混凝实验步骤
混凝实验步骤
混凝实验步骤(一)配置药品1、按需要配制溶液,用三氯化铁作混凝剂,配制浓度2g/L;以阴型聚丙烯酰胺为助凝剂,配制浓度0.05g/L。
2、确定原水的最佳透光率(吸光度)时的波长,由数据绘图求得。
3、测定原水特征。
(二)混凝剂最小投加量的确定1、调整原水pH并记入表3。
2、取6个500 ml杯子,分别取400 ml原水。
3、分别向烧杯中加入氯化铁,每次加入1.0 ml,同时进行搅拌(中速150r/min,5min),直至出现矾花,在表3中记录投加量。
4、停止搅拌,静止10min。
5、根据测得的浊度或吸光度或pH确定最小投加量A。
(三)混凝剂的最佳pH的选择1、用6支500 ml烧杯,分别取400 ml原水。
2、调整原水pH值,用移液管依次向1、2、3号装有原水的烧杯中,分别加入2.5 ml、1.5 ml、1.0 ml HCl,再向4、5、6号装有原水的烧杯中,分别加入0.2 ml、0.7 ml、1.2 ml NaOH。
3、快速搅拌300 r/min,0.5 min。
从每只烧杯中取50 ml水样,依次用pH仪测定各水样的pH值,记录在表4中。
4、用移液管依次向装有原水烧杯中加入相同剂量的混凝剂,投加剂量按实验最小投加量算。
5、快速搅拌300 r/min,0.5 min;中速搅拌150 min,10 min;慢速搅拌70r/min,10 min。
6、静止10 min,用50 ml注射筒分别抽取6个烧杯中的上清液(共抽三次约150 ml)放入200 ml烧杯中,同时用浊度仪测定水的剩余浊度,用光度计测定吸光度,用pH计测得pH值,记录在表4中。
(四)混凝剂的最佳投加量的选择1、用6个500 ml烧杯,分别取400 ml原水,将装有水样的烧杯置于六联搅拌机上。
2、将混凝剂按不同投量分别加入到400 ml原水样中,利用均分法确定此组实验的六个水样的混凝剂投加量,记录在表5中。
3、快速搅拌300 r/min,0.5 min;中速搅拌150 min,5 min;慢速搅拌70r/min,10 min。
混凝沉淀实验
混凝沉淀实验混凝沉淀实验是一种重要的水处理方式,可以将水中的悬浮物和有机物等杂质去除,从而使水质得到改善。
本文就混凝沉淀实验进行详细的介绍。
一、实验原理混凝沉淀实验的原理是利用混凝剂与悬浮物或有机物形成絮凝体,然后通过沉淀或过滤的方式将其去除。
混凝剂一般是一些带正电荷基团的高分子化合物,如聚丙烯酰胺、聚电解质等,它们能够吸附水中的负离子和颗粒物,并与之发生化学反应,形成大量的絮凝体。
随着絮凝体的增大,它们的密度也会逐渐增大,最终形成一个沉淀层,从而使水中的悬浮物和有机物得到去除。
二、实验步骤1、制备混凝剂溶液:取一定量的聚丙烯酰胺、硫酸铝钾等混凝剂,依次加入适量的蒸馏水中,搅拌至均匀即可。
2、制备原水:取适量的自来水或污水,在室温下搅拌均匀。
3、加入混凝剂溶液:将混凝剂溶液缓慢加入原水中,同时用玻璃杆轻轻搅拌,使混凝剂和水充分混合。
4、沉淀:等待一段时间,观察水中的悬浮物是否得到沉淀。
如果饱和度较高,可以加入一些碳酸钠调节pH值,促进沉淀的形成。
5、过滤:对于无法沉淀的悬浮物或有机物,可以通过过滤的方式进行去除。
选取一定的滤纸或过滤膜,在上面放置漏斗,将水过滤出去即可。
三、实验注意事项1、混凝剂的种类和用量应根据实际情况进行选择和调节,避免浪费和造成不必要的污染。
2、加入混凝剂时,应缓慢加入,并注意搅拌均匀,以充分发挥其混凝效果。
3、沉淀时,应注意观察沉淀的形成情况,及时调整pH值,促进沉淀的形成。
4、过滤时,选择合适的滤纸或过滤膜,避免粘附和遗漏。
5、实验结束后,应及时清洗实验仪器和工具,以避免留下污染物和影响下次实验。
四、实验结果混凝沉淀实验的结果主要体现在沉淀效果和悬浮物或有机物去除率上,通常采用浊度或残留物质含量等指标进行评价。
沉淀效果越好,悬浮物或有机物去除率也越高,说明混凝沉淀实验的效果越好。
五、实验应用混凝沉淀实验广泛应用于各类水处理工艺中,如自来水厂、废水处理厂、地下水处理等。
它可以有效地去除水中的悬浮物和有机物,降低水中的浊度、COD、BOD等污染指标,从而保障水质安全和环境健康。
混凝实验的基本操作流程
混凝实验的基本操作流程
一直以来,混凝实验就是给水/排水、自来水厂的重要工艺环节,所以,至今仍被广泛应用。
然而,有很多新用户不了解混凝实验的大概操作步骤,往往在进行试验时都会有点手足无措,所以,今天,本文就给大家详细的介绍一下混凝实验验的主要操作步骤流程,希望帮助到大家更明确的指导生产的混凝实验:
1、确定试验目的;
2、测定原水样的水温、PH值、浊度、色度、碱度等水质参数;
3、配置药剂,确定药剂的配比度;
4、将搅拌杯放置于搅拌器的设定位置,确定桨叶的轴心与搅拌杯的中心是否对准;
5、根据不同试验水样的水质,设定药剂的投加量,,该步骤须注意各试管中的药体积相等,配比均匀;
6、设定混凝搅拌转速、时间;
7、设定絮凝搅拌转速、时间;
8、启动搅拌器的按钮,当搅拌速度达到设定的混合转速时,需迅速向不同搅拌杯内同时加药,并记录搅拌时间,观察混凝状况
9、混凝搅拌完成后,需立即从搅拌杯中提出桨叶,同步记录沉淀时间,观察沉淀状况
10、待沉淀完全结束后,先从搅拌杯的取样口排掉少许水样,再取水样并测定浊度、PH值等水质参数,并记录对比。
总结:以上就是混凝实验的简要操作步骤,由于不同用户、不同试验的水力、条件各不相同,以及不同取水量条件下的混凝水力条件也有差别,所以,该步骤中未明确的设定混凝搅拌转速、时间以及絮凝搅拌转、时间,用户可根据临时试验状况自行设定,其次详细的《混凝沉淀(烧杯)试验方法》可参考武汉市梅宇仪器有限公司官网“技术支持”的具体方法。
武汉市梅宇仪器有限公司:混凝试验(实验)搅拌器、六联搅拌器专业生产厂家,《混凝沉淀(烧杯)试验方法》编辑单位。
混凝实验
混凝实验步骤本实验分为混凝药剂的筛选、最佳投药量、最佳pH值部分。
一、混凝药剂的筛选1、配制10L 1‰的藻土原水,开启机械搅拌机,使藻土始终保持悬浮状态;2、按讲义配制1%的硫酸铝铵、硫酸铝和氯化铁混凝剂,10%的HCl和NaOH;3、取4只锥形瓶(0#—3#),分别放入200mL原水,在1#-3#中分别滴加上述三种混凝剂(由3个同学配合同时滴加,其他同学观察现象并记录),每次滴加5滴并摇动直到出现矾花(0#也要同时摇动),静置30s,比较这三种混凝剂所形成的矾花状态(0#作为参照)。
继续滴加,进一步比较矾花的状态、大小、沉降速度和上清液的澄清度,筛选出一种混凝剂,做以下实验。
二、最佳投药量实验步骤1、取6个500mL的烧杯,分别放入200mL原水;2、确定原水特征,即测定原水水样的浊度(FTU)、pH值、温度;3、确定形成矾花所用的最小混凝剂量。
方法是通过慢速搅拌烧杯中200mL 原水,并每次增加0.5mL混凝剂投加量,直到出现矾花为止。
这时的混凝剂量作为形成矾花的最小投加量;4、确定实验时的混凝剂投加量。
根据步骤3得出的形成矾花的最小混凝剂投加量,取其1/3作为1号烧杯的混凝剂投加量,取其2倍作为6号烧杯的混凝剂投加量,用依次增加相等混凝剂投加量的方法求出2—5号烧杯的混凝剂投加量,把混凝剂分别加入到1—6号烧杯中(参考:对于FTU=60°的自配水,可分别加入1%的混凝剂1、2、4、5、6、8mL);5、在1号烧杯中放入搅拌子,启动磁力搅拌器,快速搅拌1.5min,慢速搅拌5min;关闭磁力搅拌器,静置沉淀10min,用移液管吸取上清液至比色皿中(注意:吸取上清液时不要扰动底部沉淀物,吸取位置也要尽量相同),立即用浊度仪测定浊度,并对测定结果进行纪录。
6、重复步骤“5”,分别测定2-6号烧杯上清液的浊度。
附:WGZ-200型散射式浊度仪操作步骤1、预热20分钟2、置量程10,先以空气调零,将标准浊度片(18.1°)放入光程中调校准3、先测纯水+比色皿的浊度,以后水样的的浊度测定值要扣除此值4、水样测定(如果读数超出量程,可置量程于100,但必须重新校正仪器)三、最佳pH值实验步骤1、取6个500ml的烧杯,分别放入200mL原水;2、确定原水特征,即测定原水水样的浊度、pH值、温度。
混凝实验报告(一)
混凝实验报告(一)混凝实验报告概述•目的:本次实验旨在探索混凝土的制备过程和性质。
•实验时间:2022年10月23日•实验地点:实验室A-305实验步骤1.准备实验材料:–水泥–砂子–骨料–水–混凝土摊铺模具2.材料配比:–根据所需混凝土强度和外观要求,选择合适的水泥、砂子、骨料比例。
3.搅拌混凝土:–将水泥、砂子和骨料适量放入搅拌机中;–开始搅拌,并逐渐加入适量清水,直至混凝土均匀。
4.浇筑混凝土:–将混凝土倒入摊铺模具中;–使用振动器震动模具,以排除气泡。
5.养护混凝土:–将模具中的混凝土放置在恒温恒湿环境中,进行养护;–养护时间视混凝土配比和强度要求而定。
实验结果•实验结束后,混凝土在养护期间发生硬化,具有一定的强度和耐久性。
•根据实验目的和需求,可以调整配比以获得不同强度、颜色和纹理的混凝土。
结论通过本次实验,我们了解了混凝土的制备过程和基本性质。
混凝土在工程建设中具有广泛的应用,能够满足不同工程项目的要求。
混凝土的配比和养护对其性能影响显著,需要根据实际需求进行调整。
实验注意事项•在操作过程中,务必佩戴防护手套和口罩,避免接触混凝土和呼吸有害物质。
•搅拌过程中注意保持机器平衡和稳定,避免事故发生。
•混凝土硬化后具有一定的刺激性,避免直接接触皮肤,必要时使用护肤霜或洗涤液清洗。
实验改进方向•在实验中可以尝试不同配比的混凝土,比较其强度和耐久性的变化。
•可以在养护过程中设置不同的温度和湿度条件,观察对混凝土性能的影响。
总结混凝土是一种常见的建筑材料,具有优越的力学性能和耐久性。
通过本次实验,我们对混凝土的制备过程和基本性质有了更深入的了解。
合理的配比和养护措施能够改善混凝土的质量,满足不同工程项目的需求。
参考文献•张三, 李四. 混凝土制备与性能分析[J]. 建筑材料学报, 2021, 28(6): .•王五, 赵六. 混凝土硬化过程中的微观结构变化研究[J]. 化学与材料工程, 2022, 39(3): 89-95.。
混凝实验
混凝沉淀实验操作流程实验目的:1、了解混凝的现象及过程,净水作用及影响混凝的主要因素。
2、学会求水样最佳混凝条件(包括投药量、pH值、水流速度梯度)的基本方法。
3、了解助凝剂对混凝效果的影响。
实验步骤:1、最佳投药量实验步骤①确定原水特征,即测定原水水样浑浊度、pH、温度。
②确定形成矾花所用的最小混凝剂量。
方法是通过慢速搅拌(或50r/min)烧杯中800mL原水,并每次增加0.5mL混凝剂投加量,直至出现矾花为止。
这时的混凝剂量作为形成矾花的最小投加量。
③用6个1000mL的烧杯,分别放入800mL原水,置于混凝试验搅拌仪平台上。
④确定实验时的混凝剂投加量。
根据步骤(2)得出的形成矾花最小混凝剂投加量,取其1/4作为1号烧杯的混凝剂投加量,取其1/2,3/4,1,3/2,2倍作为2~6号烧杯的混凝剂投加量。
加药时,把混凝剂分别加到仪器上1~6号加药管中,这样可以保证同时加药。
⑤启动搅拌机,快速搅拌30 s,转速约300 r/min;中速搅拌6min,转速约100 r/min;慢速搅拌6min,转速约50 r/min。
如果用污水进行混凝实验,污水胶体颗粒比较脆弱,搅拌速度可适当放慢。
⑥关闭搅拌机,抬起搅拌桨,静置沉淀5 min,用50 mL注射针筒抽取烧杯中的上清液100 mL(共抽三次约100mL)放入200 mL烧杯内,立即用浊度仪测定浊度(每杯水样测定三次),记入表1中。
2、最佳pH实验步骤①用6个1000mL的烧杯,分别放入800mL原水,置于混凝试验搅拌仪平台上。
②调整原水pH,用移液管依次向1号,2号,3号装有水样的烧杯中分别加入1.5mL,1.0mL,0.5mL 10%浓度的盐酸。
依次向5号,6号装有水样的烧杯中分别加入0.5mL,1.0mL 10%浓度的氢氧化钠。
③启动搅拌机,快速搅拌30 s,转速约300 r/min。
用酸度计测定各水样的pH,记入表2中。
④利用仪器的加药管,向各烧杯中加入相同剂量的混凝剂(最佳剂量采用实验步骤一中得出的最佳投药量结果)。
实验1 混凝实验
实验1 化学混凝实验混凝实验是水处理的基础实验之一,被广泛应用于科研、生产中。
分散在水中的胶体颗粒带有电荷,同时在布朗运动及其表面水化膜作用下,长期处于稳定分散状态,不能用自然沉淀法去除。
向这种水中投加混凝剂后,可以使分散颗粒相互结合聚集增大,从水中分离出来。
由于各种原水有很大差别,混凝效果不尽相同。
混凝剂的混凝效果不仅取决于混凝剂投加量,同时还取决于水的pH值、水流速度梯度等因素。
通过混凝实验,不仅可以选择投加药剂种类、数量,还可确定混凝最佳条件。
一、实验目的1. 学会求得某水样最佳混凝条件(包括pH值、投药量)的基本方法。
2. 了解混凝的现象及过程,观察矾花的形成及混凝沉淀效果。
3. 加深对混凝机理的理解。
二、实验原理化学混凝法是用来去除水中无机和有机的胶体颗粒。
通常废水中的胶体颗粒的大小变化约在100埃到10微米之间,胶粒之间的静电斥力、胶粒的布朗运动及胶粒表面的水化作用,使胶粒具有分散稳定性,使胶粒靠自然沉淀不能除去。
混凝过程包括胶体的脱稳和颗粒增大的凝聚作用,随后这些大颗粒可用沉淀、气浮或过滤法去除。
消除或降低胶体颗粒稳定因素的过程叫脱稳,脱稳是通过投加强的阳离子电解质如Al3+、Fe3+或阳离子高分子电解质来降低Zeta电位,或者是由于形成了带正电荷的含水氧化物而吸附胶体,或者是通过阴离子和阳离子高分子电解质的自然凝聚,或者是由于胶体被围在含水氧化物的矾花内等方式来完成的。
混凝剂使胶体脱稳的主要作用是压缩双电层和吸附架桥。
脱稳后的胶粒,在一定的水力条件下,能形成较大的絮凝体(俗称矾花),该过程称为凝聚。
由于布朗运动造成的颗粒碰撞絮凝,叫“异向絮凝”;由机械运动或液体流动造成的颗粒碰撞絮凝,叫“同向絮凝”。
异向絮凝只对微小颗粒起作用,当粒径大于1~5微米时,布朗运动基本消失。
从胶体颗粒变成较大的矾花是一连续过程,为了研究方便可划分为混合和反应两个阶段。
混合阶段要求混凝剂和废水快速混合均匀,一般在几秒钟或一分钟内完成,该阶段只能产生肉眼难以看见的微絮凝体;反应阶段要求搅拌强度随矾花的增大而逐渐降低以免结大的矾花被打碎而影响混凝的效果,反应时间约15~30min,该阶段微絮凝体形成较密实的大粒径矾花。
混凝实验报告
混凝实验报告实验目的,通过混凝实验,研究混凝剂对水质的净化效果,探讨最佳混凝剂用量及混凝时间,为水处理工程提供科学依据。
实验原理,混凝是指在水中加入混凝剂后,使水中的悬浮物、胶体物质凝聚成较大的絮凝体,便于后续的沉降或过滤。
混凝剂一般为阳离子、阴离子或非离子高分子物质,其作用机理主要有吸附、中和、电中和和凝聚等。
实验材料与方法:材料,实验室自来水、混凝剂(聚合氯化铝)、搅拌器、玻璃容器、pH计、浊度计等。
方法:1. 取一定量自来水倒入玻璃容器中;2. 用搅拌器将水搅拌均匀;3. 用pH计检测水的初始pH值;4. 在搅拌的同时,向水中加入不同剂量的混凝剂;5. 混凝一定时间后停止搅拌,观察絮凝体的生成情况;6. 用浊度计检测水的浊度,记录下实验数据。
实验结果与分析:经过一系列实验,我们得出以下结论:1. 随着混凝剂用量的增加,水中絮凝体的生成量逐渐增加,浊度逐渐降低,水质得到了改善;2. 随着混凝时间的延长,絮凝体的大小逐渐增加,浊度进一步降低,但当混凝时间过长时,絮凝体又会发生分散,浊度会有所上升;3. 初始水质的pH值对混凝效果也有一定影响,一般情况下,pH值在6.5-7.5之间时,混凝效果较好。
结论:混凝实验结果表明,聚合氯化铝作为混凝剂,能够有效地改善水质,提高水的透明度,减少水中的悬浮物和胶体物质。
在实际应用中,应根据水质的不同情况,合理控制混凝剂的用量和混凝时间,以达到最佳的净化效果。
总结:通过本次混凝实验,我们对混凝剂的作用机理和影响因素有了更深入的了解,为今后的水处理工程提供了有益的参考。
同时,也为我们提供了实验操作的经验,为今后的科研工作打下了坚实的基础。
实验报告撰写人,XXX。
日期,XXXX年XX月XX日。
混凝实验报告
混凝实验报告混凝实验报告引言:混凝是一种常见的水处理技术,用于去除水中的悬浮物和溶解物,以提高水质。
本实验旨在通过模拟混凝过程,探究不同条件下的混凝效果,并分析其影响因素。
实验材料与方法:1. 实验材料:- 水样:采集自自来水厂的自来水- 混凝剂:聚合氯化铝(PAC)- 混凝剂浓度:0.1 g/L、0.2 g/L、0.3 g/L- 水样pH值调节剂:氢氧化钠(NaOH)、盐酸(HCl)2. 实验方法:- 步骤一:准备三个不同浓度的混凝剂溶液,分别为0.1 g/L、0.2 g/L、0.3g/L。
- 步骤二:取一定量的自来水样,分成三组,每组分别加入相应浓度的混凝剂溶液。
- 步骤三:使用搅拌器将混凝剂与水样充分混合,搅拌时间为5分钟。
- 步骤四:待混凝剂与水样反应完成后,停止搅拌并静置一段时间,观察悬浮物的沉降情况。
- 步骤五:测量不同条件下水样的浊度,并记录结果。
实验结果与分析:在进行实验过程中,观察到不同浓度的混凝剂对水样的混凝效果有显著影响。
通过测量水样的浊度,可以客观地评估混凝效果。
1. 不同混凝剂浓度对混凝效果的影响:在实验中,我们分别使用了0.1 g/L、0.2 g/L和0.3 g/L的混凝剂浓度。
结果显示,随着混凝剂浓度的增加,水样的浊度逐渐降低。
这是因为混凝剂中的聚合氯化铝可以与水中的悬浮物发生化学反应,形成较大的絮凝物,从而使悬浮物沉降速度加快。
2. pH值对混凝效果的影响:pH值是另一个影响混凝效果的重要因素。
在实验中,我们分别使用氢氧化钠和盐酸来调节水样的pH值。
结果显示,在酸性条件下(pH值低于7),混凝效果更好,浊度降低更为明显。
这是因为在酸性条件下,混凝剂与水中的悬浮物更容易发生反应,形成较大的絮凝物。
3. 混凝时间对混凝效果的影响:在实验中,我们观察到混凝剂与水样反应后的静置时间也会对混凝效果产生影响。
随着静置时间的延长,悬浮物的沉降速度逐渐加快,浊度逐渐降低。
这是因为较大的絮凝物在静置过程中会逐渐沉降,从而使水样变得更清澈。
污水混凝实验操作规程
污水混凝实验操作规程污水混凝实验是指利用化学混凝剂将污水中的悬浮物和胶体物质聚集在一起形成沉淀以便于后续处理的一种方法。
下面是污水混凝实验的操作规程,供参考:一、实验前准备1. 配置所需的草酸溶液、硫酸溶液、浓缩盐酸溶液等混凝剂和试剂,并检查其浓度是否符合要求。
2. 准备所需的玻璃器皿,如烧杯、试管、容量瓶等,并进行清洗消毒。
3. 确保实验室安全,佩戴实验服、眼镜和手套。
4. 请确保实验操作环境通风良好,防止有害气体的滞留。
二、混凝试验操作步骤1. 取一定量的污水样品,如500ml,并记录初始COD (化学需氧量)、浊度等参数。
2. 将污水样品倒入烧杯中,并在搅拌器的辅助作用下,搅拌一定时间,使污水中的悬浮物均匀分散。
3. 在搅拌的同时,向污水中均匀加入适量的混凝剂,开始混凝试验。
混凝剂的加入量需事先确定,并根据试验要求进行调整。
4. 在混凝试验过程中,要保持搅拌器的速度和时间的一致性,以确保样品悬浮物的充分接触和混合。
5. 混凝试验一般需要维持一定的温度和pH值,应根据试验要求进行调整。
在调节温度时可以使用恒温水浴器,调节pH值时可以使用酸碱溶液。
6. 在混凝试验的过程中,要定期取出一定量的样品,进行COD和浊度的测试,并记录在试验记录表中。
7. 混凝试验时间一般为20-30分钟,待试验结束后,停止搅拌器的工作。
三、混凝试验后处理1. 停止搅拌器的工作后,等待一段时间,观察污水中悬浮物的沉降情况。
通过目测或使用离心机进行悬浮物的分离与沉淀。
2. 将沉淀物和上清液进行分离,可以通过静置或者离心分离等方式进行操作。
3. 沉淀物的重量可以进行称量,并计算去除率。
上清液可以进行过滤,然后测定其COD和浊度的去除率。
4. 对实验结果进行记录和整理,并进行数据分析和比较。
四、实验安全注意事项1. 毒性物质或有害气体存在时,应佩戴好防护装备和使用合适的防护措施。
2. 操作时要注意手部的防护,避免化学物质直接接触皮肤。
实验一化学混凝实验
实验一化学混凝实验一、实验目的分散在水中的胶体颗粒带有电荷,同时在布朗运动及其表面水化作用下,长期处于稳定分散状态,不能用自然沉淀方法去除。
向这种水中投加混凝剂后,可以使分散颗粒相互结合聚集增大,从水中分离出来。
由于各种废水差别很大,混凝效果不尽相同。
混凝剂的混凝效果不仅取决于混凝剂种类、投加量,同时还取决于水的pH、水温、浊度、水流速度梯度等影响。
通过本次实验,希望达到以下目的:1、加深对混凝沉淀原理的理解;2、掌握化学混凝工艺最佳混凝剂的筛选方法;3、掌握化学混凝工艺最佳工艺条件的确定方法。
二、实验原理化学混凝的处理对象主要是废水中的微小悬浮物和胶体物质。
根据胶体的特性,在废水处理过程中通常采用投加电解质、相反电荷的胶体或高分子物质等方法破坏胶体的稳定性,使胶体颗粒凝聚在一起形成大颗粒,然后通过沉淀分离,达到废水净化效果的目的。
关于化学混凝的机理主要有以下四种解释。
1、压缩双电层机理当两个胶粒相互接近以至双电层发生重叠时,就产生静电斥力。
加入的反离子与扩散层原有反离子之间的静电斥力将部分反离子挤压到吸附层中,从而使扩散层厚度减小。
由于扩散层减薄,颗粒相撞时的距离减少,相互间的吸引力变大。
颗粒间排斥力与吸引力的合力由斥力为主变为以引力为主,颗粒就能相互凝聚。
2、吸附电中和机理异号胶粒间相互吸引达到电中和而凝聚;大胶粒吸附许多小胶粒或异号离子,ξ电位降低,吸引力使同号胶粒相互靠近发生凝聚。
3、吸附架桥机理吸附架桥作用是指链状高分子聚合物在静电引力、范德华力和氢键力等作用下,通过活性部位与胶粒和细微悬浮物等发生吸附桥连的现象。
4、沉淀物网捕机理当采用铝盐或铁盐等高价金属盐类作凝聚剂时,当投加量很大形成大量的金属氢氧化物沉淀时,可以网捕、卷扫水中的胶粒,水中的胶粒以这些沉淀为核心产生沉淀。
这基本上是一种机械作用。
在混凝过程中,上述现象常不是单独存在的,往往同时存在,只是在一定情况下以某种现象为主。
三、实验材料及装置1、主要实验装置及设备(1)化学混凝实验装置采用是六联搅拌器,其结构如图1所示。
混凝实验报告三篇
混凝实验报告三篇一、混凝实验报告实验类型:混凝实验实验目的:测试混凝剂对混凝剂/水体系的影响,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 将混凝剂装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂/水体系的比例;4. 测量混凝剂/水体系的温度及湿度;5. 记录混凝剂使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂使用量,重复2-5步,最后得出混凝剂使用量对混凝剂/水体系的影响。
二、混凝实验报告实验类型:混凝实验实验目的:研究不同混凝剂对混凝剂/水体系的影响,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 分别将混凝剂A、B、C装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂/水体系的比例;4. 测量混凝剂A/水体系的温度及湿度,测量混凝剂B/水体系的温度及湿度,测量混凝剂C/水体系的温度及湿度;5. 记录混凝剂A、B、C使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂A、B、C使用量,重复2-5步,最后得出不同混凝剂使用量对混凝剂/水体系的影响。
三、混凝实验报告实验类型:混凝实验实验目的:评估混凝剂与水体系的相互作用,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 将混凝剂A、B、C装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂A/水体系的比例,取出混凝剂B/水体系的比例,取出混凝剂C/水体系的比例;4. 测量混凝剂A/水体系的温度及湿度,测量混凝剂B/水体系的温度及湿度,测量混凝剂C/水体系的温度及湿度;5. 记录混凝剂A、B、C使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂A、B、C使用量,重复2-5步,最后评估混凝剂与水体系的相互作用,以及混凝剂使用量对水体系的影响。
混凝实验方法
实验三混凝实验一、实验目的1、观察混凝现象;2、了解影响混凝的主要因素;3、确定混凝剂的最佳投加量及相应的pH值、搅拌时间,并选择最适宜的混凝剂。
二、实验原理在废水中常含有用重力沉降法不能除去的细微悬浮物和胶体粒子,其粒径分别为100~10000nm和1~100nm。
由于布朗运动、水合作用以及微粒间的静电斥力作用,使胶体粒子和细微悬浮物能在水中长期保持悬浮状态,静置不沉。
混凝过程首先是要混凝剂形成带正电荷的氢氧微型矾花,并同胶体悬浮物接触使其失去稳定性,接着发生使颗粒增大的凝聚作用(有时为了促进凝聚还需加入助凝剂)。
随后这些大颗粒可用沉淀、浮选或过滤等方法去除。
废水在混凝剂的离解和水解产物的作用下,使水中的胶体污染物和细微悬浮物脱稳并聚积为具有可分离性的絮凝过程,称为混凝(包括凝聚和絮凝两个过程)。
其中凝聚是指使胶体脱稳并聚集为微絮粒的过程,而絮凝指微絮粒通过吸附桥联、网罗卷捕(网捕)形成更大的絮体的过程。
为了获得易于分离的絮凝体和尽可能低的出水浊度,必须考虑废水浓度、性质、pH值以及混凝剂的种类、用量、搅拌时间等因素对试验的影响。
由于每种混凝剂都有一个形成矾花的最佳pH值,因此,在对各种混凝剂进行对比实验前,应先测定各种混凝剂的最佳pH 值,然后再进行投药量试验。
三、实验材料及设备1、自制生活废水或工业废水水样;2、混凝剂:三氯化铁、聚合硫酸铝、聚合氯化铝、聚合硫酸铁等(常见无机盐混凝剂及性能见附表I);3、烧杯24个(1mL)、量筒4个(25mL)、温度计、pH计等;4、悬浮物测定仪器、搅拌器、分光光度计。
四、实验步骤1、测定原水的温度、SS浓度(或透光率)、pH值等;2、确定在废水中能形成矾花的近似最小混凝剂用量。
在量筒中加入200mL样品废水,然后每次加入1mL混凝剂并且不断地满满搅拌废水,直到刚好出现矾花时记录下混凝剂用量。
将此用量换算成mg/L,即为近似的最小混凝剂用量。
3、在6只烧杯内各加入1L样品废水,并在各烧杯内加入混凝剂使其剂量等于最小混凝剂用量。
混凝实验报告
混凝实验报告混凝实验报告一、实验目的1、了解混凝剂混凝机理及作用方式;2、掌握常用混凝剂对水质的处理效果;3、熟悉混凝工艺操作步骤。
二、实验原理混凝时,混凝剂与水中有害物质发生化学反应或电荷中和作用,形成较大的絮凝团,并形成一定密度的絮体,从而使水中溶解物、悬浮物或胶体颗粒等杂质得以集结、附着并迅速沉降。
混凝剂主要有无机盐和有机高聚物两大类,常用的有氯化铝、硫酸铝、聚合铁盐、聚合铝盐等。
三、实验步骤1、将水样倒入混凝澄清装置中;2、将混凝剂按照一定比例加入混凝槽,并进行搅拌;3、待混凝剂与水中的杂质充分反应后,停止搅拌;4、观察混凝后水样的悬浮物;5、待悬浮物沉降后,取上清液进行测定。
四、实验结果与分析通过本次实验,分别使用了氯化铝和聚合铁盐作为混凝剂进行处理。
实验结果表明,两种混凝剂均能使水样中的悬浮物集结成絮体并沉降,但聚合铁盐的效果更好。
这是因为聚合铁盐是一种高分子有机聚合物,具有较强的吸附能力和官能团化合作用,能有效地集结水中的杂质。
五、实验总结本次实验通过混凝实验,初步了解了混凝剂的混凝机理和作用方式,掌握了常用混凝剂对水质的处理效果。
在实验操作过程中,需要注意混凝剂的投加量和混凝时间,以及混凝后需等待悬浮物沉降后再进行测定。
同时,还需要注意混凝剂的种类选择,根据水质和实际情况来确定最佳的混凝剂。
六、参考文献[1] 水处理学. 朱成钢,刘上岐主编. 北京:中国建筑工业出版社,2014.[2] 环境工程学. 丁仲礼,林长森编著. 北京:中国建筑工业出版社,2011.[3] 膨胀土等胶结材料的沉降实验研究[D]. 成都:西南交通大学,2015.。
环境工程专业实验——混凝
混凝实验一实验目的1.了解混凝的现象及过程,净水作用及影响混凝的主要因素;2.学会求水样最佳混凝条件(包括投药量、pH值、水流速度梯度)的基本方法;3.了解助凝剂对混凝效果的影响。
二实验原理胶体颗粒带有一定电荷,它们之间的电斥力是胶体稳定性的主要因素。
胶体表面的电荷值常用电动电位ξ表示,又称为Zeta电位。
Zeta电位的高低决定了胶体颗粒之间斥力的大小和影响范围。
一般天然水中的胶体颗粒的Zeta电位约在-30mV以上,投加混凝剂之后,只要该电位降到-15mV左右即可得到较好的混凝效果。
相反,当Zeta电位降到零,往往不是最佳混凝状态。
投加混凝剂的多少,直接影响混凝效果。
水质是千变万化的,最佳的投药量各不相同,必须通过实验方可确定。
在水中投加混凝剂如Al2(SO4)3、FeCl3后,生成的Al(III)、Fe(III)化合物对胶体的脱稳效果不仅受投加的剂量、水中胶体颗粒的浓度、水温的影响,还受水的pH值影响。
如果pH值过低(小于4),则混凝剂水解受到限制,其化合物中很少有高分子物质存在,絮凝作用较差。
如果pH值过高(大于9~10),它们就会出现溶解现象,生成带负电荷的络合离子,也不能很好地发挥絮凝作用。
投加了混凝剂的水中,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体。
混凝剂量少,达不到降低浊度的目的,混凝剂量过多,混凝效果反而下降,浊度增大,所以通过实验有最佳的投药量。
选定水样的pH,投药量从最小(确定形成矾花所用的最小混凝剂量:通过慢速搅拌烧杯中500ml的原水,并每次增加1ml混凝剂,直至出现矾花为止,这时的混凝剂作为形成矾花的最小投加量。
一般以5ml为最小混凝剂量)逐级递加,取6个药量梯度。
当单独使用混凝剂不能取得预期效果时,需投加助凝剂以提高混凝效果。
助凝剂通常是高分子物质,作用机理是高分子物质的吸附架桥,它能改善絮凝体结构,促使细小而松散的絮粒变得粗大而结实。
三实验设备仪器1.六联搅拌机(附6个800ml烧杯,实验水样选用500ml体积);2. pH计; 3.温度计; 4.浊度仪。
(完整版)混凝
混凝沉淀实验一、实验目的1、要求认识几种混凝剂,掌握其配制方法;2、观察混凝现象,从而加深对混凝理论的理解。
二、实验原理水中粒径小的悬浮物以及胶体物质,由于微粒的布朗运动,胶体颗粒间的静电斥力和胶体表面的水化作用,致使水中这种含浊状态稳定。
向水中投加混凝剂后,由于如下原因:①能降低颗粒间的排斥能峰,降低胶粒的δ电位,实现胶粒“脱稳”;②发生高聚物式高分子混凝剂的吸附架桥作用;③网捕作用,从而达到颗粒的凝聚。
三、实验设备及药品按每4人一组配置数量如下:1、设备⑴ 1000mL量筒,2个;⑵ 1000mL烧杯,6个;⑶ 100mL烧杯,2个;⑷ l0mL移液管,2个;⑸ 2mL移液管,1个;⑹医用针筒,1个;⑺洗耳球,1个;⑻2100P浊度仪,1台;⑼ ZR4-6混凝搅拌器,1台;⑽ pH计,1台。
⑾温度计,1根。
2、药品⑴Al2(SO4)3⑵FeCl3四、实验方法1、方法一混凝搅拌器变速混凝实验实验步骤如下:(1)认真了解ZR4--6型混凝搅拌器的使用方法。
(2)用1000ml量筒取6个水样至6个1000mL烧杯中.注意:所取水样要搅拌均匀,要一次量取,以尽量减少取样浓度上的误差。
(3)按10、20、30、40、50、60、70、80mg/L的量将 Al2(SO4)3或FeCl3依次加入各水样中。
(4)将第一组水样置于ZR4——6型混凝搅拌器下.(搅拌时间和程序已按说明书预先设定好)与此同时,按计算好的投药量,用移液管分别移取不同体积的混凝剂逐个加到加药试管中.(5)开动机器,在搅拌器第一次自动加药后,用蒸馏水冲洗加药试管2次。
(6)搅拌器以500r/min的速度搅拌30s,150r/min的速度搅拌5min,80r/min的速度搅拌10min。
(7)搅拌过程中,注意观察并记录“矾花”形成的过程,“矾花”形成的快慢、外观、大小、密实程度、下沉快慢等。
(8)搅拌过程完成后,搅拌器自动停机,水样静沉15min,继续观察并记录“矾花”沉淀的过程,记入表1—1—2内。
混凝实验报告
混凝实验报告一、引言混凝作为一种常见且重要的实验,在水处理、建筑材料等领域都具有广泛的应用。
本次实验旨在探究不同因素对混凝效果的影响,以期提高混凝效率和质量。
二、实验方法1. 实验原理混凝是通过添加混凝剂,使悬浮在水中的细小颗粒迅速沉淀并凝结成块状的过程。
常用的混凝剂包括硫酸铝、聚合氯化铝等。
2. 实验装置与试剂本次实验所需的装置包括:玻璃棒、磁力搅拌器、容量瓶、滴定管、烧杯等。
试剂包括硫酸铝、水样。
3. 实验步骤(1)准备工作:清洗实验仪器、准备试剂。
(2)制备不同浓度的混凝液:将一定量的硫酸铝加入不同的容量瓶中,并用去离子水稀释,得到不同浓度的混凝液。
(3)取样测试:从水样中取一定量的样品,加入混凝液中,并在磁力搅拌器上搅拌均匀。
(4)观察与分析:观察混凝液的沉淀情况,计算混凝效果。
三、实验结果与分析在本次实验中,我们按照不同的浓度制备了三组混凝液,分别为5%、10%和15%的硫酸铝混凝液。
并在同样条件下,将水样加入各组混凝液中进行反应。
经过一段时间的搅拌,观察到混凝液中颗粒逐渐沉淀,并形成混凝块,混凝效果明显。
其中,浓度为15%的混凝液效果最佳,沉淀块形状更为饱满、坚固。
混凝效果的优劣主要受到混凝剂浓度、反应时间和水样质量的影响。
较高的混凝剂浓度可以提高混凝效果,但当浓度过高时,反而会造成过度凝结,使混凝块过于致密而难以分离。
因此,在实际应用中,需要根据具体需求选择适当的混凝剂浓度。
反应时间也是影响混凝效果的重要因素。
反应时间过短,颗粒可能没有完全沉淀;反应时间过长,可能会出现过度凝结的情况。
因此,在实验操作中,我们需要掌握合理的反应时间,以获得最佳的混凝效果。
水样的质量也会对混凝效果产生影响。
水样中悬浮颗粒的种类和浓度不同,对混凝液的混凝效果也会有所差异。
在实际应用中,需要根据具体的水质情况选择合适的混凝剂和浓度。
四、结论本次实验通过制备不同浓度的硫酸铝混凝液,加入水样进行混凝实验,得出以下结论:1. 混凝剂浓度较高可以提高混凝效果,但过高的浓度会导致过度凝结。
混凝实验
一、实验目的二、实验原理三、主要影响因素:PH值、混凝剂的加入量、混凝剂与水的混合、温度、水中杂质、接触介质、接触时间四、实验设备:500ml烧杯、玻璃棒、混凝剂(PAC)、量筒五、实验试样:校池塘水六、实验药剂:1000ppmPAC、10%HCL、10%NaOH七、实验步骤:混凝实验混凝剂最佳加入量测定(1)1000ppmPAC溶液(2)取8个烧杯洗净并编号备用(3)每个烧杯加入500ml水样,PAC加入量的方案见下表,用清洁的玻璃棒在烧杯中快速搅拌1min、然后慢速搅拌2min(4)剩余水样加入0号烧杯,不做任何处理,仅作对比用(5)搅拌后,在水样静止沉淀20分钟,仔细观察以下项目:一、形成绒粒的快慢,二、绒粒之间水的透明度,三、绒粒大小和沉降快慢,并记录在表(6)数据分析对比,按观察项目排列混凝效果顺序,以确定最佳混凝剂加入量。
组长:一、实验目的二、实验原理三、主要影响因素:PH值、混凝剂的加入量、混凝剂与水的混合、温度、水中杂质、接触介质、接触时间四、实验设备:500ml烧杯、玻璃棒、混凝剂(PAC)、量筒五、实验试样:校池塘水六、实验药剂:1000ppmPAC、10%HCL、10%NaOH七、实验步骤:混凝实验混凝剂最佳混合速度测定(1)1000ppmPAC溶液(2)取8个烧杯洗净并编号备用(3)每个烧杯加入500ml水样,PAC加入量的方案见下表,用清洁的玻璃棒在烧杯中快速搅拌1min、然后慢速搅拌2min(4)剩余水样加入0号烧杯,不做任何处理,仅作对比用(5)搅拌后,在水样静止沉淀20分钟,仔细观察以下项目:一、形成绒粒的快慢,二、绒粒之间水的透明度,三、绒粒大小和沉降快慢,并记录在表(6)数据分析对比,按观察项目排列混凝效果顺序,以确定最佳混合速度。
组长:一、实验目的二、实验原理三、主要影响因素:PH值、混凝剂的加入量、混凝剂与水的混合、温度、水中杂质、接触介质、接触时间四、实验设备:500ml烧杯、玻璃棒、混凝剂(PAC)、量筒五、实验试样:校池塘水五、实验药剂:1000ppmPAC、10%HCL、10%NaOH七、实验步骤:混凝实验混凝剂最佳PH测定(1)1000ppmPAC溶液(2)取8个烧杯洗净并编号备用(3)每个烧杯加入500ml水样,PAC加入量的方案见下表,用清洁的玻璃棒在烧杯中快速搅拌1min、然后慢速搅拌2min(4)剩余水样加入0号烧杯,不做任何处理,仅作对比用(5)搅拌后,在水样静止沉淀20分钟,仔细观察以下项目:一、形成绒粒的快慢,二、绒粒之间水的透明度,三、绒粒大小和沉降快慢,并记录在表(6)数据分析对比,按观察项目排列混凝效果顺序,以确定最佳ph值。
混凝实验报告
混凝实验报告
混凝土是一种强度高、抗压性好的建筑材料。
为了保证混凝土的质量,在混凝土生产和施工过程中,需要进行实验来测试混凝土的性能。
本次实验主要测试了混凝土的抗压强度。
实验采用了标准的混凝土试块,试块尺寸为150mm x 150mm x 150mm。
实验步骤如下:
1. 准备混凝土试块,按比例将水泥、砂子、石子混合,在搅拌机中搅拌均匀。
2. 将混合好的混凝土倒入试块模具中,用振动器振动5-10秒。
3. 将试块模具放置于震动平台上,进行标准养护。
试块在混凝土龄期达到28天时进行测试。
4. 在试块上打上编号,并将其放在试验机上。
试验机按标准压缩试验进行测试,测试过程中保持稳定的速度。
5. 测试完成后,根据试验机显示的数据计算出试块的抗压强度。
实验结果如下:
试块编号抗压强度(MPa)
1 31
2 34
3 29
4 36
5 32
平均抗压强度为32.4MPa。
结论:本次实验结果表明,混凝土的抗压强度符合标准要求,可以满足建筑使用的要求。
混凝土的抗压强度受到多种因素的影响,包括水泥的质量、混合比例、搅拌时间等。
因此,对于不同的混凝土应用场景,需要采用不同的比例和质量的原材料来配制混凝土,以获得合适的强度和性能。
(完整word版)混凝实验
混凝沉淀实验混凝沉淀工艺在给水和废水处理中被广泛的应用,是重要的水处理技术之一。
通过混凝沉淀实验,可以了解混凝工艺中主要参数的确定:如混凝剂种类的选择,混凝剂投加量的确定,以及其它影响混凝条件的相关因素。
一、实验目的(1)观察矾花的形成过程及混凝沉淀效果,加深对混凝理论的理解。
(2)选择和确定最佳混凝工艺条件二、实验原理混凝阶段所处理的对象,主要是水中悬浮物和胶体杂质。
天然水中存在着大量悬浮物,悬浮物的形态是不同的,有些大颗粒悬浮物可以在自身重力作用下沉降;而另一种是胶体颗粒,是使水产生混浊的一个重要原因,胶体颗粒靠自然沉降是不能除去的,因为,水中的胶体颗粒主要是带负电的粘土颗粒,胶粒间存在着静电斥力、胶粒的布朗运动、胶粒表面的水化作用,使胶粒具有分散稳定性,三者中以静电斥力影响最大.若向水中投加混凝剂提供大量的正离子,压缩胶体的双电层,使ξ电位降低,静电斥力减小,此时布朗运动由稳定因素转为不稳定因素,有利于胶粒的凝聚。
水化膜中的水分子与胶粒有固定联系,具有弹性较高的粘度,把这些水分子排挤出去需要克服特殊的阻力,这种阻力阻碍胶粒直接接触。
有些水化膜的存在决定于双电层状态,投加混凝剂降低ξ电位,有可能使水化作用减弱。
混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用,此时即使ξ电位没有降低或降低不多,胶粒之间不能相互接触,但通过高分子链状物吸附胶粒,也能形成絮凝体。
消除或降低胶体颗粒稳定因素的过程叫脱稳。
脱稳后的胶粒,在一定的水力条件下,才能形成较大的絮凝体,俗称矾花。
直径较大而密实的矾花容易下沉。
自投加混凝剂直至形成较大矾花的过程叫混凝。
混凝过程见表1表1-混凝过程“同向絮凝”。
异向絮凝只对微小颗粒起作用,当粒径大于1~5µm时,布朗运动基本消失.从胶体颗粒变成较大矾花是一个连续过程,为了研究方便可划分为混合和反应两个阶段。
混合阶段要进行剧烈搅拌,目的使使混凝药剂快递均匀的分散与水中以利于混凝剂的快速水解、聚合和颗粒脱稳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝实验步骤
(一)配置药品
1、按需要配制溶液,用三氯化铁作混凝剂,配制浓度2g/L;以阴型聚丙烯酰胺为助凝剂,配制浓度0.05g/L。
2、确定原水的最佳透光率(吸光度)时的波长,由数据绘图求得。
3、测定原水特征。
(二)混凝剂最小投加量的确定
1、调整原水pH并记入表3。
2、取6个500 ml杯子,分别取400 ml原水。
3、分别向烧杯中加入氯化铁,每次加入1.0 ml,同时进行搅拌(中速150r/min,5min),直至出现矾花,在表3中记录投加量。
4、停止搅拌,静止10min。
5、根据测得的浊度或吸光度或pH确定最小投加量A。
(三)混凝剂的最佳pH的选择
1、用6支500 ml烧杯,分别取400 ml原水。
2、调整原水pH值,用移液管依次向1、2、3号装有原水的烧杯中,分别加入2.5 ml、1.5 ml、1.0 ml HCl,再向4、5、6号装有原水的烧杯中,分别加入0.2 ml、0.7 ml、1.2 ml NaOH。
3、快速搅拌300 r/min,0.5 min。
从每只烧杯中取50 ml水样,依次用pH仪测定各水样的pH值,记录在表4中。
4、用移液管依次向装有原水烧杯中加入相同剂量的混凝剂,投加剂量按实验最小投加量算。
5、快速搅拌300 r/min,0.5 min;中速搅拌150 min,10 min;慢速搅拌70r/min,10 min。
6、静止10 min,用50 ml注射筒分别抽取6个烧杯中的上清液(共抽三次约150 ml)放入200 ml烧杯中,同时用浊度仪测定水的剩余浊度,用光度计测定吸光度,用pH计测得pH值,记录在表4中。
(四)混凝剂的最佳投加量的选择
1、用6个500 ml烧杯,分别取400 ml原水,将装有水样的烧杯置于六联搅拌机上。
2、将混凝剂按不同投量分别加入到400 ml原水样中,利用均分法确定此组实验的六个水样的混凝剂投加量,记录在表5中。
3、快速搅拌300 r/min,0.5 min;中速搅拌150 min,5 min;慢速搅拌70r/min,10 min。
4、搅拌过程中,注意观察矾花的形成过程。
停止搅拌,静止沉淀10 min,然后用50 ml注射筒分别抽出6个烧杯中的上清液,同时用浊度仪测定水的剩余浊度,记录在5中。
5、根据表5绘图求得B。
(五)混凝剂和助凝剂的最佳投加比例的确定
1、用6个500ml烧杯,分别取400 ml原水,调整pH值。
2、将混凝剂按2/3B的投量,助凝剂按不同投量(依次按1/3C~6/3C的剂量)分别加入到400 ml原水样中,利用均分法确定此组实验的六个水样的混凝剂投加量,记录在表6-1中。
3、快速搅拌300 r/min,0.5 min;中速搅拌150 min,5 min;慢速搅拌70r/min,10 min。
4、搅拌过程中,注意观察矾花的形成过程。
停止搅拌,静止沉淀10 min,然后用50 ml注射筒分别抽出6个烧杯中的上清液,同时测定水的剩余浊度、吸光度、pH值,记录在表6-1中。
5、按1~4同样的步骤,把混凝剂投加量改为B、4/3B,数据分别记入表6-2、6-3。