双碱法脱硫工艺【最新版】
双碱法脱硫装置技术工艺简介
双碱法脱硫装置技术工艺简介一、常用脱硫法简介目前主要用于烟气脱硫工艺按形式可分为干法、半干法和湿法三大类。
1.干法干法常用的有炉内喷钙(石灰/石灰石),金属吸收等,干法脱硫属传统工艺,脱硫率普遍不高(<50%),工业应用较少。
2.半干法半干法使用较多的为塔内喷浆法,即将石灰制成石灰浆液,在塔内进行SO2吸收,但由于石灰奖溶解SO2的速度较慢,喷钙反应效率较低,Ca/S比较大,一般在1.5以上(一般温法脱硫Ca/S比较为0.9~1.2)。
应用也不是很多。
3.湿法湿法脱硫为目前使用范围最广的脱硫方法,占脱硫总量的80%。
漫法脱硫根据脱硫的原料不同又可分为石灰石/石灰法、氨法、钠碱法、钠钙双碱法、金属氧化物法、碱性硫酸铝法等,其中石灰石/石灰法、氨法、钠碱法、钠钙双碱法以及金属氧化物中的氧化镁法使用较为普遍。
3.1石灰石/石灰法石灰石法采用将石灰石粉碎成200~300目大小的石灰粉,将其制成石灰浆液,在吸收塔内通过喷淋雾化使其与烟气接触,从而达到脱硫的目的。
该工艺需配备石灰石粉碎系统与石灰石粉化浆系统,由于石灰石活性较低,需通过增大吸收液的喷淋量,提高液气比,来保证足够的脱硫效率,因此运行费用较高。
石灰法是用石灰粉代替石灰石,石灰活性大大高于石灰石,可提高脱硫效率,石灰法主要存在的问题是塔内容易结垢,引起气液接触器(喷头或塔板)的堵塞。
3.2氨法氨法采用氨水作为SO2的吸收剂,SO2与NH3反应可产生亚硫酸氨、亚硫酸氢氨与部分因氧化而产生的硫酸氨。
根据吸收液再生方法的不同,氨法可分为氨—酸法、氨—亚硫酸氨法和氨——硫酸氨法。
氨法主要优点是脱硫效率高(与钠碱法相同),副产物可作为农业肥料。
由于氨易挥发,使吸收剂消耗量增加,脱硫剂利用率不高;脱硫对氨水的浓度有一定的要求,若氨水浓度太低,不仅影响脱硫效率,而且水循环系统庞大,使运行费用增大;浓度增大,势必导致蒸发量的增大,对工作环境产生影响,而且氨易与净化后烟气中的SO2反应,形成气溶胶,使得烟气无法达标排放。
双碱法脱硫工艺简介
双碱法脱硫装置技术工艺简介一、常用脱硫法简介目前主要用于烟气脱硫工艺按形式可分为干法、半干法和湿法三大类;1.干法干法常用的有炉内喷钙石灰/石灰石,金属吸收等,干法脱硫属传统工艺,脱硫率普遍不高<50%,工业应用较少;2.半干法半干法使用较多的为塔内喷浆法,即将石灰制成石灰浆液,在塔内进行SO2吸收,但由于石灰奖溶解SO2的速度较慢,喷钙反应效率较低,Ca/S比较大,一般在1.5以上一般温法脱硫Ca/S比较为0.9~1.2;应用也不是很多;3.湿法湿法脱硫为目前使用范围最广的脱硫方法,占脱硫总量的80%;漫法脱硫根据脱硫的原料不同又可分为石灰石/石灰法、氨法、钠碱法、钠钙双碱法、金属氧化物法、碱性硫酸铝法等,其中石灰石/石灰法、氨法、钠碱法、钠钙双碱法以及金属氧化物中的氧化镁法使用较为普遍;3.1石灰石/石灰法石灰石法采用将石灰石粉碎成200~300目大小的石灰粉,将其制成石灰浆液,在吸收塔内通过喷淋雾化使其与烟气接触,从而达到脱硫的目的;该工艺需配备石灰石粉碎系统与石灰石粉化浆系统,由于石灰石活性较低,需通过增大吸收液的喷淋量,提高液气比,来保证足够的脱硫效率,因此运行费用较高;石灰法是用石灰粉代替石灰石,石灰活性大大高于石灰石,可提高脱硫效率,石灰法主要存在的问题是塔内容易结垢,引起气液接触器喷头或塔板的堵塞;3.2氨法氨法采用氨水作为SO2的吸收剂,SO2与NH3反应可产生亚硫酸氨、亚硫酸氢氨与部分因氧化而产生的硫酸氨;根据吸收液再生方法的不同,氨法可分为氨—酸法、氨—亚硫酸氨法和氨——硫酸氨法;氨法主要优点是脱硫效率高与钠碱法相同,副产物可作为农业肥料;由于氨易挥发,使吸收剂消耗量增加,脱硫剂利用率不高;脱硫对氨水的浓度有一定的要求,若氨水浓度太低,不仅影响脱硫效率,而且水循环系统庞大,使运行费用增大;浓度增大,势必导致蒸发量的增大,对工作环境产生影响,而且氨易与净化后烟气中的SO2反应,形成气溶胶,使得烟气无法达标排放;氨法的回收过程也是较为困难的,投资费用较高,需配备制酸系统或结晶回收装置需配备中和器、结晶器、脱水机、干燥机等,系统复杂,设各繁多,管理维护要求高;3.4金属氧化物法常用的金属氧化物法是氧化镁法,氧化镁与SO2反应得到亚硫酸镁与硫酸镁,它们通过锻烧可重新分解处氧化镁,同时回收较纯净的SO2气体,脱硫剂可循环使用;由于氧化镁活性比石灰水高,脱硫效率也较石灰法高;它的缺点是氧化镁回收过程需锻烧,工艺较复杂,但若直接采用抛弃法,镁盐会导致二次污染,总体运行费用也较高;3.5钠钙双碱法二、双碱法脱硫工艺1、什么是双碱法脱硫双碱法脱硫是指采用NaOH和石灰氢氧化钙两种碱性物质做脱硫剂的脱硫方法; 2、双碱法脱硫工艺原理主要工艺过程是:清水池一次性加入氢氧化钠溶剂制成氢氧化钠脱硫液循环水,用泵打入脱硫除尘器进行脱硫;3种生成物均溶于水;在脱硫过程中,烟气夹杂的烟道灰同时被循环水湿润而捕集进入循环水,从脱硫除尘器排出的循环水变为灰水稀灰浆;一起流入沉淀池,烟道灰经沉淀定期清除,回收利用,如制内燃砖等;上清液溢流进入反应池与投加的石灰进行反应,置换出的氢氧化钠溶解在循环水中,同时生成难溶解的亚硫酸钙、硫酸钙和碳酸钙等,可通过沉淀清除;可以回收,是制水泥的良好原料;因此可做到废物综合利用,降低运行费用;用NaOH脱硫,循环水基本上是NaOH的水溶液;在循环过程中对水泵、管道、设备均无腐蚀与堵塞现象,便于设备运行与保养;为保证脱硫除尘器正常运行,烟气排放稳定达标,确保脱硫剂有足够使用量是一个关键问题;脱硫剂用量计算如下:脱硫反应中,NaOH的消耗量是SO2和CO2与其反应的消耗量;用量需要过量5%以上按5%计算;前面计算的10 t/h锅炉烟气中SO2排放量为42 kg/h,CO2排放是为2 161 kg/h;SO2和CO2中和反应用氢氧化钠量为:80×42÷64+80×2 161÷44×105%=4 180 kg脱硫过程由于NaOH的转换实际消耗是石灰;折算成生石灰消耗量56×4180÷80=2 926 kg生石灰日消耗量为70 224 kg综上所述,脱硫过程的碱消耗量是很大的;但要保证脱硫效率,就必须要保证碱的用量,通过比较双碱法脱硫可以实现脱硫效率高,运行费用相对比较低,操作方便,无二次污染,废渣可综合利用;所以改进后的双碱法脱硫工艺是值得推荐和推广应用的;3、优势钠钙双碱法Na2CO3/CaOH2是在石灰法基础上结合钠碱法,利用钠盐易溶于水,在吸收塔内部采用钠碱吸收SO2,吸收后的脱硫液在再生池内利用较廉价的石灰进行再生,从而使得钠离子循环吸收利用;该工艺综合石灰法与钠碱法的特点,解决了石灰法的塔内易结垢的问题,又具备钠碱法吸收效率高的优点;脱硫副产物为亚硫酸钙或硫酸钙氧化后;亚硫酸钙配以合成树脂可生产一种称为钙塑的新型复合材料;或将其氧化后制成石膏;或者直接将其与粉煤灰混合,可增加粉煤灰的塑性,增加粉煤灰作为铺路底层垫层材料的强度;与氧化镁法相比,钙盐不具污染性,因此不产生废渣二次污染;双碱法烟气脱硫技术是为了克服石灰石—石灰法容易结垢的缺点而发展起来的;传统的石灰石/石灰—石膏法烟气脱硫工艺采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象;结垢堵塞问题严重影响脱硫系统的正常运行,更甚者严重影响锅炉系统的正常运行;为了尽量避免用钙基脱硫剂的不利因素,钙法脱硫工艺大都需要配备相应的强制氧化系统曝气系统,从而增加初投资及运行费用,用廉价的脱硫剂而易造成结垢堵塞问题,单纯采用钠基脱硫剂运行费用太高而且脱硫产物不易处理,二者矛盾相互凸现,双碱法烟气脱硫工艺应运而生,该工艺较好的解决了上述矛盾问题;石灰石/石膏法的原理是:将石灰石粉加水或石灰石磨制为石灰石浆制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏;经洗涤脱出二氧化硫的烟气经加热或不加热由烟囱排入大气;氨法脱硫工艺是以氨水为吸收剂,副产硫酸铵化肥;锅炉排出的烟气经烟气换热器降温到90-100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中;在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器;在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器;再经烟气换热器加热后经烟囱排放;洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售;烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成;该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂;由锅炉排出的未经处理的烟气从吸收塔即流化床底部进入;吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3 和CaSO4;脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高;双碱法脱硫是指采用NaOH和石灰氢氧化钙两种碱性物质做脱硫剂的脱硫方法;双碱法脱硫一般只有一个循环水池,NaOH、石灰与除尘脱硫过程中捕集下来的烟灰同在一个循环池内混合,在清除循环水池内的灰渣时烟灰、反应生成物亚硫酸钙、硫酸钙及石灰渣和未完全反应的石灰同时被清除,清出的灰渣是一种混合物不易被利用而形成废渣;主要工艺过程是:清水池一次性加入氢氧化钠溶剂制成氢氧化钠脱硫液循环水,用泵打入脱硫除尘器进行脱硫;3种生成物均溶于水;在脱硫过程中,烟气夹杂的烟道灰同时被循环水湿润而捕集进入循环水,从脱硫除尘器排出的循环水变为灰水稀灰浆;一起流入沉淀池,烟道灰经沉淀定期清除,回收利用,如制内燃砖等;上清液溢流进入反应池与投加的石灰进行反应,置换出的氢氧化钠溶解在循环水中,同时生成难溶解的亚硫酸钙、硫酸钙和碳酸钙等,可通过沉淀清除;可以回收,是制水泥的良好原料;脱硫的方法其实有很多,主要的方法有,石灰石——石膏湿法CaCO3、石灰法也就市氧化钙法CaO、氨法NH3、双碱法NaOH/CaCO3、氧化镁法MgO;生石灰是CaO 熟石灰是CaOH2 石灰石主要成分是CaCO3CaO+H2O=CaOH2CaOH2+CO2=CaCO3+H2OCaCO3=CaO+CO2 反应条件是高温主要工艺过程是:清水池一次性加入氢氧化钠溶剂制成氢氧化钠脱硫液循环水,用泵打入脱硫除尘器进行脱硫;3种生成物均溶于水;在脱硫过程中,烟气夹杂的烟道灰同时被循环水湿润而捕集进入循环水,从脱硫除尘器排出的循环水变为灰水稀灰浆;一起流入沉淀池,烟道灰经沉淀定期清除,回收利用,如制内燃砖等;上清液溢流进入反应池与投加的石灰进行反应,置换出的氢氧化钠溶解在循环水中,同时生成难溶解的亚硫酸钙、硫酸钙和碳酸钙等,可通过沉淀清除;可以回收,是制水泥的良好原料;因此可做到废物综合利用,降低运行费用;用NaOH脱硫,循环水基本上是NaOH的水溶液;在循环过程中对水泵、管道、设备均无腐蚀与堵塞现象,便于设备运行与保养;为保证脱硫除尘器正常运行,烟气排放稳定达标,确保脱硫剂有足够使用量是一个关键问题;脱硫剂用量计算如下:脱硫反应中,NaOH的消耗量是SO2和CO2与其反应的消耗量;用量需要过量5%以上按5%计算;前面计算的10 t/h锅炉烟气中SO2排放量为42 kg/h,CO2排放是为2 161 kg/h; SO2和CO2中和反应用氢氧化钠量为:80×42÷64+80×2 161÷44×105%=4 180 kg脱硫过程由于NaOH的转换实际消耗是石灰;折算成生石灰消耗量56×4180÷80=2 926 kg生石灰日消耗量为70 224 kg综上所述,脱硫过程的碱消耗量是很大的;但要保证脱硫效率,就必须要保证碱的用量,通过比较双碱法脱硫可以实现脱硫效率高,运行费用相对比较低,操作方便,无二次污染,废渣可综合利用;所以改进后的双碱法脱硫工艺是值得推荐和推广应用的;物料就是氢氧化钠和氧化钙白灰;双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题;另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用;双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造;双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用;脱硫工艺主要包括5个部分:1吸收剂制备与补充;2吸收剂浆液喷淋;3塔内雾滴与烟气接触混合;4再生池浆液还原钠基碱;5石膏脱水处理;双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3-;SO2g= SO2lSO2aq+H2Ol = H++HSO3-=2H++SO32-;式1为慢反应,是速度控制过程之一;然后H+与溶液中的OH-中和反应,生成盐和水,促进SO不断被吸收溶解;具体反应2方程式如下:2NaOH + SO2 → Na2SO3 + H2ONa2SO3 + SO2 + H2O → 2NaHSO3脱硫后的反应产物进入再生池内用另一种碱,一般是CaOH2进行再生,再生反应过程如下:CaOH2 + Na2SO3 → 2 NaOH + CaSO3CaOH2 + 2NaHSO3 → Na2SO3 + CaSO3·1/2H2O +1/2H2O存在氧气的条件下,还会发生以下反应:CaOH2 + Na2SO3 + 1/2O2 + 2 H2O → 2 NaOH + CaSO4·H2O脱下的硫以亚硫酸钙、硫酸钙的形式析出,然后将其用泵打入石膏脱水处理系统或直接堆放、抛弃;再生的NaOH可以循环使用;工艺流程介绍来自锅炉的烟气先经过除尘器除尘,然后烟气经烟道从塔底进入脱硫塔;在脱硫塔内布置若干层根据具体情况定旋流板的方式,旋流板塔具有良好的气液接触条件,从塔顶喷下的碱液在旋流板上进行雾化使得烟气中的SO2与喷淋的碱液充分吸收、反应;经脱硫洗涤后的净烟气经过除雾器脱水后进入换热器,升温后的烟气经引风机通过烟囱排入大气;双碱法脱硫工艺流程图:最初的双碱法一般只有一个循环水池,NaOH、石灰和脱硫过程中捕集的飞灰同在一个循环池内混合;在清除循环池内的灰渣时,烟灰、反应生成物亚硫酸钙、硫酸钙及石灰渣和未反应的石灰同时被清除,清出的混合物不易综合利用而成为废渣;为克服传统双碱法的缺点,对其进行了改进;主要工艺过程是,清水池一次性加入氢氧化钠制成脱硫液,用泵打入吸收塔进行脱硫;三种生成物均溶于水,在脱硫过程中,烟气夹杂的飞灰同时被循环液湿润而捕集,从吸收塔排出的循环浆液流入沉淀池;灰渣经沉淀定期清除,可回收利用,如制砖等;上清液溢流进入反应池与投加的石灰进行反应,置换出的氢氧化钠溶解在循环水中,同时生成难溶解的亚硫酸钙、硫酸钙和碳酸钙等,可通过沉淀清除;3、工艺流程说明双碱法烟气脱硫工艺主要包括吸收剂制备和补充系统,烟气系统,SO2吸收系统,脱硫石膏脱水处理系统和电气与控制系统五部分组成;吸收剂制备及补充系统脱硫装置启动时用氢氧化钠作为吸收剂,氢氧化钠干粉料加入碱液罐中,加水配制成氢氧化钠碱液,碱液被打入返料水池中,由泵打入脱硫塔内进行脱硫,为了将用钠基脱硫剂脱硫后的脱硫产物进行再生还原,需用一个制浆罐;制浆罐中加入的是石灰粉,加水后配成石灰浆液,将石灰浆液打到再生池内,与亚硫酸钠、硫酸钠发生反应;在整个运行过程中,脱硫产生的很多固体残渣等颗粒物经渣浆泵打入石膏脱水处理系统;由于排走的残渣中会损失部分氢氧化钠,所以,在碱液罐中可以定期进行氢氧化钠的补充,以保证整个脱硫系统的正常运行及烟气的达标排放;为避免再生生成的亚硫酸钙、硫酸钙也被打入脱硫塔内容易造成管道及塔内发生结垢、堵塞现象,可以加装瀑气装置进行强制氧化或特将水池做大,再生后的脱硫剂溶液经三级沉淀池充分沉淀保证大的颗粒物不被打回塔体;另外,还可在循环泵前加装过滤器,过滤掉大颗粒物质和液体杂质;烟气系统, 锅炉烟气经烟道进入除尘器进行除尘后进入脱硫塔,洗涤脱硫后的低温烟气经两级除雾器除去雾滴后进入主烟道,经过烟气再热后由烟囱排入大气;当脱硫系统出现故障或检修停运时,系统关闭进出口挡板门,烟气经锅炉原烟道旁路进入烟囱排放;SO2吸收系统烟气进入吸收塔内向上流动,与向下喷淋的石灰石浆液以逆流方式洗涤,气液充分接触;脱硫塔采用内置若干层旋流板的方式,塔内最上层脱硫旋流板上布置一根喷管;喷淋的氢氧化钠溶液通过喷浆层喷射到旋流板中轴的布水器上,然后碱液均匀布开,在旋流板的导流作用下,烟气旋转上升,与均匀布在旋流板上的碱液相切,进一步将碱液雾化,充分吸收SO2、SO3、HCl和HF等酸性气体,生成NaSO3、NaHSO3,同时消耗了作为吸收剂的氢氧化钠;用作补给而添加的氢氧化钠碱液进入返料水池与被石灰再生过的氢氧化钠溶液一起经循环泵打入吸收塔循环吸收SO2;在吸收塔出口处装有两级旋流板或折流板除雾器,用来除去烟气在洗涤过程中带出的水雾;在此过程中,烟气携带的烟尘和其它固体颗粒也被除雾器捕获,两级除雾器都设有水冲洗喷嘴,定时对其进行冲洗,避免除雾器堵塞;脱硫产物处理系统&电气与控制系统脱硫系统的最终脱硫产物仍然是石膏浆固体含量约20%,具体成分为CaSO3、CaSO4,还有部分被氧化后的钠盐NaSO4;从沉淀池底部排浆管排出,由排浆泵送入水力旋流器;由于固体产物中掺杂有各种灰分及NaSO4,严重影响了石膏品质,所以一般以抛弃为主;在水力旋流器内,石膏浆被浓缩固体含量约40%之后用泵打到渣处理场,溢流液回流入再生池内;电气与控制系统脱硫装置动力电源自电厂配电盘引出,经高压动力电缆接入脱硫电气控制室配电盘;在脱硫电气控制室,电源分为两路,一回经由配电盘、控制开关柜直接与高压电机浆液循环泵相连接;另一回接脱硫变压器,其输出端经配电盘、控制开关柜与低压电器相连接,低压配电采用动力中心电动机控制中心供电方式;系统配备有低压直流电源为电动控制部分提供电源;脱硫系统的脱硫剂加料设备和旋流分离器实行现场控制,其它实行控制室内脱硫控制盘集中控制,亦可实现就地手动操作;正常运行时,由立式控制盘自动控制各个调节阀,控制脱硫系统石灰供应量和氢氧化钠补给量,要在锅炉负荷变动时能自动予以调节;烟气量的控制是根据锅炉排烟量,由引风机入口挡板通过锅炉负荷信号转换为烟气量与实际引入脱硫装置的烟气量反馈信号控制;吸收剂浆液流量的控制是通过进入脱硫装置的SO2量以及循环浆池中浆液的PH值来控制的;副产品浆液供给量通过吸收剂浆液的流量来控制;除雾装置清洗水的流量、吸收室入口冲洗水的压力以及脱水机排出液流量单独控制;脱硫塔底部的液位亦属于单独控制,即通过补给水量来控制;吸收剂浆池浓度的控制由补给水量调节给料器的转速以控制石灰加入量,继而达到控制浓度的目的;吸收室出口除雾器的清洗是按一定的时间间隔开关喷水阀用补充给水进行冲洗;二次污染的解决问题:采用氢氧化钠作为脱硫剂,在脱硫塔内吸收二氧化硫反应速率快,脱硫效率高,但脱硫的产物Na2SO4很难进行处理,极易造成严重的二次污染问题;采用双碱法烟气脱硫工艺,用氢氧化钠吸收二氧化硫后的产物用石灰来再生,只有少量的Na2SO4被带入石膏浆液中,这些掺杂了少量Na2SO4的石膏浆液用泵打入旋流分离器中进行固液分离,分离的大量的含水率较低的固体残渣被打到渣场进行堆放,溶液流回再生池继续使用,因此不会造成二次污染;5、工艺特点与石灰石或石灰湿法脱硫工艺相比,双碱法原则上有以下优点1用NaOH脱硫,循环水基本上是NaOH的水溶液,在循环过程中对水泵、管道、设备均无腐蚀与堵塞现象,便于设备运行与保养2吸收剂的再生和脱硫渣的沉淀发生在塔外,这样避免了塔内堵塞和磨损,提高了运行的可靠性,降低了操作费用;同时可以用高效的板式塔或填料塔代替空塔,使系统更紧凑,且可提高脱硫效率;3钠基吸收液吸收SO2速度快,故可用较小的液气比,达到较高的脱硫效率,一般在90%以上;对脱硫除尘一体化技术而言,可提高石灰的利用率;缺点是:NaSO3氧化副反应产物Na2SO4较难再生,需不断的补充NaOH或Na2CO3而增加碱的消耗量;另外,Na2SO4的存在也将降低石膏的质量双碱法脱硫技术是国内外运用的成熟技术,是一种特别适合中小型锅炉烟气脱硫技术,具有广泛的市场前景;3、工艺设备双碱法工艺系统主要由除尘装置、脱硫塔、供液系统、制浆系统、再生系统、水处理系统五部分组成;除尘装置与脱硫塔可采用我公司脱硫除尘一体化设备脱硫除尘一次完成;供液系统工艺水系统主要由工艺水管在路组成,根据实际情况需要配置工艺水泵及工艺水箱,可由厂区自来水管网引入;制浆系统脱硫剂配制系统包括斗式提升机、石灰料仓、螺旋输送机、石灰消化池、纯碱制备罐等;生石灰粉通过斗式提升机送入石灰料仓储存,再由螺旋输送机送入石灰消化池溶解后溢流至再生反应池,供脱硫液再生使用;螺旋输送机配变频器,可调节石灰投量;由于系统产生石膏沉淀带走水份中含有钠离子,系统需要补充少量纯碱;纯碱在制备罐中充分溶解后通过阀门调节投入至再生液池;脱硫剂主要为石灰和纯碱;纯碱为市卖98%工业纯碱,石灰粉粒径200目,CaO含量80%;纯碱启动时一次添加,以后少量补充随脱硫渣带走的部分,通过监测废液pH值的高低,控制电磁阀门对纯碱投量进行控制;再生系统再生反应系统包括再生反应池、搅拌器等;废液泵将部分废液输送入再生反应池,同时制备好的石灰浆液也加入到再生反应池,在池内发生再生反应,池内进行充分的机械搅拌;在再生反应中产生了可供脱硫的再生液,同时也生成大量的亚硫酸钙沉淀,再生反应池出口溢流入沉淀池;沉淀池上清液流入再生液储存池,由再生液输送泵输送至吸收塔循环水池;水处理系统废水处理系统包括沉淀池、刮泥机、PAC、PAM制备灌、压滤机、压滤机给料泵等;由再生反应池排入的浑浊浆液进入沉淀池,沉淀池为竖沉池;沉淀池底部安装刮泥机,沉淀物在此沉淀后由压滤机给料泵打入压滤机中;压滤机清水返回至再生反应池,泥饼的主要成分为亚硫酸钙与硫酸钙;泥饼含水率低,利于外运,泥饼可用于铺路或作为水泥添加剂;刮泥机用于浓缩池中的机械排泥;污水经池中心导流筒均匀流向池四周,随着流速的降低,污水中的悬浮物质沉淀于池底,池底刮泥机将沉淀污泥刮集到中心泥坑中,将沉降在池底上污泥刮集至积泥坑;特点:结构简单、重量轻;由于采用箱形结构,比传统机构重量大大减轻;维护简单方便,运行费用低;新型的传动机械,减速机采用行星减速机,安装方便、结构简单紧凑、效率高;电气元件均采用户外型,安全可靠,可随机控制或远程控制;。
双碱法脱硫技术方案
双碱法脱硫技术方案一、技术原理双碱法脱硫技术是指通过两种不同的碱性溶液进行喷淋吸收,分别是强碱溶液和弱碱溶液。
在煤燃烧过程中,二氧化硫气体与强碱溶液发生反应生成硫酸盐,然后与弱碱溶液进行反应生成硫酸钙沉淀。
通过这种连续喷淋吸收的方法,可以实现高效的脱硫效果。
二、技术步骤1.煤燃烧产生的烟气进入预处理系统,经过除尘处理后,进入脱硫吸收塔。
2.在脱硫吸收塔中,将强碱溶液喷淋到烟气中,与二氧化硫反应生成硫酸盐。
3.经过强碱溶液的吸收后的烟气,接着喷入弱碱溶液中进一步吸收。
4.吸收后的烟气经过除雾处理,达到排放标准后排放出去。
5.产生的硫酸盐和硫酸钙沉淀通过后续处理,可以再生利用或者进行安全处理。
三、优势和应用1.高效去除二氧化硫:双碱法脱硫技术通过连续喷淋吸收的方式,能够实现对烟气中二氧化硫的高效去除,脱硫效率可以达到95%以上。
2.适应性广:该技术适应性强,可以适用于各类燃煤锅炉和燃烧设备,对烟气中的硫化物都能够有效去除。
3.投资和运行成本低:相对于其他脱硫技术,双碱法脱硫技术的投资和运行成本都比较低,同时还具有比较好的经济效益。
4.对环境友好:该技术在脱硫过程中不会产生二次污染物,处理后的废水和废渣可以进行合理处置,不会对环境造成负面影响。
双碱法脱硫技术是目前比较常用的燃煤脱硫技术之一,具有高效去除二氧化硫,适应性广,投资和运行成本低以及对环境友好等优点。
在煤燃烧过程中,使用双碱法脱硫技术可以有效降低二氧化硫排放,保护环境和改善空气质量。
同时,该技术还可以应用于矿山、化工和冶金等行业的气体脱硫处理,具有广泛的应用前景。
(完整版)双碱法脱硫
双碱法脱硫技术介绍碱法 , 脱硫 , 技术(一)双碱法烟气脱硫技术介绍双碱法烟气脱硫技术是为了克服石灰石—石灰法容易结垢的缺点而发展起来的。
传统的石灰石/石灰—石膏法烟气脱硫工艺采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。
结垢堵塞问题严重影响脱硫系统的正常运行,更甚者严重影响锅炉系统的正常运行。
为了尽量避免用钙基脱硫剂的不利因素,钙法脱硫工艺大都需要配备相应的强制氧化系统(曝气系统),从而增加初投资及运行费用,用廉价的脱硫剂而易造成结垢堵塞问题,单纯采用钠基脱硫剂运行费用太高而且脱硫产物不易处理,二者矛盾相互凸现,双碱法烟气脱硫工艺应运而生,该工艺较好的解决了上述矛盾问题。
(二)双碱法脱硫技术工艺基本原理双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。
另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。
双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。
双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中 SO2 来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。
脱硫工艺主要包括 5 个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。
双碱法烟气脱硫工艺同石灰石 /石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的 SO2 先溶解于吸收液中,然后离解成 H+和 HSO3- ;使用 Na2CO3 或 NaOH 液吸收烟气中的 SO2,生成HSO32- 、 SO32-与 SO42-,反应方程式如下:一、脱硫反应:Na2SO3 + SO2 → NaSO3 + CO2 ↑ (1)2NaOH + SO2 → Na2SO3 + H2O ( 2) Na2SO3 + SO2 + H2O → 2NaHSO3 ( 3)其中:式( 1)为启动阶段 Na2CO3 溶液吸收 SO2的反应;式( 2)为再生液pH 值较高时(高于 9 时),溶液吸收 SO2 的主反应;式( 3)为溶液 pH值较低( 5~9)时的主反应。
双碱法脱硫技术方案
(一)脱硫系统设计1、双碱法脱硫技术工艺基本原理双碱法是采用钠基脱硫剂进行塔脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。
另一方面脱硫产物被排入再生池用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。
双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。
双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔循环使用。
脱硫工艺主要包括5个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。
双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3-;使用Na2CO3或NaOH液吸收烟气中的SO2,生成HSO32-、SO32-与SO42-,反应方程式如下:一、脱硫反应:Na2CO3 + SO2→ Na2SO3 + CO2↑ (1)2NaOH + SO2→ Na2SO3 + H2O (2)Na2SO3 + SO2 + H2O → 2NaHSO3(3)其中:式(1)为启动阶段Na2CO3溶液吸收SO2的反应;式(2)为再生液pH值较高时(高于9时),溶液吸收SO2的主反应;式(3)为溶液pH值较低(5~9)时的主反应。
二、氧化过程(副反应)Na2SO3 + 1/2O2 → Na2SO4 (4)NaHSO3 + 1/2O2 → NaHSO4 (5)三、再生过程Ca(OH)2 + Na2SO3→ 2 NaOH + CaSO3(6)Ca(OH)2 + 2NaHSO3→ Na2SO3+ CaSO3•1/2H2O +3/2H2O (7)四、氧化过程CaSO3 + 1/2O2 → CaSO4 (8)式(6)为第一步反应再生反应,式(7)为再生至pH>9以后继续发生的主反应。
(完整版)双碱法脱硫
(完整版)双碱法脱硫双碱法脱硫技术介绍碱法, 脱硫, 技术(一)双碱法烟气脱硫技术介绍双碱法烟气脱硫技术是为了克服石灰石—石灰法容易结垢的缺点而发展起来的。
传统的石灰石/石灰—石膏法烟气脱硫工艺采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。
结垢堵塞问题严重影响脱硫系统的正常运行,更甚者严重影响锅炉系统的正常运行。
为了尽量避免用钙基脱硫剂的不利因素,钙法脱硫工艺大都需要配备相应的强制氧化系统(曝气系统),从而增加初投资及运行费用,用廉价的脱硫剂而易造成结垢堵塞问题,单纯采用钠基脱硫剂运行费用太高而且脱硫产物不易处理,二者矛盾相互凸现,双碱法烟气脱硫工艺应运而生,该工艺较好的解决了上述矛盾问题。
(二)双碱法脱硫技术工艺基本原理双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。
另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。
双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。
双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。
脱硫工艺主要包括5个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。
双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3-;使用Na2CO3或NaOH液吸收烟气中的SO2,生成HSO32-、SO32-与SO42-,反应方程式如下:一、脱硫反应:Na2SO3 + SO2 →NaSO3 + CO2↑(1)2NaOH + SO2 →Na2SO3 + H2O (2)Na2SO3 + SO2 + H2O →2NaHSO3 (3)其中:式(1)为启动阶段Na2CO3溶液吸收SO2的反应;式(2)为再生液pH值较高时(高于9时),溶液吸收SO2的主反应;式(3)为溶液pH值较低(5~9)时的主反应。
双碱法脱硫技术方案
双碱法脱硫技术方案清晨的阳光透过窗户洒在案头,一杯热气腾腾的咖啡陪伴着我,思绪开始飘散。
10年的方案写作经验,让我对这个领域有了更深刻的理解。
今天,我将为大家详细讲解一下双碱法脱硫技术方案。
一、项目背景近年来,我国环境污染问题日益严重,尤其是大气污染。
二氧化硫是主要污染物之一,对环境和人体健康造成严重危害。
为了改善大气环境,减少污染物排放,国家出台了一系列政策,要求企业采用先进的脱硫技术进行治理。
双碱法脱硫技术作为一种高效的脱硫方法,得到了广泛应用。
二、技术原理双碱法脱硫技术是一种湿式脱硫方法,主要利用碱液吸收烟气中的二氧化硫。
具体原理如下:1.吸收剂的选择:采用碳酸钠和氢氧化钠作为吸收剂,具有较强的吸收二氧化硫的能力。
2.吸收过程:烟气中的二氧化硫与吸收剂发生化学反应,亚硫酸钠和硫酸钠。
3.脱硫效果:通过调整吸收剂的浓度、循环量和喷淋方式,实现高效的脱硫效果。
三、技术方案1.脱硫系统设计(1)烟气预处理:对烟气进行除尘、降温、除湿等预处理,以满足脱硫系统的要求。
(2)吸收塔设计:采用逆流喷淋塔,提高吸收效率。
塔内设置多层喷淋层,确保烟气与吸收剂充分接触。
(3)循环泵设计:选用高效、节能的循环泵,降低系统运行成本。
(4)吸收剂制备:采用自动化控制系统,精确控制吸收剂的配比,保证脱硫效果。
2.脱硫工艺参数(1)吸收剂浓度:根据烟气中二氧化硫的浓度,调整吸收剂浓度,确保脱硫效果。
(2)循环量:根据烟气量、吸收剂浓度和脱硫效率要求,确定循环量。
(3)喷淋方式:采用分段喷淋,使烟气与吸收剂充分接触。
3.自动化控制系统(1)数据采集:实时监测烟气中的二氧化硫浓度、吸收剂浓度等参数。
(2)控制策略:根据监测数据,自动调整吸收剂浓度、循环量和喷淋方式。
(3)报警系统:当系统运行异常时,及时发出报警,确保系统安全运行。
四、效益分析1.环境效益:采用双碱法脱硫技术,可以有效减少二氧化硫排放,改善大气环境。
2.经济效益:双碱法脱硫技术运行成本低,具有较高的经济效益。
双碱法脱硫工艺流程
双碱法脱硫工艺流程
《双碱法脱硫工艺流程》
双碱法脱硫工艺是一种常用的燃煤电厂烟气脱硫技术,通过使用石灰石和苏打灰作为脱硫剂,能够有效地减少烟气中的二氧化硫排放。
脱硫工艺的流程主要包括以下几个步骤:石灰石的破碎和制粉、苏打灰的调配和储存、脱硫剂的喷射和烟气处理等。
首先,石灰石经过破碎、制粉后与水混合形成石灰浆,而苏打灰则需要根据需要进行调配和储存。
然后,将制备好的石灰浆和苏打灰通过喷射系统喷入烟道烟气中,形成脱硫反应。
在脱硫反应中,二氧化硫与石灰石和苏打灰发生化学反应,生成硫酸钙和硫酸钠,最终将二氧化硫转化为硫酸盐,达到减少排放的目的。
最后,经过脱硫处理后的烟气经过除尘设备进行粉尘的除理,最终排放出清洁的烟气。
双碱法脱硫工艺流程具有脱硫效率高、操作稳定、处理范围广等优点,适用于不同类型的燃煤电厂。
同时,脱硫剂石灰石和苏打灰相对比较便宜,成本低,因此受到了燃煤电厂的广泛应用。
总的来说,双碱法脱硫工艺流程是一种高效、经济的烟气脱硫技术,将有助于减少大气污染物的排放,保护环境和人类健康。
双碱法脱硫技术方案
(一)脱硫系统设计1、双碱法脱硫技术工艺基本原理双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。
另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。
双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。
双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。
脱硫工艺主要包括5个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。
双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3-;使用Na2CO3或NaOH液吸收烟气中的SO2,生成HSO32-、SO32-与SO42-,反应方程式如下:一、脱硫反应:Na2CO3 + SO2→ Na2SO3 + CO2↑(1)2NaOH + SO2→ Na2SO3 + H2O (2)Na2SO3 + SO2 + H2O → 2NaHSO3(3)其中:式(1)为启动阶段Na2CO3溶液吸收SO2的反应;式(2)为再生液pH值较高时(高于9时),溶液吸收SO2的主反应;式(3)为溶液pH值较低(5~9)时的主反应。
二、氧化过程(副反应)Na2SO3 + 1/2O2 → Na2SO4 (4)NaHSO3 + 1/2O2 → NaHSO4 (5)三、再生过程Ca(OH)2 + Na2SO3→ 2 NaOH + CaSO3(6)Ca(OH)2 + 2NaHSO3→ Na2SO3 + CaSO3•1/2H2O +3/2H2O (7)四、氧化过程CaSO3 + 1/2O2 → CaSO4 (8)式(6)为第一步反应再生反应,式(7)为再生至pH>9以后继续发生的主反应。
双碱法脱硫工艺
双碱法脱硫工艺钙钠双碱法脱硫工艺,简称双碱法。
该法主要是脱除气体中的SO2 气体。
适用于锅炉烟气、焦炉气、锅炉生产废气等的脱硫。
一、工艺特点钙钠双碱法是先用钠碱性吸收液进行烟气脱硫,然后再用石灰粉再生脱硫液,由于整个反应过程是液气相之间进行,避免了系统结垢问题,而且吸收速率高,液气比低,吸收剂利用率高,投资费用省,运行成本低。
1、以NaOH(Na2CO3)脱硫,脱硫液中主要为NaOH(Na2CO3)水溶液,在循环过程中对水泵、管道、设备缓解腐蚀、冲刷及堵塞,便于设备运行和维护。
2、钠基吸收液对SO2 反应速度快,故有较小的液气比,达到较高的脱硫效率,一般》90%。
3、脱硫剂的再生及脱硫沉淀均发生于塔体避免塔内堵塞和磨损,提高了运行的可靠性,降低了运行成本。
4、以空塔喷淋为脱硫塔结构,运行可靠性高,事故发生率小,塔阻力低,△P W 600P&二、工艺原理1 、反应原理SO2 吸收反应:Na2CO3+ SO2—Na2SO3+ CO2 T吸收剂再生反应:CaO+ H2O-Ca(OH) 2Ca(OH) 2+ Na2SO3+ H2O—2NaOH + CaSO3+ H2O2、工艺流程采用锻钢炉的烟气经换热降温至W 200r,经烟道从塔底进入脱硫塔。
在脱硫塔内布置若干层数十支喷嘴,喷出细微液滴雾化均布于脱硫塔溶积内,烟气与喷淋脱硫液进行充分汽液混合接触,使烟气中SO2 和灰尘被脱硫液充分吸收、反应,达到脱尘除SO2 的目的。
经脱硫洗涤后的净烟气经塔顶除雾器脱水,经脱硫塔上部进入烟囱排入大气。
脱硫循环液经塔内气液接触除SO2 后,经塔底管道流入沉淀池在此将灰尘沉淀下来,清液经上部溢进入反应再生池,在池内与石灰乳液制备槽引来的石灰乳进行再生反应,再生液流入泵前循环槽补入Na2CO3,由泵打入脱硫塔顶脱除SO2循环使用。
其中再生产出的CaSO3及烟气中过剩氧生成的CaS04于沉淀池中沉淀分离三、工艺优势1、烟气系统来自锻钢烟气经烟道引风机直接进入脱硫塔。
双碱法烟气脱硫工艺
(2)脱硫灰再循环系统布置在脱硫除尘器的灰斗下部。
(3)注水系统的工艺水箱应布置在靠近吸收塔底部的地面上,旁 边安装水泵,以便向吸收塔和消化器供水。 (4)风机、泵以及控制仪表应布置地面的空地处,便于检修。
3.已建电厂脱硫系统改造工程布置方式
下,就不会发生。
7.2.3 循环流化床烟气脱硫工艺
循环流化床烟气脱硫工艺(CFB-FGD)起源于水泥和冶金的焙烧 工艺,是近些年国际上新兴起的比较先进的半干法烟气脱硫技术, 最早是20世纪80年代后期由德国Lurgi公司研究开发的。 该工艺是以循环流化床原理为基础,通过吸收剂(石灰浆)的 多次循环,延长吸收剂与烟气的接触时间,来提高吸收剂的利用率。 它具有投资相对较低的优点,非常适合发展中国家使用,正引起越 来越多国家的重视。
一、脱硫原理
循环流化床是一种使高速气流与所携带的稠密悬浮颗粒充
分接触的技术。循环流化床烟气脱硫技术主要是根据循环流化
床的工作原理,使吸收剂在循环流化床内实现二氧化硫与氢氧 化钙反应的一种脱硫方法。 在循环流化床脱硫塔中,Ca(OH)2
与烟气中的SO2和几乎全部的SO3完成化学反应,主要化学反应
方程式如下: Ca(OH)2+ SO2=CaSO3· 1/2 H2O +1/2 H2O
双碱法烟气脱硫工艺
7.2.2
双碱法烟气脱硫工艺
双碱法是为了克服石灰石—石膏法中结垢问题而发展起来的一种 脱硫方法,在吸收和吸收液处理过程中使用了两种不同类型的碱。 第一碱:烟气在塔中与溶解的碱(钠碱或镁碱)溶液相接触, 烟气 中的SO2被吸收掉,因而避免了在塔内结垢; 第二碱:脱硫废液再与第二碱(通常为石灰或石灰石)反应,
双碱法脱硫循环水处理工艺
双碱法脱硫循环水处理工艺
双碱法脱硫是一种烟气脱硫工艺,使用石灰石/石灰和氢氧化钠作为吸收剂。
这种方法具有脱硫效率高、吸收剂利用率高的优点,但同时也产生了大量的副产物,需要进行处理。
双碱法脱硫循环水处理工艺主要包括以下几个步骤:
1. 吸收塔内,烟气与石灰石/石灰和氢氧化钠混合,脱除SO2。
2. 含SO2的吸收剂浆液流经再生塔,与压缩空气和饱和的碳酸氢钠溶液接触,将SO2和CO2释放出来。
3. 释放出的SO2和CO2进入吸收塔重新吸收,形成一个循环。
4. 含碳酸钙的浆液从再生塔底部流出,与氢氧化钙反应生成碳酸钙,然后通过脱水得到脱硫石膏。
5. 脱硫石膏可以作为建筑材料或化肥使用。
这个工艺的关键在于再生塔的设计和操作,以及循环水的管理和处理。
再生塔的设计需要考虑气液接触面积和浆液循环速度,以保证高效的脱硫和再生效果。
循环水的处理需要控制pH值、悬浮物和溶解氧等参数,以维持良好的水质和防止腐蚀。
双碱法脱硫循环水处理工艺是一种高效的烟气脱硫方法,可以显著减少SO2排放,对环境保护具有积极意义。
1。
湿式双碱法脱硫工艺流程
湿式双碱法脱硫工艺流程引言:湿式双碱法脱硫工艺是一种常用的烟气脱硫技术,广泛应用于燃煤电厂、钢铁厂等工业领域。
本文将详细介绍湿式双碱法脱硫工艺的流程,包括原理、设备和操作步骤等内容。
一、工艺原理湿式双碱法脱硫工艺是利用碱性溶液对烟气中的二氧化硫进行吸收和转化,从而达到脱硫的目的。
该工艺主要包括两个步骤:吸收和再生。
1. 吸收烟气经过预处理后进入吸收塔,与喷淋在塔内的碱性溶液进行接触。
在吸收塔中,二氧化硫与碱性溶液中的氢氧根离子发生反应生成硫代硫酸根离子,从而将二氧化硫从烟气中吸收到溶液中。
常用的吸收剂有石灰石浆、氢氧化钠溶液等。
2. 再生吸收液中富集的硫代硫酸根离子需要进行再生,以便循环使用。
再生过程主要包括两个步骤:脱硫液的氧化和氧化产物的还原。
脱硫液的氧化一般采用空气氧化或过氧化氢氧化的方法,将硫代硫酸根离子氧化为硫酸根离子。
然后,通过加热还原,将硫酸根离子还原为二氧化硫气体,再循环使用于吸收塔。
二、设备介绍湿式双碱法脱硫工艺所需的主要设备包括吸收塔、再生塔、氧化风机、再生风机、泵站等。
1. 吸收塔吸收塔是脱硫工艺的核心设备,用于将烟气与碱性溶液进行接触和反应。
吸收塔通常采用填料塔或喷淋塔结构,以增加接触面积和反应效果。
2. 再生塔再生塔用于对富集的硫代硫酸根离子进行氧化和还原,以实现脱硫液的再生。
再生塔通常采用填料塔或板式塔结构,以提高氧化和还原的效果。
3. 氧化风机和再生风机氧化风机用于提供氧化过程所需的气体,再生风机用于提供还原过程所需的气体。
这两个风机通常采用离心风机或轴流风机。
4. 泵站泵站用于输送碱性溶液和脱硫液。
泵站通常包括多台泵和相关管道系统,以满足工艺流程中的液体输送需求。
三、操作步骤湿式双碱法脱硫工艺的操作步骤主要包括烟气预处理、吸收塔操作、再生塔操作和废液处理等。
1. 烟气预处理烟气预处理主要包括除尘和降温。
通过除尘设备去除烟气中的颗粒物,然后通过冷却设备将烟气降温至吸收塔的操作温度。
脱硫系统(双碱法)
2.脱硫系统(双碱法) 2.1工艺技术要求(1) 脱硫工艺采用双碱法,设计脱硫塔出口SO 2排放浓度≤100mg/Nm 3。
(2) 脱硫装置采用一炉一塔方式建设,共设置一座脱硫塔,其他工艺系统(包括脱硫剂储存制备系统、脱硫液再生循环系统、脱硫产物氧化脱水系统、工艺水系统)利用业主原有脱硫装置。
(3) 脱硫后烟气经出口烟道返回至原有烟囱进行排放。
2.2 工艺方案设计2.2.1工艺流程概述双碱法烟气脱硫工艺是利用NaOH 、Na 2CO 3、NaHCO 3、Na 2SO 3等水溶性碱液在吸收塔内吸收烟气中的SO 2,生成Ca(HSO 3)2、CaSO 3与CaSO 4的混合溶液,然后在另一反应器内使用Ca(OH)2溶液将上述混合溶液进行再生,使Ca 2+和Na +得以置换,最终使SO 2与Ca 2+结合以Ca 2SO 3和Ca 2SO 4的形式析出,生成亚硫酸钙和石膏。
分步反应方程式如下:1、在吸收塔内利用钠碱溶液吸收SO 2(脱硫过程):(1)(2) (3)2、在再生池内利用氢氧化钙溶液置换钠离子(再生过程):(4)(5) 3、在氧化脱水系统内通过强制氧化及机械作用对脱硫副产物进行脱水处理(氧化脱水过程):(6) 本工程脱硫塔及与脱硫塔相连的循环泵、脱硫液返回泵、工艺水箱、工艺水泵由乙方提供,其余附属设施由甲方提供(循环水池和沉淀池的总容积为180M 3)。
22322NaOH SO Na SO H O +⇒+322322NaHSO O H SO SO Na ⇔++↑+⇒+232232CO SO Na SO CO Na 3223322132()22NaHSO Ca OH Na SO CaSO H O H O∙+⇔++2323()2Na SO Ca OH NaOH CaSO +⇒+423CaSO O CaSO ⇒+来自除尘器后的原烟气在脱硫塔内与循环浆液进行脱硫反应,经反应后的浆液经自流输送到业主原有循环水池进行再生沉淀;新鲜的脱硫浆液经脱硫液返回泵输送到脱硫塔内使用;工艺水箱内储存的工艺水在使用时通过工艺水泵输送到脱硫塔或个用水点使用。
双碱法烟尘脱硫工艺流程设计
双碱法烟尘脱硫工艺流程设计
这份文档旨在介绍双碱法烟尘脱硫工艺的流程设计,共分为以下几个步骤:
1. 烟气净化
采用布袋除尘器或电除尘器对烟气进行处理,以去除其中的颗粒物和粉尘,确保后续的处理能够高效进行。
2. 碱液喷淋
利用碱性溶液对烟气进行喷淋,使其与二氧化硫(SO2)发生反应生成硫酸盐,从而达到脱硫的效果。
常用的碱液有氢氧化钠、氢氧化钙等。
3. 固液分离
将经过碱液喷淋处理后的烟气进行固液分离,将其中的固体泥浆与碱液分离开来。
可采用压滤方式进行分离。
4. 浓缩
对固体泥浆进行浓缩处理,使其中的水分减少,达到节约能源、提高效率的目的。
通常采用多效蒸发器或类似设备进行浓缩。
5. 蒸汽压制
对浓缩后的固体泥浆进行蒸汽压制,去除其中未反应的碱液和
水分,同时将硫酸盐晶体化,便于后续操作和处理。
6. 硫酸盐脱水
对硫酸盐晶体进行脱水处理,获得高纯度的硫酸盐产品和清洁
的烟气排放。
以上就是双碱法烟尘脱硫工艺的流程设计,适用于化工、电力
等行业的二氧化硫污染治理。
双碱脱硫工艺流程
双碱脱硫工艺流程
双碱脱硫工艺是一种常见的烟气脱硫技术,广泛应用于燃煤锅炉、电厂和工业锅炉等燃煤烟气的脱硫处理。
下面将介绍双碱脱硫工艺的流程。
首先,烟气通过除尘器去除大颗粒物。
然后,烟气进入烟气脱硫器,在脱硫器内进行脱硫的反应。
双碱脱硫工艺主要是利用两种碱性溶液进行脱硫,一种是氧化钙(CaO)溶液,另一种是碳酸钠(Na2CO3)溶液。
烟气与氧化钙溶液反应生成硫酸钙(CaSO4)和二氧化硫(SO2)。
氧化钙溶液中的CaO在反应过程中逐渐转化为CaSO4,同时SO2也大量生成。
接下来,烟气进入碳酸钠溶液吸收SO2,生成次氧化碳酸钠(Na2SO3)。
这个过程是通过单步吸收的方式实现的,烟气在吸收液中通过多级喷淋来充分接触吸收。
在烟气脱硫的过程中,氧化钙溶液逐渐被CaSO4嵌塞,导致反应速率下降,所以需要将氧化钙溶液进行再生。
再生的方式主要是通过加热CaSO4来使其分解为CaO和SO2,然后分离CaO和生成的SO2。
再生后的CaO溶液重新注入烟气脱硫器中,循环利用。
最后,通过除尘器去除脱硫后的烟气中的细颗粒物和其他污染物,使烟气达到排放标准。
对产生的废液进行处理,处理水可以通过多级晶化、过滤等方式,使废液中的固体颗粒减少。
总结起来,双碱脱硫工艺流程包括烟气除尘、烟气脱硫反应、碳酸钠吸收、氧化钙溶液再生和废液处理等环节。
这种工艺可以有效地去除燃煤烟气中的二氧化硫,减少对环境的污染。
同时,双碱脱硫工艺对石膏的产生量较少,回收利用的效果较好。
双碱法脱硫工艺
2.10脱硫工艺2.10.1脱硫工艺选择目前国内外成熟的烟气脱硫工艺主要有:喷雾干燥法、半干法和湿法,由于喷雾干燥法、半干法在脱硫塔后必须同时配置除尘设施,一方面投资大,另一方面现场场地不允许,因此只能采用湿法。
大湿法投资大(大于150元/kwh),系统复杂,本厂难以使用;双碱法投资省、占地小、建设周期短,虽然脱硫效率不如大湿法高,但能够满足环保要求,因此本方案推荐使用双碱法工艺。
经过比较目前国内外主要的成熟烟气脱硫技术,根据技术的可靠性、经济性,并结合现场实际,选用空塔喷淋式双碱法是最合适的,它有以下优点:(1)系统简便,投资省;(2)脱硫效率高;(3)不易结垢;(4)液气比低,电耗省,运行成本低;(5)吸收塔采用高效喷淋塔,阻力小,运行可靠。
通过现场考察和根据厂方提供的技术参数和要求,通过我公司对其进行的技术经济比较认为,选用双碱法高效喷雾脱硫工艺最为合理经济。
高效喷淋空塔脱硫装置为主脱硫设备,同时也是除尘设备:以钠碱液为塔内主脱硫剂,以石灰浆液为再生剂,可以达到设备和管道不结垢,以废治废的目的,脱硫效率可达80%以上。
该工艺成熟可靠,系统简便、运行稳定。
2.10.2 脱硫工艺说明脱硫系统的工艺流程图见附图1。
整个工艺由五大部分组成:(1)烟气处理系统;(2)脱硫液循环系统;(3)脱硫渣处理系统;(4)电气、自控系统;(5)加料系统。
1)、烟气处理系统:根据德谦杭重锻造有限公司的实际情况,由于该项目为新建项目,因此可以在采购引风机时考虑脱硫系统的压降;烟气从底部进入喷雾脱硫塔,与喷淋液逆流接触高效脱硫。
大部分的二氧化硫和烟尘经过喷淋塔的处理,其出口烟气的含尘浓度在40mg/Nm3以下,二氧化硫脱除率在80%以上。
完成脱硫后的烟气在塔体上段通过高效组合除雾器除去烟气中的雾滴,净化后的烟气经塔后烟道进入烟囱排放。
本工艺采用的是高效低阻喷雾脱硫塔,它具有阻力低、效果好等优点。
喷雾塔设置喷淋层和除雾器,脱硫塔内的组合除雾装置主要由:双层除雾器、挡水条等,它们的综合作用可有效的去除烟气中的水分。
双碱法脱硫工艺
再生后所得的NaOH液送回吸收系统使用。所得半水亚硫酸钙可 经氧化生成石膏(CaSO4﹒2H2O)。 此外,在运行过程中,由于烟气中还有部分的氧气,所以存在副 反应(4).
双碱法脱硫工艺
脱硫原理
脱硫工艺 脱硫设备
脱硫设计
脱硫工艺
双碱法脱硫工艺
脱硫原理
脱硫工艺 脱硫设备
双碱法脱硫工艺
江苏海森环境工程有限公司
脱硫工艺
脱硫工艺对比
适中
石灰/石灰石法
氨法 小 氨水 氨水 硫酸铵 高 中
镁法 较小 氧化镁 氧化镁 硫酸镁 高 中
双碱法 小 钠碱及石灰 钠碱及石灰 石膏 高 低
脱硫塔体积 所需脱硫剂 消耗脱硫剂 脱硫产物 脱硫效率 系统能耗
石灰/石灰石 石灰/石灰石 石膏 高 中
(1)
Na2CO3+ SO2 —— Na2SO3+CO2
Na2SO3+ SO2+H2O —— 2NaHSO3 2Na2SO3+ O2 —— 2Na2SO4
(2)
( 3) (4)
该过程中由于使用钠碱作为吸收液,因此吸收系统中不会生 成沉淀物。 反应(4)为主要副反应(氧化反应),生成Na2SO4。
谢谢观看
江苏海森环境工程有限公司
脱硫设备 ---工艺水系统 工艺水的主要用水如下: 工艺水系统负责提供 FGD足够的水量,补充系统运行 FGD系统的正常功能。工艺水 期间水的散失,以保证 系统的补充水,主要有:除雾器冲洗水、石灰浆液补 通常采用循环水排水作为水源,一般设置两台工艺水 充水、泵的循环水等。 泵(一用一备),一个工艺水箱。
为了保证系统脱硫效率稳定,本脱硫系统采用 PLC, 电气设备选择在满足工艺要求以及确保人身安全的前 脱硫设备 ---电控系统 上位机同时监视和控制脱硫设施内设备的运行。通过 提下,最大程度的选用操作方便、可靠性高、便于维 仪表监测系统,对整个脱硫岛进行温度、压力、液位 护、自动化程度高的设备,以便使整个电气系统能高 等数据监测,可以是整个脱硫装置最优化运行。 效、可靠的运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双碱法脱硫工艺
钙钠双碱法脱硫工艺主要是脱除气体中的SO2气体。
适用于锅炉烟气、焦炉气、锅炉生产废气等的脱硫。
钙钠双碱法脱硫工艺,简称双碱法。
该法主要是脱除气体中的SO2气体。
适用于锅炉烟气、焦炉气、锅炉生产废气等的脱硫。
一、工艺特点
钙钠双碱法是先用钠碱性吸收液进行烟气脱硫,然后再用石灰粉再生脱硫液,由于整个反应过程是液气相之间进行,避免了系统结垢问题,而且吸收速率高,液气比低,吸收剂利用率高,投资费用省,运行成本低。
1、以NaOH(Na2CO3)脱硫,脱硫液中主要为NaOH(Na2CO3)水溶液,在循环过程中对水泵、管道、设备缓解腐蚀、冲刷及堵塞,便于设备运行和维护。
2、钠基吸收液对SO2反应速度快,故有较小的液气比,达到较高的脱硫效率,一般≥90%。
3、脱硫剂的再生及脱硫沉淀均发生于塔体避免塔内堵塞和磨损,提高了运行的可靠性,降低了运行成本。
4、以空塔喷淋为脱硫塔结构,运行可靠性高,事故发生率小,塔阻力低,△P≤600Pa。
二、工艺原理
1、反应原理
SO2吸收反应:Na2CO3+SO2→Na2SO3+CO2↑
吸收剂再生反应:CaO+H2O→Ca(OH) 2
Ca(OH) 2+Na2SO3+H2O→2NaOH+CaSO3+H2O
2、工艺流程
采用锻钢炉的烟气经换热降温至≤200△,经烟道从塔底进入脱硫塔。
在脱硫塔内布置若干层数十支喷嘴,喷出细微液滴雾化均布于脱硫塔溶积内,烟气与喷淋脱硫液进行充分
汽液混合接触,使烟气中SO2和灰尘被脱硫液充分吸收、反应,达到脱尘除SO2的目的。
经脱硫洗涤后的净烟气经塔顶除雾器脱水,经脱硫塔上部进入烟囱排入大气。
脱硫循环液经塔内气液接触除SO2后,经塔底管道流入沉淀池在此将灰尘沉淀下来,清液经上部溢进入反应再生池,在池内与石灰乳液制备槽引来的石灰乳进行再生反应,再生液流入泵前循环槽补入Na2CO3,由泵打入脱硫塔顶脱除SO2循环使用。
其中再生产出的CaSO3及烟气中过剩氧生成的CaSO4于沉淀池中沉淀分离。
三、工艺优势
1、烟气系统
来自锻钢烟气经烟道引风机直接进入脱硫塔。
脱硫塔以空塔喷淋结构。
设计空速小(4.0m/s),塔压力降小(≤600Pa),脱硫集中除尘、脱硫、排烟气于一体,烟气升至塔顶进入烟囱排入大气。
脱硫塔制作完毕喷砂处理后,环氧树脂防腐6遍,塔内部件主要是喷嘴和防雾器,均为304不锈钢材质。
当脱硫泵出现故障时,脱硫暂停反应,烟气可通过烟囱排入大气。
2、脱硫塔SO2吸收系统
烟气进入脱硫塔向上升起与向下喷淋的脱硫塔以逆流式洗涤,气液充分接触吸收SO2。
脱硫塔采用喷嘴式空塔喷淋,由于喷嘴的雾化作用,分裂成无数小直径的液滴,其总表面积增大数千倍,使气液得以充分接触,气液相接触面积越大,两相传质热反应,效率越高。
因此化工生产中诸多单元操作中多采用喷淋塔结构,起到高效、节能、造价低等优点。
脱硫塔内碱液雾化吸收SO2及粉尘,生成Na2SO3,同时消耗了NaOH和Na2SO3。
脱硫液排出塔外进入再生池与Ca(OH) 2反应,再生出钠离子并补入Na2SO3(或NaOH),经循环脱硫泵打入脱硫循环吸收SO2。
在脱硫塔顶部装有除雾器,经除雾器折流板碰冲作用,烟气携带的烟尘和其他水滴、固体颗粒被除雾器捕获分离。
除雾器设置定期冲洗装置,防止除雾器堵塞。
3、脱硫产物处理
脱硫产物最终是石膏浆,具体为CaSO3、CaSO4还有部分被氧化的Na2SO4及粉尘。
有潜水泥浆泵从沉淀池排出处理好,经自然蒸发晾干。
由于石膏浆中含有固体杂质,影响石膏的质量,所以一般以抛弃法为高。
排出沉淀池浆液可经水力旋流器,稠厚器增浓提固后,再排至渣场处理。
4、关于二次污染的解决
以钠钙双碱法烟气脱硫可解决单一纳碱脱硫的二次污染问题。
钠钙双碱法是以纳碱吸收SO2,其产物用石灰乳再生出纳碱继续使用,因钠钙双碱法能节省碱耗,又杜绝二次污染问题。
有少量的Na2SO4不能够再生被带入石膏浆液中,经固液分离,分离的固体残渣进行回收堆放再做他用。
溶液流回再生池继续使用,因此不会产生二次污染。
5、方案的特点
以NaOH(Na2CO3)脱硫,脱硫液中主要为NaOH(Na2CO3)水溶液,在循环过程中对水泵、管道、设备缓解腐蚀、冲刷及堵塞,便于设备运行和维护。
钠基吸收液对SO2反应速度快,故有较小的液气比,达到较高的脱硫效率,一般≥90%。
脱硫剂的再生及脱硫沉淀均发生于塔体避免塔内堵塞和磨损,提高了运行的可靠性,降低了运行成本。
以空塔喷淋为脱硫塔结构,运行可靠性高,事故发生率小,塔阻力低,△P≤600Pa。
6、吸收SO2效率及主要影响因素
PH值:PH值高,SO2吸收速率大,脱硫效率高,同时PH 值高,结垢几率小,避免吸收剂表面纯化。
温度:温度低有利于气液传质,溶解SO2,但温度低影响反应速度,所以脱硫剂的温度不是一个独立的不变因素,取决于进气的烟气温度。
石灰粒度及纯度:要求石灰纯度≥95%,粒度控制
Pc200~300目内。
液浆浓度:控制在10~15%。