,1〕C.Q′〔2,2〕,R′〔4,1〕D.Q′〔3,3〕,R′3,1〕【考点】D3:坐标确定位置.菁优网版权所有【分析】由点P〔﹣1,1〕到P′〔4,3〕知,编队需向右平移5个单位、向上平移2个单位,据此可得.【解答】解:由点P〔﹣1,1〕到P′〔4,3〕知,编队需向右平移5个单位、向上平移2个单位,∴点Q〔﹣3,1〕的对应点Q′坐标为〔2,3〕,点R〔﹣1,﹣1〕的对应点R′〔4,1〕,应选:A.-------【点评】此题考查了坐标确定位置,熟练掌握在平面直角坐标系确定点的坐标是解题的关键.二、填空题〔本大题共8小题,每题3分,共24分〕11.〔3分〕〔2021?邵阳〕将多项式mn2+2mn+m因式分解的结果是m〔n+1〕2.【考点】55:提公因式法与公式法的综合运用.菁优网版权所有【分析】根据提公因式法、公式法,可得答案.【解答】解:原式=m〔n2+2n+1〕=m〔n+1〕2,故答案为:m〔n+1〕2.【点评】此题考查了因式分解,利用提公因式、完全平方公式是解题关键.12.〔3分〕〔2021?邵阳〕2021年,我国又有1240万人辞别贫困,为世界脱贫工作作出了卓越奉献,将1240万用科学记数法表示为a×10n的形式,那么a的值为.-------【考点】1I:科学记数法—表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1240万有8位,所以可以确定n=8﹣1=7.【解答】解:1240万×107,.故答案为:.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.〔3分〕〔2021?邵阳〕假设抛物线y=ax2+bx+c的开口向下,那么a的值可能是﹣1.〔写一个即可〕【考点】H3:二次函数的性质.菁优网版权所有【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,a的值可能是﹣1,故答案为:﹣1.-------【点评】此题考查了二次函数的性质,是根底题,需熟记.14.〔3分〕〔2021?邵阳〕我国南宋著名数学家秦九韶在他的著作?数书九章?一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,1[a2b2-( a2+b2-c2)2],现c,那么该三角形的面积为S=√4 2△ABC的三边长分别为1,2,√5,那么△ABC的面积为1.【考点】7B:二次根式的应用.菁优网版权所有【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,√5的面积,从而可以解答此题.1[a2b2-( a2+b2-c2)2],【解答】解:∵S=√4 2∴△ABC的三边长分别为1,2,√5,那么△ABC的面积为:1[12×22-( 12+22-(√5)2)2]=1,S=√4 2故答案为:1.【点评】此题考查二次根式的应用,解答此题的关键是明确-------题意,利用题目中的面积公式解答.15.〔3分〕〔2021?邵阳〕如下图的正六边形ABCDEF,连结FD,那么∠FDC的大小为90°.【考点】L3:多边形内角与外角.菁优网版权所有【分析】首先求得正六边形的内角的度数,根据等腰三角形的性质即可得到结论.【解答】解:∵在正六边形ABCDEF中,∠E=∠EDC=120°,EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°【点评】此题考查了正多边形和圆.等腰三角形的性质,此题难度不大,注意数形结合思想的应用.16.〔3分〕〔2021?邵阳〕如下图,∠AOB=40°,-------现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆1DE的长为半径画弧,在∠心,以大于2AOB内两弧交于点C;③作射线OC.那么∠AOC的大小为20°.【考点】N2:作图—根本作图.菁优网版权所有【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,1∠AOB=20°.∴∠AOC=2故答案为:20°.【点评】此题考查的是作图﹣根本作图,熟知角平分线的作法是解答此题的关键.17.〔3分〕〔2021?邵阳〕掷一枚硬币两次,可能出现的结果有四种,我们可以利用如下图的树状图来分析有可能出-------现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是3.4 【考点】X6:列表法与树状图法.菁优网版权所有【专题】11:计算题.【分析】画树状图展示所有4种等可能的结果数,再找出掷一枚硬币两次,至少有一次出现正面的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中掷一枚硬币两次,至少有一次出现正面的结果数为3,所以掷一枚硬币两次,至少有一次出现正面的概率=3. 4故答案为34.【点评】此题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件 A 或B的结果数目 m ,然后利用概率公式计算事件A 或事件B 的-------概率.18.〔3分〕〔2021?邵阳〕如下图,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面 R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,那么火箭在这 n秒中上升的高度是〔20√3﹣20〕km.【考点】TA:解直角三角形的应用﹣仰角俯角问题.菁优网版权所有【分析】分别在Rt△ALR,Rt△BLR中,求出AL、BL即可解决问题.【解答】解:在Rt△ARL中,在LR=AR?cos30°=40×√23=20√3〔km〕,AL=AR?sin30°=20〔km〕,Rt△BLR中,∵∠BRL=45°,∴RL=LB=20√3,-------AB=LB﹣AL=〔20√3﹣20〕km,故答案为〔20√3﹣20〕km.【点评】此题考查的是解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.三、解答题〔本大题共8小题,共66分〕19.〔8分〕〔2021?邵阳〕计算:4sin60°﹣〔1〕﹣1﹣√12.2【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.菁优网版权所有【分析】依据特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质进行解答即可.【解答】解:原式=4×√23﹣2﹣2√3=2√3﹣2﹣2√3=﹣2.【点评】此题主要考查的是实数的运算,熟练掌握特殊锐角-------三角函数值、负整数指数幂的性质、二次根式的性质是解题的关键.20.〔8分〕〔2021?邵阳〕如下图,平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.1〕求证:平行四边形ABCD是矩形;2〕请添加一个条件使矩形ABCD为正方形.【考点】LF:正方形的判定;L5:平行四边形的性质;LD:矩形的判定与性质.菁优网版权所有【专题】14:证明题.【分析】〔1〕根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;〔2〕根据正方形的判定方法添加即可.【解答】〔1〕证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,-------OB=OC,AC=BD,∴平行四边形ABCD是矩形;2〕解:AB=AD〔或AC⊥BD答案不唯一〕.理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.【点评】此题考查了正方形的判断,平行四边形的性质,矩形的判定,熟练掌握特殊四边形的判定方法与性质是解题的关键.21.〔8分〕〔2021?邵阳〕先化简,再在﹣3,﹣1,0,√2,2中选择一个适宜的x值代入求值.-------x 2x2-9 xx+3?x2-2x+x-2 .【考点】6D:分式的化简求值.菁优网版权所有【分析】根据分式的乘法和加法可以化简题目中的式子,然后在﹣3,﹣1,0,√2,2中选择一个使得原分式有意义的的值代入即可解答此题.x 2x2-9 x【解答】解:x+3?x2-2x+x-2x 2(x+3)(x-3) x= x+3?x(x-2)+x-2x(x-3)+xx-2x-2x 2-3x+x=x-2x(x-2)x-2=x,x=﹣1时,原式=﹣1.【点评】此题考查分式的化简求值,解答此题的关键是明确分式的化简求值的方法.22.〔8分〕〔2021?邵阳〕为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如下图的统计图.〔单位:-------升〕1〕求这7天内小申家每天用水量的平均数和中位数;2〕求第3天小申家洗衣服的水占这一天总用水量的百分比;3〕请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月〔按30天计算〕的节约用水量.【考点】VC:条形统计图;V5:用样本估计总体;VD:折线统计图;W2:加权平均数;W4:中位数.菁优网版权所有【分析】〔1〕根据平均数和中位数的定义求解可得;2〕用洗衣服的水量除以第3天的用水总量即可得;3〕根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.【解答】解:〔1〕这7天内小申家每天用水量的平均数为815+780+800+785+790+825+8057=800〔升〕,-------将这7天的用水量从小到大重新排列为:780、785、790、、805、815、825,100×100%=12.5%,(∴用水量的中位数为800升;2〕800答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;3〕小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.【点评】此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.23.〔8分〕〔2021?邵阳〕某校方案组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,每辆大客车的乘客座位数比小客车多17个.-------1〕求每辆大客车和每辆小客车的乘客座位数;2〕由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【考点】C9:一元一次不等式的应用; 9A :二元一次方程组的应用.菁优网版权所有【分析】〔1〕根据题意结合每辆大客车的乘客座位数比小客 车多17个以及师生共300 人参加一次大型公益活动, 分别得出等式求出答案;〔2〕根据〔1〕中所求,进而利用总人数为300+30 ,进而得出不等式求出答案.【解答】解:〔1〕设每辆小客车的乘客座位数是 x 个,大客车的乘客座位数是y 个,根据题意可得:{y-x=17 ,6y+5x=300解得:{x y ==1835,答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个;-------2〕设租用a辆小客车才能将所有参加活动的师生装载完成,那么18a+35〔11﹣a〕≥300+30,解得:a≤34,17符合条件的a最大整数为3,答:租用小客车数量的最大值为3.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.24.〔8分〕〔2021?邵阳〕如下图,直线DP和圆O相切于点C,交直线AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.1〕求证:DA=DC;(2〕求∠P及∠AEB的大小.-------【考点】MC:切线的性质;L5:平行四边形的性质.菁优网版权所有【分析】〔1〕欲证明DA=DC,只要证明Rt△DAO≌△RtDCO即可;〔2〕想方法证明∠P=30°即可解决问题;【解答】〔1〕证明:在平行四边形ABCD中,AD∥BC,CB⊥AE,∴AD⊥AE,∴∠DAO=90°,DP与⊙O相切于点C,∴DC⊥OC,∴∠DCO=90°,在Rt△DAO和Rt△DCO中,{DO=DO,AO=CO Rt△DAO≌△Rt△DCO,DA=DC.1BC,∴〔2〕∵CB⊥AE,AE是直径,CF=FB=2----1AD,∴---∵四边形ABCD是平行四边形,AD=BC,CF=2CF∥DA,∴△PCF∽△PDA,PC=CF=1,PDDA2PC=12PD,DC=12PD,DA=DC,1 DA=2PD,Rt△DAP中,∠P=30°,∵DP∥AB,∴∠FAB=∠P=30°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠AEB=60°.【点评】此题考查切线的性质、平行四边形的性质、相似三-------角形的判定和性质、直角三角形中30度角的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.25.〔8分〕〔2021?邵阳〕如图1所示,在△ABC 中,点O 是AC 上一点,过点O 的直线与AB ,BC 的延长线分别相交于点M ,N .【问题引入】AM 1CN〔1〕假设点O 是AC 的中点,BM =3,求BN 的值;温馨提示:过点A 作MN 的平行线交 BN 的延长线于点G .【探索研究】〔2 〕假设点O 是AC 上任意一点〔不与 A ,C 重合〕,求证:AM BNCOMB ?NC ?OA =1; 【拓展应用】〔3 〕如图2所示,点P 是△ABC 内任意一点,射线 AP ,BP ,CP 分别交BC ,AC ,AB 于点D ,E ,F ,假设AF= 1,BD = 1,BF 3 CD 2求AECE 的值.-------【考点】SO :相似形综合题.菁优网版权所有【分析】〔1〕作AG ∥MN 交BN 延长线于点G ,证△ABGBG ABNG AM∽△MBN 得BN =MB ,即BN =MB ,同理由△ACG ∽△OCN 得NG CN =AOCO ,结合AO=CO 得NG=CN ,从而由CN BN =NG BN =AMBM 可得答案;( 2〕由NG BN =AM MB 、AO CO =NG CN 知AM MB ?BN NC ?CO OA =NG BN ?BN NC ?CN NG =1;3〕由〔2〕知,在△ABD 中有AF ?BC ?DP=1、在△ACD 中BFCDPAAE CB DPAF BC DP AE CB DPAE AF BC有EC ?BD ?PA =1,从而BF ?CD ?PA =EC ?BD ?PA,据此知EC =BF ?CD ?BD CB =AF FB ?BD CD =16.【解答】解:〔1〕过点A 作AG ∥MN交BN 延长线于点G ,∴∠G=∠BNM ,又∠B=∠B ,∴△ABG ∽△MBN ,BNBG =MB AB, ∴ BNBG ﹣1=MB AB﹣1,-------BG-BNAB-MBNGAM∴BN =MB ,即BN =MB,同理,在△ACG 和△OCN 中,NG CN =AOCO ,CO =CN ,AONG O 为AC 中点,∴AO=CO ,NG=CN ,CN =NG =AM =1;BN BN BM 3〔2〕由〔1〕知,NG =AM 、CO =CN,BNMBAONGAM BN CO NG BN CNMB ?NC ?OA =BN ?NC ?NG=1;〔3〕在△ABD 中,点P 是AD 上的一点,过点P 的直线与AC 、BD 的延长线相交于点C ,AF BCDP由〔2〕得BF ?CD ?PA =1,在△ACD 中,点P 是AD 上一点,过点P 是AD 上一点,过点P 的直线与 AC 、AD 的延长线分别相交于点E 、B ,AE CB DP由〔2〕得EC ?BD ?PA =1,AF ?BC ?DP =AE ?CB ?DP ,BFCDPAECBDPA-------AEAF BC BD AF BD 111EC =BF ?CD ?CB =FB ?CD =3×2=6.【点评】此题主要考查相似三角形的综合问题,熟练掌握相似三角形的判定与性质及比例式的根本性质是解题的关键.26.〔10 分〕〔2021 ?邵阳〕如下图,顶点为〔21,﹣49〕的抛物线 y=ax 2+bx+c 过点M 〔2,0〕.1〕求抛物线的解析式;2〕点A 是抛物线与x 轴的交点〔不与点M 重合〕,点B是抛物线与 y 轴的交点,点C 是直线y=x+1上一点〔处于x轴下方〕,点D 是反比例函数y=kx 〔k >0〕图象上一点,假设以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.【考点】HF :二次函数综合题.菁优网版权所有【分析】〔1〕设抛物线方程为顶点式y=a 〔x ﹣ 1〕2﹣9,将24点M 的坐标代入求 a 的值即可;〔2〕设直线y=x+1与y 轴交于点G ,易求G 〔0,1〕.那么-------直角△AOG是等腰直角三角形∠AGO=45°.点C是直线y=x+1上一点〔处于x轴下方〕,而k>0,所以反比例函数y=k x〔k>0〕图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,②此菱形以AB为对角线,利用点的坐标与图形的性质,勾股定理,菱形的性质和反比例函数图象上点的坐标特征求得k的值即可.【解答】解:〔1〕依题意可设抛物线方程为顶点式y=a〔x﹣1〕2﹣9〔a≠0〕,24将点M〔2,0〕代入可得:a〔2﹣12〕2﹣94=0,解得a=1.故抛物线的解析式为:y=〔x﹣1〕2﹣9;242〕由〔1〕知,抛物线的解析式为:y=〔x﹣12〕2﹣94.那么对称轴为x=12,∴点A与点M〔2,0〕关于直线x=1对称,2∴A〔1,0〕.x=0,那么y=﹣2,∴B〔0,﹣2〕.-------在直角△OAB 中,OA=1,OB=2,那么AB=√5.设直线y=x+1与y 轴交于点G ,易求G 〔0,1〕.∴直角△AOG 是等腰直角三角形,∴∠AGO=45°.∵点C 是直线y=x+1上一点〔处于x 轴下方〕,而k >0,所以反比例函数y=k〔k >0〕图象位于点一、三象限.x 故点D 只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB 为边且AC 也为边,如图1所示,过点D 作DN ⊥y 轴于点N ,在直角△BDN 中,∵∠DBN=∠AGO=45°,DN=BN=√52=√210,√∴D 〔﹣√210,﹣√102﹣2〕,∵点D 在反比例函数y=k 〔k >0〕图象上, x k=﹣√210×〔﹣√102﹣2〕=52+√10;②此菱形以AB 为对角线,如图2,作AB 的垂直平分线CD 交直线y=x+1于点C ,交反比例函数y=kx 〔k >0〕的图象于点D .再分别过点 D 、B 作DE ⊥x 轴于点F ,BE ⊥y 轴,DE 与-------BE 相较于点E .在直角△BDE 中,同①可证∠AGO=∠DBO=∠BDE=45°,BE=DE .可设点D 的坐标为〔x ,x ﹣2〕.BE 2+DE 2=BD 2,BD=√2BE=√2x .∵四边形ABCD 是菱形,AD=BD=√2x .∴在直角△ADF 中,AD 2=AF 2+DF 2,即〔√2x 〕=〔x+1〕2+〔x ﹣2〕2,解得x=52,∴点D 的坐标是〔52,12〕.∵点D 在反比例函数 y=k〔k >0〕图象上,x∴k=5 ×1=5,22 45 5综上所述,k 的值是 2+√10或4 .-------【点评】此题考查了二次函数综合题,需要掌握待定系数法求二次函数解析式,勾股定理,菱形的性质,反比例函数图象上点的坐标特征等知识点.解答〔2〕题时要分类讨论,以防漏解.----。

2022年湖南省邵阳市中考数学试卷(解析版)

2022年湖南省邵阳市中考数学试卷(解析版)

2022年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2022-的绝对值是()A .12022B .2022-C .2022D .12022-【分析】直接利用绝对值的性质分析得出答案.【解答】解:2022-的绝对值是2022.故选:C .2.(3分)下列四种图形中,对称轴条数最多的是()A .等边三角形B .圆C .长方形D .正方形【分析】根据轴对称图形的意义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此分析各图形的对称轴条数即可求解.【解答】解:A .等边三角形是轴对称图形,它有3条对称轴;B .圆是轴对称图形,有无数条条对称轴;C .长方形是轴对称图形,有2条对称轴;D .正方形是轴对称图形,有4条对称轴;故对称轴条数最多的图形是圆.故选:B .3.(3分)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是()A .0.11B .1.1C .11D .11000【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数.【解答】解:11000亿121100000000000 1.110==⨯,1.1a ∴=,故选:B.4.(3分)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看得到的视图解答.【解答】解:从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆,故选:D.5.(3分)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是()A.1B.34C.12D.14【分析】画树状图,共有4种等可能的结果,其中出现(正,正)的结果有1种,再由概率公式求解即可.【解答】解:画树状图如下:共有4种等可能的结果,其中出现(正,正)的结果有1种,∴出现(正,正)的概率为14,故选:D .6.(3分)下列长度的三条线段能首尾相接构成三角形的是()A .1cm ,2cm ,3cmB .3cm ,4cm ,5cmC .4cm ,5cm ,10cmD .6cm ,9cm ,2cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:A 、123+=,不能构成三角形;B 、345+>,能构成三角形;C 、4510+<,不能构成三角形;D 、269+<,不能构成三角形.故选:B .7.(3分)如图是反比例函数1y x=的图象,点(,)A x y 是反比例函数图象上任意一点,过点A 作AB x ⊥轴于点B ,连接OA ,则AOB ∆的面积是()A .1B .12C .2D .32【分析】由反比例函数的几何意义可知,1k =,也就是AOB ∆的面积的2倍是1,求出AOB ∆的面积是12.【解答】解:(,)A x y ,OB x ∴=,AB y =,A 为反比例函数1y x=图象上一点,1xy ∴=,111112222ABO S AB OB xy ∆∴=⋅==⨯=,故选:B .8.(3分)在直角坐标系中,已知点3(2A ,)m ,点7(2B ,)n 是直线(0)y kx b k =+<上的两点,则m ,n 的大小关系是()A .m n<B .m n>C .m n D .m n【分析】根据0k >可知函数y 随着x 增大而减小,再根3722>即可比较m 和n 的大小.【解答】解:点3(2A ,)m ,点(2B ,)n 是直线y kx b =+上的两点,且0k <,∴一次函数y 随着x 增大而减小,322>,m n ∴<,故选:A .9.(3分)如图,O 是等边ABC ∆的外接圆,若3AB =,则O 的半径是()A .32B C D .52【分析】连接OB ,过点O 作OE BC ⊥,结合三角形外心和垂径定理分析求解.【解答】解:连接OB ,过点O 作OE BC ⊥,O 是等边ABC ∆的外接圆,OB ∴平分ABC ∠,30OBE ∴∠=︒,又OE BC ⊥ ,113222BE BC AB ∴===,在Rt OBE ∆中,cos30BEOB︒=,∴3322OB =,解得:OB =,故选:C .10.(3分)关于x 的不等式组12,33111(2)22x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩有且只有三个整数解,则a 的最大值是()A .3B .4C .5D .6【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分表示出不等式组的解集,根据解集有且只有三个整数解,确定出a 的范围即可.【解答】解:()1233111222x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩①②,由①得:1x >,由②得:x a <,解得:1x a <<,不等式组有且仅有三个整数解,即2,3,4,45a ∴<,a ∴的最大值是5,故选:C .二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)因式分解:224x y -=(2)(2)x y x y +-.【分析】直接运用平方差公式进行因式分解.【解答】解:224(2)(2)x y x y x y -=+-.12.(3有意义,则x 的取值范围是2x >.【分析】先根据二次根式及分式有意义的条件列出x 的不等式组,求出x 的取值范围即可.【解答】解:有意义,∴2020x x -⎧⎨-≠⎩,解得0x >.故答案为:2x >.13.(3分)某班50名同学的身高(单位:)cm 如下表所示:身高155156157158159160161162163164165166167168人数351221043126812则该班同学的身高的众数为160cm.【分析】一组数据中出现次数最多的数据叫做众数,结合表格信息即可得出答案.【解答】解:身高160的人数最多,故该班同学的身高的众数为160cm .故答案为:160cm .14.(3分)分式方程5302x x-=-的解是3x =-.【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:去分母,得:53(2)0x x --=,整理,得:260x +=,解得:3x =-,经检验:3x =-是原分式方程的解,故答案为:3x =-.15.(3分)已知矩形的一边长为6cm ,一条对角线的长为10cm ,则矩形的面积为482cm .【分析】利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.【解答】解: 长方形的一条对角线的长为10cm ,一边长为6cm ,∴另一边长8cm =,∴它的面积为28648cm ⨯=.故答案为:48.16.(3分)已知2310x x -+=,则2395x x -+=2.【分析】原式前两项提取3变形后,把已知等式变形代入计算即可求出值.【解答】解:2310x x -+= ,231x x ∴-=-,则原式23(3)5x x =-+35=-+2=.故答案为:2.17.(3分)如图,在等腰ABC ∆中,120A ∠=︒,顶点B 在ODEF 的边DE 上,已知140∠=︒,则2∠=110︒.【分析】根据等腰三角形的性质和平行四边形的性质解答即可.【解答】解: 等腰ABC ∆中,120A ∠=︒,30ABC ∴∠=︒,140∠=︒ ,170ABE ABC ∴∠=∠+∠=︒, 四边形ODEF 是平行四边形,//OF DE ∴,218018070110ABE ∴∠=︒-∠=︒-︒=︒,故答案为:110︒.18.(3分)如图,在ABC ∆中,点D 在AB 边上,点E 在AC 边上,请添加一个条件ADE B ∠=∠或AED C ∠=∠或AD AEAB AC=(答案不唯一),使ADE ABC ∆∆∽.【分析】要使两三角形相似,已知一组角相等,则再添加一组角或公共角的两边对应成比例即可.【解答】解:A A ∠=∠ ,∴当ADE B ∠=∠或AED C ∠=∠或AD AEAB AC=时,ADE ABC ∆∆∽,故答案为:ADE B ∠=∠或AED C ∠=∠或AD AEAB AC=(答案不唯一).三、解答题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)计算:021(2)()2sin 602π--+--︒.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、负整数指数幂的性质分别化简,进而得出答案.【解答】解:原式142=+-⨯14=+-5=-20.(8分)先化简,再从1-,0,1中选择一个合适的x 值代入求值.211(111xx x x +÷+--.【分析】先计算分式的混合运算进行化简,先算小括号里面的,然后算括号外面的,最后根据分式成立的条件确定x 的取值,代入求值即可.【解答】解:原式111(1)(1)x x x x x -+-=⋅+-11x =+,又1x ≠- ,0,1,∴1x=.21.(8分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD 上,且BE DF=,OE OA=.求证:四边形AECF是正方形.【分析】证明AC与EF互相垂直平分便可根据菱形的判定定理得出结论【解答】证明: 四边形ABCD是菱形,=,AC BD=,OB OD∴⊥,OA OC=,BE DF∴=,OE OF∴四边形AECF是菱形;=,∴=,OA OCOE OF,==OE OA OF=,OE OF OA OC∴===,即EF AC∴菱形AECF是正方形.22.(8分)2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图1、图2所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.【分析】(1)根据兴趣类的人数和所占的百分比,可以求得此次调查的人数;(2)根据(1)中的计算和扇形统计图中的数据,可以计算出体育类的人数,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出喜欢兴趣类社团的学生有多少人.【解答】解:(1)512.5%40÷=(人),答:此次共调查了40人;(2)体育类有4025%10⨯=(人),文艺类社团的人数所占百分比:1540100%37.5%÷⨯=,阅读类社团的人数所占百分比:1040100%25%÷⨯=,将条形统计图补充完整如下:⨯=(人),答:估计喜欢兴趣类社团的学生有200人.23.(8分)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?【分析】(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,利用进货总价=进货单价⨯进货数量,结合购进“冰墩墩”摆件和挂件共100个且共花费了11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180)m-个,利用总利润=每个的销售利润⨯销售数量(购进数量),即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,依题意得:180 805011400 x yx y+=⎧⎨+=⎩,解得:80100 xy=⎧⎨=⎩.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180)m-个,依题意得:(6050)(10080)(180)2900m m-+--,解得:70m.答:购进的“冰墩墩”挂件不能超过70个.24.(8分)如图,已知DC是O的直径,点B为CD延长线上一点,AB是O的切线,点A为切点,且AB AC=.(1)求ACB∠的度数;(2)若O的半径为3,求圆弧 AC的长.【分析】(1)连接OA ,利用切线的性质可得90BAO ∠=︒,利用等腰三角形的性质可得B ACB OAC ∠=∠=∠,根据三角形内角和定理列方程求解;(2)先求得AOC ∠的度数,然后根据弧长公式代入求解.【解答】解:(1)连接OA ,AB 是O 的切线,点A 为切点,90BAO ∴∠=︒,又AB AC = ,OA OC =,B ACB OAC ∴∠=∠=∠,设ACB x ∠=︒,则在ABC ∆中,90180x x x ︒+︒+︒+︒=︒,解得:30x =,ACB ∴∠的度数为30︒;(2)30ACB OAC ∠=∠=︒ ,120AOC ∴∠=︒,∴ 12032180AC l ππ⨯==.25.(8分)如图,一艘轮船从点A 处以30/km h 的速度向正东方向航行,在A 处测得灯塔C 在北偏东60︒方向上,继续航行1h 到达B 处,这时测得灯塔C 在北偏东45︒方向上,已知在灯塔C 的四周40km 内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提1.414≈ 1.732)≈【分析】过点C 作CD 垂直AB ,利用特殊角的三角函数值求得CD 的长度,从而根据无理数的估算作出判断.【解答】解:安全,理由如下:过点C 作CD 垂直AB ,由题意可得,906030CAD ∠=︒-︒=︒,904545CBD ∠=︒-︒=︒,30130AB km =⨯=,在Rt CBD ∆中,设CD BD x ==km ,则(30)AD x km =+,在Rt ACD ∆中,tan 30CD AD ︒=,∴33CD AD =,∴303x x =+,解得:1540.9840x =≈>,所以,这艘轮船继续向正东方向航行是安全的.26.(10分)如图,已知直线22y x =+与抛物线2y ax bx c =++相交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,点(3,0)C 在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE 的顶点O 为直角坐标系原点,顶点P 在线段OC 上,顶点E 在y 轴正半轴上,若AOB ∆与DPC ∆全等,求点P 的坐标.(3)在条件(2)下,点Q 是线段CD 上的动点(点Q 不与点D 重合),将PQD ∆沿PQ 所在的直线翻折得到PQD '∆,连接CD ',求线段CD '长度的最小值.【分析】(1)先分别求得点A ,点B 的坐标,从而利用待定系数法求函数解析式;(2)分AOB DPC ∆≅∆和AOB CPD ∆≅∆两种情况,结合全等三角形的性质分析求解;(3)根据点D '的运动轨迹,求得当点P ,D ',C 三点共线时求得CD '的最小值.【解答】解:在直线22y x =+中,当2x =时,2y =,当0y =时,1x =-,∴点A 的坐标为(1,0)-,点B 的坐标为(0,2),把点(1,0)A -,点(0,2)B ,点(3,0)C 代入2y ax bx c =++,02930a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得23432a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式为224233y x x =-++;(2)①当AOB DPC ∆≅∆时,AO DP =,又 四边形OPDE 为正方形,1DP OP AO ∴===,此时点P 的坐标为(1,0),②当AOB CPD ∆≅∆时,OB DP =,又 四边形OPDE 为正方形,2DP OP OB ∴===,此时点P 的坐标为(2,0),综上,点P 的坐标为(1,0)或(2,0);(3)如图,点D '在以点P 为圆心,DP 为半径的圆上运动,∴当点D '',点P ,点C 三点共线时,CD ''有最小值,由(2)可得点P 的坐标为(1,0)或(2,0),且C 点坐标为(3,0),CD ∴''的最小值为1.。

湖南省邵阳市中考数学试卷(附答案解析)

湖南省邵阳市中考数学试卷(附答案解析)

2020年湖南省邵阳市中考数学试卷
一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.2020的倒数是()
A.﹣2020B.2020C.1
2020D.−
1
2020
2.下列四个立体图形中,它们各自的三视图都相同的是()
A.B.
C.D.
3.2020年6月23日,中国第55颗北斗导航卫星成功发射,标志着拥有全部知识产权的北斗导航系统全面建成.据统计:2019年,我国北斗卫星导航与位置服务产业总体产值达3450亿元,较2018年增长14.4%.其中,3450亿元用科学记数法表示为()A.3.45×1010元B.3.45×109元
C.3.45×108元D.3.45×1011元
4.设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为()
A.3B.−3
2C.
3
2
D.﹣2
5.已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()
A.B.
第1 页共27 页。

2023年湖南邵阳中考数学真题及答案

2023年湖南邵阳中考数学真题及答案

.....党的二十大报告提出,要坚持以文塑旅、以旅彰文,推进文化和旅游深度融合发展.湖南是文化旅游资源大省,深挖红色文化、非遗文化和乡村文化,推进文旅产业赋能乡村振A .B 40︒6.不等式组的解集在数轴上可表示为(1024x x -<⎧⎨-≤⎩A . .. ..有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是倍数的概率是( )A .B .()4,49.如图,在四边形ABCD 形,则下列正确的是(A .B .AD BC =ABD ∠=∠16.如图,某数学兴趣小组用一张半径为不计),如果做成的圆锥形帽子的底面半径为.(结果保留)2cm π三、解答题(本大题有8应写出必要的文字说明、演算步骤或证明过程)19.计算:1tan 452-⎛⎫︒+ ⎪⎝⎭(1)证明:.ABC DEB ∽△△(2)求线段的长.BD 22.低碳生活已是如今社会的一种潮流形式,人们的环保观念也在逐渐加深.保,绿色出行成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型”(1)(2)补全条形统计图.80000(3)该市九年级学生约人,试估计该市有多少名九年级学生可以评为24.我国航天事业捷报频传,2023托举神舟十六号载人飞船跃入苍穹中国空间站应用与发展阶段首次载人发射任务取得圆满成功,如图(九),有一枚运载火箭从地面25.如图,在等边三角形中,ABC 点,点是线段上的动点(点E P DE ,得到,连接60︒ACQ A EQ PQ 、(1)证明:在点的运动过程中,总有P PEQ ∠=(2)当为何值时,是直角三角形? AP DPAQF A 26.如图,在平面直角坐标系中,抛物线y ax =直线交于两点(点在点的右侧):1l y x =--D E 、D E(1)求抛物线的解析式.(2)过点作轴的垂线,与拋物线交于点.若,求面积的最大值.M x N 04t <<NED A (3)抛物线与轴交于点,点为平面直角坐标系上一点,若以为顶点的四y C R B C M R 、、、边形是菱形,请求出所有满足条件的点的坐标.R∴,3150∠=∠=︒∵,23∠∠=∴,250∠=︒故选B .【点睛】本题考查了平行线的性质,对顶角的性质,熟练掌握这些基本性质是解题的关故选A∵2AB AB '==∴在为圆心,为半径的弧上运动,B 'A 2当三点共线时,,,A B C 'CB 此时11CB AC AB ''=-=-此时112CB '>-当在上时,如图所示,此时P ADCB'综上所述,的最小值为故答案为:.-112【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.19.5, 326502350x y x y +=⎧⎨+=⎩解得:, 150100x y =⎧⎨=⎩答:该公司销售一台甲型、一台乙型自行车的利润分别为元;150,100(2)设需要购买甲型自行车台,则购买乙型自行车台,依题意得, a ()20a -,()5008002013000a a +-≤解得:,10a ≥∵为正整数,a ∴的最小值为,a 10答:最少需要购买甲型自行车台.10【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,根据题意列出方程组以及不等式是解题的关键.23.(1)的值为,的值为.a 800b 0.4(2)见解析.(3)16000【分析】(1)根据D 等级的频数和频率即可求出样本容量,进而求出的值,然后用B 的a 频数除以样本数量即可求出的值;b (2)按照统计图的画法补全即可;(3)用总体数量乘以A 等级的频率即可求解.【详解】(1)解:样本容量:,2000.054000÷=则,40000.2800a =⨯=160040000.4b =÷=故的值为,的值为.a 800b 0.4(2)解:如图(3)解:(名800000.216000⨯=答:该市约有名九年级学生可以评为16000【点睛】本题主要考查了条形统计图的运用,能读懂统计图,并熟练掌握频数、频率的概念是求解的关键.24.火箭从到处的平均速度为P Q∴,30PAF QAF ∠=∠=︒∵等边三角形,ABC ∴60ABC BCA CAB ∠=∠=∠=∵,DE BC ∥∴,60ADP ABC ∠=∠=︒∴,22261721025t t t t -+=++解得:, 12t =-∴, 11,22M ⎛⎫-- ⎪⎝⎭∵的中点重合,,BC MR ∴, 142142x y R R ⎧-=⎪⎪⎨⎪-=⎪⎩∴,()22261742t t -+=解得:或, 3392t -=3392t +=∴或3395391122t --+--=--=3395112t +----=--=∴或, 339539,22M ⎛⎫--+ ⎪ ⎪⎝⎭339395,22M ⎛⎫+-- ⎪ ⎪⎝⎭由的中点重合,,CM BR ∴或,339402539042x y R R ⎧-+=+⎪⎪⎨-+⎪+=+⎪⎩339402539042x y R R ⎧++=+⎪⎪⎨--⎪+=+⎪⎩点的坐标即为四边形为菱形时,的坐标,R BMRC M ∴点为或, R 339539,22R ⎛⎫--+ ⎪ ⎪⎝⎭339395,22R ⎛⎫+-- ⎪ ⎪⎝⎭综上所述,点为或R 339539,22R ⎛⎫--+ ⎪ ⎪⎝⎭339395,22R ⎛⎫+-- ⎪ ⎪⎝⎭或或. 539339,22R ⎛⎫-+- ⎪ ⎪⎝⎭99,22R ⎛⎫ ⎪⎝⎭【点睛】本题考查了二次函数的性质,面积问题,菱形的性质与判定,勾股定理,熟练掌握二次函数的性质,细心的计算是解题的关键.。

湖南邵阳市区2024届中考联考数学试卷含解析

湖南邵阳市区2024届中考联考数学试卷含解析

湖南邵阳市区2024年中考联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5702.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n 100 300 400 600 1000 2000 3000发芽的粒数m 96 282 382 570 948 1904 2850发芽的频率mn0.960 0.940 0.955 0.950 0.948 0.952 0.950下面有三个推断:①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;②根据上表,估计绿豆发芽的概率是0.95;③若n为4000,估计绿豆发芽的粒数大约为3800粒.其中推断合理的是()A.①B.①②C.①③D.②③3.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)4.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.5.下列二次根式,最简二次根式是( )A.B.C.D.6.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是()A.B.C.D.'''由△ABC绕点P旋转得到,则点P的坐标为()7.如图,在平面直角坐标系xOy中,△A B CA.(0,1)B.(1,-1)C.(0,-1)D.(1,0)8.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.215B.8 C.210D.2139.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD 交于点H,连接DH,下列结论正确的是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是25﹣2A.①②⑤B.①③④⑤C.①②④⑤D.①②③④10.计算tan30°的值等于()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线6 yx(x>0)交AB于点E,AE︰EB=1︰3.则矩形OABC的面积是__________.12.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.13.如图,点G是ABC的重心,AG的延长线交BC于点D,过点G作GE//BC交AC于点E,如果BC6=,那么线段GE的长为______.14.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_____cm.15.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.16.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中,圆M经过原点O,直线364y x=--与x轴、y轴分别相交于A,B两点.(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D 、E 两点,在抛物线上是否存在点P ,使得S △PDE =110S △ABC ?若存在,请求出点P 的坐标;若不存在,请说明理由. 18.(8分)观察下列各个等式的规律:第一个等式:222112--=1,第二个等式:223212-- =2,第三个等式:224312--=3… 请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.19.(8分)已知PA 与⊙O 相切于点A ,B 、C 是⊙O 上的两点(1)如图①,PB 与⊙O 相切于点B ,AC 是⊙O 的直径若∠BAC =25°;求∠P 的大小 (2)如图②,PB 与⊙O 相交于点D ,且PD =DB ,若∠ACB =90°,求∠P 的大小20.(8分)解不等式组:2(2)3{3122x xx +>-≥-,并将它的解集在数轴上表示出来.21.(8分)如图,已知二次函数2y x bx c =-++与x 轴交于A 、B 两点,A 在B 左侧,点C 是点A 下方,且AC ⊥x 轴. (1)已知A(-3,0),B(-1,0),AC=OA . ①求抛物线解析式和直线OC 的解析式;②点P 从O 出发,以每秒2个单位的速度沿x 轴负半轴方向运动,Q 从O 出发,2OC 方向运动,运动时间为t.直线PQ 与抛物线的一个交点记为M,当2PM=QM 时,求t 的值(直接写出结果,不需要写过程) (2)过C 作直线EF 与抛物线交于E 、F 两点(E 、F 在x 轴下方),过E 作EG ⊥x 轴于G ,连CG ,BF,求证:CG ∥BF22.(10分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.(1)求证:△AEH≌△CGF;(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由23.(12分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)24.列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.2、D【解题分析】①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.【题目详解】①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.故选D.【题目点拨】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.3、A【解题分析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选A.点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.4、B【解题分析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.5、C【解题分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6、A【解题分析】函数→一次函数的图像及性质7、B【解题分析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线C C′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心. 故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.8、D【解题分析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴2222=-=-=.BE AE AB1086在Rt△BCE中,∵BE=6,BC=1,∴CE===D.9、B【解题分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【题目详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=12×4=1,由勾股定理得,OD=224225+=,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=15-1.无法证明DH平分∠EHG,故②错误,故①③④⑤正确.故选B.【题目点拨】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.10、C【解题分析】tan30°=.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解题分析】根据反比例函数图象上点的坐标特征设E点坐标为(t,6t),则利用AE:EB=1:3,B点坐标可表示为(4t,6t),然后根据矩形面积公式计算.【题目详解】设E点坐标为(t,6t ),∵AE:EB=1:3,∴B点坐标为(4t,6t ),∴矩形OABC的面积=4t•6t=1.故答案是:1.【题目点拨】考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.12、3<d<7【解题分析】若两圆的半径分别为R和r,且R≥r,圆心距为d:相交,则R-r<d<R+r,从而得到圆心距O1O2的取值范围.【题目详解】∵⊙O1和⊙O2的半径分别为2和5,且两圆的位置关系为相交,∴圆心距O1O2的取值范围为5-2<d<2+5,即3<d<7.故答案为:3<d<7.【题目点拨】本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.13、2【解题分析】分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.详解:∵点G是△ABC重心,BC=6,∴CD=12BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案为2.点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.14、1.【解题分析】根据在△ABC中,∠A:∠B:∠C=1:2:3,三角形内角和等于180°可得∠A,∠B,∠C的度数,它的最小边的长是2cm,从而可以求得最大边的长.【题目详解】∵在△ABC中,∠A:∠B:∠C=1:2:3,∴∵最小边的长是2cm,∴a=2.∴c=2a=1cm.故答案为:1.【题目点拨】考查含30度角的直角三角形的性质,掌握30度角所对的直角边等于斜边的一半是解题的关键.15、5 3【解题分析】设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.【题目详解】设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=53,故答案为53.16、60°【解题分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D 的度数.【题目详解】∵DA ⊥CE ,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB ∥CD ,∴∠D=∠BAD=60°,故答案为60°.【题目点拨】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.三、解答题(共8题,共72分)17、(1)A (﹣8,0),B (0,﹣6);(2)21462y x x =---;(3)存在.P 点坐标为(﹣,-1)或(﹣4,-1)或(﹣,1)或(﹣4,1)时,使得110PDE ABC S S ∆∆=. 【解题分析】分析:(1)令已知的直线的解析式中x=0,可求出B 点坐标,令y=0,可求出A 点坐标;(2)根据A 、B 的坐标易得到M 点坐标,若抛物线的顶点C 在⊙M 上,那么C 点必为抛物线对称轴与⊙O 的交点;根据A 、B 的坐标可求出AB 的长,进而可得到⊙M 的半径及C 点的坐标,再用待定系数法求解即可;(3)在(2)中已经求得了C 点坐标,即可得到AC 、BC 的长;由圆周角定理:∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P 点坐标.本题解析:(1)对于直线364y x =--,当0x =时,6y =-;当0y =时, 所以A (﹣8,0),B (0,﹣6);(2)在Rt △AOB 中,,∵∠AOB=90°,∴AB 为⊙M 的直径,∴点M 为AB 的中点,M (﹣4,﹣3),∵MC ∥y 轴,MC=5,∴C (﹣4,2),设抛物线的解析式为y=a(x+4)²+2, 把B (0,﹣6)代入得16a+2=﹣6,解得a=12- ,∴抛物线的解析式为21(4)2y x =-+ ,即21462y x x =---; (3)存在.当y=0时,21(4)22y x =-++ ,解得x ,=﹣2,x ,=﹣6, ∴D (﹣6,0),E (﹣2,0), 18202ABC ACM BCM S S S CM ∆∆∆=+=⨯⨯=, 设P (t ,2142t t ---6), ∵110PDE ABC S S ∆∆= ∴211(26)4622t t -+---=110⨯20, 即|21462t t ---|=1,当21462t t ---=-1, 解得146t =-+,246t =-- ,此时P 点坐标为(﹣4+6,-1)或(﹣4﹣6,-1);当214612t t ---=时 ,解得1t =﹣4+2,2t =﹣4﹣2; 此时P 点坐标为(﹣4+2,1)或(﹣4﹣2,1).综上所述,P 点坐标为(﹣6,-1)或(﹣46,-1)或(﹣2,1)或(﹣42,1)时,使得110PDE ABC S S ∆∆=. 点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.18、(1)225412--=4;(2)22(1)12n n+--=n.【解题分析】试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:225412--=4;(2)第n个等式是:22(1)12n n+--=n.证明如下:∵22(1)12n n+--=[(1)][(1)]12n n n n+++--=2112n+-=n∴第n个等式是:22(1)12n n+--=n.点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.19、(1)∠P=50°;(2)∠P=45°.【解题分析】(1)连接OB,根据切线长定理得到PA=PB,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可;(2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB⊥PA,根据等腰直角三角形的性质解答.【题目详解】解:(1)如图①,连接OB.∵PA、PB与⊙O相切于A、B点,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如图②,连接AB、AD,∵∠ACB=90°,∴AB是的直径,∠ADB=90·∵PD =DB ,∴PA =AB .∵PA 与⊙O 相切于A 点∴AB ⊥PA ,∴∠P =∠ABP =45°.【题目点拨】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.20、-1≤x<4,在数轴上表示见解析.【解题分析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x 122x x +>-≥-①②, 由①得,x<4;由②得,x ⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:21、 (1)①y =-x 2-4x -3;y =x ;②1113± 或63314150±;(2)证明见解析. 【解题分析】 (1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA 知C 点坐标为(-3,-3),故可求出直线OC 的解析式;②由题意得OP =2t ,P (-2t ,0),过Q 作QH ⊥x 轴于H ,得OH =HQ =t ,可得Q (-t ,-t ),直线 PQ 为y =-x -2t ,过M 作MG ⊥x 轴于G ,由12PG PM GH QM ==,则2PG =GH ,由2P G G H x x x x -=-,得2P M M Q x x x x -=-, 于是22M M t x x t --=+,解得533M M x t x t =-=-或,从而求出M (-3t ,t )或M (51,33t t --),再分情况计算即可; (2) 过F 作FH ⊥x 轴于H ,想办法证得tan ∠CAG =tan ∠FBH ,即∠CAG =∠FBH ,即得证.【题目详解】2y x bx c =-++解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得09301b c b c =--+⎧⎨=--+⎩解得43b c =-⎧⎨=-⎩∴y =-x 2-4x -3;由AC=OA 知C 点坐标为(-3,-3),∴直线OC 的解析式y =x ;②OP =2t ,P (-2t ,0),过Q 作QH ⊥x 轴于H ,∵QO ,∴OH =HQ =t ,∴Q (-t ,-t ),∴PQ :y =-x -2t ,过M 作MG ⊥x 轴于G , ∴12PG PM GH QM ==, ∴2PG =GH ∴2P G G H x x x x -=-,即2P M M Q x x x x -=-,∴ 22M M t x x t --=+, ∴533M M x t x t =-=-或,∴M (-3t ,t )或M (51,33t t --) 当M (-3t ,t )时:29123t t t =-+-,∴1118t ±= 当M (51,33t t --)时:2125203393t t t -=-+-,∴6350t ±=综上:t =6350t ±=(2)设A (m ,0)、B (n ,0),∴m 、n 为方程x 2-bx -c =0的两根,∴m +n =b ,mn =-c ,∴y =-x 2+(m +n )x -mn =-(x -m )(x -n ),∵E 、F 在抛物线上,设()()2111E x x m n x mn -++-,、()()2222,F x x m n x mn -++-, 设EF :y =kx +b ,∴E E F E y kx b y kx b=+⎧⎨=+⎩ , ∴()E F E F y y k x x -=- ∴()()2212121212E F E F x x m n x x y y k m n x x x x x x -+++--===+---- ∴()()()()12111:F y m n x x x x x m x n =+------,令x =m∴()()()()12111c y m n x x m x x m x n =+------=()()()()112112+m x m n x x x n m x m x -+---=--∴AC=()()12m x m x ---,又∵1A E AG x x m x =-=-,∴tan ∠CAG =2AC x m AG=-, 另一方面:过F 作FH ⊥x 轴于H ,∴()()22FH x m x n =--,2BH x n =-,∴tan ∠FBH =2FH x m BH=- ∴tan ∠CAG =tan ∠FBH∴∠CAG =∠FBH∴CG ∥BF【题目点拨】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.22、(1)见解析;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由见解析.【解题分析】分析:(1)由正方形的性质得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH证出AH=CF,由SAS证明△AEH≌△CGF即可求解;(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O 为正方形的中心.详解:(1)证明:∵四边形ABCD是正方形,∴∠A=∠C=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=CF,在△AEH与△CGF中,AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS);(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:∵四边形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG,∠AOE=∠COG,AE=CG,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O为AC的中点,∵正方形的对角线互相平分,∴O为对角线AC、BD的交点,即O为正方形的中心.点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果.23、客车不能通过限高杆,理由见解析【解题分析】根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=DFDE,求出DF的值,即可判断.【题目详解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=DF DE,∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,∴客车不能通过限高杆.【题目点拨】考查解直角三角形,选择合适的锐角三角函数是解题的关键.24、15天【解题分析】试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.试题解析:设工程期限为x天.根据题意得,x41 x6x-1+= +解得:x=15.经检验x=15是原分式方程的解.答:工程期限为15天.。

2023年湖南省邵阳市中考数学试卷(含答案解析)045116

2023年湖南省邵阳市中考数学试卷(含答案解析)045116

2023年湖南省邵阳市中考数学试卷试卷考试总分:118 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. −2的倒数是( )A.2B.−2C.12D.−122. 下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是( )A.B.C.D.3. 1cm 2的电子屏上约有细菌135000个,135000用科学记数法表示为( )A.0.135×106B.1.35×105C.13.5×104D.135×1034. 下列计算正确的是( )−22−212−121cm 21350001350000.135×1061.35×10513.5×104135×103A.(−1)0=1B.(x +2)2=x 2+4C.(ab 3)2=a 2b 5D.2a +3b =5ab 5. 如图,已知a//b ,直角三角板的直角顶点在直线b 上,若∠1=60∘,则下列结论错误的是( )A.∠2=60∘B.∠3=60∘C.∠4=120∘D.∠5=40∘6. 不等式组{2(x +1)<6,0.5x +1≥0.5的解集在数轴上表示正确的是( ) A.B.C.D.7. 用长为45cm ,宽为30cm 的一批砖,铺成一块正方形,至少需要( )块.A.6=1(−1)0=+4(x+2)2x 2=(a )b 32a 2b 52a +3b =5ab a//b b ∠1=60∘∠2=60∘∠3=60∘∠4=120∘∠5=40∘{2(x+1)<6,0.5x+1≥0.545cm 30cm6B.8C.12D.168. 矩形,菱形,正方形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角9.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A.AB =CD , AD =BCB.AB =CD , AB//CDC.AB =CD ,AD//BCD.AB//CD ,AD//BC 10. 已知抛物线y =2(x −1)2+c 经过(−2,y 1),(0,y 2),(32,y 3)三点,则y1,y2,y3的大小关系是( )A.y 2>y 3>y 1B.y 1>y 2>y 3C.y 2>y 1>y 3D.y 1>y 3>y 2二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11. 3√164的算术平方根是________.12. 分解因式: x −9x 3= ________.681216ABCD AB =CD AD =BCAB =CD AB//CDAB =CD AD//BCAB//CD AD//BCy =2(x−1+c )2(−2,)y 1(0,)y 2(,)32y 3y 1y 2y 3()>>y 2y 3y 1>>y 1y 2y 3>>y 2y 1y 3>>y1y 3y 2164−−−√3x−9=x 313. 方程x −1x +1=12的根为________. 14. 某校女子排球队队员的年龄分布如下表:年龄131415人数474则该校女子排球队队员的平均年龄是________岁.15. 如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB =50∘,则∠BOD =________.16. 圆锥的母线长为7cm ,侧面积为21πcm 2,则圆锥的底面圆半径r =________cm .17. 在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,则有________家公司出席了这次交易会?18. 如图,将矩形ABCD 沿着对角线BD 折叠,使点C 落在C′处,BC′交AD 于E ,若AB =4,BC =8,AE =________.三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 )19. 计算:√8+(13)−2−|1−√2|−2cos45∘. 20. 先化简,再求值: (a +2)2−(a +1)(a −1),其中a =−12. 21. 如图,已知在直角梯形ABCD 中,AD//BC ,∠ABC =90∘,AE ⊥BD ,垂足为E ,联结CE ,作EF ⊥CE ,交边AB 于点F .=x−1x+112131415474AB ⊙OBC ⊙O B AC ⊙O D ∠ACB =50∘∠BOD =7cm 21πcm 2r =cm 78ABCD BD C C'BC'ADE AB4BC 8AE+(−|1−|−2cos 8–√13)−22–√45∘−(a +1)(a −1)(a +2)2a =−12ABCD AD//BC ∠ABC =90∘AE ⊥BD E CE EF ⊥CE AB F(1)求证:△AEF ∽△BEC ;(2)若AB =BC ,求证:AF =AD. 22. 某中学开学初到商场购买A ,B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元.(1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A ,B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A ,B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案? 23. 某中学为了解本校九年级女生“一分钟仰卧起坐”项目的成绩情况,从九年级随机抽取部分女生进行该项目测试,并将测试的成绩(x 次)数据,绘制成频数分布表和扇形统计图.部分信息如下,根据提供的信息解答下列问题:(1)m =________,在扇形统计图中第③小组对应的扇形的圆心角度数为________∘;(2)若测试九年级女生“一分钟仰卧起坐”次数不低于44次的成绩为优秀,本校九年级女生共有360人,请估算该校九年级女生“一分钟仰卧起坐”成绩为优秀的人数;(3)把在第①小组内的三个女生分别记为: a 1,a 2,a 3,把在第⑤小组内的两个女生分别记为: b 1,b 2,从第①小组和第⑤小组总共5个女生中随机抽取2个女生进行“你对中考体育考试选项的看法”的问卷调查,求第①小组和第⑤小组都有1个女生被选中的概率. 24. 如图所示,某建筑物楼顶有信号塔EF.为了测量信号塔EF 的高度,从建筑物一层A 点沿直线AD 出发,到达C 点时刚好能看到信号塔的最高点F ,测得仰角∠ACF =60∘,AC 长7米.接着再从C 点出发,继续沿AD 方向走了8米后到达B 点,此时刚好能看到信号塔的最低点E ,测得仰角∠B =30∘.(不计测量工具的高度)求信号塔EF 的高度(结果保留根号).EF ⊥CE AB F(1)△AEF ∽△BEC(2)AB =BC AF =AD A B A 50B 254500B A 30(1)A B(2)A B 50A 4B 9A B 70%B 23x (1)m=∘(2)44360(3),,a 1a 2a 3,b 1b 521EF EF A AD C F ∠ACF =60∘AC7C AD 8B E ∠B =30∘EF25. 在Rt △ABC 中,∠ABC =90∘,∠ACB =30∘,将△ABC 绕点C 顺时针旋转一定的角度α得到△DEC ,点A ,B 的对应点分别是D ,E .(1)如图1,当点E 恰好在AC 上时,求∠ADE 的大小;(2)如图2,若α=60∘时,点F 是边AC 中点,①求证: △CFD ≅△ABC ;②若BC =5√3,则DE =________. 26. 如图,抛物线y =ax 2+c(a ≠0)与直线y =4y +1相交于A(−1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)P 是抛物线上的一个动点(不与点A ,B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E .当PE =2ED 时,求点P 的坐标.Rt △ABC ∠ABC =90∘∠ACB=30∘△ABC C α△DEC A B D E(1)1E AC ∠ADE(2)2α=60∘F AC △CFD ≅△ABC BC =53–√DE =y =a +c(a ≠0)x 2y =4y+1A(−1,0),B(4,m)C(5,0)(1)(2)P A ,B P PD ⊥x D AB E PE =2ED P参考答案与试题解析2023年湖南省邵阳市中考数学试卷试卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】倒数【解析】此题暂无解析【解答】解:根据倒数的定义可知,−2的倒数为1÷(−2)=−12.故选D.2.【答案】A【考点】中心对称图形【解析】根据中心对称图形的概念求解即可.【解答】解:A、是中心对称图形,本选项正确;B、不是中心对称图形,是轴对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、不是中心对称图形,是轴对称图形,本选项错误.故选A.3.【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】将135000用科学记数法表示为:1.35×105.4.【答案】A【考点】零指数幂、负整数指数幂积的乘方及其应用完全平方公式合并同类项【解析】根据0次幂的法则,单项式乘以多项式、积的乘方幂的乘方以及整式加减的计算法则进行计算即可.【解答】解:A ,(−1)0=1,故正确;B ,(x +2)2=x 2+4x +4,故错误;C ,(ab 3)2=a 2b 6,故错误;D ,2a 和3b 不是同类项,不能合并,故错误.故选A.5.【答案】D【考点】邻补角平行线的性质对顶角【解析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出∠2,∠3,∠4,∠5的度数,然后选出错误的选项.【解答】解:∵a//b ,∠1=60∘,∴∠3=∠1=60∘,∠2=∠1=60∘,∠4=180∘−∠3=180∘−60∘=120∘,∵三角板为直角三角板,∴∠5=90∘−∠3=90∘−60∘=30∘.故选D.6.【答案】A【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】准确求解不等式组,再进行判断即可.【解答】解:{2(x +1)<6①,0.5x +1≥0.5②,解不等式①得: x <2,解不等式②得: x ≥−1,则不等式组的解集为−1≤x <2.在数轴上表示为:故选A .7.【答案】【答案】A【考点】约数与倍数【解析】45与30的最小公倍数90就是所求正方形的边长,然后用该正方形的面积除以每一块砖的面积即为所求.【解答】解:∵[45,30]=90(cm),∴所求正方形的面积是:90×90=8100(cm)2,∴铺成该正方形所需的砖的块数为:8100÷(45×30)=6(块);故选A .8.【答案】C【考点】正方形的性质矩形的性质菱形的性质【解析】此题暂无解析【解答】解:矩形,菱形,正方形都具有的性质是对角线互相平分.故选C.9.【答案】C【考点】平行四边形的判定【解析】依据平行四边形的判定,依次分析判断即可得出结果.【解答】解:A,根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故A不合题意;B,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故B不合题意;C,不能判定四边形ABCD是平行四边形,故C符合题意;D,根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故D不合题意.故选C.10.【答案】B【考点】二次函数的性质二次函数图象上点的坐标特征【解析】利用图象法解决问题即可.【解答】解:由题意抛物线的对称轴x=1,∵抛物线的开口向上,且点(−2,y1)离对称轴最远,点(32,y3)离对称轴最近,∴y1>y2>y3.故选B.二、填空题(本题共计 8 小题,每题 3 分,共计24分)11.【答案】12【考点】算术平方根立方根【解析】【解答】解:3√164=14,14的算术平方根是12.故答案为:12.12.【答案】x(1+3x)(1−3x)【考点】提公因式法与公式法的综合运用【解析】此题暂无解析【解答】解:x−9x3=x(1−9x2)=x(1+3x)(1−3x).故答案为:x(1+3x)(1−3x).13.【答案】x=3【考点】解分式方程【解析】根据分式方程的解法,方程两边同时乘以2(x+1),将分式方程化为整式方程求解即可.【解答】方程两边同时乘以2(x+1),得2(x−1)=x+1,解得x=3,经检验,x=3是原方程的根,∴原方程的解为x=3,14.【答案】14【考点】加权平均数【解析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.【解答】根据题意得:(13×4+14×7+15×4)÷15=14(岁),15.【答案】80∘【考点】圆周角定理切线的性质【解析】根据BC是圆的切线,可得∠ABC=90∘,再求得∠A,由圆周角定理可得∠BOD=2∠A,即可求得答案.【解答】解:∵BC是圆的切线,∴∠ABC=90∘,∵∠ACB=50∘,∴∠A=90∘−∠ACB=90∘−50∘=40∘,由圆周角定理可得:∠BOD=2∠A=2×40∘=80∘.故答案为:80∘.16.【答案】3【考点】扇形面积的计算圆锥的计算【解析】由于圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式得到12×2π×r ×7=21π,然后解方程即可.【解答】解:根据题意得12×2π×r ×7=21π,即得r =3,所以圆锥的底面圆半径r 为3cm .故答案为:3.17.【答案】13【考点】由实际问题抽象出一元二次方程【解析】设参加会议有x 人,每个人都与其他(x −1)人握手,共握手次数为12x(x −1),根据题意列方程.【解答】解:设参加交易会有x 家公司,依题意得:12x(x −1)=78,整理得:x 2−x −156=0,解得x 1=13,x 2=−12,(舍去).故答案为:13.18.【答案】3【考点】矩形的性质翻折变换(折叠问题)【解析】由折叠可知,∠CBD =∠EBD ,再由AD//BC ,得到∠CBD =∠EDB ,即可得到∠EBD =∠EDB ,于是得到BE =DE ,设DE =x ,则BE =x ,AE =8−x ,在Rt △ABE 中,由勾股定理求出x 的值,即可求解;【解答】由折叠可知,∠CBD =∠EBD ,∵AD//BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴BE =DE ,∵AD =BC′,∴AE =EC′.设DE =x ,则BE =x ,AE =8−x ,在Rt △ABE 中,由勾股定理得:AB 2+AE 2=BE 2即42+(8−x)2=x 2,解得:x =5,∴DE =5.∴AE =3,三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 )19.【答案】原式=2√2+9−(√2−1)−2×√22=2√2+9−√2+1−√2=10.【考点】特殊角的三角函数值负整数指数幂实数的运算【解析】直接利用特殊角的三角函数值以及负整数指数幂的性质、绝对值的性质、二次根式的性质分别化简得出答案.【解答】原式=2√2+9−(√2−1)−2×√22=2√2+9−√2+1−√2=10.20.【答案】2+4a+4−(a2−1)解:原式=a=a2+4a+4−a2+1=4a+5.当a=−12时,原式=4×(−12)+5=3.【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】2+4a+4−(a2−1)解:原式=a=a2+4a+4−a2+1=4a+5.当a=−12时,原式=4×(−12)+5=3.21.【答案】证明:(1)∵AD//BC,∠ABC=90∘,∴∠BAD=90∘,∴∠ABD+∠ADB=90∘.∵AE⊥BD,∴∠AEB=90∘,∴∠ABD+∠BAE=90∘,∴∠ADB=∠BAE.∵∠ADB=∠DBC,∴∠BAE=∠DBC.∵EF⊥CE,∴∠FEC=90∘,∴∠AEF=∠BEC,∴△AEF∽△BEC.(2)∵△AEF∽△BEC,∴AFBC=AEBE,∵∠AEB=∠BAD,∠ABE=∠DBA,∴△ABE∽△DBA,∴AEDA=BEBA,∴AEBE=ADAB,∴AFBC=ADAB.∵AB=BC,∴AF=AD.【考点】相似三角形的判定与性质【解析】此题暂无解析【解答】证明:(1)∵AD//BC,∠ABC=90∘,∴∠BAD=90∘,∴∠ABD+∠ADB=90∘.∵AE⊥BD,∴∠AEB=90∘,∴∠ABD+∠BAE=90∘,∴∠ADB=∠BAE.∵∠ADB=∠DBC,∴∠BAE=∠DBC.∵EF⊥CE,∴∠FEC=90∘,∴∠AEF=∠BEC,∴△AEF∽△BEC.(2)∵△AEF∽△BEC,∴AFBC=AEBE,∵∠AEB=∠BAD,∠ABE=∠DBA,∴△ABE∽△DBA,∴AEDA=BEBA,∴AEBE=ADAB,∴AFBC=ADAB.∵AB=BC,∴AF=AD.22.【答案】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:{50x+25y=4500,y=x+30,解得:{x=50,y=80.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50−m)个,依题意得:{(50+4)m+80×0.9(50−m)≤4500×70%,50−m≥23,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.【考点】二元一次方程组的应用——销售问题一元一次不等式组的应用【解析】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B种足球(50−m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论.【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:{50x+25y=4500,y=x+30,解得:{x=50,y=80.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50−m)个,依题意得:{(50+4)m+80×0.9(50−m)≤4500×70%,50−m≥23,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.23.【答案】10,90(2)10+240×360=108(人);则该校九年级女生“一分钟仰卧起坐”成绩为优秀的人数约108人.(3)如图:共有20种等可能情况,其中第①小组和第⑤小组都有1个女生被选中的有12种,概率为1220=35.【考点】频数(率)分布表扇形统计图用样本估计总体列表法与树状图法【解析】(1)根据第②组的人数和所占百分比求出总人数,即可求出m的值以及所占圆心角的度数;(2)用百分比乘以总人数,即可解答;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第相关事件的情况,再利用概率公式即可求得答案.【解答】解:(1)总人数为:15÷37.5%=40(人),则m=40−3−15−10−2=10,第③小组对应的扇形的圆心角度数为:1040×360∘=90∘.故答案为:10;90.(2)10+240×360=108(人);则该校九年级女生“一分钟仰卧起坐”成绩为优秀的人数约108人.(3)如图:共有20种等可能情况,其中第①小组和第⑤小组都有1个女生被选中的有12种,概率为1220=35. 24.【答案】解:在Rt△ACF中,∵∠ACF=60∘,AC=7(m),∴AF=AC⋅tan60∘=7√3(m).∵BC=8(m),∴AB=15(m).在Rt△ABE中,∵∠B=30∘,∴AE=AB⋅tan30∘=15×√33=5√3(m),∴EF=AF−AE=7√3−5√3=2√3(m).答:信号塔EF的高度为2√3m.【考点】解直角三角形的应用-仰角俯角问题【解析】在Rt△ACF中,根据三角函数的定义得到AF=AC⋅tan60∘=7√3米,在Rt△ABE中,根据三角函数的√33=5√3米,于是得到结论.定义得到AE=AB⋅tan30∘=15×【解答】解:在Rt△ACF中,∵∠ACF=60∘,AC=7(m),∴AF=AC⋅tan60∘=7√3(m).∵BC=8(m),∴AB=15(m).在Rt△ABE中,∵∠B=30∘,∴AE=AB⋅tan30∘=15×√33=5√3(m),∴EF=AF−AE=7√3−5√3=2√3(m).答:信号塔EF的高度为2√3m.25.【答案】(1)解:△ABC绕点C顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30∘,∠DEC=∠ABC=90∘,∴∠CAD=∠CDA=12(180∘−30∘)=75∘,∴∠ADE=90∘−∠CAD=15∘.(2)①证明:∵∠ABC=90∘,∠ACB=30∘,∴AB=12AC,且∠A=60∘,∵点F是边AC中点,∴AB=CF.∵△ABC绕点A顺时针旋转60∘得到△DEC,∴∠ACD=60∘=∠A,AC=CD,∴△CFD≅△ABC.②解:∵BC=5√3,∴DE=AB=BCtan∠ACB=5√3×√33=5.故答案为:5.【考点】旋转的性质三角形内角和定理全等三角形的判定锐角三角函数的定义【解析】(1)根据旋转的性质可得CA=CD2ECD=∠BCA=30∘∠DEC=∠ABC=90∘,根据等边对等角即可求出.∠CAD=∠CD4=75∘,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BF=12AC,然后根据30∘所对的直角边是斜边的一半即可求出AB=12AC,从而得出BF=AB,然后证出△ACD和△BCE为等边三角形,再利用HL证出△CFD=△ABC,证出DF=BE,即可证出结论.【解答】(1)解:△ABC 绕点C 顺时针旋转α得到△DEC ,点E 恰好在AC 上,∴CA =CD ,∠ECD =∠BCA =30∘,∠DEC =∠ABC =90∘,∴∠CAD =∠CDA =12(180∘−30∘)=75∘,∴∠ADE =90∘−∠CAD =15∘.(2)①证明:∵∠ABC =90∘,∠ACB =30∘,∴AB =12AC ,且∠A =60∘,∵点F 是边AC 中点,∴AB =CF .∵△ABC 绕点A 顺时针旋转60∘ 得到△DEC ,∴∠ACD =60∘=∠A ,AC =CD ,∴△CFD ≅△ABC.②解:∵BC =5√3,∴DE =AB =BCtan ∠ACB =5√3×√33=5.故答案为:5.26.【答案】解:(1)∵点B(4,m)在直线y =x +1上,∴m =4+1=5.∴B(4,5).把A 、B 、C 三点坐标代入抛物线解析式可得{a −b +c =016a +4b +c =525a +5b +c =0 ,解得{a =−1b =4c =5 ,∴抛物线解析式为y =−x 2+4x +5.(2)①设P(x,−x 2+4x +5),则E(x,x +1),D(x,0),则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|,∵PE =2ED ,∴|−x 2+3x +4|=2|x +1|.当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去,∴P(2,9).当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去,∴P(6,−7).综上可知P 点坐标为(2,9)或(6,−7).【考点】二次函数综合题【解析】由直线解析式可求得B 点坐标,由A 、B 、C 三点的坐标,利用待定系数法可求得抛物线解析式.(2)①设P(x,−x 2+4x +5),则E(x,x +1),D(x,0),则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|,∵PE =2ED ,∴|−x 2+3x +4|=2|x +1|.当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去,∴P(2,9).当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去,∴P(6,−7).综上可知P 点坐标为(2,9)或(6,−7).【解答】解:(1)∵点B(4,m)在直线y =x +1上,∴m =4+1=5.∴B(4,5).把A 、B 、C 三点坐标代入抛物线解析式可得{a −b +c =016a +4b +c =525a +5b +c =0 ,解得{a =−1b =4c =5 ,∴抛物线解析式为y =−x 2+4x +5.(2)①设P(x,−x 2+4x +5),则E(x,x +1),D(x,0),则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|,∵PE =2ED ,∴|−x 2+3x +4|=2|x +1|.当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去,∴P(2,9).当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去,∴P(6,−7).综上可知P 点坐标为(2,9)或(6,−7).。

湖南邵阳市中考数学真题试卷(解析版)

湖南邵阳市中考数学真题试卷(解析版)

湖南邵阳市中考数学真题试卷(解析版)一、选择题(本大题有8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的) 1.-(-2)=A .-2B .2C .±2D .4【解题思路】:运用相反数定义 【答案】:B【点评】:这里考察了相反数的定义,首先要明确是求哪个数的相反数,一个数前面有负号表示什么意思。

难度较小2.如果□×3ab =3a 2b ,则□内应填的代数式是A .abB .3abC .aD .3a【解题思路】:运用因数因数积之间的关系变形abba 332约分即可。

【答案】:C【点评】:本题考察了约分(同底数幂的性质);思路2:把四个选项分别代入运用同底数幂的乘法运算验证。

难度较小 3.下列图形不是轴对称...图形的是A B C D【解题思路】:轴对称图形是把图形沿某直线折叠,易于中心对称图形相混淆,只注重了对称。

【答案】:C【点评】:本题考察了轴对称图形和中心对称图形的区别。

难度较小4.图(一)是某农户2010年收入情况的扇形统计图,已知他2010年的总收入为5万元,则他的打工收入是 A .0.75万元 B .1.25万元 C .1.75万元 D .2万元粮食作物收入40% 经济作 物收入 35%打工收入 25%图(一)【解题思路】:该项收入所占的百分比总收入=⨯ 【答案】:B【点评】:该项收入所占的百分比总收入=⨯,难度较小5.已知点(1,1)在反比例函数y =k x(k 为常数,k ≠0)的图象上,则这个反比例函数的大致图象是AB C D【解题思路】:点(1,1)在反比例函数y =k x(k 为常数,k ≠0)的图象上,把点(1,1)代入y=k x可以求出k=1,所以双曲线在一、三象限。

【答案】:C 【点评】:本题考察了点在图像上,点的坐标与解析式之间的关系;以及反比例函数的性质。

难度较小6.地球上水的总储量为 1.39×1018m 3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018m 3,因此我们要节约用水.请将0.0107×16218181007.1101007.1100107.0⨯=⨯⨯=⨯-1018m 3用科学记数法表示是A .1.07×1016m3B .0.107×1017m3C .10.7×1015m 3D .1.07×1017m3【解题思路】:解题时注意是哪个数据,16218181007.1101007.1100107.0⨯=⨯⨯=⨯-【答案】:A .【点评】:用ma 10⨯表示的数称为科学计数法,这里100<<a .如果所给的数据小于1,10的指数是负数,如果所给的数据大于10,10的指数是正数;然后结合幂的性质计算即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年湖南省邵阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)25的算术平方根是()A.5 B.±5 C.﹣5 D.252.(3分)如图所示,已知AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠43.(3分)3﹣π的绝对值是()A.3﹣πB.π﹣3 C.3 D.π4.(3分)下列立体图形中,主视图是圆的是()A.B.C.D.5.(3分)函数y=中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.6.(3分)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()A.120°B.100°C.80°D.60°7.(3分)如图所示,边长为a的正方形中阴影部分的面积为()A.a2﹣π()2B.a2﹣πa2C.a2﹣πa D.a2﹣2πa8.(3分)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%9.(3分)如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.千米B.2千米C.15千米 D.37千米10.(3分)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)将多项式mn2+2mn+m因式分解的结果是.12.(3分)2016年,我国又有1240万人告别贫困,为世界脱贫工作作出了卓越贡献,将1240万用科学记数法表示为a×10n的形式,则a的值为.13.(3分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)14.(3分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为.15.(3分)如图所示的正六边形ABCDEF,连结FD,则∠FDC的大小为.16.(3分)如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为.17.(3分)掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.18.(3分)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是km.三、解答题(本大题共8小题,共66分)19.(8分)计算:4sin60°﹣()﹣1﹣.20.(8分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.21.(8分)先化简,再在﹣3,﹣1,0,,2中选择一个合适的x值代入求值.•.22.(8分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.23.(8分)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.24.(8分)如图所示,直线DP和圆O相切于点C,交直线AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.25.(8分)如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,=,求的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O是AC上任意一点(不与A,C重合),求证:••=1;【拓展应用】(3)如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若=,=,求的值.26.(10分)如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y=(k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.2017年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•邵阳)25的算术平方根是()A.5 B.±5 C.﹣5 D.25【考点】22:算术平方根.【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,∴25的算术平方根是5.故选:A.【点评】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.2.(3分)(2017•邵阳)如图所示,已知AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4【考点】JA:平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠4,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.(3分)(2017•邵阳)3﹣π的绝对值是()A.3﹣πB.π﹣3 C.3 D.π【考点】28:实数的性质;15:绝对值.【分析】直接利用绝对值的定义分析得出答案.【解答】解:∵3﹣π<0,∴|3﹣π|=π﹣3.故选B.【点评】此题主要考查了绝对值,正确把握定义是解题关键.4.(3分)(2017•邵阳)下列立体图形中,主视图是圆的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、的主视图是圆,故A符合题意;B、的主视图是矩形,故B不符合题意;C、的主视图是三角形,故C不符合题意;D、的主视图是正方形,故D不符合题意;故选:A.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.5.(3分)(2017•邵阳)函数y=中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;E4:函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解,然后在数轴上表示即可.【解答】解:由题意得,x﹣5≥0,解得x≥5.在数轴上表示如下:故选B.【点评】本题考查了函数自变量的范围及在数轴上表示不等式的解集,解题的关键是从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2017•邵阳)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()A.120°B.100°C.80°D.60°【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补解答.【解答】解:∵铺设的是平行管道,∴另一侧的角度为180°﹣120°=60°(两直线平行,同旁内角互补).故选D.【点评】本题考查了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.7.(3分)(2017•邵阳)如图所示,边长为a的正方形中阴影部分的面积为()A.a2﹣π()2B.a2﹣πa2C.a2﹣πa D.a2﹣2πa【考点】32:列代数式.【分析】根据图形可知阴影部分的面积是正方形的面积减去直径为a的圆的面积,本题得以解决.【解答】解:由图可得,阴影部分的面积为:a2﹣,故选A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.(3分)(2017•邵阳)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【考点】VB:扇形统计图.【分析】根据百分比和圆心角的计算方法计算即可.【解答】解:认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1﹣27%﹣65%=8%,故C正确;认为该扶的占65%,故D错误;故选D.【点评】本题考查了扇形统计图,掌握百分比和圆心角的计算方法是解题的关键.9.(3分)(2017•邵阳)如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.千米B.2千米C.15千米 D.37千米【考点】E6:函数的图象.【分析】小徐第一个到达的地方应是菜地,也应是第一次路程不再增加的开始,所对应的时间为15分,路程为千米.【解答】解:由图象可以看出菜地离小徐家千米,故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题关键.10.(3分)(2017•邵阳)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P 飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)【考点】D3:坐标确定位置.【分析】由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,据此可得.【解答】解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),【点评】本题考查了坐标确定位置,熟练掌握在平面直角坐标系确定点的坐标是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017•邵阳)将多项式mn2+2mn+m因式分解的结果是m(n+1)2.【考点】55:提公因式法与公式法的综合运用.【分析】根据提公因式法、公式法,可得答案.【解答】解:原式=m(n2+2n+1)=m(n+1)2,故答案为:m(n+1)2.【点评】本题考查了因式分解,利用提公因式、完全平方公式是解题关键.12.(3分)(2017•邵阳)2016年,我国又有1240万人告别贫困,为世界脱贫工作作出了卓越贡献,将1240万用科学记数法表示为a×10n的形式,则a的值为.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1240万有8位,所以可以确定n=8﹣1=7.【解答】解:1240万=×107,故a=.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.(3分)(2017•邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是﹣1 .(写一个即可)【考点】H3:二次函数的性质.【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.【点评】本题考查了二次函数的性质,是基础题,需熟记.14.(3分)(2017•邵阳)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为 1 .【考点】7B:二次根式的应用.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.15.(3分)(2017•邵阳)如图所示的正六边形ABCDEF,连结FD,则∠FDC的大小为90°.【考点】L3:多边形内角与外角.【分析】首先求得正六边形的内角的度数,根据等腰三角形的性质即可得到结论.【解答】解:∵在正六边形ABCDEF中,∠E=∠EDC=120°,∵EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°【点评】此题考查了正多边形和圆.等腰三角形的性质,此题难度不大,注意数形结合思想的应用.16.(3分)(2017•邵阳)如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为20°.【考点】N2:作图—基本作图.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.17.(3分)(2017•邵阳)掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.【考点】X6:列表法与树状图法.【专题】11 :计算题.【分析】画树状图展示所有4种等可能的结果数,再找出掷一枚硬币两次,至少有一次出现正面的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中掷一枚硬币两次,至少有一次出现正面的结果数为3,所以掷一枚硬币两次,至少有一次出现正面的概率=.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.(3分)(2017•邵阳)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n 秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是(20﹣20)km.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】分别在Rt△ALR,Rt△BLR中,求出AL、BL即可解决问题.【解答】解:在Rt△ARL中,∵LR=AR•cos30°=40×=20(km),AL=AR•sin30°=20(km),在Rt△BLR中,∵∠BRL=45°,∴RL=LB=20,∴AB=LB﹣AL=(20﹣20)km,故答案为(20﹣20)km.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.三、解答题(本大题共8小题,共66分)19.(8分)(2017•邵阳)计算:4sin60°﹣()﹣1﹣.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】依据特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质进行解答即可.【解答】解:原式=4×﹣2﹣2=2﹣2﹣2=﹣2.【点评】本题主要考查的是实数的运算,熟练掌握特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质是解题的关键.20.(8分)(2017•邵阳)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.【考点】LF:正方形的判定;L5:平行四边形的性质;LD:矩形的判定与性质.【专题】14 :证明题.【分析】(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;(2)根据正方形的判定方法添加即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;(2)解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.【点评】本题考查了正方形的判断,平行四边形的性质,矩形的判定,熟练掌握特殊四边形的判定方法与性质是解题的关键.21.(8分)(2017•邵阳)先化简,再在﹣3,﹣1,0,,2中选择一个合适的x值代入求值.•.【考点】6D:分式的化简求值.【分析】根据分式的乘法和加法可以化简题目中的式子,然后在﹣3,﹣1,0,,2中选择一个使得原分式有意义的x的值代入即可解答本题.【解答】解:•=====x,当x=﹣1时,原式=﹣1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.22.(8分)(2017•邵阳)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.【考点】VC:条形统计图;V5:用样本估计总体;VD:折线统计图;W2:加权平均数;W4:中位数.【分析】(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.【解答】解:(1)这7天内小申家每天用水量的平均数为=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)×100%=%,答:第3天小申家洗衣服的水占这一天总用水量的百分比为%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.【点评】此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.23.(8分)(2017•邵阳)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)根据题意结合每辆大客车的乘客座位数比小客车多17个以及师生共300人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为300+30,进而得出不等式求出答案.【解答】解:(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y 个,根据题意可得:,解得:,答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则18a+35(11﹣a)≥300+30,解得:a≤3,符合条件的a最大整数为3,答:租用小客车数量的最大值为3.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.24.(8分)(2017•邵阳)如图所示,直线DP和圆O相切于点C,交直线AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.【考点】MC:切线的性质;L5:平行四边形的性质.【分析】(1)欲证明DA=DC,只要证明Rt△DAO≌△Rt△DCO即可;(2)想办法证明∠P=30°即可解决问题;【解答】(1)证明:在平行四边形ABCD中,AD∥BC,∵CB⊥AE,∴AD⊥AE,∴∠DAO=90°,∵DP与⊙O相切于点C,∴DC⊥OC,∴∠DCO=90°,在Rt△DAO和Rt△DCO中,,∴Rt△DAO≌△Rt△DCO,∴DA=DC.(2)∵CB⊥AE,AE是直径,∴CF=FB=BC,∵四边形ABCD是平行四边形,∴AD=BC,∴CF=AD,∵CF∥DA,∴△PCF∽△PDA,∴==,∴PC=PD,DC=PD,∵DA=DC,∴DA=PD,在Rt△DAP中,∠P=30°,∵DP∥AB,∴∠FAB=∠P=30°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠AEB=60°.【点评】本题考查切线的性质、平行四边形的性质、相似三角形的判定和性质、直角三角形中30度角的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.25.(8分)(2017•邵阳)如图1所示,在△ABC中,点O是AC上一点,过点O 的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,=,求的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O是AC上任意一点(不与A,C重合),求证:••=1;【拓展应用】(3)如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若=,=,求的值.【考点】SO:相似形综合题.【分析】(1)作AG∥MN交BN延长线于点G,证△ABG∽△MBN得=,即=,同理由△ACG∽△OCN得=,结合AO=CO得NG=CN,从而由==可得答案;(2)由=、=知••=••=1;(3)由(2)知,在△ABD中有••=1、在△ACD中有••=1,从而••=••,据此知=••=•=.【解答】解:(1)过点A作AG∥MN交BN延长线于点G,∴∠G=∠BNM,又∠B=∠B,∴△ABG∽△MBN,∴=,∴﹣1=﹣1,∴=,即=,同理,在△ACG和△OCN中,=,∴=,∵O为AC中点,∴AO=CO,∴NG=CN,∴===;(2)由(1)知,=、=,∴••=••=1;(3)在△ABD中,点P是AD上的一点,过点P的直线与AC、BD的延长线相交于点C,由(2)得••=1,在△ACD中,点P是AD上一点,过点P是AD上一点,过点P的直线与AC、AD 的延长线分别相交于点E、B,由(2)得••=1,∴••=••,∴=••=•=×=.【点评】本题主要考查相似三角形的综合问题,熟练掌握相似三角形的判定与性质及比例式的基本性质是解题的关键.26.(10分)(2017•邵阳)如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y=(k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.【考点】HF:二次函数综合题.【分析】(1)设抛物线方程为顶点式y=a(x﹣)2﹣,将点M的坐标代入求a 的值即可;(2)设直线y=x+1与y轴交于点G,易求G(0,1).则直角△AOG是等腰直角三角形∠AGO=45°.点C是直线y=x+1上一点(处于x轴下方),而k>0,所以反比例函数y=(k>0)图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,②此菱形以AB为对角线,利用点的坐标与图形的性质,勾股定理,菱形的性质和反比例函数图象上点的坐标特征求得k的值即可.【解答】解:(1)依题意可设抛物线方程为顶点式y=a(x﹣)2﹣(a≠0),将点M(2,0)代入可得:a(2﹣)2﹣=0,解得a=1.故抛物线的解析式为:y=(x﹣)2﹣;(2)由(1)知,抛物线的解析式为:y=(x﹣)2﹣.则对称轴为x=,∴点A与点M(2,0)关于直线x=对称,∴A(1,0).令x=0,则y=﹣2,∴B(0,﹣2).在直角△OAB中,OA=1,OB=2,则AB=.设直线y=x+1与y轴交于点G,易求G(0,1).∴直角△AOG是等腰直角三角形,∴∠AGO=45°.∵点C是直线y=x+1上一点(处于x轴下方),而k>0,所以反比例函数y=(k >0)图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,如图1所示,过点D作DN⊥y轴于点N,在直角△BDN中,∵∠DBN=∠AGO=45°,∴DN=BN==,∴D(﹣,﹣﹣2),∵点D在反比例函数y=(k>0)图象上,∴k=﹣×(﹣﹣2)=+;②此菱形以AB为对角线,如图2,作AB的垂直平分线CD交直线y=x+1于点C,交反比例函数y=(k>0)的图象于点D.再分别过点D、B作DE⊥x轴于点F,BE⊥y轴,DE与BE相较于点E.在直角△BDE中,同①可证∠AGO=∠DBO=∠BDE=45°,∴BE=DE.可设点D的坐标为(x,x﹣2).∵BE2+DE2=BD2,∴BD=BE=x.∵四边形ABCD是菱形,∴AD=BD=x.∴在直角△ADF中,AD2=AF2+DF2,即(x)=(x+1)2+(x﹣2)2,解得x=,∴点D的坐标是(,).∵点D在反比例函数y=(k>0)图象上,∴k=×=,综上所述,k的值是+或.【点评】本题考查了二次函数综合题,需要掌握待定系数法求二次函数解析式,勾股定理,菱形的性质,反比例函数图象上点的坐标特征等知识点.解答(2)题时要分类讨论,以防漏解.。

相关文档
最新文档