工程热力学知识点总结
工程热力学知识点总结
工程热力学大总结'…第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
)开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
}均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
:热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
工程热力学-基本知识点
工程热力学-基本知识点————————————————————————————————作者:————————————————————————————————日期:第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
工程热力学知识点总结
工程热力学知识点总结工程热力学知识点总结1. 热力学基本概念热力学是研究能量转化和能量传递规律的学科,它关注系统的宏观性质和变化。
热力学的基本概念包括系统、界面、过程、平衡状态、状态方程等。
2. 热力学第一定律热力学第一定律是能量守恒的表述,它表示能量的增量等于传热和做功的总和。
数学表达式为ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示热的传递,W表示外界对系统做功。
3. 热力学第二定律热力学第二定律描述了自然界中存在的一种过程的不可逆性,即熵增原理。
它指出孤立系统的熵总是增加或保持不变,不会减少。
熵增原理对热能转化和能量传递的方向提供了限制。
4. 热力学循环热力学循环是一系列热力学过程组成的闭合路径,通过这个路径,系统经历一系列状态变化,最终回到初始状态。
常见的热力学循环有卡诺循环、斯特林循环等。
5. 热力学性质热力学性质是用来描述物质宏观状态的物理量,常用的热力学性质包括温度、压力、内能、焓、熵等。
它们与热力学过程和相变有着密切的关系。
6. 热力学方程热力学方程是用来描述物质宏观状态的数学关系。
常见的热力学方程有状态方程(如理想气体状态方程)、焓的变化方程、熵的变化方程等。
这些方程对于分析和计算热力学过程非常重要。
7. 理想气体理想气体是热力学中一种理想的气体模型。
在理想气体状态方程中,气体的压力、体积和温度之间满足理想气体方程。
理想气体模型对于理解和研究气体性质和行为非常有用。
8. 发动机热力学循环发动机热力学循环是指内燃机和外燃机中进行热能转换的一系列过程。
常见的发动机热力学循环有奥托循环、迪塞尔循环等。
通过研究发动机热力学循环,可以优化发动机的效率和性能。
9. 相变热力学相变热力学研究物质由一种相态转变为另一种相态的过程。
相变热力学包括液体-气体相变、固体-液体相变、固体-气体相变等。
了解相变热力学对于理解物质的性质和行为具有重要意义。
总结:工程热力学是研究能量转化和能量传递规律的学科,它关注系统的宏观性质和变化。
完整版工程热力学大总结大全
第一章基本概念1. 基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(u )或密度(p )、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
工程热力学知识总结
工程热力学概念公式第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
工程热力学知识点
工程热力学知识点1.热力学系统热力学系统是指被研究的物体或装置,可以根据其与周围环境的热交换和物质交换情况划分为开放系统、封闭系统和孤立系统。
2.状态方程和状态变化状态方程描述了热力学系统的状态,可以通过物质的温度、压力和体积等物理量进行定义。
状态变化是热力学系统从一个状态到另一个状态的过程,可以通过热力学过程描述。
3.热力学过程热力学过程是热力学系统从一个状态到另一个状态的变化过程。
常见的热力学过程包括等温过程、绝热过程、等容过程和等压过程。
热力学过程可以通过热力学循环描述,常见的热力学循环包括卡诺循环和斯特林循环等。
4.热力学定律热力学定律是热力学系统行为的基本规律。
包括热力学第一定律(能量守恒定律)、热力学第二定律(熵增加定律)和热力学第三定律(绝对零度定律)。
5.热力学性质热力学性质是描述热力学系统的特性的物理量。
常见的热力学性质包括温度、压力、体积、内能、焓等。
这些性质对于研究热力学过程和热力学系统的行为具有重要意义。
6.理想气体状态方程理想气体状态方程是描述理想气体状态的基本关系。
根据理想气体状态方程,可以推导出玻意耳-马略特定律和查理定律等关系。
理想气体状态方程对于研究气体的性质和行为具有重要意义。
7.熵和热力学效率熵是一个描述系统无序程度的物理量,也是热力学第二定律的核心概念。
热力学效率是衡量能量转化的有效性的指标,它可以通过熵增加原理计算和分析。
8.热力学循环和工质流程热力学循环是一系列热力学过程的组合,通常用来描述热力学系统的能量转化过程。
工质流程是热力学系统中流动的工质的循环或非循环过程。
以上是工程热力学的一些重要知识点。
工程热力学的应用广泛,包括能源转化设备、制冷空调设备、热力发电系统等。
通过对热力学系统特性、能量转移和能量转化的研究,可以优化工程设备和能源利用效率,提高系统的性能和可靠性。
工程热力学基本知识点
第一章根本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质某某匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度〔T〕、压力〔P〕、比容〔υ〕或密度〔ρ〕、内能〔u〕、焓〔h〕、熵〔s〕、自由能〔f〕、自由焓〔g〕等。
根本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为根本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,如此它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
如工程上常用测压仪表测定系统中工质的压力即为相对压力。
工程热力学知识点汇总
工程热力学复习知识点一、知识点基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。
1. 基本概念掌握和理解:热力学系统(包括热力系,边界,工质的概念。
热力系的分类:开口系,闭口系,孤立系统)。
掌握和理解:状态及平衡状态,实现平衡状态的充要条件。
状态参数及其特性。
制冷循环和热泵循环的概念区别。
理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。
2. 热力学第一定律掌握和理解:热力学第一定律的实质。
理解并会应用基本公式计算:热力学第一定律的基本表达式。
闭口系能量方程。
热力学第一定律应用于开口热力系的一般表达式。
稳态稳流的能量方程。
理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。
3. 热力学第二定律掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。
掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文表述等)。
卡诺循环和卡诺定理。
掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。
理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。
热力系的熵方程(闭口系熵方程,开口系熵方程)。
温-熵图的分析及应用。
理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。
4. 理想气体的热力性质熟悉和了解:理想气体模型。
理解并掌握:理想气体状态方程及通用气体常数。
理想气体的比热。
理解并会计算:理想气体的内能、焓、熵及其计算。
理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。
5. 实际气体及蒸气的热力性质及流动问题理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。
例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。
蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。
理解并掌握:绝热节流的现象及特点6. 蒸汽动力循环理解计算:蒸气动力装置流程、朗肯循环热力计算及其效率分析。
工程热力学知识点笔记总结
工程热力学知识点笔记总结第一章热力学基本概念1.1 热力学的基本概念热力学是研究能量与物质的转化关系的科学,它关注热与功的转化、能量的传递和系统的状态变化。
热力学中最基本的概念包括系统、热力学量、状态量、过程、功和热等。
1.2 热力学量热力学量是描述系统的性质和状态的物理量,包括内能、焓、熵、自由能等。
内能是系统的总能量,焓是系统在恒压条件下的能量,熵是系统的无序程度,自由能是系统进行非体积恒定的过程中能够做功的能量。
1.3 热力学第一定律热力学第一定律是能量守恒的表达形式,在闭合定容系统中,系统的内能变化等于系统所接受的热量减去系统所做的功。
1.4 热力学第二定律热力学第二定律是描述系统不可逆性的定律,它包括开尔文表述和克劳修斯表述。
开尔文表述指出不可能将热量完全转化为功而不引起其他变化,克劳修斯表述指出热量自然只能从高温物体传递到低温物体。
根据第二定律,引入了熵增大原理和卡诺循环。
1.5 热力学第三定律热力学第三定律是指当温度趋于绝对零度时,系统的熵趋于零。
这一定律揭示了绝对零度对热力学过程的重要意义。
第二章热力学系统2.1 定态与非定态定态系统是指系统的性质在长时间内不发生变化,非定态系统是指系统的性质在长时间内发生变化。
2.2 开放系统与闭合系统开放系统是指与外界交换物质和能量的系统,闭合系统是指与外界不交换物质但可以交换能量的系统。
2.3 热力学平衡热力学平衡是指系统内各部分之间的温度、压力、化学势等性质达到一致的状态。
系统处于热力学平衡时,不会产生宏观的变化。
第三章热力学过程3.1 等温过程在等温过程中,系统的温度保持不变,内能的变化全部转化为热量输给外界。
3.2 绝热过程在绝热过程中,系统不与外界交换热量,内能的变化全部转化为对外界所做的功。
3.3 等容过程在等容过程中,系统的体积保持不变,内能的变化全部转化为热量。
3.4 等压过程在等压过程中,系统的压强保持不变,内能的变化转化为对外界所做的功和系统所吸收的热量。
工程热力学知识点总结
工程热力学知识点总结一、基本概念1. 热力学系统热力学系统是指研究对象的范围,可以是一个物体、一个系统或者多个系统的组合。
根据系统与外界的物质交换和能量交换情况,将系统分为封闭系统、开放系统和孤立系统。
2. 热力学状态热力学状态是指系统的一种特定状态,由系统的几个宏观性质确定。
常用的状态参数有温度、压力、体积和能量等。
3. 热力学过程热力学过程是系统在一定条件下的状态变化。
常见的热力学过程有等温过程、绝热过程、等压过程和等容过程等。
4. 热力学平衡系统的平衡是指系统内各部分之间不存在宏观的能量或物质的不均匀性。
在平衡状态下,系统内各部分之间的宏观性质是不发生变化的。
5. 热力学势函数热力学势函数是描述系统平衡状态的函数,常见的有内能、焓、自由能和吉布斯自由能等。
二、热力学定律1. 热力学第一定律热力学第一定律是能量守恒定律的热力学表述。
它可以表述为:系统的内能变化等于系统对外界所做的功与系统吸收的热的代数之和。
2. 热力学第二定律热力学第二定律是热力学中一个非常重要的定律,它对能量转化的方向和效率进行了限制。
根据热力学第二定律,系统内部永远不会自发地将热量从低温物体传递到高温物体,这就是热机不能做功的原因。
3. 卡诺定理卡诺定理是热力学第二定律的一种推论,它指出在两个恒温热源之间进行热机循环时,效率最高的情况是卡诺循环。
4. 热力学第三定律热力学第三定律规定了在温度接近绝对零度时热容为零,即系统的熵在绝对零度时为常数。
三、热力学循环1. 卡诺循环卡诺循环是一种理想的热机循环,它采用绝热和等温两个可逆过程。
卡诺循环的效率是所有热机循环中最高的。
2. 斯特林循环斯特林循环是一种理想的外燃循环,它采用绝热和等温两个可逆过程。
斯特林循环比卡诺循环的效率低一些,但是实际上,在制冷机中应用得比较广泛。
3. 布雷顿循环布雷顿循环是一种理想的内燃循环,它采用等容和等压两个可逆过程。
布雷顿循环是内燃机的工作循环,应用比较广泛。
工程热力学 基本知识点
第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
工程热力学知识点总结
工程热力学知识点总结工程热力学知识点很多,同学们需要多进行归纳总结,下面给大家整理了工程热力学知识点总结,欢迎阅读! 第一章、基本概念1、边界边界有一个特点(可变性):可以是固定的、假想的、移动的、变形的。
2、六种系统(重要!)六种系统分别是:开(闭)口系统、绝热(非绝热)系统、孤立(非孤立)系统。
a.系统与外界通过边界:功交换、热交换和物质交换.b.闭口系统不一定绝热,但开口系统可以绝热。
c.系统的取法不同只影响解决问题的难易,不影响结果。
3、三参数方程a.P=B+Pgb.P=B-H这两个方程的使用,首先要判断表盘的压力读数是正压还是负压,即你所测物体内部的绝对压力与大气压的差是正是负。
正用1,负用2。
ps.《工程热力学(第六版)》书8页的系统,边界,外界有详细定义。
第二章、气体热力性质1、各种热力学物理量P:压强[单位Pa]v:比容(单位m^3/kg)R:气体常数(单位J/(kg*K))书25页T:温度(单位K)m:质量(单位kg)V:体积(单位m^3)M:物质的摩尔质量(单位mol)R:8.314kJ/(kmol*K),气体普实常数2、理想气体方程:Pv=RTPV=m*R。
*T/MQv=Cv*dTQp=Cp*dTCp-Cv=R另外求比热可以用直线差值法!第三章、热力学第一定律1、闭口系统:Q=W+△U微元:δq=δw+du (注:这个δ是过程量的微元符号)2、闭口绝热δw+du=03、闭口可逆δq=Pdv+du4、闭口等温δq=δw5、闭口可逆定容δq=du6、理想气体的热力学能公式dU=Cv*dT一切过程都适用。
为什么呢?因为U是个状态量,只与始末状态有关、与过程无关。
U是与T相关的单值函数,实际气体只有定容才可以用6、开口系统ps.公式在书46页(3-12)7、推动功Wf=P2V2-P1V1(算是一个分子流动所需要的微观的能量)a、推动功不是一个过程量,而是一个仅取决于进出口状态的状态量。
(完整版)工程热力学知识总结
第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
工程热力学知识点总结
工程热力学知识点总结工程热力学是一门研究能量转换规律以及热能有效利用的学科,它在能源、动力、化工等领域有着广泛的应用。
以下是对工程热力学一些重要知识点的总结。
一、基本概念1、热力系统热力系统是指人为选取的一定范围内的物质作为研究对象。
根据系统与外界的物质和能量交换情况,可分为闭口系统(与外界无物质交换)、开口系统(与外界有物质交换)和绝热系统(与外界无热量交换)等。
2、状态参数描述热力系统状态的物理量称为状态参数,如压力、温度、比体积等。
状态参数的特点是只取决于系统的状态,而与达到该状态的路径无关。
3、热力过程热力系统从一个状态变化到另一个状态所经历的途径称为热力过程。
常见的热力过程有定容过程、定压过程、定温过程和绝热过程等。
4、热力循环系统经历一系列热力过程后又回到初始状态,所形成的封闭过程称为热力循环。
二、热力学第一定律热力学第一定律是能量守恒与转换定律在热力学中的应用,其表达式为:输入系统的能量输出系统的能量=系统储存能量的变化。
对于闭口系统,热力学第一定律可表示为:$Q =\Delta U + W$,其中$Q$ 为系统吸收的热量,$\Delta U$ 为系统内能的变化,$W$ 为系统对外所做的功。
对于开口系统,热力学第一定律的表达式较为复杂,需要考虑进、出口的能量流动。
三、热力学第二定律热力学第二定律指出了热过程的方向性和不可逆性。
常见的表述有克劳修斯表述和开尔文表述。
克劳修斯表述:热量不可能自发地从低温物体传向高温物体。
开尔文表述:不可能从单一热源取热使之完全变为有用功而不产生其他影响。
热力学第二定律的实质是揭示了自然界中一切自发过程都是不可逆的。
四、理想气体的性质理想气体是一种假设的气体模型,其分子之间没有相互作用力,分子本身不占有体积。
理想气体的状态方程为$pV = nRT$,其中$p$ 为压力,$V$ 为体积,$n$ 为物质的量,$R$ 为气体常数,$T$ 为温度。
理想气体的内能和焓仅与温度有关,与压力和体积无关。
工程热力学知识点总结
工程热力学知识点总结工程热力学知识点很多,同学们需要多进行归纳总结,下面给大家整理了,欢迎阅读!第一章、基本概念1、边界边界有一个特点(可变性):可以是固定的、假想的、移动的、变形的。
2、六种系统(重要!)六种系统分别是:开(闭)口系统、绝热(非绝热)系统、孤立(非孤立)系统。
a.系统与外界通过边界:功交换、热交换和物质交换.b.闭口系统不一定绝热,但开口系统可以绝热。
c.系统的取法不同只影响解决问题的难易,不影响结果。
3、三参数方程=B+Pg=B-H这两个方程的使用,首先要判断表盘的压力读数是正压还是负压,即你所测物体内部的绝对压力与大气压的差是正是负。
正用1,负用2。
ps.《工程热力学(第六版)》书8页的系统,边界,外界有详细定义。
第二章、气体热力性质1、各种热力学物理量P:压强[单位Pa]v:比容(单位m^3/kg)R:气体常数(单位J/(kg*K))书25页T:温度(单位K)m:质量(单位kg)V:体积(单位m^3)M:物质的摩尔质量(单位mol)R:/(kmol*K),气体普实常数2、理想气体方程:Pv=RTPV=m*R。
*T/MQv=Cv*dTQp=Cp*dTCp-Cv=R另外求比热可以用直线差值法!第三章、热力学第一定律1、闭口系统:Q=W+△U微元:δq=δw+du (注:这个δ是过程量的微元符号)2、闭口绝热δw+du=03、闭口可逆δq=Pdv+du4、闭口等温δq=δw5、闭口可逆定容δq=du6、理想气体的热力学能公式dU=Cv*dT一切过程都适用。
为什么呢?因为U是个状态量,只与始末状态有关、与过程无关。
U是与T相关的单值函数,实际气体只有定容才可以用6、开口系统ps.公式在书46页(3-12)7、推动功Wf=P2V2-P1V1(算是一个分子流动所需要的微观的能量)a、推动功不是一个过程量,而是一个仅取决于进出口状态的状态量。
b、推动功不能够被我们所利用,其存在的唯一价值是使气体流动成为开系。
工程热力学知识点总结
工程热力学知识点总结1. 热力学基本概念1.1 热力学系统:研究对象,与周围环境有能量和物质交换。
1.2 环境:系统之外的一切,与系统形成对比。
1.3 边界:系统与环境之间的分界线。
1.4 状态:系统在某一时刻宏观性质的集合。
1.5 平衡态:系统状态不随时间变化的状态。
1.6 过程:系统从一个平衡态到另一个平衡态的演变。
2. 热力学第一定律2.1 能量守恒:系统内能量的变化等于热量与功的和。
2.2 内能:系统内部微观粒子动能和势能的总和。
2.3 热量:系统与环境之间由于温度差而交换的能量。
2.4 功:系统对环境或其他系统施加的力与其位移的乘积。
2.5 热力学第一定律公式:ΔU = Q - W。
3. 热力学第二定律3.1 熵:系统无序度的量度,是不可逆过程的度量。
3.2 孤立系统:不与外界交换能量或物质的系统。
3.3 熵增原理:孤立系统熵永不减少。
3.4 卡诺定理:所有热机的最大效率由卡诺循环确定。
4. 热力学性质4.1 温度:系统热动能的度量,是热力学过程的驱动力。
4.2 压力:分子对容器壁单位面积的平均作用力。
4.3 体积:系统占据的空间大小。
4.4 比热容:单位质量的物质温度升高1K所需吸收的热量。
4.5 热容:系统温度升高1K所需吸收的热量。
5. 理想气体行为5.1 理想气体状态方程:PV = nRT。
5.2 摩尔体积:1摩尔理想气体在标准状态下的体积。
5.3 气体常数:理想气体状态方程中的常数R。
5.4 马略特定律:理想气体在恒定温度下,体积与压力成正比。
5.5 波义耳定律:在恒温条件下,理想气体的压强与其体积成反比。
6. 热力学循环6.1 卡诺循环:理想化的热机循环,由四个可逆过程组成。
6.2 奥托循环:内燃机的理想循环,包括等容加热、绝热膨胀、等容放热和绝热压缩。
6.3 朗肯循环:蒸汽动力循环,包括泵吸、锅炉加热、涡轮膨胀和冷凝器排热。
7. 相变与潜热7.1 相变:物质从一种相态转变为另一种相态的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程热力学知识点总结
一、热力学基本概念
1.1 系统和环境
1.2 状态量和过程量
1.3 定态和非定态过程
1.4 热平衡和热力学温度
二、热力学第一定律
2.1 能量守恒原理
2.2 内能和焓
2.3 热机效率和制冷系数
三、热力学第二定律
3.1 熵的概念与意义
3.2 熵增原理与熵减原理
3.3 卡诺循环及其效率
四、物质的状态方程及其应用
4.1 物态方程的概念与分类
4.2 伯努利方程及其应用
4.3 范德华方程及其应用
五、相变热力学基础知识
5.1 相变的基本概念
5.2 相变过程中的物态方程
5.3 相变焓和相变熵
六、理想气体状态方程及其应用
6.1 理想气体状态方程
6.2 绝热过程中理想气体的温度压强关系6.3 恒容过程中理想气体内能变化
七、混合气体热力学基础知识
7.1 混合气体的概念
7.2 混合气体的状态方程
7.3 理想混合气体的热力学性质
八、化学反应热力学基础知识
8.1 化学反应的基本概念
8.2 化学反应焓变和熵变
8.3 反应平衡条件及其判定
九、传热基础知识
9.1 传热方式及其特点
9.2 热传导方程及其解法
9.3 对流传热及其换热系数
十、工程热力学分析方法
10.1 理想循环分析方法
10.2 实际循环分析方法
10.3 燃料空气循环分析方法
十一、工程热力学实际应用
11.1 能量转换装置的工作原理与性能分析
11.2 能量转换装置的优化设计与运行控制
11.3 工业过程中能量利用与节能技术
总结:本文介绍了工程热力学知识点,包括了基本概念、第一定律和第二定律、物质状态方程及其应用、相变热力学基础知识、理想气体状态方程及其应用、混合气体热力学基础知识、化学反应热力学基础知识、传热基础知识、工程热力学分析方法和工程热力学实际应用。
这些知识点是工程热力学的核心内容,对于掌握能源转换与利用技术以及节能减排具有重要意义。