货油泵和压载水泵

合集下载

水泵型号及技术参数大全

水泵型号及技术参数大全

油泵的水泵型号及技术参数AY型离心油泵:流量Q 6.25~500m3/h 扬程H 60~300m AY型系列离心油泵可用在石油精致、石油化工和化学工业及其它输送不含固体颗粒的石油、液化石油气等介质。

DY型多级离心泵:流量Q 10~540m3/s 扬程H 87~690m DY型单吸多级离心输油泵适用于石油化工厂,用来输送不含固体颗粒、粘度小于120厘沲的无腐蚀油类和石油产品,被输送介质温度不得高于105℃。

允许进口压力0.6MPa。

YZ型自吸油泵:本单位生产的YZ型自吸油泵是根据国内外有关技术资料经消化、吸收、改进后研制而成的最新泵类产品,国内空白独一无二,该泵适用于石油行业、陆地油库、油罐车的理想产品,并适合于作船用货油泵、舱底泵、消防泵和压载泵及机器冷却水循环等,分别输送汽油、煤油、柴油、航煤等石油产品和海水、清水,介质温度-20℃~140℃,如输送化工液体可改用耐腐蚀机械密封。

YZ自吸油泵性能参数:流量4~400m3/h 扬程12~80m产品特点:1. 该泵属自吸离心油泵,它具有结构简单、操作方便、运行平稳、维护容易、效率高、寿命长,具有较强的自吸能力等优点。

管路中不需底阀,工作前只需保证泵体内储有定量引油即可。

用于油轮或输水船舶上时,可兼作扫舱泵,扫舱效果良好。

2. 该泵是选用优质材料精制而成,密封采用硬质合金机械密封,经久耐用,吐出管路不需要安装安全阀,吸入管路不需安装底阀,因此简化了管路系统,又改善了劳动条件。

IY型单级单吸离心油泵:流量Q 6.3~200m3/h 扬程H 8~125m IY型单级单吸离心油泵,适用于输送不含固体颗粒,粘度小于120厘沲的无腐蚀油类和石油产品,输送液体温度-20℃~80℃,允许进口压力0.6Mpa。

ZY型自平衡多级离心油泵:流量Q 10~540m3/s 扬程H 87~690m ZY自平衡多级离心油泵适用于石油化工厂,用来输送不含固体颗粒、粘度小于120厘沲的无腐蚀油类和石油产品,被输送介质温度不得高于105℃。

某油船泵舱易燃物浓度场与通风的数值分析

某油船泵舱易燃物浓度场与通风的数值分析
经过无量纲处理后,控制方程如下:
3 泵舱模型边界条件
某油船所运输的成品油,是一种由多种有机化合 物组成的液体,其基本元素为碳和氢,碳氢化合物简 称为烃类化合物。按分子中碳原子的排列结构的不同, 又分为脂肪族、环烷族和芳香族。其中,脂肪族烃是 最易自燃的一类。烷烃分子中含有的碳原子越多,其 结构越不紧凑,在稳定度较高的情况下,有形成氧化 物的倾向,较为典型的是正十六烷值,它被作为柴油 自燃性的衡量标准。因此,本文选取较有代表性的烷 类脂肪族——甲烷气体作为易燃物浓度场的研究对象, 其它易燃物气体的浓度场研究和此类似。甲烷的挥发 速度为 0.833 m/s、温度为 26 ℃。
Key words: Pump Room; Temperature field; Velocity field; Concentration field; Ventilation
1 前言 泵舱是液货船上用来设置装卸液货设备的专用场
所,该处有货油泵、压载泵、洗舱水加热器以及各种 连接管系、阀门、附属仪表等。泵舱在油船上属于高 危区域,特别是在装卸货油的时候,可能会产生货油 的泄漏和油气的挥发。当油气聚集到一定的浓度或者 局部高温的情况下,会产生火灾甚至爆炸,因此该场 所对安全性的要求很高。
图图10图1入01口0 入风入速口口的风风粒速速子的轨的粒迹子粒轨子迹轨迹
(下转第 35 页)
31
疏排水管
GUANGDONG SHIPBUILDING 广东造船 2021 年第 3 期(总第 178 期)
从船尾向船首方向看,在尾部的舱壁上有附壁风 管,风栅沿船宽方向布置,这些风栅在风机启动的时 候作为回风口;在前部的舱壁有舱壁扶墙材,由于尺 寸较大,对油气的浓度分布有一定的影响,所以其结 构应考虑在模型之内;主甲板以上部分,左舷舱壁设 有风雨密百叶窗,在船舶运行时作为回风口,而在泵 舱风机进行抽风的时候,作为泵舱的送风口,并平衡 进出模型的风量,防止泵舱产生负压,以利于风机抽 吸工作的进行;主甲板上设有泵舱的入口,此入口也 是上下两部分唯一的气流通道;需要指出的是,为了 模型的更好收敛,将模型的左舷边界向左移动到和下 半部分齐平的位置,如图 1 所示。

水泵型号及技术参数大全

水泵型号及技术参数大全

油泵的水泵型号及技术参数AY型离心油泵:流量Q 6.25~500m3/h 扬程H 60~300m AY型系列离心油泵可用在石油精致、石油化工和化学工业及其它输送不含固体颗粒的石油、液化石油气等介质。

DY型多级离心泵:流量Q 10~540m3/s 扬程H 87~690m DY型单吸多级离心输油泵适用于石油化工厂,用来输送不含固体颗粒、粘度小于120厘沲的无腐蚀油类和石油产品,被输送介质温度不得高于105℃。

允许进口压力0.6MPa。

YZ型自吸油泵:本单位生产的YZ型自吸油泵是根据国内外有关技术资料经消化、吸收、改进后研制而成的最新泵类产品,国内空白独一无二,该泵适用于石油行业、陆地油库、油罐车的理想产品,并适合于作船用货油泵、舱底泵、消防泵和压载泵及机器冷却水循环等,分别输送汽油、煤油、柴油、航煤等石油产品和海水、清水,介质温度-20℃~140℃,如输送化工液体可改用耐腐蚀机械密封。

YZ自吸油泵性能参数:流量4~400m3/h 扬程12~80m产品特点:1. 该泵属自吸离心油泵,它具有结构简单、操作方便、运行平稳、维护容易、效率高、寿命长,具有较强的自吸能力等优点。

管路中不需底阀,工作前只需保证泵体内储有定量引油即可。

用于油轮或输水船舶上时,可兼作扫舱泵,扫舱效果良好。

2. 该泵是选用优质材料精制而成,密封采用硬质合金机械密封,经久耐用,吐出管路不需要安装安全阀,吸入管路不需安装底阀,因此简化了管路系统,又改善了劳动条件。

IY型单级单吸离心油泵:流量Q 6.3~200m3/h 扬程H 8~125m IY型单级单吸离心油泵,适用于输送不含固体颗粒,粘度小于120厘沲的无腐蚀油类和石油产品,输送液体温度-20℃~80℃,允许进口压力0.6Mpa。

ZY型自平衡多级离心油泵:流量Q 10~540m3/s 扬程H 87~690m ZY自平衡多级离心油泵适用于石油化工厂,用来输送不含固体颗粒、粘度小于120厘沲的无腐蚀油类和石油产品,被输送介质温度不得高于105℃。

船舶压载系统组成及工作原理

船舶压载系统组成及工作原理

船舶压载系统组成及工作原理船舶压载系统组成及工作原理船舶压载系统是指通过给予船舶水下部分一定的压载水,使船舶获得额外的浮力,提高船舶性能和驾驶安全的系统。

该系统主要由控制系统、压载系统和监测系统组成。

控制系统是船舶压载系统中的核心部分。

它主要负责对压载水的入口和出口进行精确的控制,以便保持压载水的稳定性和船舶的平衡性。

控制系统的主要组成部分包括控制阀、压力传感器、流量计和液位传感器等。

压载系统主要分为压载水箱和压载泵两个部分。

压载水箱是控制压载水进出的容器,而压载泵则用来将压载水送入或抽出水箱。

在船舶支持需要增加浮力时,压载泵会将压载水泵入水箱;而在船舶需要降低浮力时,压载泵则会将水从水箱中抽出。

监测系统主要用于检测压载系统的工作状态和船舶的各种状态指标,帮助操作员对船舶压载水系统进行监控。

常用的监测指标包括水箱液位、压力、流量和温度等。

船舶压载系统的工作原理主要基于阿基米德原理。

当船舶载重量增加时,需要增加船舶的浮力以保持平衡,通常的方法是通过加重或增加船舶结构的体积。

然而,这些方法往往不太实际或成本过高。

船舶压载系统通过给予船舶水下部分一定的压载水,提高船舶浮力,以实现船舶平衡的目的。

在船舶行驶过程中,压载水系统需要根据船体状态不断调整压载水的进出口,以保证船舶始终处于平稳的运行状态。

同时,监测系统不断检测压载水箱中水位和压力等指标,及时发现异常情况并给出响应。

总之,船舶压载系统是一种非常重要的船舶辅助系统,对于船舶的性能和驾驶安全至关重要。

随着技术的不断发展,船舶压载系统的功能和性能也不断得到提升,为船舶的安全和性能提供了更好的保障。

船系简介

船系简介

第二章船系简介1概述南海胜利号FPSO的系泊系统是转塔式永久系泊系统。

在船艏附近,安装了一个内部转塔,转塔使用10个锚泊在海底的系泊腿(锚链)进行固定。

转塔上的设备能调节系泊腿(锚链)。

FPSO也是集原油处理、储存与外输设施于一体的大型综合性海上浮式装置,其中船系主要涉及以下主要系统:•货油装载与液位监测系统•货油舱惰气系统和透气系统•洗舱与扫舱系统•压载系统•货油外输系统井液通过艏部内转塔式单点进入原油生产模块,经生产模块处理后的合格原油穿过生产甲板进入位于主甲板的货油注入总管,然后被分配到九个货油舱。

中控系统通过与货油泵相连的货油转驳总管完成货油的转驳功能,通过调节货油舱注入阀的开度调整货油舱的装载,实现货油的储存功能。

经过处理后的合格原油含水<0.5%,温度在150℉左右。

货油外输时通过与货油泵相连接的外输总管输送至货油计量装置,经过计量后的货油通过艉部外输软管输送至穿梭油轮(提油轮)。

货油装载:货油的装载根据应力校核的结果实施,或者参考装载手册给出的典型配载工况来装载。

液位监测:在每一个货油舱设有一个雷达式液位传感器,液位信号经过安全装置传送到中央控制室;每一个货油舱还设有四个甲板阀(?),使用2401 TR30 MCBS-MM 手提式液位及油水界面仪,作为液位的第二种测量方式进行手工四点液位测量。

惰气系统与透气系统:为了货油舱、废油/水舱、Slop舱等舱室的惰化和保持舱内一定范围内的正压覆盖气,本FPSO设有甲板惰气系统;在货油外输时,及时向舱内补充惰气,在货油舱注入时,多余的气体通过透气系统排出。

当惰气系统出现故障时,空气也能够通过透气系统进舱,防止负压使船体结构变形或损伤。

为了防止舱内气体逆流至甲板惰气系统,在该系统中设有甲板水封。

洗舱与扫舱:当需要进货油舱进行检查或维修时,利用海水进行洗舱和扫舱,也可以利用生产水进行洗舱和扫舱。

同时向舱内供给惰性气体,以驱除舱内可燃气。

使用油舱测爆仪测量舱内可燃性气体含量,当可燃性气体含量低于2%,硫化氢含量低于100PPM时,停止向舱内充惰气。

现代油船的设备系统

现代油船的设备系统

第四章、现代油船的设备系统4.1 现代油船的设备系统组成1货油装卸系统2扫舱系统3加热系统4喷洒系统5通气系统6除气系统7消防系统8惰性气体系统9洗舱系统10液舱参数测量和监控系统。

4.2、货油装卸系统功能:供装卸货油的注入和排出。

组成1油泵2装卸管系。

货油舱管系1泵舱管系2甲板管系装卸管系1货油舱管系2泵舱管系3甲板管系(一)泵舱及泵系油船装油通常都使用岸上的设备,而卸油、扫舱、打排压载水及洗舱则使用船上的泵系。

每艘油船设有1 -2 个泵舱。

每个泵舱设置若干部货油泵及扫舱泵。

大多数油轮都备有3-4 台主货油泵, 2 台扫舱泵及1台压载水泵。

货油泵的性能要求:防止在运转中发生火花货油泵的总排量应在24h内卸完全部的货物货油泵的原动机如为蒸汽温度不超过230℃的蒸汽机时,可装设在泵间内。

其它各类的原动机均装设在泵间以外,如机舱内。

其传动轴穿过舱壁或甲板处,有气密或防爆密封装置,并有润滑措施以防过热或产生火花。

常见的货油泵有离心泵蒸汽直动往复泵螺杆泵其它回转泵等离心泵在现代大型油船上装设的主货油泵,大都为离心泵。

其原动机可是汽轮机、电动机或柴油机。

结构组成工作叶轮泵壳。

工作原理:离心泵是利用叶轮旋转时的离心力作用,吸入液体提高液体压力能获得压头的泵。

叶轮流道中的液体随叶轮转动,因离心力作用而沿流道向外缘流出来,其中心处形成低压,不断吸进液体充满叶轮。

液体在叶轮流道中流过时,获得机械能,使其压力和速度均得到提高,在蜗旋状泵壳中或在固定的扩压流道中,高速液体的动能部分转换为压力能,连续排出泵外。

蒸汽往复泵工作原理往复泵是依靠活塞在泵缸中作往复运动,使泵缸内工作空间容积变化,产生吸排作用,从而实现能量传递的一种容积式泵。

工作过程在泵缸内容积增大时,形成低压,液体经吸入阀吸入,当缸内容积减小时,压力提高,关闭吸入阀而顶开排出阀,排出液体。

特点具有自吸能力往复泵排量不均匀惯性力影响较大受活塞连杆机构运动加速度和吸排阀动作延滞的影响,活塞的尺寸、重量以及单位时间里往复次数均不宜过大往复泵适于用作排量相对较小而压头较高的扫舱泵,抽吸低位的液体,能将舱底的油泵尽(二)货油舱管系。

散装货油船系统介绍

散装货油船系统介绍

散装货油船系统介绍油船运载的主要货物是液体油类,现有的和正在建造的油船大都是散装货油船;它需要具有装卸液体货油的能力,具有和其他船舶完全不同的货油装卸系统、货油舱扫舱系统、惰性气体系统、洗舱系统、货油舱透气系统、专用压载水系统、蒸发气收集系统、甲板泡沫灭火系统、甲板洒水系统、液位遥测系统、阀门遥控系统等;而且会随装载的油种不同,系统会有较大的变化;第一节货油装卸及扫舱系统一般油船的装卸管路按布置位置可分为三部分,即货油舱内管系、油泵舱管系及甲板管系等;一、货油舱内管系舱内管系布置分线形总管式和环形总管式两类,环形总管又分单环式、双环式和多环式;1. 线形总管式原则上,每一货油泵设置一根总管;按装油配置要求(计及不同油种的装载分布)从各总管引出支管至相应油舱;图4.1.1为某油船的三线总管式舱内管系图;图中N0.1总管服务于1、3货油舱(左、右),图中N0.2总管服务于2、5货油舱(左、右),图中N0.3总管服务于4、6货油舱(左、右)及污油水舱(左、右);图 4.1.1 三线总管式舱内输油管系简图这种线形总管式管系布置简单、操作方便、隔离可靠和混油可能性小;但装载油种的机动性不高,适用于运输油种固定、运量固定、航线固定的中小型油船;2. 环形总管式为提高机动性,可将两根线形总管相接,配以相应阀门,即成单环式总管;对具有3台货油泵的船舶,可形成两个或多个环形总管;图4.1.2为某船的多个环形总管式舱内管系图;图中NO.1总管与NO.2总管、NO.1总管与NO.3总管及NO.2总管与NO.3总管都相互连通,并且4#风暴舱和污油水舱都可由两根总管抽吸;这种环形总管式布置机动性好,但为避免混油需设置较多的隔离阀,操作管理较为复杂;图4.1.2 多环总管式舱内输油管简图扫舱吸油阀污油水舱3. 舱内管系设计及安装要求⑴各总管在第一个油舱内必须设有膨胀接头或弯头,以补偿管子的热胀应力;如用膨胀接头则应为伸缩型膨胀接头;⑵应防止混油现象的发生;对装载两种或两种以上油品的油船,在环形总管的连接处,以及总管与吸口之间均须设置两道阀隔离;⑶除不足600DWT (载重吨)的油船外,货油舱均设有双层底,为此吸油口可布置在油舱的底面以上或设置在凹入的吸油井内;吸油口应布置在船舶卸油状态时的最低点,距舱底应小于100mm;⑷如货油舱设计为直接注油时,注入管应伸入舱内,其开口应使货油沿舱壁流下并尽可能接近舱底,以减少产生静电的可能性;⑸当考虑通过吸入管装注货油时,则应设有旁通管,绕过货油泵,将吸入管与甲板输出管连通(旁通管上设截止阀);二、泵舱管系油船一般都在机舱前部设置有油泵舱,为货油舱服务的大部分设备均安装在泵舱内;主要有货油泵、专用压载泵、扫舱泵、洗舱加热器等,因而泵舱内的布置一般都十分紧张;但因汽轮机的工作温度高达204℃左右,为了降低泵舱的温度和避免电动机产生火花,引起火灾,所以驱动货油泵、压载泵的透平或电动机,均设置在机舱内;在原动机的传动轴通过舱壁处,必须装有密封的填料函装置,用来保持传动轴通过舱壁处的密封性;图4.1.3为泵舱内设有三台货油泵、货舱内总管采用环形总管式布置时的管系简图;泵舱内管系的设计应满足下列要求:⑴各货油泵的吸入管接自舱内管系的各总管;各总管接入泵舱后,必须设置防火型隔离阀;即图中的遥控蝶阀1必须为防火型蝶阀;⑵如果货油舱内的总管采用环形总管,则各货油泵之间不必连通;如果货油舱内的总管采用线形总管式,则各货油泵的吸入管应相互连通,以便任一台泵发生故障时,由其他泵代替工作;对不同油种的吸油总管,该连通阀上应装设双道隔离阀;⑶各货油泵的吸入端应装有气体分离器(真空装置)2,以去除货油中的空气,防止油泵的损坏;对于原油船,还应装有滤器;但对于成品油轮等装载干净油种的油船可以不设;⑷如某一货油舱须作为油船的应急风暴压载舱,则货油泵应能经海底阀吸入海水压至该舱(在海水总管和货油总管之间应设2只阀,其中1只阀应能在关闭状态下予以锁住;或在货油泵专用的海水总管上设置双孔法兰,图中的件5即为双孔法兰,平时处于常闭状态),并能从该舱抽出污压载水,按防污染要求直接排舷外、排至污油水舱或岸上接受设备;图4.1.3 泵舱管系简图1-防火型蝶阀;2-气体分离器;3-止回阀;4-排量调节阀;5-双孔法兰;6-货油泵;7-扫舱泵;8-洗舱加热器;9-海水门⑸离心式货油泵的排出端应设排量调节阀4和止回阀3,用于调节货油泵的排量及压力和防止各货油泵出口因连通而发生混油;⑹每台货油泵均由一根独立排出管引出泵舱与上甲板货油管系接通;⑺用货油泵进行原油洗舱的原油船,洗舱原油供给管可接在货油泵出口排量调节阀之后,以便调节洗舱油压;三、甲板管系货油甲板管系接自货油泵的排出管,由纵向总管、横向总管及装卸油站等组成;图4.1.4为典型的油舱甲板管系图;1. 纵向总管自货油泵排出管引出至船中部与横向总管相接;在纵向管路上每隔15m~30m应设置一只膨胀接头;各管段的法兰连接处应用导体进行电气连接,并最终接地;防止由摩擦或静电产生火花而发生火灾;2. 横向总管由纵向总管引向两舷的装卸油站;该系统共有三根货油总管(图中的NO1、NO2、NO3),但为了装卸方便,引至装卸油站后,其中一根总根分成两路在装卸油站的前后各设一只注入/排出接口;每一根横向总管上还设有与货油舱总管连通的支管(图中的A 、B 、C 接口),以便货油可直接通过货油舱内的货油总管将货油注入到各货油舱;各横向总管之间还相互连通,方便了货油的装卸;连通管上应装设双道隔离阀;3. 装卸油站装卸油站设于横向总管的两舷,用于货油的装卸、燃油和柴油注入及蒸发气收集系统的接岸;总管未端下方设有集油槽;货油装卸管位于装卸油站的中间,两边为燃油(F.O )和柴油(D.O )的注入管,最外档的是两根蒸发气接岸总管;油舱图4.1.4 典型的油船甲板管系图货油总管扫舱管惰气总管燃油柴油注入管对于国际航行的油船,货油装卸站的设计应符合OCIMF (石油公司国际航运论坛)的要求,见图4.1.5;主要如下:图4.1.5 装卸油站布置示意图( )横剖面图⑴装卸油管之间的间距A 及燃油装注管和货油装注管之间的间距B 应按表4.1.1;⑵异径接头的配置数量应管按表4.1.2;阀、短管及异径接头的法兰应符合B.S.1560(英国标准)或ANSI B16.5(美国国家标准学会)的标准;⑶对于集油槽,除其尺寸应符合图4.1.5要求外,还应符合下列要求:集油槽的容量,USCG(美国海岸警卫队)要求对于12”以上的装卸油管,每一根油管应具有636L的集油槽容量;集油槽应通过重力或气动泵将油泄放至污油水舱;四、货油舱扫舱系统在油船上,货油装卸管路吸油口的口径较大,不可能过近的贴近舱底,因此,卸油时油位低到一定的位置,由于油类不能及时的从四处流至吸油口附近,这时流体就会产生旋涡,使空气通过吸油口进入的管内,从而影响泵的排量,甚至吸不上货油;所以,当油位低于一定高度时,必须利用扫舱系统继续完成卸油工作;另外在洗舱时,舱内的积水也可用扫舱系统排出;1. 货油舱扫舱系统的功能⑴抽吸货油舱内的残油、使留舱残油尽可能少;⑵抽吸货油管内及货油泵等设备内的残油;2. 扫舱系统的形式扫舱系统主要有自动扫舱系统和独立式扫舱系统两种.⑴自动扫舱系统自动扫舱系统适用于采用离心泵作为货油泵的大中型油船;主要用于抽吸货油舱内的残油,使留舱残油达到最少;由于这种系统仍利用货油泵进行扫舱,因而一般仍需设置一台小排量扫舱泵,以抽空货油管及货油泵中的残余货油,见图4.1.3;自动扫舱系统主要有真空式自动扫舱系统、喷射式自动扫舱系统及再循环自动扫舱系统三种形式,目前应用最多的是真空式自动扫舱系统;真空式自动扫舱系统由气液分离柜2、排量调节阀3、气体抽出阀5、真空装置6(真空泵、真空柜等)和控制板7等组成;图4.1.6所示为真空式自动扫舱系统的示意图其工作原理是:①当货油舱内的货油液位足够高时,本系统不工作,此时气液分离柜2中液位在70%以上;②当货油舱内的液位下降时,吸入压力也下降并接近货油的蒸发压力时,部分货油将变成蒸汽,同时积聚在气液分离柜的顶部,并导致分离柜内液位下降;当液位降到50%以下时,分离柜上的液位传感器8的气动信号驱动装于货油控制板7上的压力开关,使真空泵9启动,同时打开气体抽出阀5并使排量调节阀3关小,进行节流;③真空泵9抽出气体的同时分离柜中的液位升高,当液位恢复到70%时,气体抽出阀关闭并在10秒钟后,真空泵停止,排量调节阀恢复到原有的开度;每当出现上述情况时,重复进行②、③的抽气过程;④当货油舱内液位进一步下降时,吸入口周围会产生漩涡,当漩涡凹陷的底部低于吸入口的下表面时,气体开始被吸入;同样,这些气体积聚在分离柜的顶部,使分离柜内的液位降低,又重复②、③的抽气过程;但由于吸入的空气越来越多,排量调节阀的开度变得越来越小,或真空泵处于一直运转的状态;1-货油泵;2-气液分离柜;3-排量调节阀;4-引水管;5-气体抽出阀;6-真空装置;7-控制板;8-液位传感器;9-真空泵;10-压力开关;11-电控箱;12-电磁阀;13-报警灯板;14-水封柜;15-起动器;16-定位器⑤当液位再下降时,就会有大量的气体被吸入,气体吸入的量超过了真空泵的抽出量,排量调节阀会完全关闭,如果气液分离器内的液位还会上升时,排量调节阀会再开一点;但液位再次低于5%时,黄色的信号灯就会发亮,表示卸货工作已进入扫舱阶段;⑥当真空泵连续操作时,分离柜内的液位也不上升,且排量调节阀随时保持完全关闭,长时间继续这种状态,意味着已抽不到剩余液体,大约3分钟后,橘黄色灯会闪光,同时峰呜器发出声响,表示扫舱结束;⑵独立式扫舱系统仅利用扫舱泵进行,设置独立的扫舱总管,一般适用于中小油船;3. 扫舱管路⑴扫舱支管对大中型油船,因设置自动扫舱系统,且为简化货油管系,一般均不设专用扫舱管路,而以货油吸入管兼作扫舱总管;每个货油舱内装设管径较小的扫舱支管和吸口,接至货油总管;见图 4.1.2;卸油时,当舱内油位下降至接近主吸油口时,关闭主吸油阀并开启扫舱吸油阀,同时用扫舱泵进行扫舱卸油;⑵独立扫舱管路扫舱总管和货油总管并行敷设,各货油舱都有扫舱支管和扫舱总管相连,扫舱总管和扫舱泵连接;大中型船舶很少使用;⑶扫舱吸口扫舱吸口应低于货油主吸口,并尽可能接近货舱底;如货油舱内设有吸油井,则扫舱吸口应尽量布置在吸油井内;4. 扫舱泵扫舱泵一般应采用自吸性能好的蒸汽往复泵或电动螺杆泵;扫舱泵的作用是抽除货油舱内的残油、货油总管内的油、Ⅰ、Ⅱ级污油水舱内的污油、货油泵排出总管内的油、货油设备的泄放油、泵舱舱底水和海水(如兼洗舱)等;扫舱泵将残油或污油排至上甲板货油总管排岸接管处、Ⅰ级污油水舱、经排油监控认定合格后排舷外和兼海水洗舱泵时将海水泵至洗舱加热器;五、其他1. 管子支架管子支架应包有1~1.5mm的铅皮垫片,或设有聚四氟乙烯垫片;防止管子因受热胀冷缩滑动而与支架相互摩擦产生火花引起火灾;吸油口支管必须设置一个支架,并将支架焊接在船体结构上,然后把支管固紧在支架上;用来避免在装卸油时,由于液体流动的冲击力而引起支管振动,造成吸口与舱底板摩擦而引起火灾;同时也可防止由于吸油造成的真空使吸口与舱底板之间的距离缩小,降低油泵的吸油效率;2. 货油舱加热管油船在卸油时,由于油类的粘度较大,所以油的流动性较差;为了提高油船的卸油速度,在卸油时,可以将油类进行加热,减小油的粘度,增大油的流动性,从而可以缩短卸油的时间,用来对货油进行加热的管路称为货油加热管路;货油舱加热管一般均采用盘管的形式,可以在车间内场组装成片状单元后到船上安装;为了节约能源,又达到加热的效果,可以在吸油口四周设螺旋形盘管;每个货油舱的加热管,应各自为一组或分成几组,每组应各自有其独立的进汽管和排汽管,分别接至甲板上加热系统的蒸汽总管和凝水总管(也有用热油作为加热介质的),它们都有独立的控制阀或按舱群分布的分配器和集合器;为了有效地利用蒸汽热量使蒸汽全部凝结成水,每组凝水管都应设有一只阻汽器;阻汽器与盘管之间的管路上一般还应设置一只放水阀,当凝水观察柜中发现凝水中含有油份时,用来判断哪一舱的凝水中含有油份,即管子发生了损坏;也可作为放凝水用;第二节货油舱透气系统油轮的货油舱在装入货油时或者卸载后,油舱内的空气会被挤压而使货油舱内压力增加,或因油舱内的货油减少而使货舱内形成真空;在油船航行中,所有油舱都是封闭的,当外界温度发生变化时引起油舱内的气压升高或降低,都会使油舱壁受到压缩或膨胀而破坏;货油舱透气系统的功能就是在货油装卸和驱除油气的过程中,使大量气体通过透气装置进出货油舱;在正常航行中,由于温度的变化等原因,能使少量油气、空气或惰性气体进出货油舱;因而每个货油舱均应设置透气装置以限制油舱内的压力或真空度;一、货油舱透气系统的型式货油舱透气系统有两种基本的型式,即总管式和独立式;一般大型油船上每只货油舱均同时采用这两种透系统;1. 总管式透气系统图4.2.1所示的透气系统中,位于船中的即为总管式透气系统;该系统在上甲板上敷设有一根惰性气体总管并兼透气总管,总管通过支管与每一只货油舱相连;在透气总管上还设有一只压力真空释放阀,以确保该系统的安全;在船艏装有透气管上升管,其高度一般不小于8.5米;上升管的顶部装有火星熄灭器;该系统主要特点是:⑴各舱的支管与总管的连接管上应装设带锁闭装置的截止阀以能进行隔断;(图中是带锁蝶阀2和双眼法兰1);⑵货油舱另设呼吸装置(即独立式透气系统);当支管被隔断时,舱内仍能维持呼吸功能;图4.2.1 货油舱透气系统(兼甲板惰性气体总管)1-双眼法兰;2-带锁蝶阀;3-压力真空释放阀;4-竖直透气管;5-火星熄灭器;6-高速透气阀;7-甲板水封装置⑶对于同时载运几种油品的油船,可按油品种类设计几组透气总管,其结构与上述总管式透气系统相同;⑷总管上适当位置设一竖直透气总管4,以向上透气,出口处装金属防火网(火星熄灭器5); ⑸设有惰性气体系统的油船,透气总管与惰性气体总管合用;⑹压力真空释放阀3前后不可设阀,但可设旁通阀;并有指示旁通阀已开启或压力真空阀已固定于开启的设施2. 独立式透气系统每一油舱单独引出一根竖直透气管,透气管上方安装有透气装置(高速透气阀);见图4.2.1中的件6;高速透气阀由三部分组成;高速排放阀1、真空吸入阀2和驱气排气口3;图4.2.2是高速透气阀的外形图;⑴高速排放阀高速排放阀的作用是在装载货油时,使舱内大量油气或惰性气体排出;其基本要求是排泄蒸发气混合物的节流速度不小于30m/s ;蒸发气混合物垂直向上排出;排出口在货油舱甲板2m 以上处;使油舱内压力不高于0.021MPa;⑵真空吸入阀当油船在卸载货油时,真空吸入阀将空气吸入舱内;当使用惰性气体补充时,真空阀应自动关闭;它的基本要求是:使油舱内真空不低于0.007MPa ;吸入口在货油舱甲板以上1.5米处;阀最大流量为每舱装载率的1.25倍;⑶驱气排气口 驱气排气口主要用于正常航行过程中少量气体的排出;它的主要要求是:驱气排出口应装有防火金属网;排出口流速至少为2m/s ;排出口在货油舱甲板2m 以上;二、透气管进出口位置和高度的要求由于油船甲板部分为危险区域,而从透气管中排出的气体都含有一定浓度的油气,因而透气管的位置和高度是有严格要求的,具体要求如下:1. 透气出口位置和高度⑴采用自由流通排气方式时,其出口应布置在货油舱甲板以上,且不小于6m ;或当其出口位于步桥范围以内4m 时,则应位于前后步桥以上且不小于6m ; 图4.2.2 独立式透气装置1-高速排放阀;2-真空吸入阀;3-驱气排气口⑵采用高速排气方式时,排气出口应布置在货油舱甲板以上且不小于2m处;⑶不管哪种透气方式,透气出口均应离开含有火源的围蔽处所的最近进气口和开口以及可能构成着火危险的甲板机械和设备的水平距离均不小于10m;2. 透气管进口布置⑴对装有惰性气体的油船,透气管进口尽可能远离惰性气体入口;⑵透气管进口应自货油舱的最高部位引出;⑶对于装有惰性气体的油船,推荐透气管进口尽量布置在油舱的中心附近;第三节油船惰性气体系统油船装载的是易燃易爆的原油或成品油,当货油舱内的油气与空气混合,并达到一定的含氧量后,极易发生火灾和爆炸事故;因而船级社规范对货油舱内的气体置换有明确的要求;对载重量为20000吨及以上的载运闪点(闭杯试验)不超过60℃的原油船或成品油船,以及所有使用原油洗舱的油船,均应设置惰性气体系统;一、惰性气体的功能1. 降低货油舱内大气的含量,使舱内大气达到不能支持燃烧的程度,而使空舱惰性化;2. 在航行中使货油舱内的大气含氧量(以体积计)不超过8%,并保持正压状态,但需要排清货油舱的油气时除外;3. 除有必要排清货油舱的油气外,保证在正常作业中,空气不进入货油舱;4. 驱除空货油舱内的碳氢气,使其后的除气过程中货油舱内不致形成可燃气体;二、烟气式惰性气体系统惰性气体系统的型式取决于惰性气体装置的型式;惰性气体系统有以下3种型式:烟气式惰性气体系统、惰性气体发生装置系统和多功能惰性气体系统;目前油轮上基本都使用烟气式惰性气体系统;因其有供气量大,含氧量一般在4%~5%以下,不需额外消耗燃料,成本低,经济性高的优点;1. 系统流程图图4.3.1所示为典型的烟气式惰性气体系统图;其工作原理是柴油机排出的废气经废气锅炉后进入烟道,由风机5将其抽出,先通过烟气抽气阀2进入洗涤塔3进行冷却、脱硫和除尘;干净的烟气再经过除湿器去除烟气中的水份;然后烟气被风机打入货油舱,进入货油舱之前的管路中设有调节阀7、甲板水封装置8、单向阀16等;由于烟气是从柴油机排出的废气中抽取,因而其中的氧气已基本上被燃烧掉,留下的主要是氮气,所以是一种惰性气体;2. 主要设备的功能⑴烟气抽气阀烟气抽气阀2装于锅炉烟道和洗涤塔之间,连接管上接入蒸汽或空气冲洗管,需要时对阀进行冲洗;另外,还接入空气密封管,当排气阀处于关闭状态时,由锅炉风机向抽气管供气,使抽气阀冷却和阻止烟气进入抽气管;⑵洗涤塔洗涤塔3具有冷却、脱硫和除尘的功能;它使烟气的温度下降到接近海水温度,一般要求比海水高2℃~5℃;去除烟气中的硫氧化物(SO2和SO3),一般要求脱硫率为90%~95%或更高;去除烟气中的烟尘等固体杂质,要求除尘率在90%以上;图4.3.1 典型的烟气式惰性气体系统图1-锅炉烟道;2-烟气抽气阀;3-洗涤塔;4-除湿器;5-风机;6-压力控制排放阀;7-调节阀;8-甲板水封;9-货油泵;10-压力/真空安全装置;11-呼吸阀;12-透气桅;13-氧分析仪;14-放气阀;15-压力传感器;16-单向阀;17-主截止阀⑶除湿器用来去除洗涤塔排气中的水滴,要求除水滴率在90%左右;除湿器4的型式有过滤式、旋流式和挡板式等;⑷甲板水封装置甲板水封装置8是安全装置,以防止货油舱内可燃性气体逆流;其原理是甲板水封内水柱的静压与货油舱油气的逆压相平衡,以阻止货油舱内可燃性气体的逆流;⑸压力/真空安全装置该装置设于甲板惰性气体总管(也是货油舱透气总管)上,其作用和要求前文已叙述;⑹风机一般使用电动离心式风机,风机5的风量应保证最大卸油量时油舱内能维持一微小正压;风机总风量比货油泵的排量至少大25%;风机一般应设置两台,每台风机的风量可以是总风量的100%或50%,所以有三种不同的配置方式;⑺压力传感器压力传感器15的功能是控制进入货油舱内的惰性气体压力,它通过控制排放阀6和调节阀7的开闭来维持惰性气体的压力;当压力升高时,压力传感器送出电信号,使调节阀7关小,减少流量,从而使进入货油舱的惰性气体压力降低,同时,使排放阀6打开,将多余的惰性气体从烟囱顶部排出;当压力降低时,开大调节阀,关闭或关小排放阀,使进入货油舱的惰性气体压力升高;⑻氧分析仪本系统图中的氧分析仪13的作用是对送入货油舱的烟气中的含氧量进行分析,显示并记录进入货油舱烟气的含氧量,当含氧量超过5%时仅会发出报警和记录;也可以通过氧分析仪控制调节阀7的开闭,当含氧量超标时,关闭总管上的调节阀,打开与惰性气体总管连通的放气阀,将不合格的惰性气体放到大气中;⑼放气阀本系统中放气阀14的作用是当调节阀7关闭时,将调节阀7与甲板水封装置8之间管路中的惰性气体放入大气,因而它的开闭也是由调节阀控制的;三、惰性气体发生装置系统惰性气体发生装置系统是利用专门的燃烧器燃烧柴油,产生燃气经洗涤塔冷却、脱硫、除尘和。

FPSO改装项目货油泵选型分析

FPSO改装项目货油泵选型分析

技术交流FPSO 改装项目货油泵选型分析丁奎龙(大连中远海运重工有限公司,辽宁大连116113)摘要:FPSO 货油泵是FPSO 货油系统的关键核心设备,货油泵的选型在VLCC 改装FPSO 项目中的总体功能设计、布置设计和项目成本中起到举足轻重的作用,文章通过货油电动深井离心泵和液压深井离心泵的对比分析,对货油泵的选型设计方案进行了研究,为今后的FPSO 改装项目货油泵选型提供参考和借鉴。

关键词:浮式生产储卸油装置;货油泵;电动深井泵;液压深井泵中图分类号:U672文献标志码:Adoi :10.13352/j.issn.1001-8328.2024.02.009Abstract :The cargo oil pump is a crucial component of the FPSO cargo oil system.The selection of a cargo oilpump plays a vital role in the functional design ,layout design and project cost control of a VLCC to FPSO conversion project.This paper studies the selection and design scheme of the cargo oil pump through the comparative analysis of the electric deep well cargo oil pump and hydraulic deep well cargo oil pump ,providing valuable insights for theselection of cargo oil pumps in future FPSO conversion projects.Key words :floating production storage and offloading ;cargo oil pump ;electric deep well pump ;hydrau⁃lic deep well pump作者简介:丁奎龙(1990-),男,辽宁朝阳人,助理工程师,硕士,研究方向为船舶与海洋工程轮机设计。

原油洗舱程序以及惰气系统之操作与保养

原油洗舱程序以及惰气系统之操作与保养

原油洗舱程序以及惰气系统之操作与保养1.原油洗舱系统1.1 应该执行原油洗舱的舱数:在卸油过程或者在航行中有部分舱间已经卸干的舱间,除了不适合的油品或者输油站有特别规定外,应尽可能全数执行原油洗舱。

如果无法全数原油洗舱,依 MARPOL规定每个航次至少应清洗全部货舱的25%,再加上重压载货舱(H EAVY BALLAST TANK)1.2 不适合原油洗舱的油品可以由 IMO 出版的 CRUDE OIL WASHING SYSTEM查出,并载明于原油洗舱手册内,现将不适合原油洗舱的油品列出:A.在卸油当时的货油温度,油品的黏度不得超过600CSTB.在卸油之当时货温必须大于熔点10℃以上C.洗舱油应避免残存于洗舱管路凝固D.提供下列部分不适合原油洗舱之油品名,以供参考:AmnaCambaArdjunaBoscanBu AttifelCabindaCintaJatibarangLabuanLagunaLagunillasLucinaMinas(Sumatra Heavy)Minas(Sumatra Light)SarirShengliTspisTia Juana PesadoDuriMayaTila1.3 原油洗舱手册:依 IMO 规定各轮应该备有原油洗舱手册,并经船级社认可签认,以实施原油洗舱以及海水洗舱时应考虑参考使用,并为IOPP证书认证时不可缺少的必备文件,需要妥善保管,善加利用。

1.4 洗舱的范围与管路压力上层洗舱( TOP WASH OR SIDE WASH):洗舱机应设定自30°--MAX--30 °果因时间限制可设定自如120°--30 。

°底部洗舱( BOTTOM WASH):洗舱机应设定自30°--0 °--30 --°0 °全程洗舱( FULL CYCLE):洗舱机应设定0°--120 °--0 --°30 °--0 °22洗舱时甲板管路压力应至少为7Kg/cm 但是不大于 9 Kg/cm1.5 洗舱的顺序a)应该将洗舱油的舱间先卸空,使用他舱货油洗舱后灌入干净的洗舱油。

现代油船的设备系统

现代油船的设备系统

第四章、现代油船的设备系统现代油船的设备系统组成1货油装卸系统2扫舱系统3加热系统4喷洒系统5通气系统6除气系统7消防系统8惰性气体系统9洗舱系统10液舱参数测量和监控系统。

、货油装卸系统功能:供装卸货油的注入和排出。

组成1油泵2装卸管系。

货油舱管系1泵舱管系2甲板管系装卸管系1货油舱管系2泵舱管系3甲板管系(一)泵舱及泵系油船装油通常都利用岸上的设备,而卸油、扫舱、打排压载水及洗舱那么利用船上的泵系。

每艘油船设有 1 -2 个泵舱。

每一个泵舱设置假设干部货油泵及扫舱泵。

大多数油轮都备有3-4 台主货油泵, 2 台扫舱泵及1台压载水泵。

货油泵的性能要求:避免在运转中发生火花货油泵的总排量应在24h内卸完全数的货物货油泵的原动机如为蒸汽温度不超过230℃的蒸汽机时,可装设在泵间内。

其它各类的原动机均装设在泵间之外,如机舱内。

其传动轴穿过舱壁或甲板处,有气密或防爆密封装置,并有润滑方法以防过热或产生火花。

常见的货油泵有离心泵蒸汽直动往复泵螺杆泵其它回转泵等离心泵在现代大型油船上装设的主货油泵,多数为离心泵。

其原动机可是汽轮机、电动机或柴油机。

结构组成工作叶轮泵壳。

工作原理:离心泵是利用叶轮旋转时的离心力作用,吸入液体提高液体压力能取得压头的泵。

叶连番道中的液体随叶轮转动,因离心力作用而沿流道向外缘流出来,其中心处形成低压,不断吸进液体充满叶轮。

液体在叶连番道中流过时,取得机械能,使其压力和速度均取得提高,在蜗旋状泵壳中或在固定的扩压流道中,高速液体的动能部份转换为压力能,持续排出泵外。

蒸汽往复泵工作原理往复泵是依托活塞在泵缸中作往复运动,使泵缸内工作空间容积转变,产生吸排作用,从而实现能量传递的一种容积式泵。

工作进程在泵缸内容积增大时,形成低压,液体经吸入阀吸入,当缸内容积减小时,压力提高,关闭吸入阀而顶开排出阀,排出液体。

特点具有自吸能力往复泵排量不均匀惯性力阻碍较大受活塞连杆机构运动加速度和吸排阀动作延滞的阻碍,活塞的尺寸、重量和单位时刻里往复次数均不宜过大往复泵适于用作排量相对较小而压头较高的扫舱泵,抽吸低位的液体,能将舱底的油泵尽(二)货油舱管系。

船舶风暴压载操作的注意事项!

船舶风暴压载操作的注意事项!

船舶风暴压载操作的注意事项!风暴压载操作1.是指对于设计为专⽤压载舱(SBT)的船舶。

在恶劣天⽓情况下,根据需要向设计有指定货油舱“风暴压载舱”(Heavy Weather Ballast Tank)压载的⼀种⽅法。

指定的“风暴压载舱”的位置都是在船中,其⽬的是为了降低压载航⾏时中拱对船舶结构的不利影响。

“风暴压载舱”的指定,可以从船舶资料中找到根据,例如《原油洗舱⼿册》,《排油监控装置(ODME)⼿册》等。

有些船舶,如7.2万吨级油船,在《原油洗舱⼿册》中指定4P/S为“风暴压载舱”。

2.船舶应在开航之前利⽤各种⼿段对其航⾏中可能遭遇的恶劣天⽓做出预见性判断。

在天⽓情况异常恶劣的航程中,为了保证船舶的安全,船长认为有必要可以向设计有单独压载舱的货油舱即“风暴压载舱”进⾏压载作业。

3.就货油舱压载⽽⾔,在进⾏压载航⾏前,必须要经过对货油压载舱进⾏洗舱后再进⾏压载作业。

4.原油洗舱后,货油舱内产⽣的烃⽓超过通常存在的⽔平。

这些油舱随后的压载就会导致⼤量的烃⽓被排放到⼤⽓中。

5.⽤下述⽅法中的⼀种来避免压载油舱中烃⽓的散发:收容⽓体于卸空油舱法。

把拟压载的油舱上部空间直接连通到拟卸载的油舱。

通过压载同步进⾏使压载舱的舱⽓收容到卸空的油舱中。

采⽤⽓体压缩法。

在卸油结束时控制舱⽓压⼒处于最低,同时通过惰⽓管路连通所有的货油舱。

压载时,从压载舱出来的⽓体经过惰⽓管路转移到所有可以利⽤的货油舱空间,在所有透⽓阀、空距测量孔等关闭的条件下,⽓体被压缩在船内,压⼒升到P/V阀及PV Breaker设置的安全界限之内。

所有的⽌回装置必须保持关闭以防⽌惰⽓倒流到惰⽓发⽣装置中。

6.货舱压载操作需要连接货油和压载管线,使⽤压载泵。

检查货油舱管系和压载管系连接设定、连接短管和压载泵等设备是否处于良好⼯作状态。

7.⽆论何种、何时的压载,都必须先启动压载泵,低速运⾏后,再打开通海阀(正常情况应在关闭状态),以避免污物流出,污染海⾯。

探讨船舶压载水管理系统的安装

探讨船舶压载水管理系统的安装

147一、船舶压载水管理系统船舶压载水管理系统主要是对船舶排放海里的压载水进行处理。

传播提排放压载水时,能有效地防止有机体和海洋生物入侵,可也在排放压载水之前杀除,或者是消灭这些有机体和海洋生物。

针对处理后的压载水,需要按照公约进行压载水管理排放。

在处理过程中,需要满足D2规则(见下表1),需要按照规则要求控制压载水海洋生物以及细菌数量。

表1 压载水中海洋生物和细菌数量二、船舶压载水管理系统的处理技术1.机械法机械法在使用过程中离不开生物滤波器,通过98%的分离方法,利用水的流动,通过通道实现液体水和固体的分离,进而除去多细胞动物、细菌、孢子等有害病原体。

系统中所有容易磨损或者是破坏的部件应该方便维修,生产商在操作和维修保养手册中需要明确压载水管理系统的日常保护方法,要求所有的保养和维修均应该及时地记录,降低人为因素的干扰,方便船上检查,船上还应该具备取样装置校验设备,只有制造商或者是制造商授权人,才能够进行精确性校验。

除此之外,还需要加大环境试验,可以由处理装置、生产厂家制造,并在处理装置认可过程中完成,也可以有不同的制造厂制造并单独进行实验,通过试验验证设备的功能和可靠性分析进行控制,更好的满足特性需求,G8导则对环境试验的项目要求提出了具体的规划,编制实验大纲时公约导则,应该兼顾船级社规范和制造厂的特定要求,加大ISO格式型式认可证书的书写,重点记录压载水的容量、流速、盐度和温度。

2.物理法物理法在使用时,采用紫外线辐射法对生物微生物进行直接辐射或者是光化学反应,构成生命最主要的成分在超声波。

紫色辐射源来自于UVC辐射的死亡细胞,它是一种累积效应,当辐射不能杀死微生物时,可以通过累积效应。

紫外线的优势在健康、安全、环境等方面不会存在争议,紫外线灭火也不会造成二次污染,具有高效的杀菌效果。

船舶压载水处理系统能够得到更加广泛的使用。

此外,加热法,它也是一种物理处理技术,在使用时可以控制早期的工业生物污染,随后经过西方国家的大力研究,被使用在压载水管理系统作业中。

船用设备中英文

船用设备中英文

1、救生设备:Life-Saving Appliances救生/救助艇:Lifeboat/Rescue Boat救生/救助艇架:Lifeboat/Rescue Davit救生/救助艇、筏收放绞车:Lifeboat/Rescue Davit Winche救生衣:Life Raft Jacket气胀式救生筏:Inflatable Life Raft浸水保温救生服:Immersion Suit静水压力释放器:Automatic Hydrostatic Releases Unit救生圈:life buoy抛绳器:line-throwing appliance降落伞、火箭信号:parachute flare手持红火号:hand flare漂浮烟雾信号:buoyant smoke light singal救生圈自亮浮灯:life buoy self-igniting light海上撤离系统:marine eracuation system抗暴露服:anti-exposure suits保温用具:thermal protective救生衣灯:lifejacket light2、消防:Fire-Fighting And Protecting Installation And Appliance固定式灭火系统:Fixed Fire Extinguishing System手提式和推车式灭火器:Protable And Non-Portable Fire Extinguisher手提式泡沫枪装置:Protable Foam Applicator Unit水带:Fire Hoses消防栓、水枪:Fire Hydrants,Nozzles感温、感烟式探火报警系统:Smoke Detector,Heat Detector,Fire Detection And Alarm System货舱烟雾探测系统:Cargo Hold Smoke Detection System消防员装备:Fireman’S Outfits国际通岸接头:International Shore Connection自给式呼吸器:Self-Contained Breathing Appliance消防泵、应急消防泵:Fire Pump,Emergency Fire Pump惰气系统(含惰性气体发生器、洗涤塔、甲板水封、系统用管及压力真空阀):Inert Gas System (Include Inert Gas Generator,Scrubber,Deck WaterSeal,Pipes And P/V Valves)3、轮机设备:Machinery主机(柴油机,燃汽油机,电力推进等):Main Engine (DieselEngine,Turbines,Electric Propulsion Etc.)主机扫气箱固定式灭火系统:Main Engine Fixed Fire Extinguishing System 地脚螺栓:Foundation Bolts And Nuts For Main Engine树脂垫块材料:Cast Resin Chocks For Main Engine齿轮箱:Gear Box风机:Fans锅炉及附属装置:Boiler And Device锅炉:Boiler燃烧器:Burning Unit For Boiler控制箱:Control Pannel锅炉供水泵:Boiler Feed Watetr Pump锅炉循环水泵:Boiler Circulating Pump主辅机冷凝泵:Condenser Pump蒸汽冷凝器:Condenser蒸汽管,给水管,凝水管,法兰(仅一、二级管及法兰):Steaming/Feeding,Water/Condenser Pipes,Flanges(For CCSclassⅠ、Ⅱ)And Valves压缩空气系统:Compressed Air System空压机(启动用):Compressor空气瓶:Air Receiver滑油及燃油系统:L.O. And F.O. System燃油分油机:F.O. Purifier滑油分油机:L.O. Purifier燃油,滑油自清式滤器:L.O. / F.O. Filter燃油,滑油加热器:L.O. / F.O. Heater滑油泵:L.O. Pump燃油泵:F.O. Pump冷却系统:Cooling System海水,淡水冷却水泵:S.W. /F.W. Cooling Pump热交换器:Heat Exchangers压载系统:Ballast System遥控系统:Remote Control System4、电力,电器设备:Electrical Installation发电机组(辅机):Electric Generator Set应急发电机组:Emergency Generator Set应急配电板:Emergency Switchboard主配电板:Main Switchboard机舱集控台:Engine Room Centralized Control Pannel主变压器:Transformer驾驶室集中控制台:ridge Centralized Control Pannel蓄电池:Accumulator Battery防爆开关和灯具:Explosion-Proof Switches And Lights电力和控制、通讯电缆、电线:Power/Instrumentation/Communication Cable 电动机(50kw以上或重要设备套用):Electric Motor防爆电机:Explosion-Proof Electric Motor电加热器:Electric Heater电气控制箱(主要设备套用):Electric Control Pannel充放电板:Battery Charging/Discharging Pannel主机遥控系统:M.E. Remote Control System安全和警报系统:Safety&Alarm System车钟:Telegraph自动记录仪:automatic Recording Device船令广播系统:public Addresser System液位测量系统:Level Gauging System货舱温度监控系统:cargo Hold Temperature Monitoring System固定/便携式可燃气体探测仪:Fixed/Portable Gas Detector电工仪表:Electric Appearance/Meter.安电箱:Connecting Box For Land-Use Power5、轴系:Shafting推力轴:Thrust Shaft And Bearing中间轴及轴承:Intermediate Shaft And Bearing艉轴,螺旋桨轴:Stern Shaft,Screw Shaft艉轴管:Stern Tube艉轴承:Stern Shaft Bearing螺旋桨:Propeller联轴节:Shaft Couplings轴系连接螺栓:Coupling Bolts For Shaft特殊推进装置(可调桨、艏侧推、Z推、喷水推进器):Special Propulsion (CPP. ,“Thruster, “Z” Propeller,Water Jet)艉轴密封装置:Stern Shaft Seal导流罩:Kort Nozzle△6、防污设备(须具IMO格式的认可证书复印件):Pollution Prevention Equipment油水分离器:Oil Water Separator生活污水处理装置:Sewage Treatment Plant油份浓度计:Oil Content Meyer For 15ppm. Bigle Alarm焚烧炉:Incinerator油水界面探测仪:Oil/Water Interface Detectors原油洗舱机:Crude Oil Washing Machine排油监控系统及油份计:ODMS And Oil Content Meters7、专用设备:Special Equipment货油透气装置(Pv阀等):Cargo Oil Tank Ventilation System货油泵:Cargo Oil Pump货油泵用原动机:Primer Mover For Cargo Oil Pump扫舱泵:Cargo Oil Stripping Pump水力风机:water Driving Fans洗舱海水加热器:washing Water Heater应急拖带装置:emergency Towing Unit液压蝶阀及遥控装置:hydraulic Blade Valve And Remote Control Units拖拽装置:Towing Appliances液化气罐:Lpg. Container冷藏装置:Refrigeration Installation液货舱液位系统:cargo Level Indicator System8、其他:Others装载仪:Loading Computer阴极保护:Cathodie Protection System 液位计:Liquidometer膨胀接头:Expansion Bellows木材系固索:Timber Lashings。

西安石油大学——油库考试复习资料

西安石油大学——油库考试复习资料

1油库概述1.1油库类型和任务油库的类型:按油库的管理体制和业务性质分为:独立油库和企业附属油库两大类型。

按油库的储油方式分为:地面油库、隐蔽油库、山洞油库、水封石洞油库和海上油库等。

1.2油库的分级和分区石油库储存油品的火灾危险性(按闪点分三大类):甲:(<28)原油、汽油;乙:(28~60)喷漆燃油、灯用煤油、35号轻柴油;丙:(60~120)轻柴油、重柴油、20号重油;(>120)润滑油、100号重油。

油库分区一般油库按业务要求可分为:储油区、装卸区、辅助生产区、行政管理区等四个区域。

其中装卸区又分为:铁路装卸区、水运装卸区和公路装卸区。

1.3油库容量的确定用周转系数法决定库容周转系数法:某种油品的储油设备在一年内可被周转使用的次数,即=某种油品的年度周转率周转系数储油设备容量显然,周转系数越大,设备使用率越高,储油成本也越低。

油罐容量在使用上可分为下面三种情况1)名义容量,即油罐理论容量,他是按油罐整个高度计算的。

2)储存容量,即油罐的名义容量减去A部分占去的容量。

3)作业容量,油罐使用时,出油管下部的一些油品并不能发出,成为油罐的“死藏”。

储存容量减去B部分的容量,便是作业容量。

影响油库容量的因素:发展趋势、季节变动、不规则变动。

储备天数:储备天数取决于运输方式、线路条件、气象和封冻停航等因素。

作为参考,铁路外输可取N=7;长输管线外输可取N=2~5。

原油库管线进油,取N=5天;铁路罐车,取N=10~15天;水路来油,取N=15天。

2油品装卸作业2.1铁路装卸油系统及其装卸方法铁路装卸系统根据油品性质分为:轻油装卸系统和粘油装卸系统。

按装卸方法分为:上卸、下卸、自流和泵送。

2.1.1铁路装卸油系统轻油装卸系统轻油装卸系统是由输油系统、真空系统、放空系统三部分组成。

真空系统作用:填充鹤管的虹吸和收净油罐车底油。

它包括真空泵、真空罐、真空管线和扫舱短管等。

粘油装卸系统粘油装卸系统多采用下部装卸,而且多采用吸入能力较强的往复泵或齿轮泵,因此不需要设置真空系统。

船用泵分类

船用泵分类

船用泵分类
船用泵根据其功能和应用场景的不同,可以分为以下几类:
1. 淡水泵:用于将淡水从水源(如河流、湖泊、沿海地区等)吸入船舶的水箱或水系统,提供船上日常用水。

2. 压载泵:用于将水或其他液体压入船舶的货舱,以增加货舱的稳定性和载重能力。

3. 油泵:用于将燃油或润滑油供应给船舶的发动机、主机或其他机械设备,确保其正常运行。

4. 消防泵:用于船舶消防系统,提供消防水源,用于灭火或应对紧急情况。

5. 输沙泵:用于将水下的沙子、泥浆或其他固体颗粒输送到船舶上。

6. 冷却泵:用于船舶的冷却系统,将冷却介质(如海水或淡水)循环流动,维持船舶设备的正常工作温度。

7. 排污泵:用于船舶的污水处理系统,将污水排出船外,保持船舶环境的清洁。

还有一些较为特殊的船用泵,如舱底泵(用于排水)、油水分离泵(用于船舶的污油分离系统)等,根据具体船舶的需求和特殊要求选择合适的泵。

货油泵原理

货油泵原理

货油泵原理一、概述货油泵是指用于输送液体或气体的机械设备,广泛应用于工业、农业、航空、航海等领域。

根据不同的工作原理和结构特点,货油泵可以分为多种类型,如离心泵、齿轮泵、螺杆泵等。

本文将重点介绍货油泵的工作原理及其分类。

二、工作原理货油泵的主要工作原理是利用机械能将液体或气体从低压区域输送到高压区域。

具体来说,货油泵通过某种方式将液体或气体吸入内部空间,并在内部形成一定的压力差,从而推动液体或气体流向出口。

根据不同类型的货油泵,其具体工作原理也有所不同。

三、分类介绍1. 离心泵离心泵是一种常见的货油泵类型。

其主要特点是通过离心力将液体或气体从吸入口推向出口。

离心泵内部包含一个旋转叶轮和一个固定壳体,当叶轮旋转时,由于惯性力和离心力的作用,液体或气体被推向出口。

离心泵适用于输送低粘度的液体或气体,但对于高粘度的物质则效率较低。

2. 齿轮泵齿轮泵是一种通过齿轮传动将液体或气体从吸入口推向出口的货油泵。

其内部包含两个相互啮合的齿轮,当齿轮旋转时,由于啮合作用,液体或气体被推向出口。

齿轮泵适用于输送高粘度的液体或气体,但对于低粘度的物质则效率较低。

3. 螺杆泵螺杆泵是一种通过螺旋线传动将液体或气体从吸入口推向出口的货油泵。

其内部包含一个旋转螺杆和一个固定壳体,当螺杆旋转时,由于螺旋线作用,液体或气体被推向出口。

螺杆泵适用于输送高粘度、易凝固的物质,并且具有较高的压力能力。

4. 活塞泵活塞泵是一种通过活塞运动将液体或气体从吸入口推向出口的货油泵。

其内部包含一个活塞和一个固定壳体,当活塞运动时,由于容积变化作用,液体或气体被推向出口。

活塞泵适用于输送高粘度、易凝固的物质,并且具有较高的压力能力。

四、应用领域货油泵广泛应用于工业、农业、航空、航海等领域。

在工业领域中,货油泵主要用于输送各种化工液体、石油产品和水等物质;在农业领域中,货油泵主要用于灌溉和输送农产品;在航空和航海领域中,货油泵主要用于输送燃料和其他液体或气体。

船舶英语缩写

船舶英语缩写

OHSAS18000标准-OHSAS18000全名为Occupational Health and Safety Assessment Series 18000W。

B.T 压载水舱( wing ballast tank)MDO 柴油C。

O。

P 货油泵F.W。

G 制淡装置F。

O 燃油CRIC。

循环CYL 气缸thruster推力器,助推器H。

F.O重油(燃料油)C.F。

W pump 循环淡水泵L。

O 滑油N。

C.O 喷油器HYD. 压力O.D.M SAMPLING PUMP 排油监控取样泵G/B S/B L.O PUMP 齿轮箱滑油备用泵TRANS 输送G/S 总用PURI. 净化器,分油机SERV. 日用Sulphur 硫ER 机舱fire damper 防火档板UV sterilizer紫外线消毒器tally office 理货员办公室Preheater预热器Bow 艏推力装置thrusterevaporator蒸发器booster 增压器FW HYDROPHOR Pp 淡水输送泵fairlead 导缆孔order number 序号cargo 货物execution 实行;履行;执行; 完成vibration stress 振动应力ambient 周围的deviation [de•vi•a•tion ] 背离inclination angle倾角dynamic [dy•nam•ic || daɪ’næmɪk] adj。

动力的;动态的;动力学的static [stat•ic ||'stætɪk]adj. 静的;静力的; 静态的; 静止的appliance [ap•pli•ance ||ə’plaɪəns]n。

器具,用具; 应用, 使用;设备, 装置; 救火车athwartship 横切,横向barometric pressure 大气压Viscosity 粘质, 粘性cSt 是centistokes的缩写,意思是厘斯asphaltenes 沥青质CCAI 碳芳香度指数class notation 船级代号mounting hole 安装孔;固定孔identification plate标志板installation lable 安装标签bracket 支架QMD青岛齐耀瓦锡兰菱重麟山船用柴油机有限公司wiring diagram布线图servo 伺服电动机; 伺服机构Pcs 数量的缩写。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 CARGO AND BALLAST PUMPSLearning objectives-that the suction action of a pump is really atmospheric pressurepushing the liquid into the inlet side of the pump-how low vapor pressure of the liquid being pumped will improve suction-that the discharge pressure will fluctuate when the liquid boils-the meaning of head-the meaning of NPSH-the meaning of typical Q-H curve and the shore installation curve-that the actual discharge rate also depends on static and dynamicbackpressure of the shore installation-the meaning of pressure surge-that the system is liable to serious pressure surges if valve-closure time is equal to or less than the pipeline period7.1 P UMP THEORY AND CHARACTERISTICS7.1.1 Classification and selection of pumpsThere are a number of different pump types. Each type has its own special quality and therefore certain advantages and disadvantages. The selection of pumps is determined by a thorough study of the capacity needs and under which operational conditions the pump will operate. The following factors are important when you evaluate these conditions:• Estimated back pressure• Capacity requirement• Capacity range• Requirement for installation and arrangement• Expenses for purchase, installation and maintenance• Availability of parts and service• Suction terms• Characteristics for the liquid to be pumpedSelection of the right pump for a determined purpose qualifies a close co-operation between the customer and the producer of the pump. The customer has a special responsibility to clarify all conditions concerning the pump installation, so the producer can choose the best pump from his product range with the best match.When you choose a pump you must find out how much the pump needs to deliver under a specific condition. Definition of capacity range is important. Demand for capacity or capacity range and expected discharge pressure must be specified. The capacity requirement is determined by the intended use of the pump. The discharge pressure is determined by various conditions where the pump’s delivery pipeline design, the capacity of the pump and the liquid’s characteristics, is the essential.Alternative installation locations of the pump are limited due to special demands from Class and Shipping Authorities and also from lack of space.Purchase and installation cost is important. Future maintenance expenses, availability of parts and service now and over the next years, are also important and must be included in the evaluation of alternative pump supplies.The liquid’s properties and which other arrangements you have to consider, often limits the options. Density, viscosity and boiling point are important properties to consider. The liquid temperature and corrosive properties are important factors when pump material is selected. The pump’s suction condition is determined from where the pump is located in relation to the liquid to be pumped. A given suction pipe creates a certain resistance that will have influence on the pump capacity. The main principle is to minimise resistance on the suction side by decreasing the suction pipe length, have the largest diameter possible and few as possible restrictions in form of bends, valves and so on.The different types of pumps are divided into two main groups, displacement and kinetic pumps. The displacement pumps displace the liquid by reducing the volume inside the pump. An example is a piston pump where the piston is moving up and down inside a cylinder or when the screws revolve inside a screw pump. Kinetic pumps (kinetic energy is equal to “movement” energy) increase the liquid’s velocity through the pump.The diagram below gives a brief view of the different available groups and types of pumps. The diagram would be more comprehensive if the pumps were divided in all details according to number of rotors, design of pump inlet/outlet and flow directions.A kinetic pump like the centrifugal pump increases the liquid’s velocity in the pump by means of a rotating impeller. A displacement pump, like the piston pump, mechanically displaces the liquid in the pump, either by help of a piston or screws. Resistance on delivery side gives a liquid pressure rise (pump delivery pressure). One should be aware of this difference for these two pump types.The pressure rise on a kinetic pump is restricted by the increase in velocity over the pump, which is controlled by the pump design. All kinetic pumps therefor have a designed or built-in limitation for maximum discharge pressure. The displacement pumps limitation depends only on available power and the constructional strength. In contrast to a kinetic pump, such a pump will operate against resistance with all its available power. A closed-delivery valve after a displacement pump is damaging. The same closed valve for a kinetic pump will not bring any immediate danger.Piston pumps and screw pumps have good suction capacity and are used where these characteristics are required. The weakness of these pumps is the complex construction and the relatively low capacity.Centrifugal pumps are simply constructed with few parts and no valves. There are no immediate problems if the outlet of the pump is closed. These qualities result in relative low purchase and servicing costs. Operation at high speed makes the pump small in proportion compared to the capacity and flexibility in relation to the pump’s location.The most negative side of using a centrifugal pump is the lack of self-priming capacity. This weakness is improved by constructional efforts and positioning, which consolidate the free flow of liquid. Location of a pump, for instance below the liquid level, can reduce the flow resistance. High viscosity liquids are therefore particularly difficult to pump due to this condition.A centrifugal pump’s efficiency is high only within a small range. This is the reason it is especially important to have a clear understanding of what capacity range the pump will operate under, in connection with the selection of a centrifugal pump.The differential pressure over each impeller is relatively low. Using so-called multistage pumps where several impellers are mounted in serial, increase the pump’s capacity to deliver against higher backpressure.A centrifugal pump will, without a non-return valve on delivery side, give complete back flow at the time the pump stops. For all operators of centrifugal pumps, this relationship is important to know.Centrifugal pumpejector7.1.2 TheThe ejector design is simple and is used for stripping. This ejector has no revolving or reciprocating parts and is thereby especially easy to maintain.The propellant (driving water), a liquid or gas, is forced through a nozzle into a mixer tube. The velocity of the propellant will naturally increase as it passes through the nozzle. Due to the propellant’s velocity and direction, plus the friction force between the propellant and the liquid, the surrounding liquid will be sucked into the ejector’s mixer tube. The mixer tube is connected to an expanding tube, the diffusor. Here some of the kinetic energy supplied to the liquid in the mixer tube is transformed into potential energy. The capacity depends on the friction force between the two mediums, suction head, delivery head and the propellant’s velocity. The ejector has the advantage that it does not lose the suction capacity even if it sucks air or vapour.The ejector’s efficiency is between 30% and 40%. Even if the propellant’s efficiency is up to approximately 70%, the total efficiency for the whole ejector system is far less than compared to a pump system, such as a centrifugal pump. Another drawback with ejectors is that the propellant is mixed with the pumping liquid. This implies that if the ejector is to be used in cargo transfer operation, the cargo itself must be used as propellant liquid.The ejector is frequently used as a bilge pump in hold spaces. A common arrangement for a hold space is as follows:The ejector is usually submerged in a bilge sump and the propellant is normally supplied from a seawater pump. Onboard gas carriers where the hull is the secondary barrier, the ejector may also be used to pump cargo from hold space. In that case, the liquefied cargoitself must be used as a propellant.7.1.3 Tips• Be aware that the ejector has a limitation on the propellant’s pressure. Higher pressurethan recommended by the supplier may result in reduced suction capacity.• Start the ejector by opening all valves on delivery side first, and then adjust the correct propellant pressure. The ejector’s suction valves should be opened last, which will prevent the propellant’s flow back into the tank that is to be stripped.• Stop the ejector by using the opposite procedure.As the drawing shows the ejector is positioned 3 meters above the liquid level. The liquid level in the slop tank is 15 meters above the ejector and the propellant's pressure is 8 bars. The ejector’s capacity can be found by use of the performance curve for the specific ejector. In the performance curve the ejector capacity is set as a function of the propellant pressure. Observe that this curve has curves for different suction lifts. The different performance curves are marked with different suction lifts. The ejector’s suction lift in this example is 3 meters; this specific curve shall be used.You can find the capacity of the ejector by drawing a vertical line from 8 bars on the scale for a delivery head of 15 meters and up to the performance curve with a suction lift of 3 meters. From this point of intersection, draw a horizontal line to the left and over to the ejector’s capacity side. The found capacity in this case is 600 m3/h.7.1.4 The ejector’s Performance Curves7.1.5 DisplacementpumpsPumps are very old machines. The first types of pumps (screw pump and piston pump) are more than two thousand years old.A pump’s purpose is for the transport of liquid, usually from a low level to a higher level. Its purpose can also be to press a liquid into a tank, which contains higher pressure than the surroundings. The pump increases the liquid’s energy. The increased energy is potential energy; the liquid is transported from a low level to a higher level. This is the kinetic energy, the liquid’s flow has increased as pressure energy, if the liquid is pumped into a tank with a higher pressure than its surroundings. As an example, the feed water pump to a boiler is working using these principles.In addition to the mentioned increase of energy, the pump also has to maintain the energy which is lost due to streaming in the system.As mentioned, kinetic pumps constantly have liquid streaming through the pump with pressure increasing simultaneously. In displacement pumps, a certain volume of liquid is branched off and moved from the pump’s delivery side. Then a pressure increase occurs. Screw pumps and piston pumps will be viewed further in this chapter. A wide range of displacement pumps is available, such as the lamella pump, ring pump, propeller pump, etc.pump7.1.6 PistonThe piston pump is used for relatively small amounts of liquid with large delivery heads. When the piston is pulled upwards, a vacuum occurs inside the pump housing. The suction valve will then open and liquid streams into the pump. When the piston is pressed downward the pressure will increase, the suction valve will close, the delivery valve is set open and the liquid sent out of the pump. The liquid does not stream in a smooth flow as in a centrifugal pump, but accelerates and slows alternately. This is of inconvenience with long pipelines. The valve is a weak point. They are sensitive to liquid pollution and they also increase the resistance against streaming.Usually, the piston pump is double acting. Because of the pump’s movements, the pump must have a relatively slow piston speed. The piston pump may sustain almost unlimited pressure. However, the limitation is the automotive power and the material strength. The piston pump does not have to be filled with liquid before starting. Make sure that all the valves on the delivery side are open before starting. The efficiency of piston pumps is higher than, for instance, centrifugal pumps. The piston pump is a well-known pump on board an oil tanker. This is the pump, which is used to pump cargo deposits ashore at the endof the discharging operation. These oil deposits from cargo tanks, lines and cargo pumps are pumped ashore through a small diameter line.pump7.1.7 ScrewThe screw pump consists of two screws or more, where one of them is activated. The screws are placed inside a pump house. A common and well-known screw pump is the Swedish manufactured so-called IMO pump. This pump consists of one active screw placed in the middle and two symmetrical side screws. The screws tighten to each other and to the housing, but have no metallic contact. When the screw rotates, the threads are filled with liquid. The liquid is displaced by axial through the pump. In this pump, the side screw rotates in the opposite direction of the middle screw. These screws are working like an endless piston which constantly moves forward. The liquid is not exposed to rotation. The pump is self-priming, running almost soundless and with little exposure for wear and tear when pumping clean liquids. The screw pumps are used a lot as a lubricating pump, but are also used as a stripping pump on oil tankers.Screw pumpspump7.1.8 CentrifugalThe centrifugal pump’s mode of operationA centrifugal pump consists of a rotating impeller inside a pump casing. The liquid inside the impeller is affected by the “blades”, and will be lead through the “blades” due to the centrifugal force. Energy in forms of kinetic energy (velocity energy) is added to the liquid. New liquid is constantly lead into the impeller and put into rotation. A flow through the pump is established.If the delivery pipeline from the pump is open to the atmosphere and has sufficient height, the liquid will adjust itself to a precise level given by the energy, which was added to the liquid through the impeller. Here, all kinetic energy is transformed into potential energy.The difference in liquid level is called net delivery head. A pump’s delivery head is dependent on the individual pump’s construction. If the level in the tank is lowered, the liquid level in the delivery pipeline will be correspondingly lower. Net delivery heads (H1, H2, H3) will be equal for the same pump provided that flow disturbance does not occur on the pump’s suction side.However, the pump’s delivery pressure is dependent on the liquid’s density and delivery head. In this case, the liquid is water with a density () of 1000 kg/m 3 and the head (H ) is 100 meters, the manometer pressure (p m ) after the pump will be read at:p m = ρ x g x H = (1000 kg/m 3 x 9,81 m/s 2 x 100 m)p m = 981000 Pa = 981 kPap m = 9,81 barsOne can see from the previous example that the delivery head of the pump is obtained from the pump itself, and that the delivery head is independent from the pump’s position or location. It is therefore natural that the centrifugal pump’s capacity always is given as a function of the pump’s delivery head.If you bend the discharge pipe from the previous example, like the illustration below, the liquid will flow out of the pipe. Only a part of the added energy in the pump will “lift” the liquid. The rest of the energy is still in the form of kinetic energy. From the previous taught experiment, one can predict that the capacity of a centrifugal pump will be highest at minimal delivery head. The capacity curve (Q-H curve) will, in practice, follow this assumption, but the curve is not linear due to loss of energy in the pump.If you ignore the pipe resistance, the capacity Q in this situation is determined by the delivery head (H). The delivery head here is the static height or the static backpressure, which the liquid has to lift.In a real pipe system, bends and valves will create a resistance due to friction against freeliquid flow. This resistance varies with the velocity and viscosity of the liquid, and is called the dynamic backpressure. The total pipe resistance, composed by the static and the dynamic backpressure, is called a system characteristic curve.The intersection point between the system characteristic curve and the capacity curve is called the actual operation point.It was previously mentioned that disturbances on the pump’s suction side would have influence on the capacity.The conditions on the inlet side are very important for the centrifugal pump’s operation. A centrifugal pump has normally no self-priming qualities, meaning that the pump is not able to suck liquid from a lower level. Additional vacuum equipment connected to the pump will, however, improve the pump's self-priming qualities. When the inlet pipe and impeller is filled with liquid, the pumping process will be able to continue without this equipment. The liquid’s viscosity may ensure a continual flow into the pump. Too high resistance in the inlet pipe will cause the same operational disturbance. If the flow into the pump is less than the outlet flow, due to too high pipe resistance and/or too high viscosity, these factors will have considerable influence on the pump’s capacity.If you start a pump, submerged in water like the sketch indicates, the pump will have a specific capacity at a specific delivery head. If you gradually lift the pump, the pump will, at a specific height, have a perceptible reduction in the capacity. When this occurs, the height of the pump above liquid level is called Net Positive Suction Head or NPSH.The explanation of this phenomena is that when the pump is lifted up out off the water, the pipe length and the resistance at the inlet side increases. The increased resistance creates constant negative pressure on the inlet side of the pump. The liquid that accelerates from the centre of the impeller and out to the periphery increases this negative pressure. When the negative pressure reaches the liquid’s saturation pressure, the liquid starts boiling and a large quantity of vapour is created in the pump. The output flow from the pump become irregular, and will stop at huge vapour volumes. We say that the pump cavitates.A centrifugal pump operates satisfactorily with approximately 2% gas in the liquid. But cavitation will always damage for the pump. The gas bubbles created in the liquid on the pump’s suction side will collapse when the pressure rises inside the impeller.The consequences of cavity are:Vibrations and noiseReduced efficiency Pitting or cavity erosion inside the pumpAs we have observed, the cavitation is destructive and must be avoided or controlled. To ensure limited or non-generation of vapour one must make sure that the liquid at the pump inlet has sufficient overpressure to avoid evaporation. The resistance at the pump inlet side should be made as low as possible. This can be done by constructing the pipeline as short as possible, limiting the number of bends and selecting a maximum diameter on the pipeline diameter. The pump should be positioned at the lowest possible level, and preferably below liquid level at the suction side.A pump’s NPSH is variable and dependent on the flow. When the flow increases, the negative pressure generated inside the pump increases. A reduction of the flow will reduce the negative pressure. Reducing the pump’s capacity may therefore control cavitation.A centrifugal pump’s capacity is adjusted by throttling the delivery valve. Throttling increases the pumps discharge pressure (backpressure) which causes reduced capacity.The capacity may also be adjusted by changing the pump’s rotation speed. Adjustments of the pump’s revolution move the capacity curve up or down. Reduction of the revolution moves the curve parallel downwards, an increase in revolution, upwards. Note that these relations are valid only if the flow conditions are unchanged.Static Headhrs7.1.9 The Pump performance diagramAll manufacturers supply a pump performance diagram with the pump delivery. The curves in the diagram are results from practical tests in the maker’s workshop and specifies:• Type of liquid used in the test (generally water)• Number of revolutions• Type and size of impeller• The optimal operation pointThe operation point is normally set at the best possible efficiency, simultaneously within the pump’s predicted capacity range.It is important to be aware that the pump’s diagram is made for a special liquid with specific properties. The capacity curve will be real for all liquids, provided the free flow to the pump inlet is not restricted due to for example too high viscosity. The power consumption curve will of course depend on the fluid’s density.check the centrifugal pump’s condition. Monitoring the pump’s delivery head, capacity, power consumption and development of these is obvious. Detection of many minor operational disturbances may be difficult and not necessarily observed. Establishment of routines ensure continuous control of vibrations. Visual inspection of the pump and regular maintenance is important to prevent break down.7.1.10 Draining and stripping systemThe last stage during a discharging operation is the stripping, which means to empty the deposits of cargo in the cargo tanks, lines and pumps. Stripping is a part of the operation, which cannot be done with the cargo pumps in normal running.Well-known stripping systems are steam driven piston pumps, vacuum stripping and ejectors. The steam driven piston pump is an IMO demand on board crude oil tankers. This stripping pump empties the last deposits of cargo from the tanks and lines then pumps it ashore through the small diameter line.This pump will also be the last pump in use during the discharging operation.The vacuum stripping system is the most efficient method. On M/T Seagull this system is installed. The vacuum system makes use of the main cargo pumps and the main cargo lines.7.1.11 Vacuum strip compositionThe main line, just ahead of the cargo pump, on the free flow side is connected to a vacuum separator tank. The purpose with this separator tank is to support the cargo pump with liquid. The separator tank has a pipe connection to a vacuum tank fitted on a higher level in the pump room. This line is supplied with a valve.The vacuum tank is connected to a vacuum pump. This pump’s shaft leads via a gas proof joint to the engine room where the running unit is located.A pipe to pick up the exhaust from the separator tank leads from the vacuum tank to the slop tank.7.1.12 Mode of operationThe separator tank works like a reservoir feeding the pump with liquid. The liquid level inside the separator tank will fall when the level in the cargo tank is getting lower than the height of the separator tank.The void space above the liquid inside the separator tank will increase. In this stage, falling pump pressure should be observed before the vacuum system is activated.At a fixed limit on the separator tank, the vacuum pump will start creating a vacuum in the void space above the liquid.The valve between the separator tank and the vacuum tank will open and the liquid will be sucked into the separator tank because of the vacuum.At the same time, the delivery valve is automatically (or manually) throttled. This is done to give time for the separator tank to refill itself.The liquid in the separator tank supports the pump with liquid, even if the flow from the cargo tank is poor at times.The vacuum stripping system provides good working conditions for the cargo pumps regarding feeding. This is achieved thanks to good co-operation between the cargo pump’s delivery valve and the vacuum pump.The principles for different vacuum stripping systems is more or less the same, but please study the User’s Manual of the equipment on the specific ship.Stripping arrangement for a deepwell pump systemStripping arrangement for cargo systems with a separate pump-room7.1.13 Parallel operation of centrifugal pumpsThe capacity requirement is usually higher than the performance of just one centrifugal pump. Additional pumps are then lined up and run in a parallel operation.The diagram below shows two equal pumps in parallel operation. We assume a symmetrical pipeline for both pumps.mlcThe pump’s capacity curve (1) shows the relation between the delivery head and the flow rate for one pump. As both pumps are equal, the two pumps capacity curve is represented by the curve marked 1+2.When equal pumps are run in parallel, the delivery head for the system will be equal to the delivery head for one pump. The capacity, however, will increase in proportion to the number of pumps. If, for instance one pump has a capacity of 1,330 m 3/hr. at a delivery head of 88 meters, two pumps in parallel will deliver 2,660 m 3/hr. and three pumps 3,990 m 3/hr. at the same head.If the pumps are of different types or equal pumps are run at different speed, their individual performance curves will be different. This is no problem provided the point of intersection is outside the pumps individual point of intersection.If, for instance increasing the back pressure alters the point of intersection, this may lead to one of the pumps running without delivering any cargo. If this situation occurs and continues, the pump may be damaged. If the system does not have any non-return valves and the backpressure increases further, a back flow will occur through the pump and into the cargo tank.Even though the type of pumps is the same in a parallel operation, variation in rotational speed, asymmetric piping, variance in opening of valves, cavitation and variance of the pump’s condition may form the same condition.Parallel operationPumps are operated in parallel when the time per unit will deliver more cargo than is possible to do with one pump. In this example, we will view how to find the delivery amount and delivery head by use of a pump curve. The system characteristic curve is shown on the pump curve diagram (next page).The pump curve “A” for one pump shows in point “D1”, a delivery of 1,400 m 3/hour at a delivery head of 88 meters.The pump curve “B” shows two pumps in parallel operation with a delivery of 2,250 m 3/hour at a delivery head of 116 meters.To plot in pump curve “B” add the delivery amount of the two pumps at the different delivery heads. As shown in curve “A” the delivery at 20mlc. is 1,770 m 3/hour, point 1. Plot a new point at 20mlc. (1,770 + 1,770) = 3540 m 3/hour, point 11. In the same way, we are plotting the values according to the table above. When all the values are plotted, a new curve is drawn through the plotted points, curve “B”. Where the new curve is crossing the system curve, the delivery amount and delivery head for two pumps in parallel operation will be read. The same procedure stands for 3 or 4 pumps in parallel operation.Starting pump number 2 will not double the capacity because a higher volume of flow creates higher dynamic resistance. The increase in capacity will then be relatively less for each pump added.4080120160200240To achieve accurate plotting of two or more pumps in parallel operation, it is recommended to use a sheet of millimetre paper. Study the pump performance curve for the cargo pumps (or for any other pumps) on your ship.7.1.14 Pump calculationAll pumps are delivered with pump curves from the supplier and it is important to be able to use these curves properly. On the example curve in this chapter, a curve is drawn for one pump which runs with a fixed revolution.。

相关文档
最新文档