药物化学总结
药物化学知识总结(简略版-你懂得)

一、概述贝诺酯:协同挛药,由扑热息痛和乙酰水杨酸拼合得到,及解决了乙酰水杨酸对胃肠道的酸性刺激,又增强了解热镇痛效果。
(前药原理,拼合原理)。
可卡因中复杂爱康宁结构只相当于氨基醇侧链(普鲁卡因的启示,同系原理)特异性结合:空间互补,电荷匹配。
脂水分配系数:适当大小,以利于药物在水和膜之间的转运。
解离度:氨氨基季铵化,巴比妥5位取代基。
与受体结合方式:离子键、氢键、疏水键、范、电荷转移复合。
研究对象:化学药物作用靶点:离子通道、受体、核酸、酶。
二、镇静催眠药(GABA)巴比妥类:PKa越大,亲脂性越好(5位取代基C 越多),作用强起效快。
作用机制:作用GABAa受体,延长GABA的作用时间,从而延长Cl通道开放时间,神经细胞超极化。
苯二氮卓类:地西泮—代谢得到---奥沙西泮。
抗癫痫药:拟γ-氨基丁酸(GABA代谢酶抑制剂)三、抗精神病药氯丙嗪药物发现:异丙嗪(抗组胺)—丙嗪(抗组胺消失,抗精神病)—氯丙嗪(抗精神病增强)氟奋乃静(前药原理,如上图结构)作用靶点:多巴胺受体四、局部麻醉药(普鲁卡因)(大题)可卡因的结构进化:可卡因—托派可卡因--(四氢吡咯环开环,去甲基)β-优卡因---(含氮侧链简化成氨基醇结构)普鲁卡因普鲁卡因修饰:氨基侧链、苯环(邻位Cl)、苯环上氨基。
五、拟胆碱药和抗胆碱药(氯贝胆碱)乙酰胆碱的改造(参考上图):βC引入甲基,右边那个甲基用氨基等排(都是为了提高稳定性)---改造得到氯贝胆碱。
氯贝胆碱合成:(自己看一下)胆碱酯酶抑制剂作用机制:胆碱酯酶与乙酰胆碱结合发挥水解作用后形成的复合物能够比较快的水解复活胆碱酯酶;而与抑制剂结合后得到的复合物不易水解,酶复活较慢。
毒丙豆碱(易水解,毒副作用大,缺乏特异性)----改造得到---溴新斯的明---------(左边H用甲基等排,N季铵化)溴新斯的明合成莨菪碱先导优化:氨基季铵化,副作用降低。
松肌药:季铵---(CH2)n--季铵(n=5-6,N1受体拮抗作用;n=9-12,箭毒样作用,大于十二作用减弱) 六、肾上腺素受体激动药基本结构,苯乙胺构效关系:R3增大,β受体选择性增强;R2为甲基活性较好;X为羟基,利于与受体氢键结合。
《药物化学》复习重点资料整理总结

《药物化学》复习重点资料整理总结名词解释:1.稳态血药浓度:以半衰期为给药间隔时间,连续恒量给药后,体内药量逐渐累积,给药4、5次后,血药浓度基本达到稳态水平。
2.药物:是指调节机体生理、生化和病理过程,用以预防、诊断、治疗疾病的物质。
3.药理学:是研究药物与机体之间相互作用及其规律的一门学科,包括药物效应动力学、药物代谢动力学两个方面。
4.首关消除:有些口服药物在经胃肠壁及肝脏时,会被此处的酶代谢失活。
5.肝肠循环:有的药经胆汁排泄再经肠黏膜上皮细胞吸收,由门静脉重新进入全身循环,这种在小肠、肝脏、胆汁间的循环称为肝肠循环。
6.治疗指数:药物的半数致死量LD5a与半数有效量ED50的比值。
7.处方药:必须凭执业医师或执业助理医师处方才可调配。
8.肾上腺素升压作用的翻转:预先给予α受体阻断药能阻断肾上腺素激动α受体的缩血管作用,保留激动β受体的血管舒张作用,使升压作用翻转为降压作用。
9.耐受性:机体对药物的敏感性降低,需增加剂量才能发挥原有药效。
10.反跳现象:长期大剂量使用某药物后突然停药,导致原有病情再现或加重。
11.二重感染:长期使用广谱抗菌药,使得敏感菌被抑制,不敏感菌大量繁殖,引发新的感染。
模块-1、在机体方面,影响药物作用的因素有哪些?(填空题)年龄性别个体差异病理状态心里精神因素遗传因素2、“三致”反应致畸致癌致突变3、药物的二重作用包括什么?P5~防治作用和不良反应4、药物作用的主要类型包括哪些?P4-5兴奋作用和抑制作用局部作用和吸收作用选择性作用和普遍作用直接作用与间接作用预防作用和治疗作用模块二1、药品贮存条件中阴凉处、凉暗处、冷处、常温的条件P28阴凉处:系指不超过20℃阴暗处:系指避光并不超过20℃冷处:系指2℃~10℃常温:系指10℃~30℃2、批准文号的代表字母和数字各自的含义,批号的含义P27字母:化学药品:H 中药:Z 保健:B 生物制品:S体外化学诊断试剂:T 药用辅:F 进口分包装药品:J数字第1、2位为原批准文号的来源代码,第3、4位为换发批准文号之后(公元年号)的后两位数字,第5~8位为顺序号批号的含义:在药品生产过程中,将同一次投料、同一生产工艺所生产的药品定为同一个批号。
药物化学重点药物化学结构及类型总结归纳

药物化学重点药物化学结构及类型总结归纳药物化学是药学学科的重要分支,研究药物的化学结构及其在体内的转化代谢过程。
药物化学的目标是寻找新的药物分子,改进已有药物的性质,提高药物的疗效和安全性。
下面对药物化学的重点以及药物化学结构及类型进行总结归纳。
重点药物化学结构:1.天然药物结构:天然药物是从动植物、微生物或矿物中提取的具有治疗作用的化合物。
常见的天然药物结构包括植物碱、生物碱、黄酮类化合物等。
例如:华法林(Warfarin)是一种抗凝药物,其结构中含有香豆素环并有杂原子(柳树苷结构)。
2.合成药物结构:合成药物是通过化学合成的方式制备出来的药物。
常见的合成药物结构包括芳香环、饱和环、杂环等。
例如:阿司匹林(Aspirin)是一种常用的非处方药,其结构中含有芳香环、酯基和醇基。
3.基础结构与活性团:药物分子的活性来自于其基础结构和活性团。
基础结构是药物分子的骨架,而活性团是具有特定活性的功能基团。
药物化学研究着重于发现和优化药物分子的基础结构和活性团,以提高药物的药效和选择性。
4.药物基团及键的导向作用:药物分子中的基团和键可以通过导向作用改变药物的性质和活性。
例如,引入取代基可以改变药物分子的溶解度、稳定性和活性。
导向作用是药物化学的重要概念之一,它指导了药物分子的设计、合成和改进。
药物化学的类型:1.pH敏感药物:pH敏感药物指的是药物的溶解度或释放行为受环境pH值的影响。
例如,肠溶片是一种常见的pH敏感药物,它只在肠道酸性环境下才能溶解释放药物。
2.离子对药物:离子对药物是指药物分子中含有正离子和负离子,它们之间通过离子键结合在一起。
离子对药物通常具有高溶解度和良好的生物利用度,因此被广泛应用于药物设计和合成。
3.靶向药物:靶向药物是指具有选择性作用于特定靶点的药物。
它们通常具有特定的结构特征,能够与靶点发生相互作用,并发挥治疗作用。
例如,酪氨酸激酶抑制剂普利都巴(Imatinib)是一种靶向白血病细胞的药物,其结构能够与癌细胞的激酶结合,从而抑制细胞生长。
药物化学考试重点总结

药物化学考试重点总结
一、药物化学基础知识
1. 药物的分类与作用机制:了解各类药物的基本作用机制和分类,如抗生素、抗肿瘤药、抗炎药等。
2. 药物的化学结构与性质:理解药物的化学结构与其理化性质、稳定性及生物活性的关系。
3. 药物代谢:掌握药物在体内的代谢过程,包括代谢酶及代谢产物的性质和作用。
二、药物合成与工艺
1. 药物合成方法:掌握常见的药物合成方法和技术,如还原反应、氧化反应、酯化反应等。
2. 药物合成工艺:理解工业化生产中药物的合成工艺流程及优化方法。
3. 药物合成路线的设计与选择:了解药物合成路线的评价标准,掌握设计药物合成路线的思路与方法。
三、药物分析
1. 药物分析方法:掌握药物分析中常用的检测方法和技术,如色谱法、光谱法等。
2. 药物质量控制:理解药物质量控制的标准和要求,掌握药品质量控制的常用方法。
3. 药物制剂分析:了解药物制剂的分析方法,掌握药物制剂的质量控制标准。
四、药物设计与新药开发
1. 药物设计的原理与方法:掌握基于结构的药物设计、基于片段的药物设计等原理与方法。
2. 新药发现的途径与方法:了解新药发现的途径和策略,如高通量筛选、虚拟筛选等。
3. 新药开发的流程与评估:理解新药开发的流程和评估标准,掌握新药开发的风险与机遇。
药物化学专业知识点总结

药物化学专业知识点总结一、药物化学的基本概念药物是指能够在生物体内起特定药理活性,并能够预防、治疗、诊断和改善疾病的化合物。
药物化学是研究药物的化学结构、性质及其合成途径的科学。
药物化学的研究内容主要包括:1. 药物的化学结构与性质:药物的化学结构决定了其生物活性和药理效应,药物的理化性质决定了其药代动力学特征。
2. 药物的合成研究:药物的合成方法研究是药物化学的核心内容。
合成药物的目标是简捷、经济且高产率,具有可控性和可重复性。
3. 药物的作用机制研究:药物的作用机制研究是药物化学和药理学的交叉领域。
药物的作用机制包括药物与靶分子的结合、生物途径的调控等。
二、药物分类根据药品的疗效、化学结构和用途,药物可以分为很多类。
根据药物的用途,药物可以分为:1. 治疗药物:用于治疗疾病的化合物,如抗生素、抗癌药、抗感染剂等。
2. 预防药物:用于预防疾病的化合物,如疫苗、预防性抗生素等。
3. 诊断用药:用于帮助诊断疾病的化合物,如放射性核素、造影剂等。
4. 应急药品:用于急救和紧急情况下的药物,如止血剂、解热镇痛药等。
根据药物的化学结构,药物可以分为:1. 有机化合物药物:由有机化合物合成的药物,包括多种结构类型的化合物。
2. 无机化合物药物:由无机化合物合成的药物,如氧化铁、氧化亚铁等。
根据药物的作用机制,药物可以分为:1. 靶向药物:通过作用于特定的生物靶标来发挥药理效应的药物。
2. 非靶向药物:通过影响生物系统其他组成部分的功能来发挥药理效应的药物。
三、药物合成药物的合成方法是药物化学的核心内容。
药物的合成方法主要包括:1. 有机合成:有机合成是药物合成的基础,包括常见的反应类型如亲核-亲电加成反应、消除反应、取代反应等。
2. 天然产物全合成:大部分天然药物都具有复杂的结构,需要进行全合成来得到纯品,这对有机合成技术提出了更高的要求。
3. 合成方法研究:随着有机合成方法学的发展,药物化学家在研究过程中积累了大量合成方法,用于合成更加复杂的分子。
药物化学知识点总结

友情提示。
▪总论部分1篇,4章,主要内容:▪第一章:药物化学及发展过程▪第二章:药效及药代▪第三章:药物分子设计的基本原理和方法▪第四章:药物的研发程序▪需要掌握的内容:▪ 1 基本概念先导化合物的来源、电子等排体、前药和生物前体、药物代谢、影响药效的因素,药效团等。
▪ 2 药物优化的基本程序、构效关系、定量构效关系。
▪需要了解的内容:▪ 1 药物开发的基本程序▪ 2 计算机技术在药物设计中的应用分子模拟,先导化合物的虚拟筛选,定量构效关系(2DQSAR、3DQSAR),Hansch分析法、Docking程序、CoMFA程序。
▪个论部分3篇,14章,主要内容:▪第2篇与中枢系统有关的药物▪第一章:麻醉药▪第二章:镇静催眠和抗癫痫药▪第三章:精神神经疾病治疗药物▪第四章:镇痛药▪需要掌握的内容:▪ 1 局麻药的结构类型,盐酸普鲁卡因、利多卡因的合成路线。
▪ 2 巴比妥类、苯二氮桌类催眠镇静药的作用靶点、结构特征。
苯巴比妥、地西泮的合成方法。
了解治疗癫痫病药物的种类。
▪ 3 掌握治疗精神病的代表性药物:氯丙嗪、奋乃静、氯普噻吨、氟哌啶醇、奥氮平的结构式及合成路线。
▪ 4 了解抗抑郁药的类型和主要药物。
▪ 5 了解吗啡类镇痛药物的简化过程,合成镇痛药的种类。
▪ 6 掌握盐酸哌替啶、芬太尼的合成路线。
▪第3篇作用靶点是外周组织、器官上的受体、功能酶等的各类药物。
▪第五章:非甾体抗炎药▪ 1 了解花生四烯酸的代谢途径,前列腺素、白三烯与炎症的关系,非甾体抗炎药的作用靶点。
▪ 2 掌握代表性药物阿司匹林、保泰松、双氯芬酸钠、吲哚美辛、布洛芬、萘普生、吡洛昔康的结构式及合成路线。
▪ 3 了解非甾体抗炎药的进展。
▪第六章:拟胆碱药和抗胆碱药▪ 1 了解胆碱的生化来源及生理作用,胆碱受体和疾病的关系,拟胆碱药物的用途。
▪ 2 掌握盐酸苯海索的合成方法,了解肌松药的基本结构。
▪第七章:作用于肾上腺素能受体的药物▪ 1 掌握内源性物质去甲肾上腺素、肾上腺素、多巴胺的结构式及构型,了解其来源和生理作用。
2024年药物化学总结(三篇)

2024年药物化学总结药物化学是研究药物的合成、结构活性关系、药物作用机制和药物代谢等方面的学科。
在过去的2024年,药物化学领域取得了重要的进展和突破,为人类健康做出了重要贡献。
本文将对2024年药物化学的主要进展进行总结。
一、有机合成技术的发展有机合成技术是药物化学研究的核心内容之一,是合成出具有特定药理活性的分子的基础。
在2024年,有机合成技术方面取得了一系列重要突破。
首先,金属有机催化技术的发展为合成出复杂结构的药物分子提供了有效的手段。
例如,脂肪酸合成酶抑制剂是一类重要的降脂药物,过去合成这类化合物复杂且低产率,2024年通过金属有机催化技术的应用,合成效率和产率大幅提高。
其次,应用微流体反应器合成药物分子的研究成果逐渐应用到实际药物研发中,大规模的合成反应中可以实现更高的选择性和产率。
再者,合成生物学在药物合成中的应用逐渐成熟。
通过调控细胞内代谢通路,可以实现对复杂生物活性物质的高效合成。
2024年,合成生物学在制备天然药物和生理活性肽方面取得了突破。
二、药物结构活性关系研究药物结构活性关系研究是药物化学的重要方向,其目的是探索药物分子的构效关系,为设计和合成具有更好活性的药物提供指导。
在2024年,药物结构活性关系研究方面取得了重要进展。
一方面,在大数据和机器学习的支持下,通过数据挖掘和模型预测的方法,可以快速筛选和优化候选化合物。
另一方面,结构生物学的快速发展使得在分子水平上揭示药物与靶标之间的相互作用成为可能。
此外,药物结构多样性的研究已经开始引起重视。
通过寻找具有结构多样性的药物分子,可以提高药物库的多样性,从而更好地覆盖生物学空间。
三、新药研发与创新2024年,药物化学领域取得了多个新药研发的突破。
其中,抗肿瘤领域是取得最显著突破的领域之一。
例如,在2024年,有新的靶向治疗药物上市,可以针对具体突变的癌细胞进行更精准的治疗。
此外,抗感染领域也取得了重要进展。
由于耐药菌株的增多,抗感染药物研发一直是世界性难题。
药物化学知识点总结

药物化学知识点总结第一章绪论1药物的概念药物是用来预防、治疗、诊断疾病,或为了调节人体功能、提高生活质量、保持身体健康的特殊化学品。
2药物化学是一门发现与发明新药、合成化学药物、阐明药物化学性质、研究药物分子与机体细胞之间相互作用规律的综合性学科。
3药物化学的研究内容及任务既要研究化学药物的化学结构特征,与此相联系的理化性质,稳定性状况,同时又要了解药物进入体内后的生物效应、毒副作用及药物进入体内的生物转化等化学内容。
为了设计、发现和发明新药,必须研究和了解药物的构效关系,药物分子在生物体中作用的靶点以及药物与靶点结合的方式。
(3) 药物合成也是药物化学的重要内容。
第二章中枢神经系统药物一、巴比妥类1 异戊巴比妥HNN H OOO中等实效巴比妥类镇静催眠药,【体内代谢】巴比妥类药物多在肝脏代谢,代谢反应主要是5位取代基上氧化和丙二酰脲环的水解,然后形成葡萄糖醛酸或硫酸酯结合物排出体外。
异戊巴比妥的5位侧链上有支链,具有叔碳原子,叔碳上的氢更易被氧化成羟基,然后与葡萄糖醛酸结合后易溶于水,从肾脏消除,故为中等时效的药物。
【临床应用】本品作用于网状兴奋系统的突触传递过程,阻断脑干的网状结构上行激活系统,使大脑皮质细胞的兴奋性下降,产生镇静、催眠和抗惊厥作用。
久用可致依赖性,对严重肝、肾功能不全者禁用。
二、苯二氮卓类1. 地西泮(Diazepam, 安定,苯甲二氮卓)【结构】NNOCl结构特征为具有苯环和七元亚胺内酰胺环并合的苯二氮卓类母核【体内代谢】本品主要在肝脏代谢,代谢途径为N -1去甲基、C -3的羟基化,代谢产物仍有活性(如奥沙西泮和替马西泮被开发成药物)。
形成的3-羟基化代谢产物再与葡萄糖醛酸结合排出体外。
第三节 抗精神病药1. 盐酸氯丙嗪(Chlorpromazine Hydrochloride) 【结构】. HClNSClN【体内代谢】主要在肝脏经微粒体药物代谢酶氧化代谢,体内代谢复杂,尿中存在20多种代谢物,代谢过程主要有N -氧化、硫原子氧化、苯环羟基化、侧链去N -甲基和侧链的氧化等,氧化产物和葡萄糖醛酸结合通过肾脏排出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
药物化学重点总结给结构写名称和作用靶点(10*1分)单独列出给通用名写结构(5*1分)单独列出选择(20*1)构效关系重点填空(30个空*0.5分)简答(4-5道,20分)合成(2-3个,10分)第一章绪论第二章药物的结构和生物活性产生药效的两个主要因素(药物的理化性质以及药物与受体之间的相互关系)1、药效团:药效团是与受体结合产生药效作用的药物分子中在空间分布的最基本的结构特征(三维结构)2、药动团:是指药物结构中决定药物的药代动力学性质且参与体内吸收、分布、代谢和排泄过程的基团。
(与药效团以化学键结合,是药效团的载体)3、天然氨基酸:L-氨基酸或二肽在体内可被主动转运,可作为药动基团连接于药效团上,以利于其吸收和转运。
4、毒性基团:是指药物分子中产生毒性以及致突变或致癌等作用的结构基团。
(毒性集团一般都有亲电性质,与体内核酸,蛋白交联)其药物分子中的主要亲电基团:①含有环氧类的基团②可生成正碳离子的基团③β-内酯及醌类的基团④烷基硫酸酯或磺酸酯及β-卤代硫醚类的基团⑤N-氧化物、N-羟胺、胺类以及在体内可转化为含胺类的基团等。
5、药物生物转化反应①Ⅰ相反应:水解反应氧化反应还原反应(羰基的还原反应硝基和偶氮基的还原反应)②Ⅱ相反应:结合反应:1.与葡萄糖醛酸结合(最常见、最重要) 2.与硫酸结合 3.与谷胱甘肽结合 4.与乙酰基结合 5.与甲基结合6、前药:是一类经结构修饰将原药分子中的活性基因封闭起来而本身没有活性的药物。
进行前药修饰的作用(一般出选择):①改善药物的吸收性②延长药物的作用时间③提高药物的选择性④提高药物的稳定性⑤提高药物的水溶性⑥降低药物的刺激性⑦消除药物的不良味觉⑧发挥药物的配伍作用7、软药:软药是容易代谢失活的药物,使药物在完成治疗作用后,按预先设定的代谢途径和可以控制的速率分解、失活并迅速排出体外,从而避免药物的蓄积毒性。
8、电子等排体:是指外层电子数目相等的原子、离子、分子,以及具有相似立体和电子构型的基团。
如亚甲基与氧原子9、生物电子等排体:是指具有相似的理化性质,又能产生相似生物学活性的基团或分子。
第三章镇静催眠药和抗癫痫药物第一节、镇静催眠药镇静催眠药按化学结构可分为巴比妥类,苯二氮卓类,咪唑并吡唑类一.苯二氮卓类(地西泮,奥沙西泮,阿普唑仑)结构特征为具有苯环和七元亚胺内酰胺环骈合的苯二氮卓类母核本类药物的作用机制:与其促进中枢抑制性神经递质γ-氨基丁酸(GABA)的释放或突触间传递有关。
GABA的α亚基上有特异的苯二氮卓类结合位点,称为苯二氮卓类受体。
(所以苯二氮卓类相当于GABA受体激动剂)1、地西泮(又名安定)主要在肝脏代谢,其代谢产物为替马西泮、N-去甲地西泮和奥沙西泮本品有肠肝循环,长期用药有蓄积作用;主要以代谢物的游离或结合形式经肾排泄2、奥沙西泮C-3位是一个手性碳原子,因此有一对旋光异构体,右旋体的作用比左旋体强。
临床使用奥沙西泮的外消旋体本品在酸性溶液中加热水解可生成2-苯甲酰基-4-氯苯胺,这是含芳伯氨基的化合物,经重氮化后与β-萘酚偶合,生成橙红色的偶氮化合物地西泮与奥沙西泮的区别:前者在1位氮原子上有甲基,后者没有,地西泮在酸中水解物无芳伯氨基,不能进行重氮化偶合反应,而奥沙西泮可以,且显红色。
3、阿普唑仑(了解)在地西泮的1,2位骈合了甲基取代的三唑环,使苯二氮卓的1,2位不易被水解,因此增强了药物的化学稳定性。
同时,还增加药物与受体的亲和力,使其活性增强。
二、咪唑并吡啶类酒石酸唑吡坦三、吡咯酮类佐匹克隆四、其他药物丁螺环酮第二节、抗癫痫药物分类:按结构类型,抗癫痫药物可分为巴比妥类、乙内酰脲类、二苯并氮杂卓类、脂肪酸类、GABA类似物和其它类。
一、巴比妥类(苯巴比妥,异戊巴比妥,硫喷妥钠)巴比妥类药物具有环状酰脲结构。
通常分为:长效,苯妥英钠;中效,异戊巴比妥;短效,司可巴比妥;超短效,硫喷妥钠巴比妥类药物的代谢方式主要是经肝脏的生物转化1、苯巴比妥(5-乙基-5-苯基-2,4,6(1H,3H,5H)-嘧啶三酮)巴比妥类药物存在互变异构现象,有丙二酰脲的酮式和醇式结构共存。
其亚胺醇式呈弱酸性,pKa为7.4,临床上使用苯巴比妥钠。
本品的钠溶液放置易水解开环,产生苯基丁酰脲沉淀而失去药效。
2.异戊巴比妥(amobarbital):为中时效的巴比妥类镇静催眠药。
其5位取代基为异戊基,具有支链,在体内比苯环易氧化代谢,故作用时间较苯巴比妥短。
主要用于催眠、抗惊厥以及麻醉前给药3.硫喷妥钠(thiopental sodium):是将巴比妥结构中2位的氧换成硫的衍生物(生物电子等排体)。
硫喷妥钠可溶于水,通常做成注射剂供临床使用,用于控制惊厥和手术时麻醉使用。
因脂溶性强,容易通过血脑屏障,起效快,作用时间短,为超短时作用的巴比妥类药物。
二、乙内酰脲类1、苯妥英钠(5,5-二苯基-2,4-咪唑烷二酮钠盐)水溶液不稳定,因此苯妥英钠的注射剂必须制成粉针剂,临用时注射用水溶解使用。
水溶液中加入二氯化汞试液,可生成白色沉淀,在氨试液中不溶。
而巴比妥类的药物,虽也有汞盐反应,但所得沉淀溶于氨试液中,以此可以区别巴比妥类药物和苯妥英钠。
本品为治疗癫痫大发作和部分性发作的首选药,但对癫痫小发作无效。
此外,苯妥英钠还能治疗心率失常。
苯妥英钠与巴比妥类的不同:本品的水溶液加入二氯化汞试液,可生成白色沉淀,在氨试液中不溶,而巴比妥类药物,虽也有汞盐反应,但所得沉淀溶于氨试液。
三、二苯并氮杂卓类1、卡马西平它是该类药物中第一个上市的药物。
最初用于治疗三叉神经痛,因为它的化学结构与三环类的抗抑郁药有相似性,后来发现有很强的抗癫痫作用,现主要用于苯妥英钠等其他药物难以控制的癫痫大发作、复杂的部分性发作或其他全身性发作。
二个苯环与氮杂卓环的10,11烯键成一较大的共轭体系,其乙醇溶液在238nm与285nm波长处有最大吸收(即有紫外吸收),可用于定性和定量的鉴别10-酮基衍生物奥卡西平,可阻断脑内电压依赖性的钠通道,也有很强的抗癫痫活性四、脂肪酸类丙戊酸钠(了解) 广谱抗癫痫,抑制GABA代谢,提高脑内浓度。
五、其他药物加吧喷丁、卤加比、拉莫三嗪第四章抗精神失常药物第一节抗精神病药物一般认为精神分裂症一般与患者脑内的神经递质多巴胺(DA)功能失调有关按照化学结构分类,抗精神病药物主要有(1)吩噻嗪类:异丙嗪(2噻吨类(硫杂蒽类):氯普噻吨(3)丁酰苯类:氟哌啶醇(4)苯甲酰胺类:舒必利(5)二苯二氮卓类:氯氮平一、吩噻嗪类抗精神病药物(作用机制是阻断脑内多巴胺受体)1、氯丙嗪第一个用于治疗精神病的药物2、盐酸氯丙嗪(冬眠灵)第一个用于治疗精神病氯丙嗪和该类药物都具有吩噻嗪母环,其中环上的S原子和N原子都是良好的电子给予体,易被氧化。
氧化产物非常复杂,最初的氧化产物是醌类化合物。
氯丙嗪在空气或日光中放置渐变为红棕色,应避光密闭保存;重金属离子对氧化有催化作用,遇氧化剂则迅速被破坏。
为防止其氧化变色,注射液中需加入对氢醌、连二亚硫酸钠、亚硫酸氢钠或维生素C等抗氧剂。
遇硝酸后可能形成自由基或醌式结构而显红色,这是吩噻嗪类化合物的共有反应,可用于鉴别。
本品为中枢多巴胺受体阻断剂,主要反应有口干、上腹部不适、乏力、嗜睡、便秘、心悸,对干共有一定影响,停药后恢复;长期大量使用,引起锥体外系反应3、奋乃静含有吩噻嗪母核,因此也容易被氧化变色,溶液中需加入抗氧剂防止变色。
以哌啶环取代氯丙嗪侧链二甲氨基的吩噻嗪类药物,基本药理特性与氯丙嗪相似,抗精神病作用比氯丙嗪强6~8倍。
用于精神分裂症、躁狂症、焦虑症等,也有镇吐作用;可产生锥体外系反应。
利用侧链的醇羟基与长链脂肪酸成酯,可增加药物的脂溶性,在体内吸收减慢,水解成原药的速度较慢,是可延长作用时间的前药,特别适用于需长时期治疗且服药不合作的患者。
吩噻嗪类药物的构象关系二.噻吨类抗精神病药物(氯普噻吨)将吩噻嗪类抗精神病药物的吩噻嗪环上的10位N原子换成C原子,并通过双键与侧链相连,得到噻吨类抗精神病药物,又称硫杂蒽类抗精神病药物。
该类药物的链上因存在双键,故有顺式(Z)和反式(E)两种几何异构体,前者抗精神病作用比后者强7倍,这可能是顺式异构体类似于氯丙嗪的优势构象,能与多巴胺分子部分重叠,有利于与受体的相互作用。
1、氯普噻吨室温稳定,光照和碱性条件下可发生双键断裂,生成2-氯噻吨和2-氯噻吨酮三、丁酰苯类(了):氟哌啶醇四、苯甲酰胺类舒必利结构中有手性碳,左旋体是抗精神病的活性结构,亦可用于止吐抗忧郁,优点是锥体外系不良反应少五、二苯二氮卓类(了)如:氯氮平第二节抗抑郁药物现有的抗抑郁药物,按作用机制可分为:单胺氧化酶抑制剂(MAOIs):吗氯贝胺去甲肾上腺素重摄取抑制剂(NRIs):盐酸阿米替林5-羟色胺再摄取抑制剂(SSRIs):盐酸氟西汀一、单胺氧化酶抑制剂(MAOIs)吗氯贝胺异丙异烟肼是临床上第一个应用的抗抑郁药物二、去甲肾上腺素重摄取抑制剂(NRIs)NRIs的结构主要是三环类,该类药物是利用生物电子等排原理,将吩噻嗪类药物分子中的S原子以生物电子等排体亚乙基(-CH2-CH2-)或亚乙烯基(-CH=CH-)替代,而形成的一类二苯并氮卓类抗抑郁药。
盐酸阿米替林在肝脏内脱甲基,生成活性代谢产物去甲替林,两者活性相同而去甲替林的毒性较阿米替林低,已在临床上使用。
三、5-羟色胺再摄取抑制剂(SSRIs)盐酸氟西汀又名百忧解临床使用外消旋体S-异构体的活性交强第五章中枢兴奋药物和抗帕金森氏病药物第一节中枢兴奋药物按化学结构,中枢兴奋药物可分为生物碱类、酰胺类、苯乙胺类和其他类一、生物碱类生物碱类中枢兴奋药物主要有黄嘌呤类和其他类生物碱。
黄嘌呤类药物主要有咖啡因(caffeine)、可可碱和茶碱,均为黄嘌呤的甲基取代物,只是在取代位置和取代甲基的数目上稍有不同。
中枢兴奋作用:咖啡因>茶碱>可可碱;兴奋心肌、松弛平滑肌及利尿作用:茶碱>可可碱>咖啡因1、咖啡因1,3,7-三甲基-3,7-二氢-1H-嘌呤-2,6-二酮一水化合物本品与盐酸、氯酸钾在水浴上加热蒸干,所得残渣遇氨即生成紫色的四甲基紫尿酸铵,再加氢氧化钠,紫色即消失。
此反应名为紫尿酸铵反应,是黄嘌呤类生物碱的特征鉴别反应饱和水溶液与碘试液及稀盐酸反应,生成红棕色沉淀,在过量的氢氧化钠试液中沉淀复溶解,可用于鉴别。
本品具有酰脲结构,对碱不稳定,与碱共热可分解为咖啡啶(caffeidine)。
石灰水碱性较弱不能使其分解。
在肝脏中发生代谢反应,被黄嘌呤氧化酶氧化为尿酸类化合物,还可受微粒体氧化酶的作用而脱甲基,主要代谢产物有:1-甲基黄嘌呤、7-甲基黄嘌呤、1,7-二甲基黄嘌呤和1-甲基尿酸、7-甲基尿酸、1,3-二甲基尿酸等。