轧制过程对钢材性能的影响
热轧工艺对冷轧板连退组织和性能的影响
· 42 ·
内燃机与配件
热轧工艺对冷轧板连退组织和性能的影响
韩刚曰高社勇曰苗素静
(邯郸市金泰包装材料有限公司,邯郸 056700)
摘要院本文选取影响冷轧板组织以及性能的一个主要因素-热轧工艺,主要介绍热轧工艺对于冷轧板组织性能的影响。本文首先 介绍热轧工艺的含义,其次介绍了冷轧板的历史演进过程、冷轧板的指标介绍,以及其他影响冷轧板性能的因素,重点介绍了热轧工
3.3 热轧工艺中的终轧温度对于冷轧板组织、性能的 影响
热轧工艺中的终轧温度也会对冷轧板的组织以及性 能产生影响。在终轧温度较高时,观察冷轧板的显微结构, 可以发现这时冷轧板的显微结构比较整齐、均匀;如果终 轧温度较低,会观察到冷轧板的结构变得无序、混乱。
随着热轧工艺中终轧温度的升高,冷轧板的深冲性能 可以得到进一步提升。另外,在终轧过程中,氮化铝逐步析 聚,可以形成稳定性更强的织构,使得冷轧板的深冲性能 得到进一步地提升。
艺对于冷轧板连退组织和性能的影响,在文章最后,论述了此研究的意义。意在通过这篇文章,真正认识、熟悉热轧工艺的操作步骤对
于冷轧板组织性能的影响,为当前冷轧板的制造方法提供一些参考,同时,此研究可以进一步优化冷轧板的制造流程、节约制造成本。
关键词院热轧工艺;冷轧板;组织性能影响因素
中图分类号院TG142.1
文献标识码院A
文章编号院1674-957X(2021)14-0042-02
0 引言 冷轧板组织以及性能状况的影响因素有多种,制造过 程中任何细微的差异,都可能导致冷轧板的组织以及性能 发生变化。热轧工艺是影响冷轧板组织性能的重要因素之 一,热轧工艺是指在温度到达结晶温度之上时再进行钢板 的轧制,主要包括两种形式,分别是铁模铸造式热轧工艺 以及半连续式热轧工艺,这两种热轧方式,各自均有着各自 的优点与不足。本文将着重介绍热轧工艺对于冷轧板组织 性能的影响,具体分析热轧工艺流程中的各个要素以及各 种操作流程对于冷轧板连退组织以及冷轧板性能的影响。 1 当前炼钢工艺中热轧线操作步骤简述 热轧工艺是指在温度到达结晶温度值之上时,在高温 条件下,对钢板进行轧制。热轧线主要包括板坯保温、高压 水去磷、粗轧、精轧、卷取等步骤。在轧制钢材时,首先,要 将铸坯放置入加热炉中进行加热、升温;钢铁放置入加热 炉中,高温环境会使得钢材被氧化,钢材表面会形成磷皮, 这会影响钢材的质量,影响钢材的光滑度。可以采取高压 水去磷这一方式去除钢材表面的磷皮,根据钢材的材质、 磷皮的情况,来选取适当的水量以及调整压力的大小,然 后利用变频器来调节水量以及压力大小,有针对性地去除 铸坯表面覆盖的磷皮,进一步提升铸坯质量,提高工作效 果;其次,在对铸坯进行初步处理后,开始进行粗轧,也就 是将铸坯进行预轧薄,有利于精炼的板形控制并轧至目标 厚度;制作完成后,进行进一步地精轧,将粗轧坯进一步轧 制至目标厚度。在流程的最后,需要运用卷取机将精轧后 的钢材卷曲成卷筒的形状。 1.1 热轧工艺介绍 热轧工艺是指在温度到达结晶温度之上时再进行钢 板的轧制。热轧工艺主要有两种方式,分别是铁模铸造式 热轧工艺,这种热轧方式操作比较简便,不用过多地进行 投资,使用的设备较少,生产过程以及生产时间都比较灵 活。但是,这种热轧方式工作环境较差,工人劳动时间太 长、工人的工作强度太大,并且这种热轧方式最后得到的 优良的最终产品较少、成品率太低、产品质量较差。 另一种热轧工艺是半连续铸造式热轧工艺,这种方式 是当前制钢工厂中最常使用的热轧方式,运用半连续的方 法来进行钢板的生产,多次进行轧制,得到最终产品。这种 要要要要要要要要要要要要要要要要要要要要要要要
轧制缺陷对圆钢热顶锻性能的影响与辩识_高志新
孔型磨损不均而导致坯料在孔型内变形不均造成 褶皱缺陷 , 严重时会形成褶皱形折叠 。由于上述 缺陷引起的热顶锻开裂仅在钢材的 1 条或对称的 2 条纵带上分布 , 所以将其归属为簇带状开裂 。 根据其产生原因 , 将其分为辊痕型簇带状开裂和 褶皱型簇带状开裂 , 其形貌特征如表 2 、图 2 所 示。
Abstract : Influence of rolled defect s on performance of hot up set forging of ro und steel were discussed. The crack causes and appearance feat ures during hot up set forging of round steel were analyzed and cont rasted , which is caused by different rolled defect s , such as folding , roller marks and wrinkle , and t he crack can be easily identified. Key words : ro und steel ; rolled defect ; performance of hot up set fo rging ; crack appearance
一般是坯料在粗轧机上轧制时 , 由于咬入不正 、轧制温度过低 等原因 , 轧件形成台阶或翻钢 , 再轧制后形成折叠 。
单一锯齿 或褶皱型 开裂
平行线型 开裂
①开裂较长 , 表现为一条沿试样长பைடு நூலகம்方向贯通一 端或两端的裂缝 , 开裂深度一般为 015~2mm。 ② 裂纹与试样表面一般有很大交角 , 截面呈 ∠型 , 一侧一般呈锯齿形或褶皱形。 ③裂纹底部有细小 氧化铁皮夹杂物 , 无继续深入基体的趋势。
钢铁热轧工艺流程和各个环节的作用
钢铁热轧工艺流程和各个环节的作用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、工艺流程概述。
钢铁热轧是将钢坯加热至适当温度后,在轧机上通过一系列操作加工成所需厚度和形状的工艺过程。
钢材的生产工艺
钢材的生产工艺
钢材的生产工艺主要分为三个步骤:原料处理、炼钢和轧制。
1. 原料处理:主要包括铁矿石的矿区开采和破碎、原材料的装载和运输、原材料的预处理等环节。
矿物矿石经过选矿和破碎后,还需进行熔炼和炉料制备,以保证炼钢过程中原材料的稳定性和均匀性。
2. 炼钢:炼钢是将铁矿石和其他合金元素熔炼、精炼、去除杂质以及调整成分等处理过程。
通过高温熔融、氧化还原、物理化学反应等手段,保证铁和其他元素杂质依次分离,最终得到纯铁或钢水。
3. 轧制:轧制是钢材在高温条件下经过一系列机械加工,以获得所需的形状和尺寸。
这个过程包括热轧、冷轧、拉伸和加工等环节。
不同的轧制过程会对钢材的性能、成形性、表面质量和尺寸精度等方面产生影响。
影响钢材力学性能的因素2
2.3影响钢材力学性能的因素影响钢材力学性能的因素有:化学成分冶金和轧制过程时效冷作硬化温度应力集中和残余应力复杂应力状态1.化学成分钢的基本元素为铁(Fe),普通碳素钢中占99%,此外还有碳(C)、硅(Si)、锰(Mn)等杂质元素,及硫(S)、磷(P)、氧(O)、氮(N)等有害元素,这些总含量约1%,但对钢材力学性能却有很大影响。
碳:除铁以外最主要的元素。
碳含量增加,使钢材强度提高,塑性、韧性,特别是低温冲击韧性下降,同时耐腐蚀性、疲劳强度和冷弯性能也显著下降,恶化钢材可焊性,增加低温脆断的危险性。
一般建筑用钢要求含碳量在0.22%以下,焊接结构中应限制在0.20%以下。
硅:作为脱氧剂加入普通碳素钢。
适量硅可提高钢材的强度,而对塑性、冲击韧性、冷弯性能及可焊性无显著的不良影响。
一般镇静钢的含硅量为0.10%~0.30%,含量过高(达1%),会降低钢材塑性、冲击韧性、抗锈性和可焊性。
锰:是一种弱脱氧剂。
适量的锰可有效提高钢材强度,消除硫、氧对钢材的热脆影响,改善钢材热加工性能,并改善钢材的冷脆倾向,同时不显著降低钢材的塑性、冲击韧性。
普通碳素钢中锰的含量约为0.3%~0.8%。
含量过高(达1.0%~1.5%以上)使钢材变脆变硬,并降低钢材的抗锈性和可焊性。
硫:有害元素。
引起钢材热脆,降低钢材的塑性、冲击韧性、疲劳强度和抗锈性等。
一般建筑用钢含硫量要求不超过0.055%,在焊接结构中应不超过0.050%。
磷:有害元素。
虽可提高强度、抗锈性,但严重降低塑性、冲击韧性、冷弯性能和可焊性,尤其低温时发生冷脆,含量需严格控制,一般不超过0.050%,焊接结构中不超过0.045%。
氧:有害元素。
引起热脆。
一般要求含量小于0.05%。
氮:能使钢材强化,但显著降低钢材塑性、韧性、可焊性和冷弯性能,增加时效倾向和冷脆性。
一般要求含量小于0.008%。
为改善钢材力学性能,可适量增加锰、硅含量,还可掺入一定数量的铬、镍、铜、钒、钛、铌等合金元素,炼成合金钢。
论述冷轧和热轧时金属组织的变化及它对金属性能的影响
论述冷轧和热轧时金属组织的变化及它对金属性能的影响王笑洋摘要:冷轧和热轧使同一种金属的组织发生了不同的变化从而金属的性能也发生了很大的差异,冷轧是在再结晶温度以下进行的轧制,而热轧是在再结晶温度以上进行的轧制。
本文阐述了冷轧和热轧时金属显微组织的变化与冷轧和热轧对金属性能的影响。
冷轧时随着变形程度的增加出现亚结构、变形织构等,金属的强度、硬度增加,而塑性和韧性相应下降即产生了加工硬化。
热轧时金属内部缺陷被压合、金属内部夹杂物分布被改善、偏析被改善,使金属的致密度提高、力学性能提高、综合机械性能提高。
关键词:冷轧热轧组织性能前言我国钢铁企业要在竞争激烈的国际市场上与世界钢铁企业强国进行竞争并取得竞争优势,实现钢铁强国的目标,必须促进科技进步,提升企业技术装备和工艺水平。
随着科学技术的发展,轧钢生产过程中质量已经不仅仅局限于产品外型和尺寸精确的控制,而是追求对产品内部微观组织和最终性能的更为精确的把握。
冷轧和热轧使同一种金属的组织发生了不同的变化从而金属的性能也发生了很大的差异。
冷轧是变形温度低于金属再结晶温度的变形。
由于变形温度低、金属内部的组织结构发生很大的变化、晶粒随着变形量的增加沿变形方向被拉长、当变形程度很大时晶粒变为纤维状、使金属性能呈现方向性。
热轧是在再结晶温度以上进行的塑性变形。
热轧时在金属中同时进行着两个过程:一方面由于塑性变形而产生加工硬化,另一方面由于热轧的温度大大高于再结晶温度因此变形所引起的硬化又很快为随之产生的再结晶过程所消除。
本文从冷、热轧制工艺的角度出发,来研究冷、热轧制工艺与金属的组织以及性能之间的关系。
1冷轧时金属组织的变化及它对金属性能的影响1.1冷轧时金属显微组织的变化1.1.1纤维组织显微组织的变化,多晶体金属经冷却变形后,用光学显微镜观察抛光与浸蚀后的试样,会发现原来等轴的晶粒沿着主变形的方向被拉长。
变形量越大,拉长的越显著。
当变形量很大时,各个晶粒已不能很清楚地辨别开来,呈现纤维状,故称纤维组织。
轧钢工艺流程简介
轧钢工艺流程简介轧钢工艺流程是将钢坯经过一系列的加工步骤,通过不断的压制和拉伸,最终得到所需形状和尺寸的金属板材的过程。
轧钢工艺流程在钢铁行业中具有重要的地位,对于钢材的品质和性能有着直接的影响。
1. 钢坯准备阶段在轧钢工艺流程中,首先需要对钢坯进行准备。
钢坯是通过炼钢过程中的连铸机连续浇铸而成的,其形状和尺寸不一。
在轧钢工艺中,首先需要对钢坯进行切割和去除表面的氧化层,以确保后续加工的顺利进行。
2. 加热阶段钢坯在进行轧制之前需要进行加热处理,以提高其可塑性和延展性。
加热的温度通常根据钢材的成分和要求的性能来确定。
加热的方式可以采用火焰加热或电加热,以使钢坯达到所需温度。
3. 粗轧阶段粗轧是轧钢工艺流程中的第一步,其目的是将加热后的钢坯进行初步的压制和拉伸,使其形成较薄的钢板。
这一阶段中,通常使用辊道机组进行轧制,通过辊道的旋转和压制,将钢坯逐渐变形成所需的形状和尺寸。
4. 中轧阶段中轧是对粗轧后的钢板进行进一步的压制和拉伸,以得到更加细薄的钢板。
在中轧阶段中,使用的轧机通常比粗轧阶段中的轧机更加先进和精密。
通过更高的压力和更精细的控制,中轧阶段可以使钢板的尺寸和形状达到更高的精度要求。
5. 精轧阶段精轧是轧钢工艺流程中的最后一道工序,其目的是对中轧后的钢板进行最后的压制和拉伸,使其达到最终的厚度和尺寸。
在精轧阶段中,使用的轧机通常更加精密和灵活,可以对钢板进行微调和修整,以确保其尺寸的一致性和平整度。
6. 冷却和整平阶段在精轧后,钢板需要进行冷却和整平,以恢复其原有的力学性能和平整度。
冷却可以采用水冷或空冷的方式,根据钢材的特性和要求来确定。
整平则是通过机械或液压的方式对钢板进行拉伸和修整,使其达到所需的平整度和表面质量。
7. 检验和包装阶段经过轧钢工艺流程的钢板需要进行严格的检验,以确保其质量和性能符合要求。
检验包括尺寸、表面质量、力学性能等方面的测试。
合格的钢板经过检验后,会进行包装和标识,以便于储运和使用。
304不锈钢的热轧和冷轧的区分项
304不锈钢热轧和冷轧的区分项热轧和冷轧都是型钢或钢板成型的工序,它们对钢材的组织和性能有很大的影响,钢的轧制主要以热轧为主,冷轧只用于生产小号型钢和薄板。
一.热轧优点:可以破坏钢锭的铸造组织,细化钢材的晶粒,并消除显微组织的缺陷,从而使钢材组织密实,力学性能得到改善。
这种改善主要体现在沿轧制方向上,从而使钢材在一定程度上不再是各向同性体;浇注时形成的气泡、裂纹和疏松,也可在高温和压力作用下被焊合。
缺点:1.经过热轧之后,钢材内部的非金属夹杂物(主要是硫化物和氧化物,还有硅酸盐)被压成薄片,出现分层(夹层)现象。
分层使钢材沿厚度方向受拉的性能大大恶化,并且有可能在焊缝收缩时出现层间撕裂。
焊缝收缩诱发的局部应变时常达到屈服点应变的数倍,比荷载引起的应变大得多;2.不均匀冷却造成的残余应力。
残余应力是在没有外力作用下内部自相平衡的应力,各种截面的热轧型钢都有这类残余应力,一般型钢截面尺寸越大,残余应力也越大。
残余应力虽然是自相平衡的,但对钢构件在外力作用下的性能还是有一定影响。
如对变形、稳定性、抗疲劳等方面都可能产生不利的作用。
二.冷轧是指在常温下,经过冷拉、冷弯、冷拔等冷加工把钢板或钢带加工成各种型式的钢材。
优点:成型速度快、产量高,且不损伤涂层,可以做成多种多样的截面形式,以适应使用条件的需要;冷轧可以使钢材产生很大的塑性变形,从而提高了钢材的屈服点。
缺点:1.虽然成型过程中没有经过热态塑性压缩,但截面内仍然存在残余应力,对钢材整体和局部屈曲的特性必然产生影响;2.冷轧型钢样式一般为开口截面,使得截面的自由扭转刚度较低。
在受弯时容易出现扭转,受压时容易出现弯扭屈曲,抗扭性能较差;3.冷轧成型钢壁厚较小,在板件衔接的转角处又没有加厚,承受局部性的集中荷载的能力弱。
三.热轧和冷轧的主要区别是:1.冷轧成型钢允许截面出现局部屈曲,从而可以充分利用杆件屈曲后的承载力;而热轧型钢不允许截面发生局部屈曲。
2.热轧型钢和冷轧型钢残余应力产生的原因不同,所以截面上的分布也有很大差异。
轧钢工艺技术与应用论文
轧钢工艺技术与应用论文当今社会中,钢材广泛应用于建筑、交通、机械制造等各个领域,轧钢工艺技术的发展对于提高钢材质量和生产效率起到了重要的作用。
本文将介绍轧钢工艺技术的基本原理、发展现状及其在实际应用中的优势。
轧钢工艺技术是通过将钢坯经过多次的轧制变形,使其形成所需的断面形状和尺寸的过程。
它主要由压下工艺和成形工艺两个基本过程组成。
压下工艺是指通过轧辊的作用,将钢坯压扁、拉长和压缩,实现钢材的减小断面和增加长度。
成形工艺则是指通过轧辊的作用,使钢材沿着规定的轨迹进行成形,最终得到所需的断面形状。
随着科技的不断进步,轧钢工艺技术也得到了很大的发展。
目前,常见的轧钢工艺包括热轧和冷轧两种形式。
热轧是指将钢坯加热至高温,然后进行轧制。
由于高温下钢的塑性较好,可以较好地满足对钢材断面形状和尺寸的要求。
冷轧则是指在室温下进行轧制。
冷轧工艺具有轧制压力大、成型精度高的优势,可以得到良好的表面质量和较好的机械性能。
轧钢工艺技术在实际应用中有着广泛的应用。
首先,它可以提高钢材的质量。
通过轧制过程中的变形和压缩,能够消除钢材内部的缺陷,提高材料的致密性和均匀性,从而提高钢材的强度和硬度。
其次,它可以提高钢材的生产效率。
轧钢工艺技术可以实现连续生产,不仅可以提高生产效率,还可以节省能源和减少生产成本。
此外,它还可以根据需要调整钢材的断面形状和尺寸,满足不同领域对于钢材断面形状和尺寸的需求。
然而,轧钢工艺技术在应用过程中也存在一些问题和挑战。
首先,由于轧制过程中的变形和压缩,会产生大量的热量,导致钢材表面温度升高。
这对于一些对钢材表面质量要求比较高的应用来说是一个挑战。
其次,由于轧制工艺的复杂性和工艺参数的复杂性,会对轧钢设备的使用和维护提出更高的要求。
此外,随着对钢材质量和性能要求的不断提高,轧钢工艺技术也需要不断地进行创新和改进。
总之,轧钢工艺技术是一种重要的金属加工技术,它对于提高钢材质量和生产效率具有重要的意义。
连铸板坯热轧工艺参数优化及其对钢材质量的影响
连铸板坯热轧工艺参数优化及其对钢材质量的影响连铸板坯热轧工艺参数优化及其对钢材质量的影响随着钢铁行业的快速发展,对高品质、高性能钢材的需求也越来越大。
连铸板坯作为热轧生产的主要原料,其质量直接影响到最终产品的品质。
因此,研究连铸板坯热轧工艺参数优化及其对钢材质量的影响十分重要。
连铸板坯热轧工艺参数优化包括轧制温度、轧制速度、轧制压力等。
轧制温度是指板坯进入轧机时的温度,其选择直接影响到钢材的组织和性能。
一般来说,较高的轧制温度可以降低轧制力和改善塑性变形能力,但同时也容易导致晶粒长大和过度软化。
因此,需要根据不同的钢种和材料要求进行合理选择。
轧制速度是指连铸板坯在轧机中通过的速度,也是影响钢材质量的关键参数。
过快的轧制速度容易导致晶粒细化不足,从而影响板坯的塑性变形能力和抗拉强度。
同时,过快的轧制速度还容易引起表面质量问题,如皱纹等。
因此,在确定轧制速度时需要综合考虑以上因素。
轧制压力是指轧机施加在板坯上的压力,它对钢材的塑性变形和组织的形成也有重要影响。
较大的轧制压力可以提高钢材的强度和韧性,但也容易导致轧件性能不稳定和开裂等问题。
因此,需要根据具体情况选择适当的轧制压力。
连铸板坯热轧工艺参数优化对钢材质量的影响主要体现在以下几个方面。
首先,连铸板坯热轧工艺参数优化可以改善钢材的组织。
通过合理选择轧制温度、速度和压力等参数,可以控制晶粒尺寸和分布,从而提高钢材的显微组织均匀性和一致性。
其次,连铸板坯热轧工艺参数优化可以提高钢材的机械性能。
通过选择适当的轧制参数,可以增加钢材的抗拉强度、屈服强度和延伸率等机械性能指标,从而提高钢材的耐久性和适用性。
最后,连铸板坯热轧工艺参数优化还可以改善钢材的表面质量。
通过控制轧制参数,可以减少皱纹、划痕和银色条纹等表面缺陷,提高钢材的外观质量。
总之,连铸板坯热轧工艺参数优化及其对钢材质量的影响是一个复杂的系统工程,需要综合考虑多个因素。
只有通过合理选择和优化热轧工艺参数,才能得到高品质、高性能的钢材产品。
冷轧和热轧区别及优缺点
冷轧和热轧区别及优缺点作者: 奥宇钢管冷轧和热轧都是型钢或钢板成型的工序,它们对钢材的组织和性能有很大的影响,钢的轧制主要以热轧为主,冷轧只用于生产小号型钢和薄板。
一、冷轧是指在常温下,经过冷拉、冷弯、冷拔等冷加工把钢板或钢带加工成各种型式的钢材。
优点:成型速度快、产量高,且不损伤涂层,可以做成多种多样的截面形式,以适应使用条件的需要;冷轧可以使钢材产生很大的塑性变形,从而提高了钢材的屈服点。
缺点: 1.虽然成型过程中没有经过热态塑性压缩,但截面内仍然存在残余应力,对钢材整体和局部屈曲的特性必然产生影响; 2.冷轧型钢样式一般为开口截面,使得截面的自由扭转刚度较低。
在受弯时容易出现扭转,受压时容易出现弯扭屈曲,抗扭性能较差;3.冷轧成型钢壁厚较小,在板件衔接的转角处又没有加厚,承受局部性的集中荷载的能力弱。
二、热轧优点:可以破坏钢锭的铸造组织,细化钢材的晶粒,并消除显微组织的缺陷,从而使钢材组织密实,力学性能得到改善。
这种改善主要体现在沿轧制方向上,从而使钢材在一定程度上不再是各向同性体;浇注时形成的气泡、裂纹和疏松,也可在高温和压力作用下被焊合。
缺点:1.经过热轧之后,钢材内部的非金属夹杂物(主要是硫化物和氧化物,还有硅酸盐)被压成薄片,出现分层现象。
分层使钢材沿厚度方向受拉的性能大大恶化,并且有可能在焊缝收缩时出现层间撕裂。
焊缝收缩诱发的局部应变时常达到屈服点应变的数倍,比荷载引起的应变大得多; 2.不均匀冷却造成的残余应力。
残余应力是在没有外力作用下内部自相平衡的应力,各种截面的热轧型钢都有这类残余应力,一般型钢截面尺寸越大,残余应力也越大。
残余应力虽然是自相平衡的,但对钢构件在外力作用下的性能还是有一定影响。
如对变形、稳定性、抗疲劳等方面都可能产生不利的作用。
三、热轧和冷轧的主要区别是:1、冷轧成型钢允许截面出现局部屈曲,从而可以充分利用杆件屈曲后的承载力;而热轧型钢不允许截面发生局部屈曲。
影响钢材性能的主要因素
影响钢材性能的主要因素钢材是建筑、工业等领域中非常重要的材料,其性能受到多种因素的影响。
以下是影响钢材性能的主要因素:1.化学成分:钢材的化学成分对其性能有着重要的影响。
例如,碳是决定钢材强度和硬度的主要元素,但过高的碳含量会导致钢材脆性增加。
其他元素,如硅、锰、磷、硫等,也会对钢材的性能产生影响。
例如,硅和锰可以提高钢材的强度和硬度,而磷和硫则可能导致钢材韧性下降。
2.冶炼方法:不同的冶炼方法对钢材的性能也有影响。
例如,氧气转炉炼钢(氧气顶吹转炉、平炉炼钢)和电弧炉炼钢等冶炼方法会影响钢材的化学成分和显微组织,从而影响其性能。
3.轧制工艺:轧制工艺是钢材生产过程中的重要环节,它可以改变钢材的显微组织和机械性能。
例如,热轧和冷轧两种工艺会对钢材的晶粒大小、变形抗力、韧性等产生影响。
4.钢材的尺寸和形状:钢材的尺寸和形状也会对其性能产生影响。
例如,随着厚度的增加,钢材的屈服强度和抗拉强度通常会增加,而韧性则可能会降低。
此外,扁平钢材的抗弯强度通常比圆形钢材高。
5.热处理:热处理是改变钢材性能的重要手段之一。
通过加热、保温和冷却等步骤,可以改变钢材的显微组织,从而提高其强度、硬度以及韧性等性能。
6.环境和气候条件:环境和气候条件也会对钢材的性能产生影响。
例如,在潮湿的环境中,钢材容易发生腐蚀,这会降低其强度和韧性。
此外,在高温或低温环境下,钢材的性能也可能会发生变化。
7.应力集中:应力集中是指钢材在受到外部载荷时,其内部应力分布不均匀的现象。
这种应力集中可能会导致钢材在某些区域产生微裂纹,从而降低其强度和韧性。
8.疲劳:疲劳是指钢材在长时间承受循环载荷时,其性能逐渐下降的现象。
疲劳会导致钢材的强度和韧性下降,最终可能导致结构失效。
9.损伤积累:损伤积累是指钢材在承受外部载荷时,其内部微小损伤逐渐积累的过程。
这种积累可能导致钢材的强度和韧性下降。
10.相变:在一些特殊情况下,钢材可能会发生相变现象,即其内部组织结构发生变化。
钢材的控制轧制和控制冷却
钢材的控制轧制和控制冷却一、名词解释:1、控制轧制:在热轧过程中通过对金属的加热制度、变形制度、温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能。
2、控制冷却:控制轧后钢材的冷却速度、冷却温度,可采用不同的冷却路径对钢材组织及性能进行调控。
3、形变诱导相变:由于热轧变形的作用,使奥氏体向铁素体转变温度Ar3上升,促进了奥氏体向铁索体的转变。
在奥氏体未再结晶区变形后造成变形带的产生和畸变能的增加,从而影响Ar3温度。
4、形变诱导析出:在变形过程中,由于产生大量位错和畸变能增加,使微量元素析出速度增大。
两相区轧制后的组织中既有由变形未再结晶奥氏体转变的等轴细小铁素体晶粒,还有被变形的细长的铁素体晶粒。
同时在低温区变形促进了含铌、钒、钛等微量合金化钢中碳化物的析出。
5、再结晶临界变形量:在一定的变形速率和变形温度下,发生动态再结晶所必需的最低变形量。
6、二次冷却:相变开始温度到相变结束温度范围内的冷却控制。
二、填空:1、再结晶的驱动力是储存能,影响其因素可以分为:一类是工艺条件,主要有变形量、变形温度、变形速度。
另一类是材料的内在因素,主要是材料的化学成分和冶金状态。
2、控制冷却主要控制轧后钢材冷却过程的(冷却温度)、(冷却速度)等工艺条件,达到改善钢材组织和性能的目的。
3、固溶体的类型有(间隙式固溶)和(置换式固溶),形成(间隙式)固溶体的溶质元素固溶强化作用更大。
4、根据热轧过程中变形奥氏体的组织状态和相变机制不同,将控制轧制划分为三个阶段,即奥氏体再结晶型控制轧制、奥氏体未再结晶型控制轧制、在A+F两相区控制轧制。
5、以珠光体为主的中高碳钢,为达到珠光体团直径减小,则要细化奥氏体晶粒,必须采用奥氏体再结晶)型控制轧制。
6、控制轧制是在热轧过程中通过对金属的(加热制度)、(变形制度)、(温度制度)的合理控制,使热塑性变形与固态相变结合使钢材具有优异的综合力学性能。
《轧制摩擦系数对H型钢舌形端部的影响规律的研究》范文
《轧制摩擦系数对H型钢舌形端部的影响规律的研究》篇一一、引言随着现代建筑和桥梁等基础设施的不断发展,H型钢作为一种重要的建筑材料,其性能和质量越来越受到人们的关注。
在H 型钢的生产过程中,轧制工艺是关键环节之一,而轧制过程中的摩擦系数则是影响产品质量的重要参数。
因此,研究轧制摩擦系数对H型钢舌形端部的影响规律,对于优化轧制工艺、提高产品质量具有重要意义。
二、轧制工艺及摩擦系数概述轧制是H型钢生产过程中的关键工艺之一,其原理是通过轧辊对钢材进行压力加工,使其达到所需的形状和尺寸。
在轧制过程中,轧辊与钢材之间的摩擦系数是一个重要的参数,它直接影响着轧制力、轧制速度以及钢材的表面质量和内部组织结构。
摩擦系数的大小受到多种因素的影响,如轧辊的材料、硬度、表面粗糙度,以及轧制温度、压力和速度等。
三、轧制摩擦系数对H型钢舌形端部的影响H型钢的舌形端部是其在建筑和桥梁结构中的重要部分,其质量和性能直接影响着整体结构的稳定性。
研究表明,轧制摩擦系数对H型钢舌形端部的影响主要表现在以下几个方面:1. 表面质量:摩擦系数过大或过小都会导致H型钢舌形端部的表面质量下降。
过大的摩擦系数会使钢材表面产生过多的热和机械损伤,导致表面粗糙度增加,影响美观和耐腐蚀性;而过小的摩擦系数则可能导致钢材表面出现划痕或粘结现象,影响表面质量。
2. 尺寸精度:轧制摩擦系数对H型钢舌形端部的尺寸精度也有显著影响。
适当的摩擦系数可以保证钢材在轧制过程中得到均匀的变形,从而保证尺寸精度;而摩擦系数过大或过小都可能导致钢材的变形不均匀,从而影响尺寸精度。
3. 内部组织结构:轧制摩擦系数还会影响H型钢舌形端部的内部组织结构。
适当的摩擦系数可以促进钢材内部的晶粒细化,提高其力学性能;而过大或过小的摩擦系数则可能导致晶粒粗大或出现其他不良组织结构,从而影响钢材的性能。
四、影响规律的研究方法及结果分析为了研究轧制摩擦系数对H型钢舌形端部的影响规律,可以采用实验研究和数值模拟等方法。
冷轧工艺改进对钢材微观组织及强度性能的影响研究
冷轧工艺改进对钢材微观组织及强度性能的影响研究冷轧工艺是一种冷变形加工工艺,通过冷轧可以改变钢材的微观组织,提高其强度性能。
本文将探讨冷轧工艺改进对钢材微观组织及强度性能的影响。
首先,冷轧工艺改进能够明显改善钢材的晶粒细化程度。
晶粒的细化可以增加晶界的数量,从而提高材料的强度。
原始的钢材晶粒细度较粗,而经过冷轧工艺改进后,晶粒尺寸得到显著的减小。
冷轧过程中,钢材经历了大变形,使得原始晶粒不断地纵向拉长,横向细化。
同时,冷轧会导致晶界移动和改变晶界特征,进一步细化晶粒。
这种细化的晶粒可以通过阻碍位错滑移和晶界移动来提高钢材的强度性能。
其次,冷轧工艺改进可以引入马氏体组织,进一步提高钢材的强度。
马氏体是一种具有高强度和良好韧性的组织,可以通过快速冷却和变形来形成。
冷轧过程中,通过控制冷轧温度和变形量,可以实现马氏体的形成。
冷轧所施加的变形会引起钢材内部的残余应力,这些应力可以促使马氏体转变成奥氏体,进一步提高钢材的强度和韧性。
此外,冷轧工艺改进还可以改变钢材中的碳含量分布。
在冷轧过程中,碳元素会随着变形的进行而获得偏析,使得钢材表层的碳含量较高。
这种碳偏析可以增加钢材的碳化物含量,提高强度。
同时,冷轧过程中形成的碳化物还可以作为位错的锚点,增强固溶体和强化相之间的相互作用,从而进一步提高钢材的强度性能。
最后,冷轧工艺改进对钢材的延展性也有一定的影响。
冷轧过程中,钢材经历了较大的变形,会引起应力集中和织构形成,从而降低材料的延展性。
但是,通过合理的轧制参数选择和后续热处理,可以减轻冷轧对钢材延展性的影响,使其保持较好的塑性。
综上所述,冷轧工艺改进对钢材微观组织及强度性能有着显著的影响。
通过冷轧可以实现钢材晶粒细化、马氏体的形成、碳含量调控和延展性的调节,从而提高钢材的强度性能。
冷轧工艺改进对于钢材的制造和应用具有重要的意义。
冷轧工艺是制备高强度钢材的重要工艺之一。
随着工业技术的不断发展,冷轧工艺也得到了不断改进和优化。
热轧型钢屈服强度的影响因素分析
热轧型钢屈服强度的影响因素分析
(1)由于某种因素的影响而使钢材强度提高,塑性、韧性下降,增加脆性的现象称之为硬化现象。
一般为重复荷载作用下弹性极限提高(进入塑性阶段后发生)。
(2)冷加工时(常温进行弯折、冲孔剪切等),钢材发生塑性变形从而使钢材变硬的现象称之为冷作硬化。
(3)钢材中的C、N,随着时间的增长和温度的变化,而形成碳化物和氮化物,使钢材变脆的“老化”现象称之为时效硬化。
2、温度的影响
(1)正温影响
总体影响规律为温度上升,钢材的强度降低,塑性、韧性提高,温度达450-600℃左右时,钢材的强度几乎降至为零,而塑性、韧性极大,易于进行热加工,此温度称之为热煅温度。
需要说明:钢材在250℃左右时,强度提高,塑性、韧性下降,钢材表面呈蓝色,这一现象称之为蓝脆现象。
钢材在200℃以上时应采取隔热措施。
(2)负温影响
随着温度的降低钢材的强度提高,塑性、韧性降低,脆性增大,称之为低温冷脆,当温度降至某一特定温度时钢材的脆性急剧增大,称此温度点为转脆温度。
3、生产工艺的影响
(1)冶炼过程主要控制化学成分。
(2)浇铸的影响主要为脱氧方法:沸腾钢用Mn为脱氧剂,时间快,价格低,质量差;镇
静钢用Si为脱氧剂,时间慢,价格高,质量好。
(3)反复的轧制可使得钢材规格变小,改善钢材的塑性,同时可以使钢材中的气孔、裂纹、疏松等缺陷焊合,使金属晶体组织密实,晶粒细化,消除纤维组织缺陷,使钢材的力学性能提高。
同一牌号的钢材,厚度或直径越小,强度越高。
论述冷轧和热轧时金属组织的变化及它对金属性能的影响
论述冷轧和热轧时金属组织的变化及它对金属性能的影响王笑洋摘要:冷轧和热轧使同一种金属的组织发生了不同的变化从而金属的性能也发生了很大的差异,冷轧是在再结晶温度以下进行的轧制,而热轧是在再结晶温度以上进行的轧制。
本文阐述了冷轧和热轧时金属显微组织的变化与冷轧和热轧对金属性能的影响。
冷轧时随着变形程度的增加出现亚结构、变形织构等,金属的强度、硬度增加,而塑性和韧性相应下降即产生了加工硬化。
热轧时金属内部缺陷被压合、金属内部夹杂物分布被改善、偏析被改善,使金属的致密度提高、力学性能提高、综合机械性能提高。
关键词:冷轧热轧组织性能前言我国钢铁企业要在竞争激烈的国际市场上与世界钢铁企业强国进行竞争并取得竞争优势,实现钢铁强国的目标,必须促进科技进步,提升企业技术装备和工艺水平。
随着科学技术的发展,轧钢生产过程中质量已经不仅仅局限于产品外型和尺寸精确的控制,而是追求对产品内部微观组织和最终性能的更为精确的把握。
冷轧和热轧使同一种金属的组织发生了不同的变化从而金属的性能也发生了很大的差异。
冷轧是变形温度低于金属再结晶温度的变形。
由于变形温度低、金属内部的组织结构发生很大的变化、晶粒随着变形量的增加沿变形方向被拉长、当变形程度很大时晶粒变为纤维状、使金属性能呈现方向性。
热轧是在再结晶温度以上进行的塑性变形。
热轧时在金属中同时进行着两个过程:一方面由于塑性变形而产生加工硬化,另一方面由于热轧的温度大大高于再结晶温度因此变形所引起的硬化又很快为随之产生的再结晶过程所消除。
本文从冷、热轧制工艺的角度出发,来研究冷、热轧制工艺与金属的组织以及性能之间的关系。
1冷轧时金属组织的变化及它对金属性能的影响1.1冷轧时金属显微组织的变化1.1.1纤维组织显微组织的变化,多晶体金属经冷却变形后,用光学显微镜观察抛光与浸蚀后的试样,会发现原来等轴的晶粒沿着主变形的方向被拉长。
变形量越大,拉长的越显著。
当变形量很大时,各个晶粒已不能很清楚地辨别开来,呈现纤维状,故称纤维组织。
轧钢工艺技术要点
轧钢工艺技术要点轧钢工艺技术是钢铁生产中的重要环节, 它涉及到钢材的加工和成型。
下面是轧钢工艺技术的要点:首先,轧钢前需要进行热处理。
热处理可以增强钢材的机械性能和耐热性。
常用的热处理方法有回火、淬火和正火。
回火可以使钢材具有较好的韧性和塑性,淬火可以使钢材具有较高的硬度和强度,正火则可以使钢材具有更好的耐热性。
其次,轧钢工艺中需要控制轧制温度。
轧制温度对钢材的显微组织和力学性能有重要影响。
一般来说,高温轧制可以使钢材的晶粒细化,提高塑性和韧性;中温轧制可以使钢材的晶粒尺寸适中,同时保持一定的塑性和韧性;低温轧制可以使钢材的晶粒粗大,提高硬度和强度。
因此,在轧制过程中需要根据不同的钢种和用途选择合适的轧制温度。
另外,轧制工艺中需要控制轧制力度。
轧制力度是指单位宽度上的轧制力。
轧制力度对钢材的变形和力学性能影响很大。
一般来说,轧制力度越大,钢材的变形越大,力学性能越高。
但是,过大的轧制力度也容易引起钢材的裂纹和变形。
因此,在轧制过程中需要通过调整轧制力度来实现对钢材的合理变形。
另外,轧制工艺中需要选择合适的轧制方法。
常见的轧制方法有热轧和冷轧。
热轧是指在高温下对钢材进行轧制,可以改变钢材的显微组织和力学性能,广泛应用于钢材的生产中。
冷轧是指在常温下对钢材进行轧制,可以提高钢材的尺寸精度和表面质量,常用于制造高精度和高表面要求的钢材。
最后,轧制工艺中需要控制轧制速度。
轧制速度是指轧制辊与钢材之间的相对速度。
轧制速度对钢材的变形控制和表面质量有重要影响。
一般来说,较大的轧制速度可以增加钢材的变形量,提高生产效率;较小的轧制速度可以提高钢材的表面质量和尺寸精度。
因此,在轧制过程中需要根据不同的要求和钢种选择合适的轧制速度。
总之,轧钢工艺技术要点包括热处理、轧制温度的控制、轧制力度的调整、轧制方法的选择和轧制速度的控制。
这些要点对于提高钢材的机械性能和表面质量,实现钢铁生产的可持续发展非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轧制过程对钢材性能的影响
我国的钢材大部分是热轧型钢和热轧钢板。
将钢锭加热至塑性状态(1150~1300*C),通过轧钢机将其轧成钢胚,然后再令其通过一系列不同形状和直径的轧机,最后轧成所需形状和尺寸的钢材,称为热轧。
冷轧主要用于薄钢板。
钢材热轧成型,同时也可细化钢的晶粒使组织紧密,原存在于钢锭内的一些微观缺陷如小气泡和裂纹等经过多次辊轧而弥合,改进了钢的质量,如图2-4所示。
故辊轧次数较多的薄型材和薄钢板,钢材的性能就改善得多。
由附表1-2可见同是Q235钢或同是某低合金钢,其屈服点和伸长率随厚度增大而减小。
钢材在轧制时,在顺轧制方向的材质最强,横轧制方向略次,而在厚度方向为最差,如图2-5所示。
这是因为钢材浇筑时的非金属杂质在轧制后能造成钢材的分层,特别是对于厚板,当承受垂直于板面的拉力时,易引起层状撕裂。
图2-6所示角形连接,端竖板如果存在缺陷,焊缝冷却收缩变形会产生层状撕裂,正确布置焊缝可避免,宜采用图2-6(b),(d)所示连接构造,避免采用图2-6(a),(c)所示连接构造。
图2-6(e)所示为框架梁柱刚性焊接连接,在负弯矩产生的拉力作用下,在梁上翼缘水平处的柱冀缘板上将产生沿厚度方向的拉力作用而易发生层状撕裂。
此时,当钢材厚度大于40mm时,宜采用在厚度方向有抗层状撕裂性能的向性能钢板。