五年级下册数学课件-奥数行程问题(共17张ppt)
合集下载
五年级奥数学第10讲行程问题PPT课件
例:小赵和小李是两位竞走运动员,小赵从甲 地出发,小李同时从乙地出发,相向而行,在 两地之间往返练习。第一次相遇地点距甲地 1.4千米,第二次相遇地点距乙地0.6千米。当 他们两人第四次相遇时,地点距甲地有多远? ()
A.2.6千米B.2.4千米C.1.8千米D.1.5千米
设甲乙两地相距S千米,则
相遇次数: 1, 2, 3, 4
两人所走走程和;S, 3S, 5S, 7S
则甲乙两地相距:1.4*3-0.6=3.6千米(?)
第4次相遇时,2人共走了7S,那么小赵的路程是 1.4*7=9.8
9.8/3.6=2……2.6(即9.8除以3.6等于2,余数是2.6, 即,小赵从甲地走到乙地,又回到甲地,又走了2.6千 米),也就是距离甲地2.6千米。
例.甲从A地步行到B地,出发1小时40分钟后, 乙骑自行车也从同地出发,骑了10公里时追到 甲。于是,甲改骑乙的自行车前进,共经5小 时到达B地,这恰是甲步行全程所需时间的一 半。问骑自行车的速度是多少公里/小时? (05年湖南真题)
A.12 B.10 C.16 D.15
解析:假设乙骑完全部路程,需要5小时-1小 时40分钟=200分钟,甲需要10个小时=600分 钟,则甲乙速度之比1:3,跑相同的距离时间 比3:1,那么乙追了10公里追上甲,多用了1小 时40分钟(100分钟),那么乙用了50分钟, 乙的速度:10÷5/6=12公里/每小时
到了1983年,他们利用这些理论应用在设计汽车车身外形的设计。在九十年代, 他们又在把这些计算几何的理论和方法,应用到开发建筑、服装、内燃机等行 业的计算机辅助设计系统上。设计师可以从电脑的屏幕上修改设计方案。
生活数学:
甲、乙两人同时从两地出发,相向而行。距离是1000 米,甲每分钟走120米,乙每分钟走80米,甲带着一 只小狗,狗每分钟走500米,这只狗与甲一道出发,碰 到乙的时候,它又掉头朝甲这边走,碰到甲的时候又 往乙这边走,直到两人相遇,狗才停下来!问这只狗 走了多少米?你能像苏步青一样,很快说出这道题的 答案吗?
小学五年级奥数教学课件ppt:行程问题
分析 :
二人相遇时,甲比乙多行15×2=30(千米), 说明二人已行30÷6=5(小时),上午8时至中 午12时是4小时,所以甲的速度是: 15÷(5-4)=15(千米)。 因此,东西两村的距离是
15×(5-1)=60(千米) 上午8时至中午12时是4小时。 15×2÷6=5(小时) 15÷(5-4)=15(千米) 15×(5-1)=60(千米)
3,学校运来一批树苗,五(1)班的40个同学都去参 加植树活动,如果每人植3棵,全班同学都能植这批树 苗的一半还多20棵。如果这批树苗全部给五(1)班的 同学去植,平均每人植多少树?
例3、 甲、乙二人上午8时同 时从东村骑车到西村去,甲 每小时比乙快6千米。中午12 时甲到西村后立即返回东村, 在距西村15千米处遇到乙。 求东、西两村相距多少千米?
3,甲、乙二人上午7时同时从A地去B地,甲每小时 比乙快8千米。上午11时甲到达B地后立即返回,在 距B地24千米处与乙相遇。求A、B两地相距多少千米?
例4、甲、乙两车早上8点分别 从A、B两地同时出发相向而行, 到10点时两车相距112.5千米。 两车继续行驶到下午1点,两车 相距还是112.5千米。A、B两地 间的距离是多少千米?
练习一
1,小玲每分钟行100米,小平每分钟行80米, 两人同时从学校和少年宫出发,相向而行,并 在离中点120米处相遇。学校到少年宫有多少米? 2,一辆汽车和一辆摩托车同时从甲、乙两地相 对开出,汽车每小时行40千米,摩托车每小时 行65千米,当摩托车行到两地中点处时,与汽 车还相距75千米。甲、乙两地相距多少千米? 3,甲、乙二人同时从东村到西村,甲每分钟行 120米,乙每分钟行100米,结果甲比乙早5分钟 到达西村。东村到西村的路程是多少米?
间不断往返送信。如果鸽子从同学们出发到相遇共 飞行了30千米,而甲队同学比乙队同学每小时多走 0.4千米,求两队同学的行走速度。
五年级下册数学课件- 总复习:行程问题 ▏沪教版ppt优秀课件
• 求步行和骑自行车的速度各是多少?
1.弯弓射鸿、麻衣冲风、饮酒高歌都 是诗人 排解心 头苦闷 与抑郁 的方式 。 2.诗人虽不得不接受生活贫穷的命运 ,但意 志并未 消沉, 气概仍 然豪迈 。 3.诗中形容春柳的方式与韩愈《早春 呈水部 张十八 员外》 相同, 较为常 见。 4.本诗前半描写场景,后半感事抒怀 ,描写 与抒情 紧密关 联,脉 络清晰 。 5.诗人亲自参与田间劳作,不仅快乐 地拿起 农具耕 种,还 面带笑 容鼓励 农人们 积极从 事劳动 。 6.这首诗融说理、叙事、写景、抒情 于一体 ,意境 清淡悠 远,语 言平白 如话, 富有表 现力。 7.词的开头四句,先写对方行程,再 写自己 的多病 与离愁 ,暗含 蹉跎失 志的惆 怅。
复习与引入
• 行程问题涉及到的量有:路程、速度、 时间
• 它们的关系是:路程=
•
速度=
•
时间=
• A、B两地相距40千米,甲从A地到B地,
• (1)如果走的速度为x千米/时,那么需要
走
小时;
• (2)如果速度加快2千米/时,那么需要走
小时,这样可以比原来少用
小
时,
• (3)如果比原来少用1小时,那么列方程
• (2)某校少先队员到离市区15千米的 地方去参加活动,先遣队与大队同时 出发,但行进的速度是大队的1.2倍, 以便提前半小时到达目的地做准备工 作,求先遣队和大队的速度各是多少.
作业
远大中学组织学生到离学校15千米的 郊区进行社会调查,一部分同学骑自 行车前往,另一部分同学在骑自行车 的同学出发40分钟后,乘汽车沿相同 的路线行进,结果骑自行车和乘汽车 的同学同时到达目的地。已知汽车的 速度是自行车速度的3倍,求自行车和 汽车的速度。
为
1.弯弓射鸿、麻衣冲风、饮酒高歌都 是诗人 排解心 头苦闷 与抑郁 的方式 。 2.诗人虽不得不接受生活贫穷的命运 ,但意 志并未 消沉, 气概仍 然豪迈 。 3.诗中形容春柳的方式与韩愈《早春 呈水部 张十八 员外》 相同, 较为常 见。 4.本诗前半描写场景,后半感事抒怀 ,描写 与抒情 紧密关 联,脉 络清晰 。 5.诗人亲自参与田间劳作,不仅快乐 地拿起 农具耕 种,还 面带笑 容鼓励 农人们 积极从 事劳动 。 6.这首诗融说理、叙事、写景、抒情 于一体 ,意境 清淡悠 远,语 言平白 如话, 富有表 现力。 7.词的开头四句,先写对方行程,再 写自己 的多病 与离愁 ,暗含 蹉跎失 志的惆 怅。
复习与引入
• 行程问题涉及到的量有:路程、速度、 时间
• 它们的关系是:路程=
•
速度=
•
时间=
• A、B两地相距40千米,甲从A地到B地,
• (1)如果走的速度为x千米/时,那么需要
走
小时;
• (2)如果速度加快2千米/时,那么需要走
小时,这样可以比原来少用
小
时,
• (3)如果比原来少用1小时,那么列方程
• (2)某校少先队员到离市区15千米的 地方去参加活动,先遣队与大队同时 出发,但行进的速度是大队的1.2倍, 以便提前半小时到达目的地做准备工 作,求先遣队和大队的速度各是多少.
作业
远大中学组织学生到离学校15千米的 郊区进行社会调查,一部分同学骑自 行车前往,另一部分同学在骑自行车 的同学出发40分钟后,乘汽车沿相同 的路线行进,结果骑自行车和乘汽车 的同学同时到达目的地。已知汽车的 速度是自行车速度的3倍,求自行车和 汽车的速度。
为
五年级下册数学课件列方程解决实际问题——行程问题
乙船每小时行21千米
青岛
15千米
甲船每小时行24千米
甲船行的路程 - 乙船行的路程 =
24X -21X=15
上海
15千米
相背而行 相向而行(或相对而行)
甲速车行度驶和的×路时程+间乙=车路行程驶的和路程=总路程
同向而行
快车行速的度路程差-慢×车时行间的=路路程程=快差车比慢车多行的路程
一周400米
五年级下册数学课件列方程解决实际 问题— —行程 问题
列方程解决实际问题练习 ——行程问题
五年级下册数学课件列方程解决实际 问题— —行程 问题
42千米/时 甲车 乙车 X千米/时
2.4小时后相距216千米
甲车行的路程+乙车行的路程=总路程
42×2.4 + 2.4X =
216
速度和×时间=路程和
(42+X)×2.4=216
轿车速度 118.4千米/时
大客车速度
X小时相遇 110千米/时
274.08千米
轿车行的路程+大客车行的路程=总路程
118.4X+110X=274.08
比较这两道题有什么相同 与不同?
甲车行的路程+乙车行的路程=总路程
甲乙两艘轮船同时从青岛开往上海。甲 船每小时行24千米,乙船每小时行21千米。 几小时后两船相距15千米?
上衣的价钱+裙子的价钱=1520元
一、成功之处 本节教学最大的成功在于教师把主要精力放在积极引导学生探索发现问题之上。利用复习准备、导入两个环节,为学生探索比例的基 本性质搭建了桥梁,新知构建部分,有教师引导的思路设计,学生通过阅读教材、分析、计算,总结出比例的基本性质,教学自然流畅。随 堂练习,让学生展示自己发现的成果,在获得成功的同时也收获了解决问题的方法。 二、不足之处 在例1的教学时教师放手还是有些不够,问的太多,学生自主学习成分略显不足。 三、再教设计 再教这个内容时,我应该在引导学生发现问题时,真正让学生自主阅读,自主发现,培养学生探究发现新知甲行的路程-乙行的路程=400米
数学奥数行程问题(共17张ppt)优秀课件
小明每分钟走100米,小红每分钟走80米, 两人同时同地向相反方向走去。5分钟后 小明转向追小红,当小明追上小红时,两 人各走了多少米?
本题求的问题是两人各走了多少米。所用时间有两部分,一是先行 的5分钟,二是小明从转身开始追上小红所用的时间。求出各自行的 时间乘以各自的速度即可。
小明从转身开始追上小红用的时间:
轿车和货车同时从两地对开,3小时后在距中点 12千米处相遇,由此可见轿车3小时比货车多行 12x2=24 (千米)。 轿车比货车多行: 12x2=24 (千米) 轿车比货车每小时多行驶:24 ÷3=8 (千米)
3、 张、李、赵三人都从甲地到乙地,上午6时,张、李 二人一起从甲地出发,张每小时走5千米,李每小时走4千 米。赵上午8时才从甲地出发,傍晚6时赵、张同时到达乙 地,那么赵追上李的时间是几时?
弄
,
1
5
分
钟
后
你
还
没
有
弄
完
我
就
不
耐
烦
像
如
果
我
自
己
弄
五
分
钟
就
弄
完
所
以
最
后
通
常
变
成
我
自
己
弄
。
但
这
样
做
有
一
个
不
好
的
后
果
就
是
当
你
真
的
五
分
钟
弄
完
就
会
■
电
张比赵早出发2小时,张先走了5 x 2=10(千米),上 午8时到傍晚6时共10小时,用10个小时追上10千米, 赵每小时追10+10=1 (千米),因此,赵的速度是每 小时走5+1=6(千米)。李比赵也早出发2小时,先走 了4x2=8 (千米),赵要追上8千米,需要8÷(6-4) =4(小时), 8+4=12 (时),因此,赵追上李的时间是 中午12点。
五年级下册数学精品课件-6.3 总复习:行程问题 ▏沪教版 (17页PPT)
声音在空气中的传 播速度是340米/秒, 假如雷声传到地面需2 分钟,你能算出雷声 是从距离地面多少米 的高空产生的吗?
学校
小华用了10分钟 共600米
少年宫
从学校到少年宫的速度是多少米/分?
600÷10=600(米/分)
速度=路程÷时间
甲地
汽车每时70千米 140千米
乙地
从甲地到乙地需要多少时间?
•
4 、材料的规格或配合比发生改变时 ,根据 室内试 验资料 进行试 拌。
•
5 、已经离析或结团、块或在运料车 辆卸料 时滞留 于车上 的混合 料,以 及低于 规定铺 筑温度 或被雨 淋湿的 混合料 均废弃 。运至 铺筑现 场的混 合料, 应及时 压实。
•
6 、 高空吊装屋架、梁和斜吊法吊装柱时, 应于构 件两端 绑扎溜 绳,由 操作人 员控制 构件的 平衡和 稳定。
()
2 、速度÷时间=路程。
()
3 、飞机飞行的速度为 12 千米/分,汽车行驶的速度为
80 千米/时,汽车的速度比飞机快。
()
课你学到了什么?
•
1、本工程进度安排各分项工程施工均 留有余 地,既 考虑到 若出现 意外情 况时, 不致于 贻误工 期,同 时又考 虑到工 程需赶 工时, 又有条 件加快 施工进 度。
•
7 、 构件吊装和翻身扶直时的吊点必须符合 设计规 定。异 型构件 或无设 计规定 时,应 经计算 确定, 并保证 使构件 起吊平 稳。
•
8 、 安装所使用的螺栓、钢楔(或木楔)、 钢垫板 、垫木 和电焊 条等的 材质应 符合设 计要求 的材质 标准及 国家现 行标准 的有关 规定。
•
9 、 吊装大、重、新结构构件和采用新的吊 装工艺 时,应 先进行 试吊, 确认无 问题后 ,方可 正式起 吊。
小学奥数行程问题PPT课件
分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。根据题意可知, 狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走 的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90) =10分钟。所以狗共行了500×10=5000米。
练习一:
甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶 18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两 地间的水路长多少千米?
一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发, 汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距 多少千米?
甲乙两车分别从相距480千米的A、B两城同时出发,相 向而行,已知甲车从A城到B城需6小时,乙车从B城到A 城需12小时。两车出发后多少小时相遇?
例题1:
甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每 小时走4千米。两人几小时后相遇?
分析与解答:这是一道相遇问题。所谓相遇问题就是指两个运动物体以不同的地点作为出 发地作相向运动的问题。根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短 6+4=10千米,这也是两人的速度和。所以,求两人几小时相遇,就是求20千米里面有几个10 千米。因此,两人20÷(6+4)=2小时后相遇。
行程问题
• 蒋老师
(一)
专题简析
. 我们把研究路程、速度、时间这三者之间关系的问题称为行程问
题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来 学习一些常用的、基本的行程问题。
.解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本
数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发 地点、时间和运动结果。
练习一:
甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶 18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两 地间的水路长多少千米?
一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发, 汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距 多少千米?
甲乙两车分别从相距480千米的A、B两城同时出发,相 向而行,已知甲车从A城到B城需6小时,乙车从B城到A 城需12小时。两车出发后多少小时相遇?
例题1:
甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每 小时走4千米。两人几小时后相遇?
分析与解答:这是一道相遇问题。所谓相遇问题就是指两个运动物体以不同的地点作为出 发地作相向运动的问题。根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短 6+4=10千米,这也是两人的速度和。所以,求两人几小时相遇,就是求20千米里面有几个10 千米。因此,两人20÷(6+4)=2小时后相遇。
行程问题
• 蒋老师
(一)
专题简析
. 我们把研究路程、速度、时间这三者之间关系的问题称为行程问
题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来 学习一些常用的、基本的行程问题。
.解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本
数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发 地点、时间和运动结果。
五年级奥数行程问题PPT
21
全部答案
❖ 例题操练1:(1)2160米(2)94米/ 分(3)6800米(4) 80千米
22
例题
大客车、小客车同时从甲城到乙城,大客 车每小时行80千米,小客车每小时行72 千米,大客车到达乙城后,立即返回, 两车几小时相遇?(甲城到乙城全长 为456千米 )?
23
五年级奥数行程问题
1
❖ 1、甲、乙两地相距600千米,一辆货 车以每小时48千米的速度从甲地开往 乙地,一辆客车以每小时52千米的速 度从移动开往甲地,两车同时出发, 经几小时两车相遇?
2
❖ 2.甲、乙两列火车同时从相距988千米 的两地相向而行,经过5.2小时两车相 遇。甲列车每小时行93千米,乙列车 每小时行多少千米?
基本公式有: 两地距离=速度和×相遇时间 相遇时间=两地距离÷速度和
❖
速度和=相遇路程÷相遇时间
5
1、师、徒两人合作加工550个零件,师傅每小时加工30个,徒弟每 小时加工20个,几小时以后加工完?
2、甲、乙两队合修一条1800米的公路,甲队10天修完,乙队15天修 完,两队合修几天完成?
3、一份稿件共有3600字,甲30分钟打完,甲乙两人合打需要12分钟, 乙单独打需要几分钟?
10
❖ 例题答案: ❖ 甲在距西村15千米处遇到乙,此时甲比
乙多走了2×15=30千米. 甲每小时多 走6米,说明至相遇时,甲共走30÷6=5 小时,甲到达西村时用了12-8=4小时, 说明甲后面的5-4=1(小时)1小时走 了15千米. 那么甲4小时的路程,也就 是两村的距离: 15×4= 60 千米.
15
行程问题一例题(3)
❖ 甲、乙两队学生从相距18千米的两地 同时出发,相向而行。一个同学骑自 行车以每小时15千米的速度,在两队 之间不停地往返联络。甲队每小时行5 千米,乙队每小时行4千米。两队相遇 时,骑自行车的同学共行多少千米?
全部答案
❖ 例题操练1:(1)2160米(2)94米/ 分(3)6800米(4) 80千米
22
例题
大客车、小客车同时从甲城到乙城,大客 车每小时行80千米,小客车每小时行72 千米,大客车到达乙城后,立即返回, 两车几小时相遇?(甲城到乙城全长 为456千米 )?
23
五年级奥数行程问题
1
❖ 1、甲、乙两地相距600千米,一辆货 车以每小时48千米的速度从甲地开往 乙地,一辆客车以每小时52千米的速 度从移动开往甲地,两车同时出发, 经几小时两车相遇?
2
❖ 2.甲、乙两列火车同时从相距988千米 的两地相向而行,经过5.2小时两车相 遇。甲列车每小时行93千米,乙列车 每小时行多少千米?
基本公式有: 两地距离=速度和×相遇时间 相遇时间=两地距离÷速度和
❖
速度和=相遇路程÷相遇时间
5
1、师、徒两人合作加工550个零件,师傅每小时加工30个,徒弟每 小时加工20个,几小时以后加工完?
2、甲、乙两队合修一条1800米的公路,甲队10天修完,乙队15天修 完,两队合修几天完成?
3、一份稿件共有3600字,甲30分钟打完,甲乙两人合打需要12分钟, 乙单独打需要几分钟?
10
❖ 例题答案: ❖ 甲在距西村15千米处遇到乙,此时甲比
乙多走了2×15=30千米. 甲每小时多 走6米,说明至相遇时,甲共走30÷6=5 小时,甲到达西村时用了12-8=4小时, 说明甲后面的5-4=1(小时)1小时走 了15千米. 那么甲4小时的路程,也就 是两村的距离: 15×4= 60 千米.
15
行程问题一例题(3)
❖ 甲、乙两队学生从相距18千米的两地 同时出发,相向而行。一个同学骑自 行车以每小时15千米的速度,在两队 之间不停地往返联络。甲队每小时行5 千米,乙队每小时行4千米。两队相遇 时,骑自行车的同学共行多少千米?
苏教版五年级下册——行程问题 ——奥数类
行程问题(四)
【知识分析】
在环形跑道上,反向而行相当于是相遇问题,同向而行相当于是追赶问题
【例题解读】
例1 陈丹和林龙分别以不同速度,在周长为500米的环形跑道上跑步,林龙的速度是每分钟180米,(1)如果两人从同一地点同时出发,反向跑步,75秒时第一次相遇,求陈丹的速度,(2)若两人以上面的速度从同一地点同时出发同向而行,陈丹跑多少圈后才能第一次追上林龙?
【分析】(1)两人相遇就是合起来走一个全程,因此
500÷(75÷60)—180=220米
(2)陈丹第一次追上林龙,也就是比林龙多跑一圈,所以
500÷(220—180)=12.5分
220×12.5÷500=5.5圈
【经典题型练习】
1、程程和海峰分别以不同的速度,在周长为400米的环形跑道上跑步,程程的速度是每分
钟180米,海峰的速度是每分钟200米,如果两人从同一地点同时出发同向而行,海峰跑多少圈后才能第一次追上程程?
2、有一条长80米的环形走廊,兄妹两人同时从同一地点同一方向出发,妹妹以每秒1米的
速度步行,哥哥以每秒5米的速度奔跑,在哥哥第二次追上妹妹时,花了多少秒?。
五年级奥数-一行程问题追击问题(课堂PPT)
30
3,老师今年32岁,学生今年8岁。再过几年 老师的年龄是学生的3倍?
31
例4 快、慢两车同时从A地到B地,快车每小 时行54千米,慢车每小时行48千米。途中快 车因故停留3小时,结果两车同时到达B地。 求A、B两地间的距离。
32
1,甲每分钟行120米,乙每分钟行80米。二 人同时从A地出发去B地,当乙到达B地时,甲 已在B地停留了2分钟。A地到B地的路程是多 少米?
35
例5 一位同学在360米长的环形跑道上跑了一 圈,已知他前一半时间每秒跑5米,后一半时 间每秒跑4米。求他后一半路程用了多少时间 ?
36
1,小明在420米长的环形跑道上跑了一圈,已知他前 一半时间每秒跑8米,后一半时间每秒跑6米。求他后 一半路程用了多少时间?
2,小华在240米长的跑道上跑了一个来回,已知他前 一半时间每秒跑6米,后一半时间每秒跑4米。求他返 回时用了多少秒。
6
分析 :
途中修车用了2小时,汽车就少行: 45×2=90千米; 修车后,为了按时到达乙地,每小时必须多 行30千米。90千米里面包含有3个30千米, 也就是说,再行3小时就能把修车少行的90 千米行完。因此,修车后再行: (45+30)×3=225千米, 就能到达乙地,汽车是在离甲地: 360-225=135千米 处修车的。
28
1,A、B、C三地在一条直线上,如图所示:
A、B两地相距2千米,甲、乙两人分别从A 、B两地同时向C地行走,甲每分钟走35米, 乙每分钟走45米。经过几分钟B地在甲、乙两 人之间的中点处?
29
2,东、西两镇相距60千米。甲骑车行完全程 要4小时,乙骑车行完全程要5小时。现在两人 同时从东镇到西镇去,经过多少小时后,乙剩 下的路程是甲剩下路程的4倍?
3,老师今年32岁,学生今年8岁。再过几年 老师的年龄是学生的3倍?
31
例4 快、慢两车同时从A地到B地,快车每小 时行54千米,慢车每小时行48千米。途中快 车因故停留3小时,结果两车同时到达B地。 求A、B两地间的距离。
32
1,甲每分钟行120米,乙每分钟行80米。二 人同时从A地出发去B地,当乙到达B地时,甲 已在B地停留了2分钟。A地到B地的路程是多 少米?
35
例5 一位同学在360米长的环形跑道上跑了一 圈,已知他前一半时间每秒跑5米,后一半时 间每秒跑4米。求他后一半路程用了多少时间 ?
36
1,小明在420米长的环形跑道上跑了一圈,已知他前 一半时间每秒跑8米,后一半时间每秒跑6米。求他后 一半路程用了多少时间?
2,小华在240米长的跑道上跑了一个来回,已知他前 一半时间每秒跑6米,后一半时间每秒跑4米。求他返 回时用了多少秒。
6
分析 :
途中修车用了2小时,汽车就少行: 45×2=90千米; 修车后,为了按时到达乙地,每小时必须多 行30千米。90千米里面包含有3个30千米, 也就是说,再行3小时就能把修车少行的90 千米行完。因此,修车后再行: (45+30)×3=225千米, 就能到达乙地,汽车是在离甲地: 360-225=135千米 处修车的。
28
1,A、B、C三地在一条直线上,如图所示:
A、B两地相距2千米,甲、乙两人分别从A 、B两地同时向C地行走,甲每分钟走35米, 乙每分钟走45米。经过几分钟B地在甲、乙两 人之间的中点处?
29
2,东、西两镇相距60千米。甲骑车行完全程 要4小时,乙骑车行完全程要5小时。现在两人 同时从东镇到西镇去,经过多少小时后,乙剩 下的路程是甲剩下路程的4倍?
沪教版五年级下册数学课件6.3 总复习:行程问题 (共16张PPT)
轮船每小时行40千米
轮船的速度40千米/时
爸爸骑自行车每分钟行200米 爸爸骑自行车的速度 200米/分
探究一
探究二
探究二:
(1)一辆骑车的速度是80千米/时,2小时可行 多少千米? (2)李老师骑自行车的速度是225米/分,10分 钟可行多少米?
(1)80×2=160(千米)
答:2小时可行160千米。 (2)225×10=2250(米)
答:10分钟可行2250米。
探究一
探究二
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2021/11/62021/11/6November 6, 2021 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2021年11月2021/11/62021/11/62021/11/611/6/2021 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2021/11/62021/11/6
85×12+50×12 =1020+600 =1620(千米) 答:这段路程大约长1620千米。
练习一
练习二
练习三
小结:
速度、时间和路程之间的关系 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
引入: 这里有一些交通工具的速度,谁来介绍一下?
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下册数学课件-奥数行程问题 (共17 张ppt)
张比赵早出发2小时,张先走了5 x 2=10(千米),上 午8时到傍晚6时共10小时,用10个小时追上10千米, 赵每小时追10+10=1 (千米),因此,赵的速度是每 小时走5+1=6(千米)。李比赵也早出发2小时,先走 了4x2=8 (千米),赵要追上8千米,需要8÷(6-4) =4(小时), 8+4=12 (时),因此,赵追上李的时间是 中午12点。
五年级下册数学课件-奥数行程问题 (共17 张ppt)
五年级下册数学课件-奥数行程问题 (共17 张ppt)
甲、乙两城相距290千米。一辆客车从甲城出发向 乙城驶去,每小时行45千米; 一辆货车从乙城出发 驶向甲城,每小时行42千米。两车同时出发相向 而行,它们各自到达终点后立即返回。从出发时 开始到返回再次相遇一共花 了多少小时?
五年级下册数学课件-奥数行程问题 (共17 张ppt) 五年级下册数学课件-奥数行问题 (共17 张ppt)
五年级下册数学课件-奥数行程问题 (共17 张ppt)
本题求的问题是两人各走了多少米。所用时间有两部分,一是先行 的5分钟,二是小明从转身开始追上小红所用的时间。求出各自行的 时间乘以各自的速度即可。
小明从转身开始追上小红用的时间: (100+80) x 5÷(100-80) =45 (分钟)
解决这类问题时,为了明确过程,常用示意图作为辅助 工具,重点在折返、相遇、追及的地点。
五年级下册数学课件-奥数行程问题 (共17 张ppt)
小明和爸爸绕一个周长为400米的跑道 晨练,爸爸每分钟跑200米,小明每分 钟跑160米。两人同时同地同向出发, 至少要经过几分钟两人才能相遇?相遇 时各跑了几圈?
轿车和货车同时从两地对开,3小时后在距中点 12千米处相遇,由此可见轿车3小时比货车多行 12x2=24 (千米)。 轿车比货车多行: 12x2=24 (千米) 轿车比货车每小时多行驶:24 ÷3=8 (千米)
3、 张、李、赵三人都从甲地到乙地,上午6时,张、李 二人一起从甲地出发,张每小时走5千米,李每小时走4千 米。赵上午8时才从甲地出发,傍晚6时赵、张同时到达乙 地,那么赵追上李的时间是几时?
五年级下册数学课件-奥数行程问题 (共17 张ppt)
五年级下册数学课件-奥数行程问题 (共17 张ppt)
甲、乙二人练习跑步,若甲让乙先跑14米,则 甲跑7秒钟可追上乙;若甲让乙先跑4秒钟,则 甲跑8秒钟就能追上乙。甲、乙二人的速度各 是多少?
五年级下册数学课件-奥数行程问题 (共17 张ppt)
五年级下册数学课件-奥数行程问题 (共17 张ppt)
五年级下册数学课件-奥数行程问题 (共17 张ppt)
分析与解答:父子两人要想在环形跑道上相遇,爸爸必须比 小明多跑一圈,因此此题属于追及问题的另外一种形式, 即环形追及,每相遇一次快的比慢的都要多跑一圈。
解:两人第一次相遇时间: 400÷(200-160) =10 (分) 爸爸跑的圈数: 200x10 ÷400=5 (圈) 小明跑的圈数: 5-1 =4 (圈) 答:至少经过10分钟两人才能相遇。相遇时爸爸跑了5圈, 小明跑了4圈。
在行程问题中,有时要讨论两个或几个运动物体行 进的关系。 当他们在同一段路两个不同的地点相向而行时,如 果同时到达一个地点,就是相遇; 当他们同向而行时,如果后面的行进速度比前面快, 后面的与前面的同时到达同一地点,就是追击。
相遇问题基本关系式:速度和X相遇时间=路程和 追击问题基本关系式:速度差X追及时间=路程差
五年级下册数学课件-奥数行程问题 (共17 张ppt)
五年级下册数学课件-奥数行程问题 (共17 张ppt)
分析与解答: 两车在各自到达终点之前就已经“相 遇”了一次,它们返回后再次相遇,就成为“两次相遇” 问题。 假如我们分别考虑两车各自到达终点花费了多少时间, 同时推算另一辆汽车行至何处,那的确是非常困难的。
小明和小红分别行的时间: 45+5=50 (分钟) 小明行的路程: 100 x50=5000 (米) 小红行的路程:80 X 50 =4000(米)
五年级下册数学课件-奥数行程问题 (共17 张ppt)
五年级下册数学课件-奥数行程问题 (共17 张ppt)
1、一辆货车和一辆小轿车同时从相距598 千米的两地相向而行,货车每小时行40千 米,小轿车每小时行52千米,几小时后两 车相距138千米?
两车第二次相遇时,它们共行了三倍全程。
解: 290x3÷(45 +42)=10 (小时) 答:从出发时开始到返回再次相遇共花了10小时
五年级下册数学课件-奥数行程问题 (共17 张ppt)
五年级下册数学课件-奥数行程问题 (共17 张ppt)
小明每分钟走100米,小红每分钟走80米, 两人同时同地向相反方向走去。5分钟后 小明转向追小红,当小明追上小红时,两 人各走了多少米?
五年级下册数学课件-奥数行程问题 (共17 张ppt)
由于若干小时后两车之间的距离由598千米缩短到 138千米,可见两车一共行驶了598-138=460(千米) 而这一段路程是两辆车同时走的。 总式为: (598 -138) ÷(40 +52) =5 (小时)
2、一辆轿车和一辆货车同时从甲、乙两地相对开出, 已知两地相距450千米,3小时后两车在距中点12千米 处相遇,轿车每小时比货车多行驶多少千米?