大学物理热学习题附答案11
历届大学物理热学试题解答
r R2时, T T2
T1
Q
2k
ln
R1
C
T2
Q
2k
ln
R2
C
解得:
Q
2k(T1
T2
)
/
ln
R2 R1
C
T1
(T2
T2
)
ln ln
R1 R2
R1
所以r处的温度为:
ln R1
T
T1
(T1
T2 ) ln
r R2
R1
13.隔板C把绝热材料包裹的容器分为A、B两室。如图所示, A室内充以真实气体,B室为真空。现把C打开,A室气体充 满整个容器,在此过程中,内能应___不__变_____。
(a)由范德瓦尔斯方程
(
p
a V2
)(V
b)
RT
p
RT V b
a V2
所以对外界作的功为
A
V2 pdV
V1
V2 RT dV V1 V b
V2 V1
a V2
dV
RT lnV2 b a( 1 1 ) V1 b V2 V1
(时b)气d一E体摩k 的尔0内气。压体强分子p热i 运Va动2 。的气动体能膨为胀E时k 2pi iR作T 负。功作,等气温体膨分胀
解:x过程曲线向下平移p0后,恰好与温 度为T0的等温曲线重合,由此可给出
( p p0 )V vRT0
p p0
x过程
状态方程为 pV vRT
x过程的过程方程为
(完整版)大学物理热学习题附答案
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
大学热学试题题库及答案
大学热学试题题库及答案一、选择题1. 热力学第一定律表明,能量守恒,即能量不能被创造或消灭,只能从一种形式转换为另一种形式。
以下哪项描述正确?A. 能量可以被创造B. 能量可以被消灭C. 能量可以在不同形式间转换D. 能量只能以一种形式存在答案:C2. 在绝热过程中,系统与外界没有热量交换。
以下哪项描述正确?A. 绝热过程中系统的温度不变B. 绝热过程中系统的压力不变C. 绝热过程中系统的温度和压力都不变D. 绝热过程中系统的温度和压力都可能变化答案:D二、填空题1. 理想气体状态方程为__________,其中P表示压强,V表示体积,n 表示摩尔数,R表示气体常数,T表示温度。
答案:PV = nRT2. 根据热力学第二定律,不可能从单一热源吸热使之完全转化为功而不产生其他效果。
该定律的表述是__________。
答案:不可能从单一热源吸热使之完全转化为功而不产生其他效果。
三、简答题1. 简述热力学第二定律的开尔文表述及其意义。
答案:热力学第二定律的开尔文表述是:不可能从单一热源吸热使之完全转化为功而不产生其他效果。
其意义在于指出了自然界中能量转换的方向性和不可逆性,即能量在转换过程中总是伴随着熵增,表明了热机效率的极限。
2. 描述热力学第三定律,并解释其对低温物理研究的意义。
答案:热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的完美晶体的熵都趋向于一个共同的值。
这一定律对低温物理研究的意义在于,它为低温下物质的熵和热力学性质的研究提供了理论基础,使得科学家能够更准确地预测和控制低温条件下物质的行为。
四、计算题1. 一个理想气体在等压过程中从状态A(P=100kPa, V=0.5m³)变化到状态B(V=1.0m³)。
已知气体常数R=8.314J/(mol·K),摩尔质量M=28g/mol,求气体在该过程中的温度变化。
答案:首先计算气体的摩尔数n,n = PV/RT =(100×10³×0.5)/(8.314×T)。
大学物理热学练习题及答案
大学物理热学练习题及答案第一题:一个物体的质量是1 kg,温度从20°C升高到30°C,如果物体的比热容是4200 J/(kg·°C),求物体吸收的热量。
解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
代入数据得:Q = 1 kg × 4200 J/(kg·°C) × (30°C - 20°C)= 1 kg × 4200 J/(kg·°C) × 10°C= 42,000 J所以物体吸收的热量为42,000 J。
第二题:一块金属材料的质量是0.5 kg,它的比热容是400 J/(kg·°C),经过加热后,材料的温度升高了60°C。
求该金属材料所吸收的热量。
解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
代入数据得:Q = 0.5 kg × 400 J/(kg·°C) × 60°C= 12,000 J所以金属材料吸收的热量为12,000 J。
第三题:一个热容为300 J/(kg·°C)的物体,吸收了500 J的热量后,温度升高了多少摄氏度?解答:根据热量公式Q = mcΔθ,其中 Q 表示吸收的热量,m 表示物体的质量,c 表示比热容,Δθ 表示温度变化。
将已知数据代入公式:500 J = m × 300 J/(kg·°C) × Δθ解方程得:Δθ = 500 J / (m × 300 J/(kg·°C))= 500 J / (m/(kg·°C)) × (kg·°C/300 J)= (500/300) °C≈ 1.67°C所以温度升高了约1.67°C。
大学物理 热力学第一定律 习题(附答案)
A13 = Q13 = 1.25 × 10 4 ( J)
(5)由(1)有系统终态的体积为
hi
5 R , R = 8.31 J / mol ⋅ K 。 2
na
T V3 = V2 ( 2 ) γ−1 = 40 × 21. 5 = 113 ( l) T1 nRT3 2 × 8.31 × 300 p3 = = ÷ 1.013 × 10 5 = 0.44 ( atm) −3 V3 113 × 10
0 . 44
O
om
p (atm ) 1 2
3
三、计算题: 1.2 mol 初始温度为 27 � C ,初始体积为 20 L 的氦气,先等压过程膨胀到体积加倍, 然 后绝热过程膨胀回到初始温度。 (1)在 p-V 平面上画出过程图。 (2)在这一过程中系统总吸热是多少? (3)系统内能总的改变是多少? (4)氦气对外界做的总功是多少?其中绝热膨胀过程对外界做功是多少? (5)系统终态的体积是多少?
5 = 1 × R × 60 = 1.25 × 10 3 ( J) 2
γ
(B) p 0 γ (D) p 0 / 2
(γ = C
p
/ Cv )
p0
解:绝热自由膨胀过程中 Q = 0,A = 0,由热力学第一定律,有 ∆ E = 0 ,膨胀前后系统
[
]
(A) (B) (C) (D)
这是一个放热降压过程 这是一个吸热升压过程 这是一个吸热降压过程 这是一个绝热降压过程
将状态 a、b 分别与 o 点相连有
om
A
O
V1
V2
V
T B
C
Q
V
等压过程中吸收了相同的热量,则它们对外做功之比为 A 1: A 2 = (各量下角标 1 表示氢气,2 表示氦气)
热学大学考试题及答案
热学大学考试题及答案一、选择题(每题2分,共20分)1. 温度是表示物体冷热程度的物理量,其单位是:A. 摄氏度B. 开尔文C. 华氏度D. 牛顿答案:A、B2. 热力学第一定律表明能量守恒,其数学表达式是:A. ΔU = Q + WB. ΔU = Q - WC. ΔH = Q + WD. ΔH = Q - W答案:A3. 在绝热过程中,下列哪一项是恒定的?A. 内能B. 温度C. 压力D. 体积答案:A4. 热传导、热对流和热辐射是热传递的三种基本方式,其中不需要介质的是:A. 热传导B. 热对流C. 热辐射D. 热对流和热辐射答案:C5. 理想气体状态方程为:A. PV = nRTB. PV = P1V1C. PV = nT/RD. P1V1/T1 = P2V2/T2答案:A二、填空题(每题3分,共30分)6. 热力学第二定律表明,不可能从单一热源吸热使之完全转化为________,并由此产生其他效果。
答案:功7. 在一定压力下,一定质量的理想气体的温度每升高(或降低)1摄氏度,气体的体积升高(或降低)的比例叫做________。
答案:热膨胀系数8. 热力学温标T与摄氏温标t之间的关系是 T = t + ________。
答案:273.159. 两个温度分别为T1和T2的物体发生热传递,最终达到热平衡时,它们的共同温度为________。
答案:T1 和 T2 的平均值10. 热机的效率η定义为________与________之比。
答案:有用功;输入热量三、简答题(每题10分,共20分)11. 解释什么是熵?熵增加原理有何意义?答案:熵是热力学系统的无序度的量度,通常用来描述系统的热力学状态。
熵增加原理表明,在孤立系统中,自发过程会导致系统熵的增加,这与时间的不可逆性有关,是热力学第二定律的一个表述。
12. 什么是相变?请举例说明。
答案:相变是指物质在一定条件下从一种相态转变为另一种相态的过程。
《大学物理》热学习题
[
]
15. (本题 3分)(4310)
一定量的理想气体,其状态改变在 p-T 图上 p
沿着一条直线从平衡态 a 到平衡态 b(如图).
p2
(A) 这是一个膨胀过程.
(B) 这是一个等体过程. (C) 这是一个压缩过程.
p1
(D) 数据不足,不能判断这是那种过程.
[
]
O
b
a T
T1 T2
v1
v1
∫ (D) v2 vf (v ) dv /N. v1
[
]
10. (本题 3分)(4133)
关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是 (A) (1)、(2)、(3). (B) (1)、(2)、(4). (C) (2)、(4). (D) (1)、(4).
理想气体向真空作绝热膨胀. (A) 膨胀后,温度不变,压强减小. (B) 膨胀后,温度降低,压强减小. (C) 膨胀后,温度升高,压强减小. (D) 膨胀后,温度不变,压强不变.
[
]
13. (本题 3分)(4579)
对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能
的增量和对外作的功三者均为负值?
[
]
11. (本题 3分)(4674)
置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则
这两种情况下气体的状态
(A) 一定都是平衡态.
(B) 不一定都是平衡态.
(C) 前者一定是平衡态,后者一定不是平衡态.
《大学物理AII》作业 No.11 热力学第一定律(参考答案)
V2
V1
ò p d V 来直接求解做功,但可以
答: (1)不可能。等容加热过程中,系统吸热且不对外做功,根据热力学第一定律其内能一 定增加。 (2)不可能。等温压缩过程中,系统内能不变,对外做负功,根据热力学第一定律系统一 定是经历放热过程。 (3)不可能。等压压缩过程中,系统温度降低,内能减少,同时对外做负功,根据热力学 第一定律系统一定是经历放热过程。 (4)可能。绝热压缩过程,吸热为零,外界对系统做功,系统内能一定增加。
氢气是双原子分子,其自由度为 5,而氦气是单原子分子,其自由度为 3,因此氢气与氦气
5 RT 2 ,所以 3 2 E2 = m RT 4 2 E1 =
m1 2
的内能分别为:
E1 = 5/ 3 E2 ;
7 R 2 ,当它们吸收相同的热量,意味着它们的温度变 5 = R 2
氢气与氦气的等压热容分别为:
Aab = 0
b—c 等压过程: Qbc =
m i+2 3 CP (Tc - Tb ) = ( PcVc - PbVb ) = (i + 2) P 1V1 M 2 8
Abc =
1 3 P1 ( Vc - Vb ) = P1V1 4 4
m V 1 RTa ln A = PaVa ln = - P 1V1ln 4 M VC 4
大学物理热学试题试题库及答案
⼤学物理热学试题试题库及答案⼤学物理热学试题题库及答案⼀、选择题:(每题3分)1、在⼀密闭容器中,储有A、B、C三种理想⽓体,处于平衡状态.A种⽓体得分⼦数密度为n1,它产⽣得压强为p1,B种⽓体得分⼦数密度为2n1,C种⽓体得分⼦数密度为3 n1,则混合⽓体得压强p为(A) 3p1。
(B) 4 p1.(C)5p1. (D) 6 p1.[]2、若理想⽓体得体积为V,压强为p,温度为T,⼀个分⼦得质量为m,k为玻尔兹曼常量,R 为普适⽓体常量,则该理想⽓体得分⼦数为:(A)pV / m。
(B) pV / (kT).(C) pV/(RT). (D)pV/(mT)。
[ ]3、有⼀截⾯均匀得封闭圆筒,中间被⼀光滑得活塞分隔成两边,如果其中得⼀边装有0。
1 kg某⼀温度得氢⽓,为了使活塞停留在圆筒得正中央,则另⼀边应装⼊同⼀温度得氧⽓得质量为:(A)(1/16) kg。
(B)0.8kg.(C)1.6kg. (D) 3。
2 kg。
[ ]4、在标准状态下,任何理想⽓体在1m3中含有得分⼦数都等于(A)6、02×1023。
(B)6、02×1021.(C)2、69×1025. (D)2、69×1023。
(玻尔兹曼常量k=1、38×10-23J·K-1)[ ]5、⼀定量某理想⽓体按pV2=恒量得规律膨胀,则膨胀后理想⽓体得温度(A)将升⾼. (B)将降低.(C)不变. (D)升⾼还就是降低,不能确定.[ ]6、⼀个容器内贮有1摩尔氢⽓与1摩尔氦⽓,若两种⽓体各⾃对器壁产⽣得压强分别为p1与p2,则两者得⼤⼩关系就是:(A)p1〉p2.(B)p1〈p2.(C) p1=p2.(D)不确定得。
[]7、已知氢⽓与氧⽓得温度相同,请判断下列说法哪个正确?(A) 氧分⼦得质量⽐氢分⼦⼤,所以氧⽓得压强⼀定⼤于氢⽓得压强.(B)氧分⼦得质量⽐氢分⼦⼤,所以氧⽓得密度⼀定⼤于氢⽓得密度.(C)氧分⼦得质量⽐氢分⼦⼤,所以氢分⼦得速率⼀定⽐氧分⼦得速率⼤、(D)氧分⼦得质量⽐氢分⼦⼤,所以氢分⼦得⽅均根速率⼀定⽐氧分⼦得⽅均根速率⼤。
《大学物理》热力学基础练习题
《大学物理》热力学基础练习题一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、从增加内能来说,做功和热传递是等效的。
但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。
4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。
”此说法对吗? 为什么?答:不对。
对外做功,则内能减少,温度降低。
5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。
V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。
答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。
不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。
摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。
两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
8、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。
《大学物理AII》作业 No.11热力学第一定律
《大学物理AII 》作业No.11热力学第一定律一、选择题1.置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态[B](A)一定都是平衡态。
(B)不一定都是平衡态。
(C)前者一定是平衡态,后者一定不是平衡态。
.(D)后者一定是平衡态,前者一定不是平衡态。
解:气体内各处压强相等或温度相等,都不一定是平衡态。
2.一定量的理想气体,开始时处于压强、体积、温度分别为1p 、1V 、1T 的平衡态,后来变到压强、体积、温度分别为2p 、2V 、2T 的终态,若已知12V V >,且12T T =,则以下各种说法中正确的是:[D](A)不论经历的是什么过程,气体对外所做的净功一定为正值。
(B)不论经历的是什么过程,气体从外界所吸的净热量一定为正值。
(C)若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少。
(D)如果不给定气体所经历的是什么过程,则气体在过程中对外所做的净功和从外界吸热的正负皆无法判断。
解:∫=21d V V V p A 只适用于准静态过程,对于任意过程,无法只根据12V V >,12T T =判断A 和Q 的正负。
3.一定量的理想气体,经历某过程后,它的温度升高了。
则根据热力学定律可以断定:(1)该理想气体系统在此过程中吸了热。
(2)在此过程中外界对该理想气体系统做了正功。
(3)该理想气体系统的内能增加了。
(4)在此过程中理想气体系统既从外界吸了热,又对外做了正功。
以上正确的断言是:[C ](A)(1)、(3)。
(B)(2)、(3)。
(C)(3)。
(D)(3)、(4)。
(E)(4)解:内能是温度的单值函数,温度升高只能说明内能增加了,而功和热量都与过程有关,不能只由温度升降而判断其正负。
4.热力学第一定律表明:[C ](A)系统对外做的功不可能大于系统从外界吸收的热量。
(B)系统内能的增量等于系统从外界吸收的热量。
(C)不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量。
大学物理热学试题试题库及答案
大学物理热学试题题库及答案一、选择题:(每题3分)1、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态.A种气体得分子数密度为n1,它产生得压强为p1,B种气体得分子数密度为2n1,C种气体得分子数密度为3 n1,则混合气体得压强p为(A) 3p1。
(B) 4 p1.(C)5p1. (D) 6 p1.ﻩﻩﻩ[]2、若理想气体得体积为V,压强为p,温度为T,一个分子得质量为m,k为玻尔兹曼常量,R 为普适气体常量,则该理想气体得分子数为:(A)pV / m。
(B) pV / (kT).(C) pV/(RT). (D)pV/(mT)。
[ ]3、有一截面均匀得封闭圆筒,中间被一光滑得活塞分隔成两边,如果其中得一边装有0。
1 kg某一温度得氢气,为了使活塞停留在圆筒得正中央,则另一边应装入同一温度得氧气得质量为:(A)(1/16) kg。
(B)0.8kg.(C)1.6kg. (D) 3。
2 kg。
[ ]4、在标准状态下,任何理想气体在1m3中含有得分子数都等于(A)6、02×1023。
(B)6、02×1021.(C)2、69×1025. (D)2、69×1023。
(玻尔兹曼常量k=1、38×10-23J·K-1)[ ]5、一定量某理想气体按pV2=恒量得规律膨胀,则膨胀后理想气体得温度(A)将升高. (B)将降低.(C)不变. (D)升高还就是降低,不能确定.[ ]6、一个容器内贮有1摩尔氢气与1摩尔氦气,若两种气体各自对器壁产生得压强分别为p1与p2,则两者得大小关系就是:(A)p1〉p2.(B)p1〈p2.(C) p1=p2.(D)不确定得。
[]7、已知氢气与氧气得温度相同,请判断下列说法哪个正确?(A) 氧分子得质量比氢分子大,所以氧气得压强一定大于氢气得压强.(B)氧分子得质量比氢分子大,所以氧气得密度一定大于氢气得密度.(C)氧分子得质量比氢分子大,所以氢分子得速率一定比氧分子得速率大、(D)氧分子得质量比氢分子大,所以氢分子得方均根速率一定比氧分子得方均根速率大。
大学物理热学习题附答案11
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B)m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v 2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值(A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ]3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等(D) ε和w 都不相等4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
大学物理---热学部分和近代物理部分练习题及答案解析
大学物理---热学部分和近代物理部分练习题及答案解析一、选择题1. 已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ D ]2. 两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等.(B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等.(D) 平均速率不相等,方均根速率不相等. [ A ]3. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为:(A) pV / m (B) pV / (kT )(C) pV / (RT ) (D) pV / (mT ) [ B ]4. 1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为(式中R 为普适气体常量,k为玻尔兹曼常量)(A) . (B).(C). (D). [ C ]5. 一物质系统从外界吸收一定的热量,则(A) 系统的内能一定增加.(B) 系统的内能一定减少.(C) 系统的内能一定保持不变.(D) 系统的内能可能增加,也可能减少或保持不变. [ D ]6.如果在一固定容器内,理想气体分子速率都提高为原来的二倍,那么(A )温度和压强都升高为原来的二倍;(B )温度升高为原来的二倍,压强升高为原来的四倍;RT 23kT23RT 25kT25(C)温度升高为原来的四倍,压强升高为原来的二倍;(D)温度与压强都升高为原来的四倍。
[ D ]7.两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的平均速率相等.(D) 两种气体的内能相等.[ A ]8.麦克斯韦速率分布曲线如图所示,图中A、B两部分面积相等,则该图表示v为最概然速率.(A)v为平均速率.(B)v为方均根速率.(C)v的分子数各占一半.[ D ](D) 速率大于和小于f(v)9. 速率分布函数f(v)的物理意义为:(A) 具有速率v的分子占总分子数的百分比.(B) 速率分布在v附近的单位速率间隔中的分子数占总分子数的百分比.(C) 具有速率v的分子数.(D) 速率分布在v附近的单位速率间隔中的分子数.[ B ]10. 根据热力学第二定律可知:(A) 功可以全部转换为热,但热不能全部转换为功.(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体(C) 不可逆过程就是不能向相反方向进行的过程.(D) 一切自发过程都是不可逆的.[ D ]11.根据热力学第二定律判断下列哪种说法是正确的.(A) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体.(B) 功可以全部变为热,但热不能全部变为功.(C) 气体能够自由膨胀,但不能自动收缩.(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量 [ C ]12.热力学第二定律表明:(A) 不可能从单一热源吸收热量使之全部变为有用的功.(B) 在一个可逆过程中,工作物质净吸热等于对外作的功.(C) 摩擦生热的过程是不可逆的.(D) 热量不可能从温度低的物体传到温度高的物体. [ C ]一、填空题1. 质量为M ,摩尔质量为mol M ,分子数密度为n 的理想气体,处于平衡态时,系统压强P 与温度T 的关系为 P nkT =。
大学物理下(毛峰版)课后习题答案ch11 热力学基础 习题及答案
第11章 热力学基础 习题及答案1、 内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度越高,则热量越多; (2) 物体的温度越高,则内能越大。
答:内能是组成物体的所有分子的动能与势能的总和。
热量是热传递过程中所传递的能量的量度。
内能是状态量,只与状态有关而与过程无关,热量是过程量,与一定过程相对应。
(1) 错。
热量是过程量,单一状态的热量无意义。
(2) 对。
物体的内能与温度有关。
2、V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高? 答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关. 3、评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程.答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 4、用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题4图解:(1)由热力学第一定律有 A E Q +∆= 若有两个交点a 和b ,则经等温b a →过程有 0111=-=∆A Q E 经绝热b a →过程 012=+∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.(2)若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 5、一循环过程如图所示,试指出: (1)ca bc ab ,,各是什么过程; (2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.题5图 题6图解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率由vRT pV = 得 KvR p = 故bc 过程为等压过程ca 是等温过程(2)V p -图如图 (3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形. (5) abca bc abQ Q Q Q e -+=6、两个卡诺循环如图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.7、4.8kg 的氧气在27.0℃时占有1000m³的体积,分别求在等温、等压情况下,将其体积压缩到原来的1/2所需做的功、所吸收的热量以及内能的变化。
大学物理热学试题题库及答案
大学物理热学试题题库及答案一、 选择题:(每题3分)1、在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为(A) 3 p 1. (B) 4 p 1.(C) 5 p 1. (D) 6 p 1. [ ]2、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为:(A) pV / m . (B) pV / (kT ).(C) pV / (RT ). (D) pV / (mT ). [ ]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为:(A) (1/16) kg . (B) 0.8 kg .(C) 1.6 kg . (D) 3.2 kg . [ ]4、在标准状态下,任何理想气体在1 m 3中含有的分子数都等于(A) 6.02×1023. (B)6.02×1021.(C) 2.69×1025 (D)2.69×1023.(玻尔兹曼常量k =1.38×10?23 J ·K ?1 ) [ ]5、一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度(A) 将升高. (B) 将降低.(C) 不变. (D)升高还是降低,不能确定. [ ]6、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是:(A) p 1> p 2. (B) p 1< p 2.(C) p 1=p 2. (D)不确定的. [ ]7、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大. (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ ]8、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ ]9、温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等. [ ]10、1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为 (A) RT 23. (B)kT 23. (C)RT 25. (D)kT 25. [ ] (式中R 为普适气体常量,k 为玻尔兹曼常量)11、两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量?,分别有如下关系:(A) n 不同,(E K /V )不同,??不同.(B) n 不同,(E K /V )不同,??相同.(C) n 相同,(E K /V )相同,??不同.(D) n 相同,(E K /V )相同,??相同. [ ]12、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能(E / V )A 和(E / V )B 的关系(A) 为(E / V )A <(E / V )B .(B) 为(E / V )A >(E / V )B .(C) 为(E / V )A =(E / V )B .(D) 不能确定. [ ]13、两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等,现将6 J 热量传给氦气,使之升高到一定温度.若使氢气也升高同样温度,则应向氢气传递热量(A) 12 J . (B) 10 J(C) 6 J . (D) 5 J . [ ]14、压强为p 、体积为V 的氢气(视为刚性分子理想气体)的内能为: (A)25pV . (B) 23pV . (C) pV . (D) 21pV . [ ] 15、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)(A) pV Mm 23. (B) pV M M mol 23. (C)npV 23. (D)pV N M M A 23mol . [ ] 16、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的平均速率相等.(D) 两种气体的内能相等. [ ]17、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为(A) (N 1+N 2) (23kT +25kT ). (B) 21(N 1+N 2) (23kT +25kT ). (C) N 123kT +N 225kT . (D) N 125kT + N 223kT . [ ] 18、设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比22H O /v v 为(A) 1 . (B) 1/2 .(C) 1/3 . (D) 1/4 . [ ]19、设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,2/12)(v 代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速率关系为(A) p v v v ==2/12)( (B) 2/12)(v v v <=p (C) 2/12)(v v v <<p (D)2/12)(v v v >>p [ ]20、已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1)和f (v p 2).若T 1>T 2,则(A) v p 1 > v p 2, f (v p 1)> f (v p 2).(B) v p 1 > v p 2, f (v p 1)< f (v p 2).(C) v p 1 < v p 2, f (v p 1)> f (v p 2).(D) v p 1 < v p 2, f (v p 1)< f (v p 2). [ ]21、 两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等.(B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等.(D) 平均速率不相等,方均根速率不相等. [ ]22、假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的(A) 4倍. (B) 2倍.(C) 2倍. (D) 21倍. [ ]23、 麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示(A) 0v 为最概然速率.(B) 0v 为平均速率.(C) 0v 为方均根速率.(D) 速率大于和小于0v 的分子数各占一半. [ ]24、速率分布函数f (v )的物理意义为:(A) 具有速率v 的分子占总分子数的百分比.(B) 速率分布在v 附近的单位速率间隔中的分子数占总分子数的百分比.(C) 具有速率v 的分子数.(D) 速率分布在v 附近的单位速率间隔中的分子数. [ ]25、若N 表示分子总数,T 表示气体温度,m 表示气体分子的质量,那么当分子速率v 确定后,决定麦克斯韦速率分布函数f (v )的数值的因素是(A) m ,T . (B) N .(C) N ,m . (D) N ,T .(E) N ,m ,T . [ ]26、气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A)Z 和λ都增大一倍. (B)Z 和λ都减为原来的一半. (C)Z 增大一倍而λ减为原来的一半. (D) Z 减为原来的一半而λ增大一倍. [ ]27、一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是: (A) Z 减小而λ不变. (B)Z 减小而λ增大. (C) Z 增大而λ减小. (D)Z 不变而λ增大. [ ]28、一定量的理想气体,在温度不变的条件下,当压强降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大. (B) Z 和λ都减小.(C) Z 增大而λ减小. (D) Z 减小而λ增大. [ ]29、一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小,但λ不变. (B) Z 不变,但λ减小.(C) Z 和λ都减小. (D) Z 和λ都不变. [ ]30、 一定量的理想气体,在体积不变的条件下,当温度升高时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 增大,λ不变. (B) Z 不变,λ增大.(C) Z 和λ都增大. (D) Z 和λ都不变. [ ]31、 在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ.(B) v =20v ,Z =20Z ,λ=0λ.(C) v =20v ,Z =20Z ,λ=40λ.(D) v =40v ,Z =20Z ,λ=0λ. [ ]32、在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于(A) 压强p . (B) 体积V .(C) 温度T . (D) 平均碰撞频率Z . [ ]33、一定量的某种理想气体若体积保持不变,则其平均自由程λ和平均碰撞频率Z 与温度的关系是:(A) 温度升高,λ减少而Z 增大.(B) 温度升高,λ增大而Z 减少.(C) 温度升高,λ和Z 均增大.(D) 温度升高,λ保持不变而Z 增大. [ ]34、一容器贮有某种理想气体,其分子平均自由程为0λ,若气体的热力学温度降到原来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为(A)02λ. (B) 0λ. (C) 2/0λ. (D) 0λ/ 2. [ ]35、图(a)、(b)、(c)各表示联接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程,图(a)和(b)则为半径不等的两个圆.那么:(A) 图(a)总净功为负.图(b)总净功为正.图(c)总净功为零.(B) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为正.(C) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为零.(D) 图(a)总净功为正.图(b)总净功为正.图(c)总净功为负.36、 关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A) (1)、(2)、(3).(B) (1)、(2)、(4).(C) (2)、(4).(D) (1)、(4). [ ]37、如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程(A) 是平衡过程,它能用p ─V 图上的一条曲线表示.(B) 不是平衡过程,但它能用p ─V 图上的一条曲线表示.(C) 不是平衡过程,它不能用p ─V 图上的一条曲线表示.(D) 是平衡过程,但它不能用p ─V 图上的一条曲线表示. [ ]38、在下列各种说法(1) 平衡过程就是无摩擦力作用的过程.(2) 平衡过程一定是可逆过程.(3) 平衡过程是无限多个连续变化的平衡态的连接.(4) 平衡过程在p -V 图上可用一连续曲线表示.中,哪些是正确的?(A) (1)、(2). (B) (3)、(4).(C) (2)、(3)、(4). (D) (1)、(2)、(3)、(4). [ ]39、设有下列过程:(1) 用活塞缓慢地压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2) 用缓慢地旋转的叶片使绝热容器中的水温上升.(3) 一滴墨水在水杯中缓慢弥散开.(4) 一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是可逆过程的为(A) (1)、(2)、(4).(B) (1)、(2)、(3).(C) (1)、(3)、(4).(D) (1)、(4).[]40、在下列说法(1) 可逆过程一定是平衡过程.(2) 平衡过程一定是可逆的.(3) 不可逆过程一定是非平衡过程.(4) 非平衡过程一定是不可逆的.中,哪些是正确的?(A) (1)、(4).(B) (2)、(3).(C) (1)、(2)、(3)、(4).(D) (1)、(3).[]41、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态(A) 一定都是平衡态.(B) 不一定都是平衡态.(C) 前者一定是平衡态,后者一定不是平衡态.(D) 后者一定是平衡态,前者一定不是平衡态.[]42、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程(A) 一定都是平衡过程.(B) 不一定是平衡过程.(C) 前者是平衡过程,后者不是平衡过程.(D) 后者是平衡过程,前者不是平衡过程.[]43、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B 等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程(A) 是A→B.(B)是A→C.(C)是A→D.(D)既是A→B也是A→C, 两过程吸热一样多。
《大学物理》第十一章 热力学基础参考答案
第十一章 热力学基础一、选择题参考答案1. (B) ;2. (A) ;3. (A) ;4. (B) ; 5.(B) ;6. (D) ;7.(B) ;8.(D) ;9.(C) ;10.(B) ;11.(D) ;12.(C) ;13.(B) ;14.(D) ;15. (A)二、填空题参考答案1.、温度;做功或热传递 2、>0;>0 3、166 J4、110101--V V p p5、等压;等压;等压6、1A -;2A -7、2/5;2/78、(1)AM ; (2)AM ;BM 9、500;100 10、320K 11、200 J 12、40013、从单一热源吸取热量把它全部用来作功而不把热量放给其他物体的机器;热力学第二定律14、不可能把热量从低温物体传到高温物体而不引起其他变化。
不可能从单一热量吸取热量,使它完全变成有用的功而不引起其他变化。
15、状态几率增大;不可逆的三、计算题参考答案1、解:(1) 气体对外作的功等于线段ac 下所围的面积,即:J 2.40510210103.1)31(2135=⨯⨯⨯⨯+⨯=-W (2) 由图看出:c c a a V p V p =,c a T T =∴内能增量:0=∆E .(3) 由热力学第一定律得: J 2.405=+∆=W E Q 2、解:(1)过程的p —V 图V (L)(2) 在3个过程中气体吸收的热量,所作的功和内能的改变 1→2等压过程:)(249)(111121J RT M mV P V V P W ===-=,212112122()()()872()22P m m m i i Q C T T R T T P V V J M M ++=-=-=-=623()E Q W J ∆=-=2→3等体过程:0=W ,3232321211()()()1245()22V m m m i iE Q C T T R T T PV PV iPV J M M ∆==-=-=-==3→4等温过程:0=∆E)J (690ln ln ln 132********=====P P V P V VV P V V RT M m W Q3、解:解此题要注意与2题的区别 (1) p –V 图: (2) 14 T T =0 =∴E ∆(3) ,21,32()()p m V m m m Q C T T C T T M M=-+- J106.5 211 )]2(2[23)2(25 211111111⨯==-+-=V p p p V V V p (4)J 106.52⨯==Q Wp (atm)V1 2T12 T 1T 3T 24、 证明:)(22211V p V p RC T C M MQ V V mol -=∆=)(22122V p V p RC T C M M Q p P mol -=∆=)1()1(1)()(1121212221221212---=---=-=p pV V V p V p C V p V p C Q Q V p γη5、解:水蒸汽的质量M =36×10-3 kg水蒸汽的摩尔质量M mol =18×10-3 kg ,i = 6(1) W da = p a (V a -V d )=-5.065×103 J (2)ΔE ab =(M /M mol )(i /2)R (T b -T a )=(i /2)V a (p b - p a )=3.039×104J (3) 914)/(==RM M V p T mol ab b KW bc = (M /M mol )RT b ln(V c /V b ) =1.05×104 J净功 W =W bc +W da =5.47×103 J(4) Q 1=Q ab +Q bc =ΔE ab +W bc =4.09×104 Jη=W / Q 1=13%6、解:)(1035.5ln )1(31211J V V RT M mQ ⨯==25.011)2(12121=-=-==T T Q Q Q Wη)(1034.1)3(31J Q W ⨯=⋅=ηpT 1T 2 V 1V 2V 4pV2V O绝热1V 1p 2p p (atm )V (L)Oab cd25 5026)(1001.4)1()4(3112J Q W Q Q ⨯=-=-=η。
大学物理热学试题试题库及答案
大学物理热学试题题库及答案一、选择题:(每题3分)1、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态.A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为(A) 3 p1.(B) 4 p1.(C) 5 p1.(D) 6 p1.[]2、若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为:(A) pV / m.(B) pV / (kT).(C) pV / (RT).(D) pV / (mT).[]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为:(A) (1/16) kg.(B) 0.8 kg.(C) 1.6 kg.(D) 3.2 kg.[]4、在标准状态下,任何理想气体在1 m3中含有的分子数都等于×1023.×1021.×1025.(D)×1023.(玻尔兹曼常量k=×10-23 J·K-1 ) []5、一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度(A) 将升高.(B) 将降低.(C) 不变.(D)升高还是降低,不能确定.[]6、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是:(A) p1> p2.(B) p1< p2.(C) p1=p2.(D)不确定的.[]7、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大.[]8、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ ]9、温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等. [ ]10、1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为(A) RT 23. (B)kT 23. (C)RT 25. (D)kT 25. [ ] (式中R 为普适气体常量,k 为玻尔兹曼常量)11、两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同.(C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. [ ]12、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能(E / V )A 和(E / V )B 的关系(A) 为(E / V )A <(E / V )B .(B) 为(E / V )A >(E / V )B .(C) 为(E / V )A =(E / V )B .(D) 不能确定. [ ]13、两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等,现将6 J 热量传给氦气,使之升高到一定温度.若使氢气也升高同样温度,则应向氢气传递热量(A) 12 J . (B) 10 J(C) 6 J . (D) 5 J . [ ]14、压强为p 、体积为V 的氢气(视为刚性分子理想气体)的内能为:(A)25pV . (B) 23pV . (C) pV . (D) 21pV . [ ]15、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)(A) pV Mm 23. (B) pV M M mol 23. (C)npV 23. (D)pV N M M A 23mol . [ ]16、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的平均速率相等.(D) 两种气体的内能相等. [ ]17、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为(A) (N 1+N 2) (23kT +25kT ). (B) 21(N 1+N 2) (23kT +25kT ). (C) N 123kT +N 225kT . (D) N 125kT + N 223kT . [ ]18、设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比22H O /v v 为(A) 1 . (B) 1/2 .(C) 1/3 . (D) 1/4 . [ ]19、设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,2/12)(v 代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速率关系为(A) p v v v ==2/12)( (B) 2/12)(v v v <=p (C) 2/12)(v v v <<p (D)2/12)(v v v >>p [ ]20、已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1)和f (v p 2).若T 1>T 2,则(A) v p 1 > v p 2, f (v p 1)> f (v p 2).(B) v p 1 > v p 2, f (v p 1)< f (v p 2).(C) v p 1 < v p 2, f (v p 1)> f (v p 2).(D) v p 1 < v p 2, f (v p 1)< f (v p 2). [ ]21、 两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等.(B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等.(D) 平均速率不相等,方均根速率不相等. [ ]22、假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的(A) 4倍. (B) 2倍.(C) 2倍. (D) 21倍. [ ]23、 麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示(A) 0v 为最概然速率. (B) 0v 为平均速率. (C) 0v 为方均根速率. (D) 速率大于和小于0v 的分子数各占一半. [ ]24、速率分布函数f (v )的物理意义为:(A) 具有速率v 的分子占总分子数的百分比.(B) 速率分布在v 附近的单位速率间隔中的分子数占总分子数的百分比.(C) 具有速率v 的分子数.(D) 速率分布在v 附近的单位速率间隔中的分子数. [ ]25、若N 表示分子总数,T 表示气体温度,m 表示气体分子的质量,那么当分子速率v 确定后,决定麦克斯韦速率分布函数f (v )的数值的因素是(A) m ,T . (B) N .(C) N ,m . (D) N ,T .(E) N ,m ,T . [ ]26、气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大一倍.(B) Z 和λ都减为原来的一半.(C) Z 增大一倍而λ减为原来的一半.(D) Z 减为原来的一半而λ增大一倍. [ ]27、一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Zf (v )0和平均自由程λ的变化情况是: (A) Z 减小而λ不变. (B)Z 减小而λ增大. (C) Z 增大而λ减小. (D)Z 不变而λ增大. [ ]28、一定量的理想气体,在温度不变的条件下,当压强降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 和λ都增大. (B) Z 和λ都减小.(C) Z 增大而λ减小. (D) Z 减小而λ增大. [ ]29、一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小,但λ不变. (B) Z 不变,但λ减小.(C) Z 和λ都减小. (D) Z 和λ都不变. [ ]30、 一定量的理想气体,在体积不变的条件下,当温度升高时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 增大,λ不变. (B) Z 不变,λ增大. (C) Z 和λ都增大. (D) Z 和λ都不变. [ ]31、 在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ.(B) v =20v ,Z =20Z ,λ=0λ.(C) v =20v ,Z =20Z ,λ=40λ.(D) v =40v ,Z =20Z ,λ=0λ. [ ]32、在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于(A) 压强p . (B) 体积V .(C) 温度T . (D) 平均碰撞频率Z . [ ]33、一定量的某种理想气体若体积保持不变,则其平均自由程λ和平均碰撞频率Z 与温度的关系是:(A) 温度升高,λ减少而Z 增大.(B) 温度升高,λ增大而Z 减少.(C) 温度升高,λ和Z 均增大.(D) 温度升高,λ保持不变而Z 增大. [ ]34、一容器贮有某种理想气体,其分子平均自由程为0λ,若气体的热力学温度降到原来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为 (A)02λ. (B) 0λ. (C)2/0λ. (D) 0λ/ 2. [ ]35、图(a)、(b)、(c)各表示联接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程,图(a)和(b)则为半径不等的两个圆.那么:(A) 图(a)总净功为负.图(b)总净功为正.图(c)总净功为零.(B) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为正.(C) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为零.(D) 图(a)总净功为正.图(b)总净功为正.图(c)总净功为负.36、 关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A) (1)、(2)、(3).(B) (1)、(2)、(4).(C)(2)、(4). (D)(1)、(4). [ ]V 图(a) V图(b) V 图(c)37、如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程(A) 是平衡过程,它能用p─V图上的一条曲线表示.(B) 不是平衡过程,但它能用p─V图上的一条曲线表示.(C) 不是平衡过程,它不能用p─V图上的一条曲线表示.(D) 是平衡过程,但它不能用p─V图上的一条曲线表示.[]38、在下列各种说法(1) 平衡过程就是无摩擦力作用的过程.(2) 平衡过程一定是可逆过程.(3) 平衡过程是无限多个连续变化的平衡态的连接.(4) 平衡过程在p-V图上可用一连续曲线表示.中,哪些是正确的?(A) (1)、(2).(B) (3)、(4).(C) (2)、(3)、(4).(D) (1)、(2)、(3)、(4).[]39、设有下列过程:(1) 用活塞缓慢地压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2) 用缓慢地旋转的叶片使绝热容器中的水温上升.(3) 一滴墨水在水杯中缓慢弥散开.(4) 一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是可逆过程的为(A) (1)、(2)、(4).(B) (1)、(2)、(3).(C) (1)、(3)、(4).(D) (1)、(4).[]40、在下列说法(1) 可逆过程一定是平衡过程.(2) 平衡过程一定是可逆的.(3) 不可逆过程一定是非平衡过程.(4) 非平衡过程一定是不可逆的.中,哪些是正确的?(A) (1)、(4).(B) (2)、(3).(C) (1)、(2)、(3)、(4).(D) (1)、(3).[]41、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态(A) 一定都是平衡态.(B) 不一定都是平衡态.(C) 前者一定是平衡态,后者一定不是平衡态.(D) 后者一定是平衡态,前者一定不是平衡态. [ ]42、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程(A) 一定都是平衡过程.(B) 不一定是平衡过程.(C) 前者是平衡过程,后者不是平衡过程.(D) 后者是平衡过程,前者不是平衡过程. [ ]43、如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A→D 绝热过程,其中吸热量最多的过程(A) 是A →B.(B)是A →C.(C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B)m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ] 3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系: (A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等 (D) ε和w 都不相等4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
这些说法中正确的是(A) (1)、(2)、(4);(B) (1)、(2)、(3);(C) (2)、(3)、(4);(D) (1)、(3) 、(4); [ ]9.4039:设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比22H O /v v 为(A) 1 (B) 1/2 (C) 1/3 (D) 1/4 10.4041:设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则:(A) 图中a表示氧气分子的速率分布曲线; ()2O p v /()2H p v =4(B) 图中a表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4 (C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4 (D) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4 [ ]11.4084:图(a)、(b)、(c)各表示联接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程,图(a)和(b)则为半径不等的两个圆。
那么:(A) 图(a)总净功为负。
图(b)总净功为正。
图(c)总净功为零(B) 图(a)总净功为负。
图(b)总净功为负。
图(c)总净功为正(C) 图(a)总净功为负。
图(b)总净功为负。
图(c)总净功为零(D) 图(a)总净功为正。
图(b)总净功为正。
图(c)总净功为负12.4133:关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程;(2) 准静态过程一定是可逆过程;(3) 不可逆过程就是不能向相反方向进行的过程;(4) 凡有摩擦的过程,一定是不可逆过程。
以上四种判断,其中正确的是(A) (1)、(2)、(3) (B) (1)、(2)、(4) (C) (2)、(4) (D) (1)、(4) 13.4098:质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍。
那么气体温度的改变(绝对值)在(A) 绝热过程中最大,等压过程中最小 (B) 绝热过程中最大,等温过程中最小(C) 等压过程中最大,绝热过程中最小 (D) 等压过程中最大,等温过程中最小14.4089:有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量是:(A) 6 J (B) 5 J (C) 3 J (D) 2 J [ ] 15.4094:1mol 的单原子分子理想气体从状态A 变为状态B ,如果不知是什么气体,变化过程也不知道,但A 、B 两态的压强、体积和温度都知道,则可求出: (A) 气体所作的功 (B) 气体内能的变化 (C) 气体传给外界的热量 (D) 气体的质量 [ ]16.4100:一定量的理想气体经历acb 过程时吸热500 J 。
则经历acbda 过程时,吸热为 (A) –1200 J (B) –700 J (C) –400 J (D) 700 J [ ]4041pV 图(a)p V图(b)p V图(c)4084图 5 417.4095:一定量的某种理想气体起始温度为T ,体积为V ,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中(A) 气体向外界放热 (B) 气体对外界作正功(C) 气体内能增加 (D) 气体内能减少 [ ] 18.4116:一定量理想气体经历的循环过程用V -T 曲线表示如图。
在此循环过程中,气体从外界吸热的过程是(A) A →B (B) B →C (C) C →A (D) B →C 和B →C [ ]19.4121:两个卡诺热机的循环曲线如图所示,一个工作在温度为T 1 与T 3的两个热源之间,另一个工作在温度为T 2 与T 3的两个热源之间,已知这两个循环曲线所包围的面积相等。
由此可知:(A) 两个热机的效率一定相等(B) 两个热机从高温热源所吸收的热量一定相等(C) 两个热机向低温热源所放出的热量一定相等(D) 两个热机吸收的热量与放出的热量(绝对值)的差值一定相等20.4122:如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a '',那么循环abcda 与da c b a ''所作的净功和热机效率变化情况是: (A) 净功增大,效率提高 (B) 净功增大,效率降低 (C) 净功和效率都不变 (D) 净功增大,效率不变 [ ] 21.4123:在温度分别为 327℃和27℃的高温热源和低 温热源之间工作的热机,理论上的最大效率为 (A) 25% (B) 50% (C) 75% (D) 91.74% [ ] 22.4124:设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取热量的(A) n 倍 (B) n -1倍 (C) n 1倍 (D) n n 1+倍23.4125:有人设计一台卡诺热机(可逆的)。
每循环一次可从 400 K 的高温热源吸热1800 J ,向 300 K 的低温热源放热 800 J 。
同时对外作功1000 J ,这样的设计是(A) 可以的,符合热力学第一定律(B) 可以的,符合热力学第二定律(C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量4121图T V 4116图p4122图(D) 不行的,这个热机的效率超过理论值 24.4126:如图表示的两个卡诺循环,第一个沿ABCDA 进行,第二个沿A D C AB ''进行,这两个循环的效率1η和2η 的关系及这两个循环所作的净功W 1和W 2的关系是 (A) 21ηη=,21W W =(B) 21ηη>,21W W = (C) 21ηη=,21W W >(D) 21ηη=,21W W < 25.4135:根据热力学第二定律可知: (A) 功可以全部转换为热,但热不能全部转换为功(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体(C) 不可逆过程就是不能向相反方向进行的过程(D) 一切自发过程都是不可逆的 26.4136:根据热力学第二定律判断下列哪种说法是正确的(A) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体(B) 功可以全部变为热,但热不能全部变为功(C) 气体能够自由膨胀,但不能自动收缩(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量27.4142:一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。
若把隔板抽出,气体将进行自由膨胀,达到平衡后(A) 温度不变,熵增加 (B) 温度升高,熵增加(C) 温度降低,熵增加 (D) 温度不变,熵不变 28.4143:“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功。
”对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律(B) 不违反热力学第二定律,但违反热力学第一定律(C) 不违反热力学第一定律,也不违反热力学第二定律(D) 违反热力学第一定律,也违反热力学第二定律 29.4101:某理想气体状态变化时,内能随体积的变化关系如图中AB 直线所示。
A →B 表示的过程是 (A) 等压过程 (B) 等体过程 (C) 等温过程 (D) 绝热过程 [ ]30.4056:若理想气体的体积为V ,压强为p ,温度为T ,一 个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该 理想气体的分子数为: (A) pV / m (B) pV / (kT )(C) pV / (RT ) (D) pV / (mT )31.4407:气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况是: (A) Z 和λ都增大一倍 (B) Z 和λ都减为原来的一半 (C) Z 增大一倍而λ减为原来的一半 (D) Z 减为原来的一半而λ增大一倍 32.4465:在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于:V 4126图 V 4101图(A) 压强p (B) 体积V (C) 温度T (D) 平均碰撞频率Z 33.4955:容积恒定的容器内盛有一定量某种理想气体,其分子热运动的平均自由程为0λ,平均碰撞频率为0Z ,若气体的热力学温度降低为原来的1/4倍,则此时分子平均自由程λ和平均碰撞频率Z 分别为: (A) λ=0λ,Z =0Z (B) λ=0λ,Z =210Z (C) λ=20λ,Z =20Z (D) λ=20λ,Z =210Z二、填空题1.4008:若某种理想气体分子的方均根速率()4502/12=v m / s ,气体压强为p =7×104 Pa ,则该气体的密度为ρ=__1.04____________。