高分子材料成型加工唐颂超第三版第2-10章课后习题答案(仅供参考)
高分子材料成型加工考试重点及部分习题答案
高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC 聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。
热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。
高分子课后习题答案
高分子材料加工成型原理课后练习题参考答案2015-1-4整理:二专业の学渣第一章1、请用粘弹性的滞后效应相关理论解释塑料注射成型制品的变形收缩现象以及热处理的作用。
答:(1)粘弹性滞后效应是指在外作用力下,聚合物分子链由于跟不上外力作用速度而造成的形变总是落后于外力作用速度的效应。
(2)当注射制件脱模时大分子的形变并非已经停止,在贮存和使用过程中,大分子重排运动的发展,以致密度增加,体积收缩。
(3)在Tg—Tf温度范围对成型制品进行热处理,可以缩短大分子形变的松弛时间,加速结晶聚合物的结晶速度,使制品的形状能加快的稳定下来。
2、比较塑性形变和粘弹性形变的异同点。
答:同:都是不可逆变形。
异:(1)温度区间不同,塑性形变温度区间为Tg—Tf;粘性形变温度区间为Tf以上。
(2)作用力和时间不同,塑性形变需较大外力和较长时间;粘性形变要很小的外力和瞬时。
3、什么是聚合物的力学三态,各自的特点是什么?各适用于什么加工方法?答:玻璃态、高弹态、粘流态称为聚合物的力学三态。
(1)玻璃态:聚合物模量高,形变小,故不宜进行大形变的成型加工。
适用:二次加工(2)高弹态:产生较大的可逆形变;聚合物粘性大,且具有一定的强度。
适用:较大变形的成型工艺。
(3)粘流态:很大的不可逆形变;熔体黏度低。
适用:流动性要求较高的成型加工技术。
第二章1、画出几种典型流体的剪切力-剪切速率流动曲线,并简单说明各自的流变行为特征。
答:宾汉流体:与牛顿流体相同,剪切速率~剪切应力的关系也是一条直线,不同处:它的流动只有当 高到一定程度后才开始。
假塑性流体:流体的表观粘度随剪切应力的增加而降低。
也即切力变稀现象。
膨胀性流体:流体的表观粘度随剪切应力的增加而增加。
也即切力增稠现象。
2、怎么样根据聚合物粘度的温敏特性以及切敏特性选择加工条件?答:(1)根据聚合物粘度的温敏特性,当聚合物处于粘流温度以上不宽的温度范围内时,用Andrade公式:选择尽可能打的温度作为加工条件。
高分子成型加工参考答案
高分子成型加工参考答案高分子成型加工参考答案高分子材料是一类重要的工程材料,广泛应用于汽车、电子、航空航天等领域。
而高分子成型加工是将高分子材料加工成所需形状和尺寸的过程。
本文将从高分子成型加工的基本原理、常见加工方法以及材料选择等方面进行探讨。
一、高分子成型加工的基本原理高分子成型加工的基本原理是通过加热和施加压力使高分子材料发生形状变化,从而得到所需的产品。
在加热过程中,高分子材料会变得柔软,使得其可以被塑性变形。
而施加的压力则能够使高分子材料充分填充模具,并保持所需的形状和尺寸。
通过控制加热温度、压力和时间等参数,可以实现高分子材料的精确成型。
二、常见的高分子成型加工方法1. 注塑成型注塑成型是一种常见的高分子成型加工方法,适用于制造各种塑料制品。
该方法通过将高分子材料加热熔化后注入模具中,并施加压力使其冷却固化,最终得到所需的产品。
注塑成型具有生产效率高、成本低等优点,广泛应用于塑料制品的生产。
2. 挤出成型挤出成型是将高分子材料加热熔化后通过挤出机将其挤出成型的方法。
挤出机将高分子材料推进至模具中,并施加压力使其冷却固化,形成所需的产品。
挤出成型适用于制造管道、板材等形状较为简单的产品。
3. 压缩成型压缩成型是将高分子材料加热至熔点后放入模具中,并施加压力使其冷却固化的方法。
压缩成型适用于制造复杂形状的产品,如电子元件、汽车零部件等。
该方法可以实现高分子材料的高精度成型。
4. 发泡成型发泡成型是在高分子材料中加入发泡剂,并通过加热使其发生膨胀,形成孔隙结构的方法。
发泡成型可以降低材料的密度,并提高其吸音、隔热等性能。
该方法广泛应用于制造座椅、隔热材料等产品。
三、高分子成型加工中的材料选择在高分子成型加工中,材料选择是非常重要的一环。
不同的高分子材料具有不同的性能和加工特性,因此需要根据产品的要求选择合适的材料。
常见的高分子材料包括聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯等。
根据产品的要求,可以选择具有耐热、耐腐蚀、机械强度高等性能的材料。
高分子材料成型加工唐颂超第三版第210章课后习题答案
高分子材料成型加工Chapter2-10课后习题答案(仅供参考)Chapter2高分子材料学1.分别区分“通用塑料”和“工程塑料”、“热塑性塑料”和“热固性塑料”,并请各举2、3 例。
答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。
通用塑料有PE、PP、PVC、PS 等工程塑料是指拉伸强度大于50MPa冲击强度大于6kJ/m2 ,长期耐热温度超过100℃,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等可代替金属用作结构件的塑料。
工程塑料有PA、PET、PBT、POM等。
热塑性塑料:加热时变软以至流动,冷却变硬。
这种过程是可逆的、可以反复进行。
如聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚好和氯化聚醚等都是热塑性塑料。
热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的。
此后,再次加热时,已不能再变软流动了。
正是借助这种特性进行成型加工,利用第一次加热时的塑化流动在压力下充满型腔,进而固化成为确定形状和尺寸的制品。
这种材料称为热固性塑料。
酚醛、脲醛、三聚氰胺甲醛、不饱和聚酯、有机硅等塑料都是热固性塑料。
2. 什么是聚合物的结晶和取向?它们有何不同?研究结晶和取向对高分子材料加工有何实际意义?聚合物的结晶:高聚物发生的分子链在三维空间形成局部区域的、高度有序的排列的过程。
聚合物的取向:高聚物的分子链沿某特定方向作优势的平行排列的过程。
包括分子链、链段和结晶高聚物的晶片、晶带沿特定方向择优排列。
不同之处:(1)高分子的结晶属于高分子的一个物理特性,不是所有的高聚物都会结晶,而所有的高聚物都可以在合适的条件下发生取向。
(2)结晶是某些局部区域内分子链在三维空间的规整排列,而取向一般是在一定程度上的一维或二维有序,是在外力作用下整个分子链沿特定方向发生较为规整排列。
(3)结晶是在分子链内部和分子链之间的相互作用下发生的,外部作用也可以对结晶产生一定的影响;取向一般是在外力作用和环境中发生的,没有外力的作用,取向一般不会内部产生。
(完整版)高分子材料成型加工课后习题答案
1、什么是“非分散混合”,什么是“分散混合”,两者各主要通过何种物料运动和混合操作来实现?答:①非分散混合在混合中仅增加离子在混合物中空间分布均匀性而不减小粒子初始尺寸的过程称为非分散混合或简单混合。
这种混合的运动基本形式是通过对流来实现的,可以通过包括塞形流动和不需要物料连续变形的简单体积排列和置换来达到。
②分散混合是指在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。
分散混合主要是靠剪切应力和拉伸应力作用实现的。
分散混合的目的是把少数组分的固体颗粒和液相滴分散开来,成为最终粒子或允许的更小颗粒或滴,并均匀地分散到多组分中,这就涉及少组分在变形粘性流体中的破裂为题,这是靠强迫混合物通过窄间隙而形成的高剪切区来完成的。
2、在热固性塑料模压成型中,提高压力应相应地降低还是升高模压压力才对模压成型工艺有利?为什么?答:在一定温度范围内,模温升高,物料流动性提高,模压压力可降低,但模温提高也会使塑料的交联反应速率加速,从而导致熔融物料的粘度迅速增高,反而需要更高的模压压力。
3、热固性塑料模压成型中物料的预热温度对模压压力有何影响?为什么?答:对塑料进行预热可以提高流动性,降低模压压力,但如果预热温度过高或预热时间过长会使塑料在预热过程中有部分固化,会抵消预热增大流动性效果,模压是需更高的压力来保证物料充满型腔。
1、什么是聚合物的结晶取向?它们有何不同?研究结晶和取向对高分子材料加工有何实际影响?答:结晶是聚合物分子在三维空间呈周期性重复排列的过程,而取向是取向单元在外力作用下择优排列的过程,取向单元可以是:基团、链段、分子链、晶粒、晶片或变形的球晶等。
结晶是材料自身的性质,只发生在分子、原子、离子这些基础的单元上,取向的产生是外力作用的结果,取向单元也更多样。
结晶可以影响材料的拉伸强度、弹性模量、冲击强度、耐热性、耐候性、吸水性、透明性、透气性、成型收缩性等物性。
取向后的聚合物,在取向方向和垂直于取向方向上性能差异特别显著。
高分子材料成型加工唐颂超第三版第2-10章课后习题答案(仅供参考)
高分子材料成型加工Chapter2-10 课后习题答案(仅供参考)Chapter2 高分子材料学1.分别区分“通用塑料”和“工程塑料”、“热塑性塑料”和“热固性塑料”,并请各举2、3 例。
答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。
通用塑料有PE、PP、PVC 、PS 等工程塑料是指拉伸强度大于50MPa 冲击强度大于6kJ/m2 ,长期耐热温度超过100℃,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等可代替金属用作结构件的塑料。
工程塑料有PA、PET、PBT、POM 等。
热塑性塑料:加热时变软以至流动,冷却变硬。
这种过程是可逆的、可以反复进行。
如聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚好和氯化聚醚等都是热塑性塑料。
热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的。
此后,再次加热时,已不能再变软流动了。
正是借助这种特性进行成型加工,利用第一次加热时的塑化流动在压力下充满型腔,进而固化成为确定形状和尺寸的制品。
这种材料称为热固性塑料。
酚醛、脲醛、三聚氰胺甲醛、不饱和聚酯、有机硅等塑料都是热固性塑料。
2. 什么是聚合物的结晶和取向?它们有何不同?研究结晶和取向对高分子材料加工有何实际意义?聚合物的结晶:高聚物发生的分子链在三维空间形成局部区域的、高度有序的排列的过程。
聚合物的取向:高聚物的分子链沿某特定方向作优势的平行排列的过程。
包括分子链、链段和结晶高聚物的晶片、晶带沿特定方向择优排列。
不同之处:(1)高分子的结晶属于高分子的一个物理特性,不是所有的高聚物都会结晶,而所有的高聚物都可以在合适的条件下发生取向。
(2)结晶是某些局部区域内分子链在三维空间的规整排列,而取向一般是在一定程度上的一维或二维有序,是在外力作用下整个分子链沿特定方向发生较为规整排列。
(3)结晶是在分子链内部和分子链之间的相互作用下发生的,外部作用也可以对结晶产生一定的影响;取向一般是在外力作用和环境中发生的,没有外力的作用,取向一般不会内部产生。
聚合物成型加工习题答案
高分子材料加工工艺第一章绪论1.材料的四要素是什么?相互关系如何?答:材料的四要素是:材料的制备(加工)、材料的结构、材料的性能和材料的使用性能。
这四个要素是相互关联、相互制约的,可以认为:1)材料的性质与现象是新材料创造、发展及生产过程中,人们最关注的中心问题。
2)材料的结构与成分决定了它的性质和使用性能,也影响着它的加工性能。
而为了实现某种性质和使用性能,又提出了材料结构与成分的可设计性。
3)材料的结构与成分受材料合成和加工所制约。
4)为完成某一特定的使用目的制造的材料(制品),必须是最经济的,且符合社会的规范和具有可持续发展件。
在材料的制备(加工)方法上,在材料的结构与性能关系的研究上,在材料的使用上,各种材料都是相互借鉴、相互渗透、相互补充的。
2.什么是工程塑料?区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”。
答:按用途和性能分,又可将塑料分为通用塑料和工程塑料。
工程塑料是指拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100℃的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀性优良等的、可替代金属用作结构件的塑料。
但这种分类并不十分严格,随着通用塑料工程化(亦称优质化)技术的进展,通过改性或合金化的通用塑料,已可在某些应用领域替代工程塑料。
热塑性塑料一般是线型高分子,在溶剂可溶,受热软化、熔融、可塑制成一定形状,冷却后固化定型;当再次受热,仍可软化、熔融,反复多次加工。
例如:PE、PP、PVC、ABS、PMMA、PA、PC、POM、PET、PBT。
热固性塑料一般由线型分子变为体型分子,在溶剂中不能溶解,未成型前受热软化、熔融,可塑制成一定形状,在热或固化剂作用下,一次硬化成型;一当成型后,再次受热不熔融,达到一定温度分解破坏,不能反复加工。
如PF(酚醛树脂)、UF(脲醛树脂)、MF(三聚氰胺甲醛树脂)、EP(环氧树脂)、UP(不饱和树脂)等。
3.与其它材料相比,高分子材料具有那些特征(以塑料为例)?答:与其他材料相比,高分子材料有以下特性(以塑料为例)。
高分子材料成型加工习题参考答案
高分子材料成型加工习题参考答案(1~5章)绪论1、高分子材料可应用于哪些方面? 有哪些特点, 答:高分子材料可应用于如下各个方面:结构材料:机械零部件、机电壳体、轴承……电器材料:电缆、绝缘版、电器零件、家用电器、通讯器材…… 建筑材料:贴面板、地贴、塑料门窗、上下水管…… 包装材料:各种瓶罐、桶、塑料袋、薄膜、绳、带、泡沫塑料…… 日用制品:家具、餐具、玩具、文具、办公用品、体育用品及器材……交通运输:道路交通设施、车辆、船舶部件……医疗器械:医疗器具、药品包装、医药附件、人造器官…… 航天航空:飞机、火箭、飞船、卫星零部件……军用器械:武器装备、军事淹体、防护器材…… 交通运输:道路交通设施、车辆、船舶部件……医疗器械:医疗器具、药品包装、医药附件、人造器官…… 航天航空:飞机、火箭、飞船、卫星零部件……军用器械:武器装备、军事淹体、防护器材…… 化纤类:布、线、服装、……高分子材料具有如下特点:优点: a.原料价格低廉; b.加工成本低; c.重量轻; d.耐腐蚀;e.造型容易;f.保温性能优良;g.电绝缘性好。
缺点: a.精度差; b.耐热性差; c.易燃烧; d.强度差; e.耐溶剂性差; f.易老化2、塑料制品生产的完整工序有哪五步组成,答:成型加工完整工序共五个1.成型前准备:原料准备:筛选,干燥,配制,混合 ?2.成型:赋预聚合物一定型样 ?3.机械加工:车,削,刨,铣等。
?4.修饰:美化制品。
?5.装配: 粘合,焊接,机械连接等。
?说明:a 并不是所有制品的加工都要完整地完成此5个工序b 五个次序不能颠倒3、学习本课程的重点是什么,答:本课程的重点是:高分子材料方面:应掌握高分子材料定义,高分子材料工程特征,高分子材料及其制品的制备方法,高分子材料的组成,添加剂的作用、机理、品种及其选择,高分子材料配方设计原则,配方分析,影响高分子材料性能的化学因素和物理因素。
成型加工方面:应掌握高分子材料制品各种成型方法,成型加工过程,成型工艺特点,成型工艺的适应性,成型工艺流程,成型设备结构及作用原理,成型工艺条件及其控制,成型工艺在橡胶、塑料、纤维加工中的共性和特殊性。
高分子材料成型加工考试重点及部分习题答案
高分子材料成型加工考试重点及部分习题答案 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
《高分子材料成型加工》课后部分习题参考答案
2.分别区分“通用塑料”与“工程塑料”,“热塑性塑料”与“热固性塑料”,“简单组分高分子材料”与“复杂组分高分子材料”,并请各举2~3例。
答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。
通用塑料有:PE,PP,PVC,PS等;工程塑料:就是指拉伸强度大于50MPa,冲击强度大于6kJ/m2 ,长期耐热温度超过100℃的,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等,可代替金属用作结构件的塑料。
工程塑料有:PA,PET,PBT,POM等;工程塑料就是指被用做工业零件或外壳材料的工业用塑料,就是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。
日本业界将它定义为“可以做为构造用及机械零件用的高性能塑料,耐热性在100℃以上,主要运用在工业上”。
热塑性塑料:加热时变软以至流动,冷却变硬,这种过程就是可逆的,可以反复进行。
聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚,氯化聚醚等都就是热塑性塑料。
(热塑性塑料中树脂分子链都就是线型或带支链的结构,分子链之间无化学键产生,加热时软化流动、冷却变硬的过程就是物理变化;) 热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化就是不可逆的,此后,再次加热时,已不能再变软流动了。
正就是借助这种特性进行成型加工,利用第一次加热时的塑化流动,在压力下充满型腔,进而固化成为确定形状与尺寸的制品。
这种材料称为热固性塑料。
(热固性塑料的树脂固化前就是线型或带支链的,固化后分子链之间形成化学键,成为三维的网状结构,不仅不能再熔触,在溶剂中也不能溶解。
)酚醛、脲醛、三聚氰胺甲醛、不饱与聚酯、有机硅等塑料,都就是热固性塑料。
简单组分高分子材料:主要由高聚物组成(含量很高,可达95%以上),加入少量(或不加入)抗氧剂、润滑剂、着色剂等添加剂。
如:PE、PP、PTFE。
复杂组分高分子材料:复杂组分塑料则就是由合成树脂与多种起不同作用的配合剂组成,如填充剂、增塑剂、稳定剂等组成。
(完整版)高分子材料成型加工(含答案)
1.高分子材料成型加工:通常是使固体状态(粉状或粒状)、糊状或溶液状态的高分子化合物熔融或变形,经过模具形成所摇的形状并保持其已经取得的形状,最终得到制品的工艺过程。
2.热塑性塑料:是指具有加热软化、冷却硬化特性的塑料(如: ABS、PP、POM、PC、PS、PVC、PA、PMMA等),它可以再回收利用。
具有可塑性可逆热固性塑料:是指受热或其他条件下能固化或具有不溶(熔)特性的塑料(如:酚醛树脂、环氧树脂、氨基树脂、聚胺酯、发泡聚苯乙烯、不饱和聚酯树脂等)具有可塑性,是不可逆的、不能再回收利用。
3. 通用塑料:一般是指产量大、用途广、成型性好、价格便宜的塑料工程塑料:指拉伸强度大于50MPa,冲击强度大于6KJ/m2,长期耐热温度超过100°C 的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等的、可代替金属用作结构件的塑料.4.可挤压性:材料受挤压作用形变时,获取和保持形状的能力。
可模塑性:材料在温度和压力作用下,产生形变和在模具中模制成型的能力。
可延展性:材科在一个或两个万向上受到压延或拉伸的形变能力。
可纺性:材料通过成型而形成连续固态纤维的能力。
5.塑化效率:高分子化合物达到某一柔软程度时增塑剂的用量定义为增塑剂的塑化效率。
定义DOP的效率值为标准1,小于1的则较有效,大于1的较差.6.稳定流动:凡在输送通道中流动时,流体在任何部位的流动状况及一切影响流体流动的因素不随时间而变化,此种流动称为稳定流动。
不稳定流动:凡流体在输送通道中流动时,其流动状况及影响流动的各种因素都随时间而变化,此种流动称之不稳定流动。
7. 等温流动是指流体各处的温度保持不变情况下的流动。
(在等温流动情况下,流体与外界可以进行热量传递,但传入和输出的热量应保持相等)不等温流动:在塑料成型的实际条件下,由于成型工艺要求将流道各区域控制在不同的温度下:而且由于粘性流动过程中有生热和热效应,这些都使其在流道径向和轴向存在一定的温度差,因此聚合物流体的流动一般均呈现非等温状态。
高分子材料成型加工基础各章习题已共23页word资料
绪论1、与其他材料相比(无机非金属材料、金属材料),高分子材料有哪些特征?质轻;拉伸模量和强度低,韧性优良;传热系数小;电绝缘性好;成型加工性好,可适应各种成型方法;减震、消音效果好;某些塑料具有良好的减磨、耐磨和自润滑性能;耐腐蚀性能优良;透光性好;着色性好;可赋予各种特殊功能;使用过程中易产生蠕变、疲劳、冷流、结晶等现象,长期使用性能较差;热膨胀系数大;耐热性较低,使用温度不高;易燃烧。
2、什么是高分子材料的成型加工性能?可挤压性、可模塑性、可延展性、可纺性3、什么事高分子合金?用机械共混法生辰的第一个高分子合金材料是什么?两种或两种以上高分子材料构成的复合体系。
ABS。
4、塑料可以分为通用塑料和工程塑料,工程塑料是指()工程塑料:是指拉伸强度大于50MP,冲击强度大于6kJ/m2,长期耐热温度超过100℃,刚性好,蠕变小,自润滑,电绝缘,耐腐蚀等的、可替代金属做结构材料的塑料。
5、塑料可分为热塑性塑料和热固性塑料,请将下列塑料分类:PE PP PVC ER MF PA PC ABS PMMA PF POM UP热塑性材料:PE、PP、PVC 、PA 、PC、 ABS、 PMMA 、POM热固性材料:ER MF PF UP6、橡胶可分为通用橡胶和特种橡胶,特种橡胶是指()特种橡胶:具有特殊性能,可满足耐热、耐寒、耐油、耐溶剂、耐化学腐蚀、耐辐射等特殊使用的橡胶制品的橡胶。
7、热塑弹性体的结构特点是:分子结构中一般部分或全部由具有橡胶弹性的链段组成,大分子链之间存在化学或物理交联而成的网状结构,起补强作用,常温下显示橡胶的弹性,而高温下,受热的作用,这种网状结构消失,呈现塑性。
8、请将下列橡胶分类:CR BR UR ACM SIS IIR SBR NBR EPDM SBS CPE通用橡胶:CR BR IIR SBR EPDM特种橡胶:UR ACM NBR CPE热塑性弹性体:SIS、SBS9、由纤维素和蛋白质等改性而制成的纤维称为(人造纤维)10、请写出下列纤维的化学名称:涤纶:聚对苯二甲酸乙二醇酯,锦纶:聚酰胺纤维维纶:聚乙烯醇甲醛纤维腈纶:聚丙烯晴丙纶;聚丙烯氯纶:聚氯乙烯纤维氨纶:聚氨酯弹性体纤维Kevlar:芳香族聚酰胺纤维11、高分子合金是由塑料与橡胶、塑料与塑料经共混、接枝、嵌段共聚或互穿聚合物网络等方法制成的(宏观上均相,微观上分相)的一类材料的总称。
《高分子材料成型加工》课后部分习题参考答案
2.分别区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”,“简单组分高分子材料”和“复杂组分高分子材料”,并请各举2~3例。
答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。
通用塑料有:PE,PP,PVC,PS等;工程塑料:是指拉伸强度大于50MPa,冲击强度大于6kJ/m2 ,长期耐热温度超过100℃的,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等,可代替金属用作结构件的塑料。
工程塑料有:PA,PET,PBT,POM等;工程塑料是指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。
日本业界将它定义为“可以做为构造用及机械零件用的高性能塑料,耐热性在100℃以上,主要运用在工业上”。
热塑性塑料:加热时变软以至流动,冷却变硬,这种过程是可逆的,可以反复进行。
聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚,氯化聚醚等都是热塑性塑料。
(热塑性塑料中树脂分子链都是线型或带支链的结构,分子链之间无化学键产生,加热时软化流动、冷却变硬的过程是物理变化;) 热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的,此后,再次加热时,已不能再变软流动了。
正是借助这种特性进行成型加工,利用第一次加热时的塑化流动,在压力下充满型腔,进而固化成为确定形状和尺寸的制品。
这种材料称为热固性塑料。
(热固性塑料的树脂固化前是线型或带支链的,固化后分子链之间形成化学键,成为三维的网状结构,不仅不能再熔触,在溶剂中也不能溶解。
)酚醛、脲醛、三聚氰胺甲醛、不饱和聚酯、有机硅等塑料,都是热固性塑料。
简单组分高分子材料:主要由高聚物组成(含量很高,可达95%以上),加入少量(或不加入)抗氧剂、润滑剂、着色剂等添加剂。
如:PE、PP、PTFE。
复杂组分高分子材料:复杂组分塑料则是由合成树脂与多种起不同作用的配合剂组成,如填充剂、增塑剂、稳定剂等组成。
高分子材料成型加工唐颂超第三版第2-10章课后习题答案(仅供参考)
高分子材料成型加工Chapter2-10课后习题答案(仅供参考)Chapter2高分子材料学1.分别区分“通用塑料”和“工程塑料”、“热塑性塑料”和“热固性塑料”,并请各举2、3 例。
答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。
通用塑料有PE、PP、PVC、PS 等工程塑料是指拉伸强度大于50MPa冲击强度大于6kJ/m2 ,长期耐热温度超过100℃,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等可代替金属用作结构件的塑料。
工程塑料有PA、PET、PBT、POM等。
热塑性塑料:加热时变软以至流动,冷却变硬。
这种过程是可逆的、可以反复进行。
如聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚好和氯化聚醚等都是热塑性塑料。
热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的。
此后,再次加热时,已不能再变软流动了。
正是借助这种特性进行成型加工,利用第一次加热时的塑化流动在压力下充满型腔,进而固化成为确定形状和尺寸的制品。
这种材料称为热固性塑料。
酚醛、脲醛、三聚氰胺甲醛、不饱和聚酯、有机硅等塑料都是热固性塑料。
2. 什么是聚合物的结晶和取向?它们有何不同?研究结晶和取向对高分子材料加工有何实际意义?聚合物的结晶:高聚物发生的分子链在三维空间形成局部区域的、高度有序的排列的过程。
聚合物的取向:高聚物的分子链沿某特定方向作优势的平行排列的过程。
包括分子链、链段和结晶高聚物的晶片、晶带沿特定方向择优排列。
不同之处:(1)高分子的结晶属于高分子的一个物理特性,不是所有的高聚物都会结晶,而所有的高聚物都可以在合适的条件下发生取向。
(2)结晶是某些局部区域内分子链在三维空间的规整排列,而取向一般是在一定程度上的一维或二维有序,是在外力作用下整个分子链沿特定方向发生较为规整排列。
(3)结晶是在分子链内部和分子链之间的相互作用下发生的,外部作用也可以对结晶产生一定的影响;取向一般是在外力作用和环境中发生的,没有外力的作用,取向一般不会内部产生。
第三版_高分子物理课后习题答案(详解)
第1章高分子的链结构1.写出聚氯丁二烯的各种可能构型,举例说明高分子的构造。
等。
举例说明高分子链的构造:线形:聚乙烯,聚α-烯烃环形聚合物:环形聚苯乙烯,聚芳醚类环形低聚物梯形聚合物:聚丙烯腈纤维受热,发生环化形成梯形结构支化高分子:低密度聚乙烯交联高分子:酚醛、环氧、不饱和聚酯,硫化橡胶,交联聚乙烯。
2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。
(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。
3.为什么等规立构聚丙乙烯分子链在晶体中呈螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。
(2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。
4.哪些参数可以表征高分子链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差;(2)特征比Cn,Cn值越小,链的柔顺性越好;(3)连段长度b,b值愈小,链愈柔顺。
5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。
该聚合物为什么室温下为塑料而不是橡胶?答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。
6.从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯睛与碳纤维;(2)无规立构聚丙烯与等规立构聚丙烯;(3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。
高分子材料成型加工(考试重点及部分习题答案)
高分子材料成型加工(考试重点及部分习题答案)高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:pf、uf、mf2.热塑性塑料:加热软化、熔化、成型,冷却后固化。
当再次加热时,它仍然可以软化和熔化,并反复加工。
易溶于溶剂。
其化学结构为线型聚合物。
例如:聚乙烯、聚丙烯、聚氯乙烯、聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4.工程塑料:机械性能好,抗拉强度大于50MPa,冲击强度大于6kj/m2,长期耐热温度大于100度,刚性好,蠕变小,自润滑,电绝缘,耐腐蚀,可作为结构材料使用。
例如:PA聚酰胺、ABS、pet、PC5、缓冷:tc=tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6.淬火(淬火):TC定义:熔融或半熔融状态下的结晶聚合物。
在该温度下保持一段时间后,快速冷却,使其没有时间结晶,从而提高产品的冲击性能。
7.中速冷却:TC>=TG,有利于晶核形成和晶体生长,性能良好。
一般透明度、一般结晶度和一般强度。
8.二次结晶:指一次结晶后,在一些残留的非晶区域和一些结晶不完全的区域连续结晶并逐渐改善的过程。
9.后结晶:指聚合物加工过程中的一部分结晶太迟,成型后继续结晶的过程。
第三章附加物11。
添加剂的分类包括工艺添加剂(如润滑剂)和功能添加剂(润滑剂除外,如稳定剂、填料、增塑剂和交联剂)。
2.稳定剂:防止或延缓聚合物材料老化并保持其原始性能的添加剂。
根据引起高分子材料老化的三个主要因素:热、氧和光,稳定剂可分为热稳定剂、抗氧化剂(抗老化剂)和光稳定剂。
热稳定剂是一种能防止聚合物材料在成型或使用过程中因受热而降解或交联的添加剂。
主要用于热敏性聚合物(如PVC、PVC树脂),是PVC塑料生产中最重要的添加剂。
2020年《材料成型工艺基础(第三版)》部分课后习题答案
《材料成型工艺基础(第三版)》部分课后习题答案第一章⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响?答:①合金的流动性是指合金本身在液态下的流动能力。
决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。
②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。
⑷.何谓合金的收縮?影响合金收縮的因素有哪些?答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。
②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。
⑹.何谓同时凝固原则和定向凝固原则?试对下图所示铸件设计浇注系统和冒口及冷铁,使其实现定向凝固。
答:①同时凝固原则:将内浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。
②定向凝固原则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。
第二章⑴.试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。
答:石墨在灰铸铁中以片状形式存在,易引起应力集中。
石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。
灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。
石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。
⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同?答:①主要因素:化学成分和冷却速度。
②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。
在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。
⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁?答:①经孕育处理后的灰铸铁称为孕育铸铁。
【精品】高分子物理课后习题答案全金日光华幼卿第三版
第1章高分子的链结构1.写出聚氯丁二烯的各种可能构型。
等。
2.构象与构型有何区别?聚丙烯分子链中碳-碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。
(2)不能,碳—碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。
3。
为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则.(2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。
4.哪些参数可以表征高分子链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好;(3)连段长度b,b值愈小,链愈柔顺.5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好.该聚合物为什么室温下为塑料而不是橡胶?答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。
6。
从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯睛与碳纤维;(2)无规立构聚丙烯与等规立构聚丙烯;(3)顺式聚1,4—异戊二烯(天然橡胶)与反式聚1,4—异戊二烯(杜仲橡胶)。
(4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。
7。
比较下列四组高分子链的柔顺性并简要加以解释。
8。
答:81。
6倍9.解:b=1。
17nm10.答:均方末端距为2276。
8nm2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分子材料成型加工Chapter2-10 课后习题答案(仅供参考)Chapter2 高分子材料学1.分别区分“通用塑料”和“工程塑料”、“热塑性塑料”和“热固性塑料”,并请各举2、3 例。
答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。
通用塑料有PE、PP、PVC 、PS 等工程塑料是指拉伸强度大于50MPa 冲击强度大于6kJ/m2 ,长期耐热温度超过100℃,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等可代替金属用作结构件的塑料。
工程塑料有PA、PET、PBT、POM 等。
热塑性塑料:加热时变软以至流动,冷却变硬。
这种过程是可逆的、可以反复进行。
如聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚好和氯化聚醚等都是热塑性塑料。
热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的。
此后,再次加热时,已不能再变软流动了。
正是借助这种特性进行成型加工,利用第一次加热时的塑化流动在压力下充满型腔,进而固化成为确定形状和尺寸的制品。
这种材料称为热固性塑料。
酚醛、脲醛、三聚氰胺甲醛、不饱和聚酯、有机硅等塑料都是热固性塑料。
2. 什么是聚合物的结晶和取向?它们有何不同?研究结晶和取向对高分子材料加工有何实际意义?聚合物的结晶:高聚物发生的分子链在三维空间形成局部区域的、高度有序的排列的过程。
聚合物的取向:高聚物的分子链沿某特定方向作优势的平行排列的过程。
包括分子链、链段和结晶高聚物的晶片、晶带沿特定方向择优排列。
不同之处:(1)高分子的结晶属于高分子的一个物理特性,不是所有的高聚物都会结晶,而所有的高聚物都可以在合适的条件下发生取向。
(2)结晶是某些局部区域内分子链在三维空间的规整排列,而取向一般是在一定程度上的一维或二维有序,是在外力作用下整个分子链沿特定方向发生较为规整排列。
(3)结晶是在分子链内部和分子链之间的相互作用下发生的,外部作用也可以对结晶产生一定的影响;取向一般是在外力作用和环境中发生的,没有外力的作用,取向一般不会内部产生。
(4)结晶主要发生在Tg~Tm 范围内,而取向可以发生在Tg 或Tm 以上的任何温度(热拉伸或流动取向),也可以在室温下进行冷拉伸获得。
(5)结晶单元为高分子链和链段,而取向单元还可以是微晶(晶粒)。
结晶是结晶性高聚物加工成型过程中必然经历的过程,结晶直接影响到聚合物的成型加工和制品的性能。
结晶温度越低,聚合物加工熔点越低且熔限越宽,结晶温度越高,熔点较高且熔限越窄。
化学结构相似而结晶度较大的聚合物成型加工温度较高。
结晶过程中结晶速度的快慢直接决定了制品的成型加工周期,结晶越快,冷却时间越短,而结晶越慢,加工成型周期变长。
聚合物结晶颗粒的尺寸对制品的透明性、表观形态和机械性能也有非常大的影响。
因此结晶在聚合物的成型加工过程中占有举足轻重的低位。
取向是聚合物在加工过程中或者加工后处理阶段形成的,结晶聚合物和非晶聚合物均可以产生取向。
非晶态高聚物的取向,包括链段的取向和大分子链的取向,而结晶态高分子的取向包括晶区的取向和非晶区的取向,晶区的取向发展很快,非晶区取向较慢。
取向能提高拉伸制品的力学强度,还可使分子链有序性提高,这有利于结晶度的提高,从而提高其耐热性。
在纤维和薄膜的生产中取向状况的控制显得特别重要。
但对其他成型制品,如果流动过程中取向得以保存,则制品的力学强度会降低并易变型,严重时会造成内力不均而易开裂。
3. 请说出晶态与非晶态聚合物的熔融加工温度范围,并讨论两者作为材料的耐热性的好坏。
晶态聚合物:(1)若聚合物的分子量较小,Tm>Tf ,则聚合物达到熔点时已进入粘流态,则熔融加工温度范围即为Tm~Td(热分解温度);若聚合物的分子量较大,分子链相互作用力较大,当晶区熔融时,分子链还需要吸收更多能量克服分子间作用力,才能产生运动,因此聚合物的Tm<Tf ,则熔融加工温度范围为Tf ~Td。
非晶态聚合物:熔融加工温度范围为Tf ~Td。
比较结晶聚合物和非晶聚合物耐热性的好坏必须在两者化学结构相似的前提下。
在两者化学结构相似时,结晶聚合物由于晶区分子链排列较为规整,聚合物由固态变为熔融状态时,需要先吸收热量使晶区变为非晶区,然后再进入粘流态,非晶态聚合物由于分子链刚性较大,链柔顺性较差或者规整度较低,因此结晶聚合物比非晶态聚合物能够耐更高的温度,作为材料使用时,其耐热性更好些。
如结晶的等规聚苯乙烯的耐热性比非晶的无规聚苯乙烯高4. 为什么聚合物的结晶温度范围是Tg~Tm?答:T>Tm 分子热运动自由能大于内能,难以形成有序结构T<Tg 大分子链段运动被冻结,不能发生分子重排和形成结晶结构5.什么是结晶度?结晶度的大小对聚合物性能有哪些影响1)力学性能结晶使塑料变脆(耐冲击强度下降),韧性较强,延展性较差。
2)光学性能结晶使塑料不透明,因为晶区与非晶区的界面会发生光散射。
减小球晶尺寸到一定程式度,不仅提高了塑料的强度(减小了晶间缺陷)而且提高了透明度,(当球晶尺寸小于光波长时不会产生散射)。
3)热性能结晶性塑料在温度升高时不出现高弹态,温度升高至熔融温度TM 时,呈现粘流态。
因此结晶性塑料的使用温度从Tg(玻璃化温度)提高到TM (熔融温度)。
4)耐溶剂性,渗透性等得到提高,因为结晶分排列更加紧密。
6.何谓聚合物的二次结晶和后结晶?二次结晶:指一次结晶后,在残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程,此过程很缓慢,可能几年甚至几十年。
后结晶:指一部分来不及结晶的区域,在成型后继续结晶的过程,不形成新的结晶区域,而在球晶界面上使晶体进一步张大,是初结晶的继续。
7. 聚合物在成型过程中为什么会发生取向?成型时的取向产生的原因及形式有哪几种?取向对高分子材料制品的性能有何影响?答:在成型加工时,受到剪切和拉伸力的影响,高分子化合物的分子链将发生取向,依受力情况,取向作用可分为两类:(1)流动取向由于在管道或型腔中沿垂直于流动方向上各不同部位的流动速度不相同,由于存在速度差,卷曲的分子力受到剪切力的作用,将沿流动方向舒展伸直和取向。
(2)拉伸取向高分子化合物的分子链、链段或微晶等受拉伸力的作用沿受力方向排列,拉伸取向又分为单向拉伸和双向拉伸。
高分子材料经取向后,拉伸强度、弹性模量、冲击强度、透气性等增加。
8. 要使聚合物在加工中通过拉伸获得取向结构应在该聚合物的什么温度下拉伸?应该在聚合物的玻璃化温度和熔点之间进行因为分子在高于Tg 时才具有足够的活动,这样在拉应力的作用下分子才能从无规线团中被拉伸应力拉开、拉直和在分子彼此之间发生移动。
9. 分析并讨论影响热塑性塑料成型加工中熔体粘度的因素。
答:影响热塑性塑料成型加工熔体粘度的因素可分为内因和外因。
内因:(1)聚合物主链结构的影响:聚合物分子链柔性越大,缠结点越多,链的解缠和滑移越困难,聚合物流动时非牛顿性越强。
聚合物分子链刚性增加,分子间作用力愈大,粘度对剪切速率的敏感性减小,但粘度对温度的敏感性增加,提高这类聚合物的加工温度可有效改善其流动性。
聚合物分子中支链结构的存在对粘度也有很大的影响。
具有短支链的聚合物的粘度低于具有相同相对分子质量的直链聚合物的粘度;支链长度增加,粘度随之上升,支链长度增加到一定值,粘度急剧增高。
在相对分子质量相同的条件下,支链越多,越短,流动时的空间位阻越小,粘度越低,越容易流动。
较多的长支链可增加与临近分子的缠结几率,使流体流动阻力增加,粘度增大;长支链越多,粘度升高愈多,流动性愈差。
(2)相对分子质量的影响:聚合物相对分子质量增大,不同链段偶然位移相互抵消的机会增多,因此分子链重心转移减慢,要完成流动过程就需要更长的时间和更多的能量,所以聚合物的粘度随相对分子质量的增大而增加。
(3)相对分子质量分布的影响:相对分子质量分布宽的聚合物,对剪切敏感,即使在较低剪切速率或剪切应力下流动时,也比相对分子质量分布窄的聚合物更具有假塑性。
外因:(1)温度的影响:粘流温度以上,高聚物的粘度与温度的关系符合如下关系:Ln η= ln A + ΔEη/ RT分子链刚性越大,或分子间作用力越大,则高聚物的粘度对温度有较大的敏感性,可采用升高温度的方法降低成型加工粘度。
而柔性分子链的高聚物的粘度对温度敏感性较差。
(2)剪切速率的影响:在低和高剪切速率区,高聚物熔体的剪切粘度不随剪切速率而改变,而在中间剪切速率区,粘度随着剪切速率增加而降低。
柔性分子链的表观粘度随着剪切速率的增加明显下降,而刚性分子链粘度下降不多。
因此可采用提高转速的方法增加剪切速率,从而降低熔体粘度。
(3)压力的影响:压力增加,自由体积减小,分子间的相互作用增大,熔体粘度升高。
(4)添加剂的影响:增塑剂、润滑剂、稳定剂等小分子改性剂的加入,使聚合物共混物的粘度有所下降;而大量无机填料的添加会增加熔体的粘度。
Chapter3 添加剂10.高分子材料中加入添加剂的目的是什么?添加剂可分为哪些主要类型?①满足性能上的要求②满足成型加工上的要求③满足经济上的要求添加剂可分为稳定剂、增塑剂、润滑剂、交联剂、填充剂等11.什么是热稳定剂?热稳定剂可分为哪些主要类型?其中那些品种可用于食品和医药包装材料热稳定剂是一类能防止或减少聚合物在加工使用过程中受热而发生降解或交联,延长复合材料使用寿命的添加剂。
可分为铅盐类、金属皂类、有机锡类、有机锑类、有机辅助、复合稳定剂和稀土类稳定剂。
食药包装:有机锡类、有机锑类、复合稳定剂和稀土类稳定剂。
3.什么是热稳定剂?哪一类聚合物在成型加工中须使用热稳定剂?对于加有较多增塑剂和不加增塑剂的两种塑料配方,如何考虑热稳定剂的加入量?请阐明理由。
热稳定剂是指在加工塑料制品时为防止加工时的热降解或者防止制品在长期使用过程中老化而添加的物质。
热稳定剂主要用于PVC 塑料中,PVC 是热不稳定性的塑料,其加工温度与分解温度相当接近,只有加入热稳定剂才能实现在高温下的加工成型,制得性能优良的制品。
含较多增塑剂的塑料不加或少加热稳定剂,不加增塑剂的塑料应多加热稳定剂。
加入增塑剂的塑料降低了聚合物分子之间的作用力,制品的玻璃化温度和软化温度均降低,故可少加热稳定剂。
12.什么是抗氧剂和抗臭氧剂?其对高分子材料制品的作用机理有何不同?抗氧剂:可以阻止或者延缓高材自动氧化速度,延长其使用寿命的物质。
抗臭氧剂:可以阻止或者延缓高材发生臭氧破坏的化学物质。
不同:抗氧化剂抑制扩散到制品内部的氧,而抗氧化剂只是在制品表面上发挥作用。
13.什么是光稳定剂?提高聚合催化剂的活性对聚丙烯的光稳定性有何影响?光稳定剂:可有效地抑制光致降解物理和化学过程的一类添加剂。
影响:光敏催化剂,这种聚合物能够吸收一定波长的光线进入激发态,然后将吸收的能量转递给其他分子发生光化学反应,所以提高聚合催化剂的活性会使PP更易光降解。