2015年全国高考理科数学试题及答案-新课标1

合集下载

2015年高考新课标全国Ⅰ理科数学试题及答案(word解析版)

2015年高考新课标全国Ⅰ理科数学试题及答案(word解析版)

2015年普通高等学校招生全国统一考试(新课标Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2015年新课标全国Ⅰ,理1】设复数z 满足1i 1zz+=-,则( )(A )1 (B )2 (C )3 (D )2 【答案】A【解析】由1i 1z z +=-得()()()()1i 1i 1i i 1i 1i 1i z -+--+===++-,故1z =,故选A . (2)【2015年新课标全国Ⅰ,理2】sin20cos10cos160sin10︒︒-︒︒=( )(A )32- (B )32 (C )12- (D )12-【答案】D【解析】原式1sin 20cos10cos20sin10sin302=︒︒+︒︒=︒=,故选D .(3)【2015年新课标全国Ⅰ,理3】设命题P :n N ∀∈,22n n >,则P ⌝为( )(A )n N ∀∈,22n n > (B )n N ∃∈,22n n ≤ (C )n N ∀∈,22n n ≤ (D )n N ∃∈,22n n = 【答案】C【解析】P ⌝:n N ∀∈,22n n ≤,故选C . (4)【2015年新课标全国Ⅰ,理4】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.60.648C ⨯+=,故选A .(5)【2015年新课标全国Ⅰ,理5】已知()00,M x y 是双曲线C :2212x y -=上的一点,1F 、2F 是C 上的两个焦点,若120MF MF <,则0y 的取值范围是( ) (A )33,33⎛⎫- ⎪ ⎪⎝⎭ (B )33,66⎛⎫- ⎪ ⎪⎝⎭ (C )2222,33⎛⎫- ⎪ ⎪⎝⎭ (D )2323,33⎛⎫- ⎪ ⎪⎝⎭【答案】A【解析】由题知()13,0F -,()23,0F 且220012x y -=,所以()()1200003,3,MF MF x y x y •=---•-- 2220003310x y y =+-=-<,解得03333y -<<,故选A . (6)【2015年新课标全国Ⅰ,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛 【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,得163r =.所以米堆的体积为21116320354339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭,故堆放的米约为3201.62229÷≈,故选B . (7)【2015年新课标全国Ⅰ,理7】设D 为ABC ∆所在平面内一点3BC CD =,则( )(A )1433AD AB AC =-+ (B )1433AD AB AC =-(C )4133AD AB AC =+ (D )4133AD AB AC =-【答案】A【解析】由题知()11143333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+,故选A .(8)【2015年新课标全国Ⅰ,理8】函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈【答案】D【解析】由五点作图知1425342πωϕπωϕ⎧+=⎪⎪⎨⎪+=⎪⎩ ,取得ωπ=,所以()cos 4f x x ππ⎛⎫=+ ⎪⎝⎭,令22,4k x k k Z πππππ<+<+∈,解得1322,44k x k k Z -<<+∈,故单调减区间为132,244k k ⎛⎫-+ ⎪⎝⎭,k Z ∈,故选D .(9)【2015年新课标全国Ⅰ,理9】执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A )5 (B )6 (C )7 (D )8 【答案】C【解析】执行第1次,0.01,1,0,0.5,0.5,t S n m S S m =====-=20.25,1,m m n ===0.50.01S t =>=,是,循环;执行第2次,0.25,20.125,2,S S m m m n =-==== 0.250.01S t =>=,是,循环;执行第3次,0.125,20.0625,3,S S m m m n =-==== 0.1250.01S t =>=,是,循环;执行第4次,0.0625,20.03125,4,S S m m m n =-====0.06250.01S t =>=,是,循环; 执行第5次,0.03125,20.015625,5,S S m m m n =-====0.031250.01S t =>=,是,循环; 执行第6次,0.015625,20.0078125,6,S S m m m n =-====0.0156250.01S t =>=,是,循环;执行第7次,0.0078125,20.00390625,7,S S m m m n =-====0.00781250.01S t =>=,否,输出7n =,故选C .(10)【2015年新课标全国Ⅰ,理10】25()x x y ++的展开式中,52x y 的系数为( ) (A )10 (B )20 (C )30 (D )60 【答案】C【解析】在()52x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y ,故52x y 的系数为21253230C C C =,故选C . (11)【2015年新课标全国Ⅰ,理11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为 1620π+,则r =( )(A )1 (B )2 (C )4 (D )8 【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为2222142225416202r r r r r r r r πππππ⨯+⨯++⨯=+=+,解得2r =故选B .(12)【2015年新课标全国Ⅰ,理12】设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )(A )3[,1)2e - (B )33[,)24e - (C )33[,)24e (D )3[,1)2e【答案】D【解析】设()(21)x g x e x =-,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)x g x e x '=+,所以当12x <-时,()0g x '<,当12x >-时,()0g x '>;当12x =-时,[]12max ()2g x e -=-.当0x =时,(0)1g =-,(1)30g e =>,直线y ax a =-恒过点()1,0且斜率为a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得312a e≤<,故选D . 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2015年新课标全国Ⅰ,理13】若函数2()ln()f x x x a x =++为偶函数,则a = . 【答案】1【解析】由题知()2ln y x a x =++是奇函数,所以()()()222ln ln ln x a x x a x a x x +++-++=+-ln 0a ==,解得1a =.(14)【2015年新课标全国Ⅰ,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 . 【答案】2232524x y ⎛⎫±+= ⎪⎝⎭ 【解析】设圆心为(),0a ,则半径为4a -,则()22242a a -=+,解得32a =±,故圆的方程为2232524x y ⎛⎫±+= ⎪⎝⎭.(15)【2015年新课标全国Ⅰ,理15】若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则y x 的最大值为 . 【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连 线的斜率,由图可知,点()1,3A 与原点连线的斜率最大,故yx的最大值为3.(16)【2015年新课标全国Ⅰ,理16】在平面四边形ABCD 中,75A B C ∠=∠=∠=︒,2BC =,则AB 的取值范围是 .【答案】()62,62-+【解析】如图所示,延长BA ,CD 交于点E ,则可知在ADE ∆中,105DAE ∠=︒,45ADE ∠=︒,30E ∠=︒,所以设12AD =,22AE x =,624DE x +=,CD m =,因为2BC =,所以62sin1514x m ⎛⎫++⋅︒=⇒ ⎪⎪⎝⎭62624x m ++=+, 所以04x <<,而62262424AB x m x x m +-=+-=+2622x =+-, 所以AB 的取值范围是()62,62-+.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2015年新课标全国Ⅰ,理17】(本小题满分12分)n S 为数列{}n a 的前n 项和,已知0n a >,243n n n a a S +=+(Ⅰ)求{}n a 的通项公式, (Ⅱ)设11n n n b a a +=,求数列{}n b 的前n 项和. 解:(Ⅰ)由2243n n n a a S +=+,可知2111243n n n a a S ++++=+,可得()2211124n n n n n a a a a a +++-+-=,即()()()2211112n n n n n n n n a a a a a a a a ++++-=-=+- 由于0n a >,可得12n n a a +-=.又2111243a a a +=+,解得11a =-(舍去),13a = 所以{}n a 是首项为3,公差为2的等差数列,通项公式为21n a n =+. ……6分(Ⅱ)由21n a n =+可知,111111(21)(23)22123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭. 设数列{}n b 的前n 项和为n T ,则1211111112355721233(23)n n n T b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫=+++=-+-++-= ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎣⎦ ……12分(18)【2015年新课标全国Ⅰ,理18】(本小题满分12分)如图, 四边形ABCD 为菱形,120ABC ∠=︒,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥. (Ⅰ)证明:平面ACE ⊥平面AFC .(Ⅱ)求直线AE 与直线CF 所成角的余弦值. 解:(Ⅰ)连接BD ,设BD AC G =,连接EG ,FG ,EF .在菱形ABCD 中,不妨设1GB =,由120ABC ∠=︒,可得3AG GC ==.由BE ABCD ⊥平面,AB BC =,可知AE EC =. 又AE EC ⊥,所以3EG =,且EG AC ⊥.在Rt EBG ∆中,可得2BE =,故22DF =.在Rt FDG ∆中,可得62FG =.在直角梯形BDFE 中,由2BD =,2BE =,22DF =,可得322EF =. 从而222EG FG EF +=,所以EG FG ⊥,又AC FG G =,可得EG AFC ⊥平面. 因为EG AEC ⊂平面,所以AEC AFC ⊥平面平面. ……6分(Ⅱ)如图,以G 为坐标原点,分别以GB , GC 方向为x 轴,y 轴正方向,GB 为单位长,建立空间直角坐标系G xyz -.由(Ⅰ)可得()0,3,0A -,()1,0,2E , 21,0,2F ⎛⎫- ⎪ ⎪⎝⎭,()0,3,0C . 所以()1,3,2AE =,21,3,2CF ⎛⎫=-- ⎪ ⎪⎝⎭. ……10分故()3cos ,3AE CF AE CF AE CF•==-,所以直线AE 与直线CF 所成角余弦值为33-. ……12分 (19)【2015年新课标全国Ⅰ,理19】(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费1x 和年销售量()11,2,,8y i =数据作了初步处理,得到下面的散点图及一些统计量的值.xy w()1211x xx +-∑()1211x w w +-∑()()111x xx y y +--∑ ()()111x w w y y +--∑46.6 56.3 6.8 289.8 1.6 1469108.8表中11w x =,11118x w w +=∑. (Ⅰ)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为0.2z y x =-.根据(Ⅱ)的结果回答下列问题:(i )年宣传费49x =时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利率的预报值最大? 附:对于一组数据()11,u v ,()22,u v …….. (),n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:()()()121ˆnii i nii uu v vuuβ==--=-∑∑,ˆˆv u αβ=-. 解:(Ⅰ)由散点图可以判断,y c d x =+适宜作为年销售量y 关于年宣传费x 的回归方程类型.……2分 (Ⅱ)令w x =,先建立y 关于w 的线性回归方程.由于()()()81821108.8681.6iii i i w w yyd w w==--===-∑∑, 56368 6.8100.6c y d w =-=-⨯=,所以y 关于w 的线性回归方程为100.668y w =+,因此y 关于w 的线性回归方程为100.668y x =+. ……6分 (Ⅲ)(i )由(Ⅱ)知,当49x =时,年销售量y 的预报值100.66849576.6y =+=,年利润z 的预报值0.2576.64966.32z =⨯-=.……9分(ii )根据(Ⅱ)的结果知,年利润z 的预报值()0.2100.66813.620.12z x x x x =⨯+-=-++. 所以当13.66.82x ==,即46.24x =时,z 取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.……12分(20)【2015年新课标全国Ⅰ,理20】(本小题满分12分)在直角坐标系xOy 中,曲线2:4x C y =与直线()0y kx a a =+>交与M ,N 两点,(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 解:(Ⅰ)由题设可得()2,M a a ,()2,N a a -,或()2,M a a -,()2,N a a .又2x y '=,故24x y =在2x a =处的导数值为a .C 在点()2,a a -处的切线方程为()2y a a x a -=-,即0ax y a ++=.故所求切线方程为0ax y a ++=和0ax y a --=. ……5分(Ⅱ)存在符合题意的点.证明如下:设()0,P b 为符合题意的点,()11,M x y ,()22,N x y ,直线PM ,PN 的斜率分别为1k ,2k .将y kx a =+代入C 的方程得2440x kx a --=.故124x x k +=, 124x x a =-.从而()()()1212121212122kx x a b x x k a b y b y b k k x x x x a+-++--+=+==.当b a =-时,有120k k +=, 则直线PM 的倾角与直线PN 的倾角互补,故OPM OPN ∠=∠,所以点()0,P a -符合题意.……12分(21)【2015年新课标全国Ⅰ,理21】(本小题满分12分)已知函数()31,()ln 4f x x axg x x =++=-.(Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用{}min ,m n 表示,m n 中的最小值,设函数}{()min (),()(0)h x f x g x x =>,讨论()h x 零点的个数. 解:(Ⅰ)设曲线()y f x =与x 轴相切于点()0,0x ,则0()0f x =,0()0f x '=,代入可解得012x =,34a =-. 因此,当34a =-时,x 轴为曲线()y f x =的切线. ……5分(Ⅱ)当()1,x ∈+∞时,()ln 0g x x =-<,从而{}()min (),()()0h x f x g x g x =≤<,故()h x 在()1,+∞无零点.当1x =时,若54a ≥-,则5(1)04f a =+≥,{}(1)min (1),(1)(1)0h fg g ===,故1x =是()h x 的零点;若54a <-,则5(1)04f a =+<.{}(1)min (1),(1)(1)0h fg f ==<,故1x =不是()h x 的零点.当()0,1x ∈时,()ln 0g x x =->,所以只需考虑()f x 在()0,1的零点个数.(i )若3a ≤-或0a ≥,则2()3f x x a '=+/在()0,1无零点,故()f x 在()0,1单调.而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在()0,1有一个零点;当0a ≥时,()f x 在()0,1无零点.(ii )若30a -<<,则()f x 在0,3a ⎛⎫- ⎪ ⎪⎝⎭单调递减,在,13a ⎛⎫- ⎪ ⎪⎝⎭单调递增,故在()0,1中,当3a x =- 时,()f x 取得最小值,最小值为213334a a a f ⎛⎫-=-+ ⎪ ⎪⎝⎭.①若03a f ⎛⎫-> ⎪ ⎪⎝⎭,即304a -<<,()f x 在()0,1无零点.②若03a f ⎛⎫-= ⎪ ⎪⎝⎭,即34a =-,()f x 在()0,1有唯一零点.③03a f ⎛⎫-< ⎪ ⎪⎝⎭,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时,()f x 在()0,1有两个零点;当534a -<≤-时,()f x 在()0,1有一个零点.综上,当34a >-或54a <-时,()h x 有一个零点;当34a =-或54a =-时,()h x 有两个零点;当34a >-或54a <-时,()h x 有三个零点. ……12分请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. (22)【2015年新课标全国Ⅰ,理22】(本题满分10分)(选修4-1:几何证明选讲)如图AB 是O 直径,AC 是O 切线,BC 交O 与点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线;(Ⅱ)若3OA CE =,求ACB ∠的大小.解:(Ⅰ)连接AE ,由已知得AE BC ⊥,AC AB ⊥.在Rt AEC ∆中由已知得DE DC =,故DEC DCE ∠=∠. 连接OE ,则OEB OBE ∠=∠.又90ACB ABC ∠+∠=︒,所以90DEC OEB ∠+∠=︒,故90OED ∠=︒,DE 是O 的切线 ……5分 (Ⅱ)设1CE =,AE x =,由已知得AB =BE =由射影定理,2AE CE BE =,所以2x =x =60ACB ∠=︒. ……10分(23)【2015年新课标全国Ⅰ,理23】(本小题满分10分)(选修4-4:坐标系与参数方程)直角坐标系xOy 中.直线1:2C x =-,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.解:(Ⅰ)因为cos x ρθ=,sin y ρθ=,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分(Ⅱ)将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ=故12ρρ-=,即MN =2C 半径为1,所以2C MN ∆的面积为12. ……10分(24)【2015年新课标全国Ⅰ,理24】(本小题满分10分)(选修4-5:不等式选讲)已知函数()12f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(Ⅰ)当1a =时,()1f x >化为12110x x +--->.当1x ≤-,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥时,不等式化为20x -+>,解得12x ≤<.所以()1f x >解集为2,23x ⎛⎫∈ ⎪⎝⎭. ……5分(Ⅱ)由题设可得12,1()312,112,x a x f x x a x a x a x a --<⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21,03a A -⎛⎫⎪⎝⎭,()21,0B a +,(),1C a a +,ABC ∆的面积为()2213a +.由题设得()22163a +>,故2a >.所以a 的取值范围为()2,+∞.……10分。

2015年高考理科数学(新课标全国卷1)(含解析)

2015年高考理科数学(新课标全国卷1)(含解析)

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1z-=i ,则|z|= ( )A .1BCD .2 2.sin 20cos10cos160sin10︒︒︒︒-=( )A.BC .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2nn n ∀∈N 2,> B .2nn n ∃∈N 2,≤ C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212 xC y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A.( B.( C.( D.( 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+B .1433AD AB AC =-C .4133AD AB AC =+D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )A .3[)21,e -B .43[,)23e -C .3[,)234e D .3[,)21e--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数()=(ln f x x x 为偶函数,则a =________.14.一个圆经过椭圆22=1164x y +的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式; (Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i ωω=8i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围.1sin20cos10cos20sin10sin302+==,故选10<数学试卷第7页(共21页)数学试卷第8页(共21页)数学试卷第9页(共21页)数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)2exy,AB 的取值范围是(62,62)-+.11111111=235572123n b n n ⎡⎤⎛⎫⎛⎫⎛⎫++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=AC FG G=,⊥平面AFC⊂平面AEC3数学试卷第13页(共21页)数学试卷第14页(共21页)数学试卷第15页(共21页)数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)60(Ⅰ)连接AE 90, 90,90,∴DE 是圆1AE =,CE BE ,212x -,解得∴60ACB ∠=.90,可得1sin45=2.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。

2015高考全国卷1理科数学试题及答案解析_[版]

2015高考全国卷1理科数学试题及答案解析_[版]

2014理科数学一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1. 已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)2. 32(1)(1)i i +-=A .1i +B .1i -C .1i -+D .1i --3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .B .3CD .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588. 设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 11. 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。

2015年高考理科数学全国卷1(含答案解析)

2015年高考理科数学全国卷1(含答案解析)

绝密★启用前 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1+z1z-=i ,则|z|=( ) A .1B .2C .3D .2 2.sin20cos10cos160sin10︒︒︒︒-=( )A .32-B .32C .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2n n n ∀∈N 2,>B .2n n n ∃∈N 2,≤C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212x C y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A .33()33-, B .33()66-, C .2222()33-, D .2323()33-, 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________A .3[)21,e-B .43[,)23e -C .3[,)234e D .3[,)21e第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数2()=()ln f x x a x x ++为偶函数,则a =________. 14.一个圆经过椭圆22=1164x y+的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式;(Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyω28i=1()ixx -∑28i=1()iωω∑-8i=1()()iiy x x y-∑-8i=1()()ii y y ωω--∑46.65636.8289.8 1.6 1 469108.8表中i ω=i x ,ω=188i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A 【解析】由1=i 1z z+-,得1i (1i)(1i)=i 1i (1i)(1i)z -+-+-===++-,故1z =,故选C . 【提示】先化简复数,再求模即可. 【考点】复数的运算. 2.【答案】D【解析】原式1sin 20cos10cos20sin10sin302=+==,故选D . 【提示】直接利用诱导公式以及两角和的正弦函数,化简求解即可. 【考点】三角函数的运算. 3.【答案】C【解析】命题的否定是:22n n n ∀∈≤N ,.【提示】根据特称命题的否定是全称命题即可得到结论. 【考点】命题. 4.【答案】A【解析】根据独立重复试验公式可得,该同学通过测试的概率为2233C 0.60.40.6=0.648.⨯+【提示】判断该同学投篮投中是独立重复试验,然后求解概率即可.【考点】概率. 5.【答案】A【解析】由题知12(F F ,,220012x y -=,所以222120000000(3,)(3,)331MF MF x y xy x y y =-----=+-=-<,解得0y <<,故选A . 【提示】利用向量的数量积公式,结合双曲线方程,即可确定0y 的取值范围. 【考点】双曲线. 6.【答案】B【解析】设圆锥底面半径为r ,则116238,43r r ⨯⨯=⇒=所以米堆的体积为 2111632035,4339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭故堆放的米约为320 1.6222,9÷≈故选B . 【考点】圆锥体积.【提示】根据圆锥的体积公式计算出对应的体积即可. 7.【答案】A【解析】由题知1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+【提示】将向量AD 利用向量的三角形法则首先表示为AC CD +,然后结合已知表示为AC AC ,的形式.【考点】向量运算. 8.【答案】D【解析】由五点作图知,1π42,53π42ωϕωϕ⎧+=⎪⎪⎨⎪+=⎪⎩解得ππ,4ωϕ==,所以π()cos π,4f x x ⎛⎫=+ ⎪⎝⎭令2ππ2ππ,,4k x k k π<+<+∈Z 解得1322,,44k x k k -<<+∈Z故()f x 的单调递减区间为132,2,44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,故选D .【提示】由周期求出ω,由五点法作图求出ϕ,可得()f x 的解析式,再根据余弦函数的单调性,求得()f x 的减区间. 【考点】三角函数运算. 9.【答案】C【解析】执行第1次,0.01,1,t S ==10,0.5,2n m === 0.5,0.25,2mS S m m =-===1,0.50.01n S t ==>=,是,循环,执行第2次, 0.25,0.125,2mS S m m =-===2,0.250.01n S t ==>=,是,循环,执行第3次,0.125,0.0625,2mS S m m =-===3,0.1250.01n S t ==>=,是,循环,执行第4次,0.0625,0.03125,2mS S m m =-===4,0.06250.01n S t ==>=,是,循环,执行第5次,0.03125,0.015625,2mS S m m =-===5,0.031250.01n S t ==>=,是,循环,执行第6次,0.015625,0.0078125,2mS S m m =-===6,0.0156250.01n S t ==>=,是,循环,执行第7次,0.0078125,S S m =-=2mm =0.00390625=, 7,0.00781250.01n S t ==>=,否,输出7,n =故选C .【提示】由题意依次计算,当7,0.00781250.01,n S t ==>=停止由此可得结论. 【考点】程序框图. 10.【答案】C【解析】在25()x x y ++的五个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y ,故52x y 的系数为212532C C C 30,=故选C .【提示】利用展开式的通项进行分析,即可得出结论. 【考点】二项式展开式. 11.【答案】B【解析】由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱和球的半径都是r ,圆柱的高为2r ,其表面积为222214ππ2π225π41620π2r r r r r r r r ⨯+⨯++⨯=+=+,解得r=2,故选B .【提示】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可. 【考点】空间几何体的表面积. 12.【答案】D【解析】设()()e 21,,xg x x y ax a =-=-由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()e (21)xg'x x =+,所以当12x <-时,'()0g x <,当12x >-,()0,g'x >所以当12x =-时,12min [()]2e g x -=-.当0x =时(0)1g =-,(1)e 0g =>,直线y ax a =-恒过(1,0)且斜率a ,故(0)1a g ->=-,且1(1)3e g a a --=-≥--,解得312ea ≤<,故选D .【提示】设()()e 21,,xg x x y ax a =-=-,问题转化为存在唯一的整数0x 使得0()g x 在直线y ax a =-的下方,由导数可得函数的极值,数形结合可得(0)1a g ->=-且1(1)3e g a a --=-≥--,解关于a 的不等式组可得.【考点】带参函数.第Ⅱ卷二、填空题 13.【答案】1【解析】由题知ln(y x =是奇函数,所以22ln(ln(ln()ln 0x x a x x a +-=+-==,解得 1.a =【提示】由题意可得,()()f x f x -=,代入根据对数的运算性质即可求解 【考点】函数奇偶性.14.【答案】2232524x y ⎛⎫±+= ⎪⎝⎭【解析】设圆心为(,0)a ,则半径为4a -,则222(4)2,a a -=+解得32a =±, 故圆的标准方程为2232524x y ⎛⎫±+= ⎪⎝⎭.【提示】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程. 【考点】圆的标准方程. 15.【答案】3【解析】做出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点(1,3)与原点连线的斜率最大,故yx的最大值3.【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定y x的最大值.【考点】线性规划问题.16.【答案】【解析】如下图所示:延长BACD ,交于点E ,则可知在△ADE 中,105DAE ∠=︒,45ADE ∠=︒,30,E ∠=︒∴设12AD x =,2AE x =,4DE x =,CD m =,2BC =,sin151m ⎫∴+︒=⎪⎪⎝⎭⇒m +=∴04x <<,而2AB m x +-,2x∴AB的取值范围是.【提示】如图所示,延长BACD ,交于点,设12AD x =,2AE x =,4DE x =,CD m =m +=AB 的取值范围. 【考点】平面几何问题. 三.解答题17.【答案】(Ⅰ)21n + (Ⅱ)11646n -+ 【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,221122n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{}n a 是首项为3,公差为2的等差数列,所以n a =21n +; (Ⅱ)由(1)知,1111(21)(23)22123n b n n n n ⎛⎫==- ⎪++++⎝⎭,所以数列{}n b 前n 项和为121111111=235572123n b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫+++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=11646n -+. 【提示】(Ⅰ)根据数列的递推关系,利用作差法即可求{}n a 的通项公式:(Ⅱ)求出11n n n b a a +=,利用裂项法即可求数列{}n b 的前n 项和.【考点】数列前n 项和与第n 项的关系,等差数列定义与通项公式. 18.【答案】(Ⅰ)答案见解析 【解析】(Ⅰ)连接BD ,设,BDAC G =连接EG FG EF ,,,在菱形ABCD 中,不妨设1GB =,由∠ABC=120°,可得AG GC ==由BE ⊥平面ABCD ,AB BC =,可知AE EC =, 又∵AE EC ⊥,∴EG EG AC =⊥,在Rt EBG △中,可得BE,故DF =在Rt FDG △中,可得FG =在直角梯形BDEF 中,由2BD =,BE,2DF =,可得2EF =, ∴222EG FG EF +=, ∴EG FG ⊥, ∵ACFG G =,∴EG ⊥平面AFC , ∵EG ⊂平面AEC , ∴平面AFC ⊥平面AEC .(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G xyz -,由(Ⅰ)可得0,A (,(E,2F ⎛- ⎝⎭,C ,∴AE =,1,CF ⎛=- ⎝⎭.故cos ,3||||AE CFAE CF AE CF <>==-,所以直线AE 与CF .【提示】(Ⅰ)连接BD ,设BD AC G =,连接EG EF FG ,,,运用线面垂直的判定定理得到EG ⊥平面AFC ,再由面面垂直的判定定理,即可得到.(Ⅱ)以G 为坐标原点,分别以GB GC ,为x 轴,y 轴,GB 为单位长度,建立空间直角坐标系G xyz -,求得AE F C ,,,的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【考点】空间垂直判定与性质,异面直线所成角的计算.19.【答案】(Ⅰ)答案见解析 (Ⅱ)答案见解析 (Ⅲ)(i )66.32 (ii )46.24【解析】(Ⅰ)由散点图可以判断,y c =+y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w =先建立y 关于w 的线性回归方程,由于81821()()108.8=68,16()iii ii w w yy d w w ==--==-∑∑ ∴56368 6.8100.6.==c y d w -⨯=-∴y 关于w 的线性回归方程为=100.6+68y w ,y ∴关于x 的回归方程为y (Ⅲ)(i )由(Ⅱ)知,当49x =时,年销量y的预报值576.6y =, 年利润z 的预报值=576.60.249=66.32z ⨯-(ii )根据(Ⅱ)的结果知,年利润z 的预报值20.12z x =x +--,∴13.66.8,2=即46.24x =,z 取得最大值,故宣传费用为46.24千元时,年利润的预保值最大.【提示】(Ⅰ)根据散点图,即可判断出.(Ⅱ)先建立中间量w =y 关于w 的线性回归方程,根据公式求出w ,问题得以解决.(Ⅲ)(Ⅰ)年宣传费49x =时,代入到回归方程,计算即可. (ii )求出预报值得方程,根据函数的性质,即可求出.【考点】线性回归方程求法,利用回归方程进行预报预测. 20.【答案】0y a --=0y a ++=(Ⅱ)答案见解析【解析】(Ⅰ)由题设可得)Ma ,()N a -,或()M a-,)N a .∵12yx '=,故24x y =在x =C在)a 处的切线方程为y a x -=-0y a --=,故24x y =在x =-处的导数值为,C 在()a -处的切线方程为y a x -=+,0y a ++=0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设(0,)P b 为符合题意得点,11(,)M x y ,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,.将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴1212121212122()()()=y b y b kx x a b x x k a b k k x x x x a--+-+++=+. 当b a =-时,有12k k + =0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故OPM OPN ∠=∠,所以(0,)P a -符合题意.【提示】(Ⅰ)求出C在)a 处的切线方程,故24x y =在x =-即可求出方程.(Ⅱ)存在符合条件的点(0,)P b ,11(,)M x y,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,直线方程与抛物线方程联立化为2440x kx a --=,利用根与系数的关系,斜率计算公式可得12()=k a b k k a++=即可证明. 【考点】抛物线的切线,直线与抛物线位置关系. 21.【答案】(Ⅰ)34a =- (Ⅱ)答案见解析【解析】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==-,因此,当34a =-时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<, ∴()h x 在(1,)+∞无零点. 当1x =时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h f g g ===,故1x =是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x在⎛ ⎝单调递减,在⎫⎪⎪⎭单调递增,故当x =()f x取的最小值,最小值为14f =.①若0f >,即304x -<<,()f x 在(0,1)无零点.②若0f =,即34a =-,则()f x 在(0,1)有唯一零点;③若0f <,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时, ()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 有一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.【提示】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=解出即可. (Ⅱ)对x 分类讨论:当(1,)x ∈+∞时,()ln 0g x x =-<,可得函数(1)min{(1),(1)}(1)0h f g g ===,即可得出零点的个数.当1x =时,对a 分类讨论利用导数研究其单调性极值即可得出.【考点】利用导数研究曲线的切线,分段函数的零点. 22.【答案】(Ⅰ)答案见解析 (Ⅱ)60ACB ∠=【解析】(Ⅰ)连接AE ,由已知得,AE BC AC AB ⊥⊥,,在Rt AEC △中,由已知得DE DC =,∴DEC DCE ∠=∠,连接OE ,OBE OEB ∠=∠, ∵90ACB ABC ∠+∠=, ∴90DEC OEB ∠+∠=,∴90OED ∠=,∴DE 是圆O 的切线.(Ⅱ)设1CE AE x ==,,由已知得AB =,BE =,由射影定理可得,2AE CE BE =,∴2x =x = ∴60ACB ∠=.【提示】(Ⅰ)连接AE 和OE ,由三角形和圆的知识易得90OED ∠=,可得DE 是O 的切线.(Ⅱ)设1CE AE x ==,,由射影定理可得关于x的方程2x =,解方程可得x 值,可得所求角度.【考点】圆的切线判定与性质,圆周角定理,直角三角形射影定理. 23.【答案】(Ⅰ)22cos 4sin 40ρρθρθ--+= (Ⅱ)12【解析】(Ⅰ)因为cos ,sin x y ρθρθ==, ∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4θπ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ12=MN ρρ-,因为2C 的半径为1,则2C MN △的面积111sin 45=22⨯.【提示】(Ⅰ)由条件根据cos sin x y ρθρθ==,求得12C C ,的极坐标方程.(Ⅱ)把直线3C 的极坐标方程代入22cos 4sin 40ρρθρθ--+=,求得12ρρ,的值,从而求出2C MN △的面积.【考点】直角坐标方程与极坐标互化,直线与圆的位置关系.24.【答案】(Ⅰ)22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)(2)+∞,【解析】(Ⅰ)当1a =时,不等式()1f x >化为1211x x +-->,等价于11221x x x ≤⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,∴不等式()1f x >的解集为22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21,03a A -⎛⎫⎪⎝⎭,(21,0)B a +,(,+1)C a a ,所以ABC △的面积为22(1)3a +, 由题设得22(1)63a +>,解得2a >,所以a 的取值范围为(2)+∞,. 【提示】(Ⅰ)当1a =时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。

2015年全国高考天津理科数学试题及答案

2015年全国高考天津理科数学试题及答案

2015年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第I 卷注意事项:·1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分 参考公式:如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立, P(A ∪B)=P(A)+P(B). P(AB)=P(A) P(B). 柱体的体积公式V 柱体=Sh 锥体的体积公式V = V=1/3Sh 其中 S 表示柱体的底面积 其中 S 表示锥体的底面积, h 表示柱体的高. h 表示锥体的高.第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合 A ∩C u B=(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8(2)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为(A )3(B )4(C )18(D )40(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )10-(B )6(C )14(D )18(4)设x R ∈ ,则“21x -< ”是“220x x +-> ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(5)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为(A )83(B )3 (C )103(D )52(6)已知双曲线()222210,0x y a b a b-=>>的一条渐近线过点( ,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为(A )2212128x y -= (B )2212821x y -= (C )22134x y -= (D )22143x y -= (7)已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D )c b a <<(8)已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭(C )70,4⎛⎫ ⎪⎝⎭(D )7,24⎛⎫⎪⎝⎭第II 卷注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上.2、本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分.(9)i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 . (10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .(11)曲线2y x = 与直线y x = 所围成的封闭图形的面积为 .(12)在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .(13)在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 .(14)在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上, 且1,9BE BC DF DC λλ==,则A E A F 的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数()22sin sin 6f x x x π⎛⎫=--⎪⎝⎭,R x ∈ (I)求()f x 最小正周期;(II)求()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.16. (本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率;(II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.17. (本小题满分13分) 如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,12AC AA ==,AD CD ==且点M 和N 分别为11C D B D 和的中点.(I)求证: MN ∥平面ABCD(II)求二面角11D AC B --的正弦值;(III)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1E A 的长18. (本小题满分13分)已知数列{}n a 满足*212(q )n N ,1,2n n a qa a a +=≠∈==为实数,且q 1,,且233445,,a a a a a a +++成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列n {b }的前n 项和.19. (本小题满分14分)已知椭圆2222+=1(0)x y a b a b >>的左焦点为F -c (,0),离心率为3,点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c,.(I)求直线FM 的斜率; (II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FPOP (O 为原点)的斜率的取值范围.20. (本小题满分14分)已知函数()n ,nf x x x x R =-∈,其中*n ,n 2N ∈≥.(I)讨论()f x 的单调性;(II)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证: 21|-|21ax x n<+-.绝密★启用前2015年普通高等学校招生全套统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算。

2015年河北省高考数学试卷(理科)(全国新课标ⅰ)

2015年河北省高考数学试卷(理科)(全国新课标ⅰ)

2015年河北省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1 B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i ﹣)(y i ﹣)46.6563 6.8289.8 1.61469108.8表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年河北省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2015•新课标Ⅰ)设复数z满足=i,则|z|=()A.1 B.C.D.2【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.【点评】本题考查复数的运算,考查学生的计算能力,比较基础.2.(5分)(2015•新课标Ⅰ)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.【点评】本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.3.(5分)(2015•新课标Ⅰ)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.(5分)(2015•新课标Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.(5分)(2015•新课标Ⅰ)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.6.(5分)(2015•新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.【点评】本题主要考查椎体的体积的计算,比较基础.7.(5分)(2015•新课标Ⅰ)设D为△ABC所在平面内一点,,则()A.B.C.D.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.(5分)(2015•新课标Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos (πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)(2015•新课标Ⅰ)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.8【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.11.(5分)(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.二、填空题(本大题共有4小题,每小题5分)13.(5分)(2015•新课标Ⅰ)若函数f(x)=xln(x+)为偶函数.则a= 1.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),若x=0,显然成立;若x≠0则﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴,∴lna=0,∴a=1.另解:函数f(x)=xln(x+)为偶函数,可得g(x)=ln(x+)为R上奇函数,即g(0)=0,即有a=1.故答案为:1.【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.14.(5分)(2015•新课标Ⅰ)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.【点评】本题考查椭圆的简单性质的应用,圆的方程的求法,考查计算能力.15.(5分)(2015•新课标Ⅰ)若x,y满足约束条件.则的最大值为3.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则k OA==3,即的最大值为3.故答案为:3.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及直线的斜率,利用数形结合的数学思想是解决此类问题的基本方法.16.(5分)(2015•新课标Ⅰ)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).【点评】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.三、解答题:17.(12分)(2015•新课标Ⅰ)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.18.(12分)(2015•新课标Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F 是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE 丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF=,从而EG2+FG2=EF2,则EG⊥FG,AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.【点评】本题考查空间直线和平面的位置关系和空间角的求法,主要考查面面垂直的判定定理和异面直线所成的角的求法:向量法,考查运算能力,属于中档题.19.(12分)(2015•新课标Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i ﹣)(y i ﹣)46.6563 6.8289.8 1.61469108.8表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.【点评】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)(2015•新课标Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.21.(12分)(2015•新课标Ⅰ)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.选修4一1:几何证明选讲22.(10分)(2015•新课标Ⅰ)如图,AB是⊙O的直径,AC是⊙O的切线,BC 交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.选修4一4:坐标系与参数方程23.(10分)(2015•新课标Ⅰ)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.选修4一5:不等式选讲24.(10分)(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f (x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;豫汝王世崇;cst;lincy;吕静;双曲线;whgcn;沂蒙松(排名不分先后)菁优网2017年3月17日。

2015年高考全国1卷理科数学试题解析

2015年高考全国1卷理科数学试题解析


+
ห้องสมุดไป่ตู้

5 4

+
2
3 2
,解得 =
,= 4
,所以
f (x)
cos( x
) ,令
4
2k x 2k , k Z ,解得 2k 1 < x < 2k 3 , k Z ,故单调减区间为
4
4
4
( 2k 1 , 2k 3 ), k Z ,故选 D.
AD

4
AB

1 AC
33
(D)
AD

4
AB 1AC
33
【答案】A
【解析】
试题分析:由题知
AD

AC
CD

AC

1
BC

AC

1
(AC

AB
)
=
考点:排列组合;二项式定理
(11)圆柱被一个平面截去一部分后与半球(半径为 r)组成一个几何体,该几何体三视图中的正视图和俯视
图如图所示。若该几何体的表面积为 16 + 20 ,则 r=
(A)1(B)2(C)4(D)8 【答案】B
考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式
12. 设函数 f (x) = ex (2x 1) ax a ,其中 a 1,若存在唯一的整数 x0,使得 f (x0 ) 0,则 a 的取
执行第 5 次,S=S-m=0.03125, m m =0.015625,n=5,S=0.03125>t=0.01,是,循环, 2
执行第 6 次,S=S-m=0.015625, m m =0.0078125,n=6,S=0.015625>t=0.01,是,循环, 2

2015年高考理科数学新课标全国1卷 逐题解析

2015年高考理科数学新课标全国1卷 逐题解析

2015年高考理科数学试卷全国卷1(解析版)1.设复数z 满足11zz+-=i ,则|z|=( )(A )1 (B (C (D )2 【答案】A 【解析】由11z i z +=-得,11i z i-+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 考点:本题主要考查复数的运算和复数的模等. 2.o o o o sin 20cos10cos160sin10- =( )(A )(B (C )12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 3.设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2nn N n ∀∈> (B )2,2nn N n ∃∈≤(C )2,2nn N n ∀∈≤ (D )2,=2nn N n ∃∈【答案】C【解析】p ⌝:2,2nn N n ∀∈≤,故选C.考点:本题主要考查特称命题的否定4.投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.考点:本题主要考查独立重复试验的概率公式与互斥事件和概率公式5.已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值范围是( )(A )(-3,3) (B )(-6,6)(C )(223-,223) (D )(233-,233) 【答案】A【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF •= 0000(3,)(3,)x y x y ---•-- =2220003310x y y +-=-<,解得03333y -<<,故选A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2015高考数学理科全国一卷及详解答案

2015高考数学理科全国一卷及详解答案

理科数学注意事项:1。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3。

全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设复数z 满足1+z1z-=i ,则|z|=(A )1 (B (D )2(2)sin20°cos10°-con160°sin10°=(A)2-(B )2(C)12- (D)12(3)设命题P:∃n ∈N ,2n >2n,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N , 2n ≤2n(C)∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0。

6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B )0。

432 (C )0.36 (D )0。

312(5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF <,则0y 的取值范围是(A )(-33,33) (B )(—36,36) (C )(223-,223) (D)(233-,233)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?"其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1。

62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C)4133AD AB AC =+ (D ) 4133AD AB AC =-(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A )13(,),44k k k Z ππ-+∈ (B ) 13(2,2),44k k k Z ππ-+∈ (C) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=0。

2015年全国统一高考数学试卷(理科)(新课标ⅰ)

2015年全国统一高考数学试卷(理科)(新课标ⅰ)

2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1 B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2015•新课标Ⅰ)设复数z满足=i,则|z|=()A.1 B.C.D.2【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.2.(5分)(2015•新课标Ⅰ)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.3.(5分)(2015•新课标Ⅰ)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.4.(5分)(2015•新课标Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.5.(5分)(2015•新课标Ⅰ)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣x0,﹣y0)•(﹣﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.6.(5分)(2015•新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.7.(5分)(2015•新课标Ⅰ)设D为△ABC所在平面内一点,,则()A.B.C.D.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.8.(5分)(2015•新课标Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos (πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.9.(5分)(2015•新课标Ⅰ)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.8【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C10.(5分)(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.11.(5分)(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.12.(5分)(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D二、填空题(本大题共有4小题,每小题5分)13.(5分)(2015•新课标Ⅰ)若函数f(x)=xln(x+)为偶函数.则a= 1.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴,∴lna=0,∴a=1.故答案为:1.14.(5分)(2015•新课标Ⅰ)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.15.(5分)(2015•新课标Ⅰ)若x,y满足约束条件.则的最大值为3.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则k OA==3,即的最大值为3.故答案为:3.16.(5分)(2015•新课标Ⅰ)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).三、解答题:17.(12分)(2015•新课标Ⅰ)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.18.(12分)(2015•新课标Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F 是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE 丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF=,从而EG2+FG2=EF2,则EG⊥FG,AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.19.(12分)(2015•新课标Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu 的斜率和截距的最小二乘估计分别为:=,=﹣.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.20.(12分)(2015•新课标Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.21.(12分)(2015•新课标Ⅰ)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f (x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.选修4一1:几何证明选讲22.(10分)(2015•新课标Ⅰ)如图,AB是⊙O的直径,AC是⊙O的切线,BC 交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°选修4一4:坐标系与参数方程23.(10分)(2015•新课标Ⅰ)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.选修4一5:不等式选讲24.(10分)(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f (x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).。

2015年全国高考理科数学试题及答案-新课标

2015年全国高考理科数学试题及答案-新课标

绝密★启用前2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。

2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=()(A){--1,0}(B){0,1}(C){-1,0,1}(D){,0,,1,2}(2)若a为实数且(2+ai)(a-2i)=-4i,则a=()(A)-1 (B)0 (C)1 (D)2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )(A)逐年比较,2008年减少二氧化硫排放量的效果最显著(B)2007年我国治理二氧化硫排放显现(C)2006年以来我国二氧化硫年排放量呈减少趋势(D)2006年以来我国二氧化硫年排放量与年份正相关(4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84(5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。

2015-2018高考全国1卷理科数学试题及答案-word版(K12教育文档)

2015-2018高考全国1卷理科数学试题及答案-word版(K12教育文档)

(直打版)2015-2018高考全国1卷理科数学试题及答案-word版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2015-2018高考全国1卷理科数学试题及答案-word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2015-2018高考全国1卷理科数学试题及答案-word版(word版可编辑修改)的全部内容。

2018年普通高等学校招生全国统一考试理科数学一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121iz i i-=++,则z =( ) A .0B .12C .1D .22.已知集合{}2|20A x x x =-->,则A =R ( ) A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( )A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) ABCD二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。

2015年高考理科数学试卷全国卷1含答案)

2015年高考理科数学试卷全国卷1含答案)

2015年高考理科数学试卷全国卷1.设复数 满足11z z +- i ,则 ( ) ( ) ( )2 ( )3 ( ).o o o o sin 20cos10cos160sin10- ( )( )3- ( )3 ( )12- ( )12.设命题p :2,2n n N n ∃∈>,则p ⌝为( )( )2,2nn N n ∀∈> ( )2,2n n N n ∃∈≤ ( )2,2nn N n ∀∈≤ ( )2,=2n n N n ∃∈ .投篮测试中,每人投 次,至少投中 次才能通过测试。

已知某同学每次投篮投中的概率为 ,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )( ) ( ) ( ) ( ).已知 (00,x y )是双曲线 :2212x y -=上的一点,12,F F 是 上的两个焦点,若120MF MF •<,则0y 的取值范围是( )( )( 33,33) ( )( 36,36) ( )(223-,223) ( )(23-,23).《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题今有委米依垣内角,下周八尺,高五尺。

问 积及为米几何 其意思为 在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为 尺,米堆的高为 尺,问米堆的体积和堆放的米各为多少 已知 斛米的体积约为 立方尺,圆周率约为 ,估算出堆放斛的米约有( )( ) 斛 ( ) 斛 ( ) 斛 ( ) 斛.设D 为ABC ∆所在平面内一点3BC CD =,则( )( )1433AD AB AC =-+ ( )1433AD AB AC =- ( )4133AD AB AC =+ ( )4133AD AB AC =- .函数()f x cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )( )13(,),44k k k Z ππ-+∈ ( )13(2,2),44k k k Z ππ-+∈ ( )13(,),44k k k Z -+∈ ( )13(2,2),44k k k Z -+∈.执行右面的程序框图,如果输入的 ,则输出的 ( )( ) ( ) ( ) ( ).25()x x y ++的展开式中,52x y 的系数为( )( ) ( ) ( ) ( ).圆柱被一个平面截去一部分后与半球(半径为 )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示 若该几何体的表面积为 π,则 ( )( ) ( ) ( ) ( ).设函数()f x (21)x e x ax a --+ 其中 ,若存在唯一的整数0x ,使得0()f x ,则a 的取值范围是( )( ) 32e , ) ( ) ,34) ( ) ,) ( ) , ) .若函数 ( ) 2ln()x x a x ++为偶函数,则.一个圆经过椭圆221164x y +=的三个顶点,且圆心在 轴的正半轴上,则该圆的标准方程为 .若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x的最大值为 .在平面四边形 中,∠ ∠ ∠ , ,则 的取值范围是.(本小题满分 分)n S 为数列 n a 的前n 项和 已知n a > ,2n n a a +(Ⅰ)求 n a 的通项公式; (Ⅱ)设11n n n b a a += 求数列 n b 的前n 项和.如图,四边形 为菱形,∠ , , 是平面 同一侧的两点, ⊥平面, ⊥平面 , , ⊥(Ⅰ)证明:平面 ⊥平面 ;(Ⅱ)求直线 与直线 所成角的余弦值.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位: )和年利润 (单位:千元)的影响,对近 年的年宣传费i x 和年销售量i y (i , , )数据作了初步处理,得到下面的散点图及一些统计量的值x y w821()i i x x =-∑ 821()i i w w =-∑ 81()()i i i x x y y =--∑ 81()(i i i w w y y =--∑表中i i w x =,w 1881ii w =∑ (Ⅰ)根据散点图判断, 与x 哪一个适宜作为年销售量 关于年宣传费 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立 关于 的回归方程;(Ⅲ)已知这种产品的年利率 与 、 的关系为 根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费 时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v 22(,)u v , ,(,)n n u v 其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:.(本小题满分 分)在直角坐标系xoy 中,曲线 : 24x 与直线y kx a =+(a > )交与 两点,(Ⅰ)当 时,分别求 在点 和 处的切线方程;(Ⅱ) 轴上是否存在点 ,使得当 变动时,总有∠ ∠ ?说明理由.(本小题满分 分)已知函数 ( ) 31,()ln 4x ax g x x ++=- (Ⅰ)当 为何值时, 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论 ( )零点的个数.(本题满分 分)选修 :几何证明选讲如图, 是的直径, 是的切线, 交于(Ⅰ)若 为 的中点,证明: 是的切线; (Ⅱ)若3OA CE =,求∠ 的大小.(本小题满分 分)选修 :坐标系与参数方程在直角坐标系xOy 中,直线1C x - ,圆2C :()()22121x y -+-= 以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系(Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M N求2C MN ∆的面积.(本小题满分 分)选修 :不等式选讲已知函数 ,(Ⅰ)当 时,求不等式 ( ) 的解集;(Ⅱ)若 ( )的图像与 轴围成的三角形面积大于 ,求 的取值范围【答案解析】【答案】【解析】由11z i z +=-得,11i z i-+=+ (1)(1)(1)(1)i i i i -+-+- i ,故 ,故选 考点:本题主要考查复数的运算和复数的模等【解析】原式 o o o o sin 20cos10cos 20sin10+ o sin30 12,故选 考点:本题主要考查诱导公式与两角和与差的正余弦公式【答案】【解析】p ⌝ 2,2nn N n ∀∈≤,故选 考点:本题主要考查特称命题的否定【答案】【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+ ,故选考点:本题主要考查独立重复试验的概率公式与互斥事件和概率公式【答案】【解析】由题知12(F F ,220012x y -=,所以12MF MF • 0000(,),)x y x y -•-- 2220003310x y y +-=-<,解得033y -<<,故选 考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法【答案】【解析】设圆锥底面半径为 ,则12384r ⨯⨯= 163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯ 3209,故堆放的米约为3209 ,故选 考点:圆锥的性质与圆锥的体积公式【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-= 1433AB AC -+,故选 考点:平面向量的线性运算【答案】【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选 考点:三角函数图像与性质【答案】【解析】执行第 次, 12 2m m = > 是,循环,执行第 次,2m m = > 是,循环,执行第 次,2m m = > 是,循环,执行第 次, 2m m => 是,循环,执行第 次, 2m m = > 是,循环,执行第 次, 2m m = > 是,循环,执行第 次, 2m m = > 否,输出 ,故选考点:本题注意考查程序框图【答案】【解析】在25()x x y ++的 个因式中, 个取因式中2x 剩余的 个因式中 个取x ,其余因式取 故52x y 的系数为212532C C C ,故选 考点:本题主要考查利用排列组合知识计算二项式展开式某一项的系数【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解【答案】【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为 ,圆柱的高为 ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯ 2254r r π+ π,解得 ,故选考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式【答案】【解析】设()g x (21)x e x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方因为()(21)x g x e x '=+,所以当12x <-时,()g x '< ,当12x >-时,()g x '> ,所以当12x =-时,max [()]g x 12-2e -, 当0x =时,(0)g ,(1)30g e =>,直线y ax a =-恒过( )斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32ea < ,故选考点:本题主要通过利用导数研究函数的图像与性质解决不等式成立问题【答案】【解析】由题知2ln()y x a x =+是奇函数,所以22ln()ln()x a x x a x ++-+ 22ln()ln 0a x x a +-==,解得a考点:函数的奇偶性【答案】22325()24x y -+=【解析】设圆心为(a , ),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+= 考点:椭圆的几何性质;圆的标准方程【答案】【解析】作出可行域如图中阴影部分所示,由斜率的意义知,y x 是可行域内一点与原点连线的斜率,由图可知,点 ( )与原点连线的斜率最大,故y x 的最大值为考点:线性规划解法【答案】626+2)【解析】如图所示,延长 , 交于 ,平移 ,当 与 重合与 点时, 最长,在 中,∠ ∠ ,∠ , ,由正弦定理可得sin sin BC BE E C =∠∠,即o o 2sin 30sin 75BE =,解得BE 6+2,平移 ,当 与 重合时, 最短,此时与 交于 ,在 中,∠ ∠ ,∠ ,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o 2sin 30sin 75BF =,解得 62,所以 的取值范围为(62,6+2考点:正余弦定理;数形结合思想【答案】(Ⅰ)21n +(Ⅱ)11646n -+ 【解析】试题分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列 n a 的递推公式,可以判断数列 n a 是等差数列,利用等差数列的通项公式即可写出数列 n a 的通项公式;(Ⅱ)根据(Ⅰ)数列 n b 的通项公式,再用拆项消去法求其前n 项和试题解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a ,当2n ≥时,2211n n n n a a a a --+-- 14343n n S S -+-- 4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a -- ,所以数列 n a 是首项为 ,公差为 的等差数列,所以n a 21n +;(Ⅱ)由(Ⅰ)知,n b 1111()(21)(23)22123n n n n =-++++, 所以数列 n b 前 项和为12n b b b +++ 1111111[()()()]235572123n n -+-++-++ 11646n -+ 考点:数列前 项和与第 项的关系;等差数列定义与通项公式;拆项消去法【答案】【解析】试题分析:(Ⅰ)连接 ,设 ,连接 , , ,在菱形 中,不妨设 易证 ⊥ ,通过计算可证 ⊥ ,根据线面垂直判定定理可知 ⊥平面 ,由面面垂直判定定理知平面 ⊥平面 ;(Ⅱ)以 为坐标原点,分别以,GB GC 的方向为x 轴, 轴正方向,||GB 为单位长度,建立空间直角坐标系 ,利用向量法可求出异面直线 与 所成角的余弦值试题解析:(Ⅰ)连接 ,设 ,连接 , , ,在菱形中,不妨设 ,由∠ ,可得 由 ⊥平面 , 可知, ,又∵ ⊥ ,∴, ⊥ ,在 中,可得,故 2在 中,可得在直角梯形 中,由 ,可得, ∴222EG FG EF +=,∴ ⊥ ,∵ ,∴ ⊥平面 ,∵ ⊂面 ,∴平面 ⊥平面(Ⅱ)如图,以 为坐标原点,分别以,GB GC 的方向为x 轴, 轴正方向,||GB 为单位长度,建立空间直角坐标系 ,由(Ⅰ)可得 ( 3 ), (2, (- 22), ( 3 ),∴AE ( 32,CF ( ,3,22) 分 故3cos ,3||||AE CF AE CF AE CF ⋅<>==- 所以直线 与 所成的角的余弦值为33 考点:空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力【答案】(Ⅰ)y c x =+适合作为年销售y 关于年宣传费用x 的回归方程类型;(Ⅱ)100.668y x =+【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w x =先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年利率 与 、 的关系为 即可年利润 的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用试题解析:(Ⅰ)由散点图可以判断,y c =+y 关于年宣传费用x 的回归方程类型(Ⅱ)令w =,先建立y 关于w 的线性回归方程,由于81821()()()ii i ii w w y y d w w ==--=-∑∑ 108.8=6816, ∴c y dw =-∴y 关于w 的线性回归方程为100.668y w =+,∴y 关于x的回归方程为100.6y =+(Ⅲ)(ⅰ)由(Ⅱ)知,当x 时,年销售量y 的预报值100.6y =+,576.60.24966.32z =⨯-=(ⅱ)根据(Ⅱ)的结果知,年利润 的预报值0.2(100.620.12z x x =+-=-+,13.6=6.82,即46.24x =时,z 取得最大值 故宣传费用为 千元时,年利润的预报值最大 分考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识【答案】0y a --=0y a ++=(Ⅱ)存在【解析】试题分析:(Ⅰ)先求出 的坐标,再利用导数求出 (Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线 的方程整理成关于x 的一元二次方程,设出 的坐标和 点坐标,利用设而不求思想,将直线 , 的斜率之和用a 表示出来,利用直线 , 的斜率为 即可求出,a b 关系,从而找出适合条件的 点坐标试题解析:(Ⅰ)由题设可得)M a ,()N a -,或()M a -,)N a∵12y x '=,故24x y =在x 在,)a 处的切线方程为y a x -=-0y a --=故24x y =在x 处的到数值为, 在(,)a -处的切线方程为y a x -=+0y a ++=0y a --=0y a ++=(Ⅱ)存在符合题意的点,证明如下:设 ( , )为复合题意得点,11(,)M x y ,22(,)N x y ,直线 , 的斜率分别为12,k k将y kx a =+代入 得方程整理得2440x kx a --=∴12124,4x x k x x a +==- ∴121212y b y b k k x x --+=+ 1212122()()kx x a b x x x x +-+ ()k a b a+ 当b a =-时,有12k k + ,则直线 的倾斜角与直线 的倾斜角互补, 故∠ ∠ ,所以(0,)P a -符合题意考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力【答案】(Ⅰ)34a =;(Ⅱ)当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点 【解析】试题分析:(Ⅰ)先利用导数的几何意义列出关于切点的方程组,解出切点坐标与对应的a 值;(Ⅱ)根据对数函数的图像与性质将x 分为1,1,01x x x >=<<研究()h x 的零点个数,若零点不容易求解,则对a 再分类讨论试题解析:(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a == 因此,当34a =时,x 轴是曲线()y f x =的切线 (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<,∴()h x 在( , )无零点当x 时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g === 故x 是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==< 故x 不是()h x 的零点当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在( )的零点个数(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在( )无零点,故()f x 在( )单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在( , )有一个零点;当a ≥ 时,()f x 在( , )无零点(ⅱ)若30a -<<,则()f x 在( )单调递增,故当x ()f x 取的最小值,最小值为f 14①若f > ,即34-<a < ,()f x 在( )无零点②若f ,即34a =-,则()f x 在( )有唯一零点;③若f < ,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时,()f x 在( )有两个零点;当534a -<≤-时,()f x 在( )有一个零点 分综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点 考点:利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类整合思想【答案】(Ⅰ)见解析(Ⅱ)【解析】试题分析:(Ⅰ)由圆的切线性质及圆周角定理知, ⊥ , ⊥ ,由直角三角形中线性质知 , ,利用等量代换可证∠ ∠ ,即∠ ,所以 是圆 的切线;(Ⅱ)设 由3OA CE =得, 23,设 x ,由勾股定理得212BE x =-,由直角三角形射影定理可得2AE CE BE =⋅,列出关于x 的方程,解出x ,即可求出∠ 的大小试题解析:(Ⅰ)连结 ,由已知得, ⊥ , ⊥ ,在 中,由已知得 ,∴∠ ∠ ,连结 ,∠ ∠ ,∵∠ ∠ ,∴∠ ∠ ,∴∠ ,∴ 是圆 的切线(Ⅱ)设 , x 由已知得 23,212BE x =-,由射影定理可得,2AE CE BE =⋅,∴2212x x =-,解得x 3,∴∠考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理【答案】(Ⅰ)cos 2ρθ=- 22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出 ,利用三角形面积公式即可求出2C MN 的面积试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+= 分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ2ρ1ρ-2ρ,因为2C 的半径为 ,则2C MN的面积o 11sin 452⨯ 12考点:直角坐标方程与极坐标互化;直线与圆的位置关系【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)( , ) 【解析】试题分析:(Ⅰ)利用零点分析法将不等式 ( ) 化为一元一次不等式组来解;(Ⅱ)将()f x 化为分段函数,求出()f x 与x 轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于a 的不等式,即可解出a 的取值范围试题解析:(Ⅰ)当 时,不等式 ( ) 化为 > ,等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<, 所以不等式 ( ) 的解集为2{|2}3x x << (Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以 的面积为22(1)3a + 由题设得22(1)3a +> ,解得2a > 所以a 的取值范围为( , )考点:含绝对值不等式解法;分段函数;一元二次不等式解法。

2015高考数学理科全国一卷及详解答案

2015高考数学理科全国一卷及详解答案

2015高考数学理科全国一卷及详解答案理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

=i,则|z|=(1)设复数z满足1+z-1z(A)1 (B2(C3(D)2 (2)sin20°cos10°-con160°sin10°=(A)3(B)3(C)1-(D)2内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C )4133AD AB AC =+ (D) 4133AD AB AC =- (8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x的单调递减区间为 (A)13(,),44k k k Z ππ-+∈ (B) 13(2,2),44k k k Z ππ-+∈ (C) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A )5 (B )6 (C )7 (D )8(10)25++的展开式中,52x y的系数为x x y()(A)10 (B)20 (C)30 (D)60 (11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

2015年全国高考理科数学试题及答案

2015年全国高考理科数学试题及答案

绝密★启用前2015年普通高等学校招生全国统一考试(全国卷2)理科数学注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。

2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=()(A){--1,0}(B){0,1}(C){-1,0,1}(D){,0,,1,2}(2)若a为实数且(2+ai)(a-2i)=-4i,则a=()(A)-1 (B)0 (C)1 (D)2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )(A)逐年比较,2008年减少二氧化硫排放量的效果最显著(B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关(4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84(5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。

2015年高考理科数学全国卷1-答案

2015年高考理科数学全国卷1-答案

所以21200000(3,)(3,)MF MF x y x y x =-----=【考点】双曲线.
【解析】由题知
1114
()
3
AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+
【提示】将向量AD利用向量的三角形法则首先表示为AC CD
+,然后结合已知表示为AC AC
,的形式.【考点】向量运算.
2e
x
y
sin151⎫︒=⎪⎪⎭
22m x +-
1
,BD AC G =连接3GC =.
,可知AE 为坐标原点,分别以,GB GC 的方向为||GB 为单位长度,,由(Ⅰ)可得0,3,0)A (-2⎪⎭
∴(1,AE =,1,CF ⎛=- cos ,||||
AE CF AE CF AE CF <>=
=-
3
BD AC G =,连接,再由面面垂直的判定定理,即可得到为坐标原点,分别以GB GC ,的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.的线性回归方程,由于1
8
1
(=
(i
i i w d ==-∑∑∴56368==c y dw --y 关于w 的线性回归方程为=100.6+68y 的回归方程为=100.6+68y 49=时,年销量的预报值=100.6+6849576.6y =的预报值=576.60.2z ⨯)根据(Ⅱ)的结果知,年利润的预报值=0.2(100.6+68z ,z 取得最大值,故宣传费用为(Ⅰ)根据散点图,即可判断出.
∴60
∠=.
ACB
是O的切线.
,解方程可得x值,可得所求角度.
11 / 11。

2015高考数学理科全国一卷及详解答案

2015高考数学理科全国一卷及详解答案

理科数学注意事项:1。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页.2。

答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效.4。

考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数z满足1+z1z-=i,则|z|=(A)1 ((C(D)2 (2)sin20°cos10°—con160°sin10°=(A)(B)12- (D)12(3)设命题P:∃n∈N,2n〉2n,则⌝P为(A)∀n∈N,2n>2n(B)∃ n∈N,2n≤2n(C)∀n∈N, 2n≤2n (D)∃ n∈N,2n=2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0。

6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B )0.432 (C )0。

36 (D)0。

312(5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF <,则0y 的取值范围是(A )(-33,33) (B )(—36,36) (C )(223-,223) (D )(233-,233)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛 B 。

22斛 C.36斛 D 。

66斛(7)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C)4133AD AB AC =+ (D ) 4133AD AB AC =-(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A)13(,),44k k k Z ππ-+∈ (B) 13(2,2),44k k k Z ππ-+∈ (C ) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A )5 (B)6 (C )7 (D )8(10)25()x x y ++的展开式中,52x y 的系数为(A )10 (B)20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =(A )1(B)2(C )4 (D)812. 设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A.3[,1)2e - B. 33[,)24e - C. 33[,)24e D. 3[,1)2e第II 卷本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启封并使用完毕前试题类型:A 2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数z满足1+z1z-=i,则|z|=(A)1 (B2(C3(D)2 (2)sin20°cos10°-con160°sin10°=(A)3(B3(C)12-(D)12(3)设命题P:∃n∈N,2n>2n,则⌝P为(A)∀n∈N, 2n>2n(B)∃ n∈N, 2n≤2n(C)∀n∈N, 2n≤2n(D)∃ n∈N, 2n=2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B)0.432 (C)0.36 (D)0.312(5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF <u u u u r u u u u r g ,则0y 的取值范围是(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233) (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D 为V ABC 所在平面内一点3BC CD =u u u r u u u r ,则 (A )1433AD AB AC =-+u u u r u u u r u u u r (B) 1433AD AB AC =-u u u r u u u r u u u r (C )4133AD AB AC =+u u u r u u u r u u u r (D) 4133AD AB AC =-u u u r u u u r u u u r (8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A)13(,),44k k k Z ππ-+∈ (B) 13(2,2),44k k k Z ππ-+∈ (C) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A )5 (B )6 (C )7 (D )8(10)25()x x y ++的展开式中,52x y 的系数为(A )10 (B )20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

若该几何体的表面积为16 + 20π,则r =(A )1 (B )2(C )4 (D )8 12. 设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A.3[,1)2e - B. 33[,)24e - C. 33[,)24e D. 3[,1)2e第II 卷本卷包括必考题和选考题两部分。

第(13)题~第(21)题为必考题,每个试题考生都必须作答。

第(22)题~第(24)题未选考题,考生根据要求作答。

二、填空题:本大题共3小题,每小题5分(13)若函数2()ln()f x x x a x =+为偶函数,则a =(14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。

(15)若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则y x 的最大值为 .(16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是三.解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,243n n n n a a a S >+=+,(Ⅰ)求{}n a 的通项公式: (Ⅱ)设11n n n b a a += ,求数列{}n b 的前n 项和。

(18)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC 。

(1)证明:平面AEC ⊥平面AFC(2)求直线AE 与直线CF 所成角的余弦值(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量(1,2,...,8)i y i =数据作了初步处理,得到下面的散点图及一些统计量的值。

表中i w =,81i i w w ==∑(Ⅰ)根据散点图判断,y a bx =+与y c =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为0.2z y x =-。

根据(Ⅱ)的结果回答下列问题:(i ) 年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据1122(,),(,),...,(,)n n u v u v u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为:^^^121()(),()ni ii n ii u u v v v u u u βαβ==--==--∑∑ (20)(本小题满分12分)在直角坐标系xOy 中,曲线2:4x C y =与直线:(0)l y kx a a =+>交与,M N 两点, (Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由。

(21)(本小题满分12分)已知函数31(),()ln 4f x x axg x x =++=- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数请考生在(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑。

(22)(本题满分10分)选修4-1:几何证明选讲如图,AB 是O e 的直径,AC 是O e 的切线,BC 交O e 于E(I ) 若D 为AC 的中点,证明:DE 是O e 的切线;(II ) 若3OA CE =,求∠ACB 的大小.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中。

直线1C :2x =-,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。

(I ) 求1C ,2C 的极坐标方程;(II ) 若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN V 的面积(24)(本小题满分10分)选修4—5:不等式选讲已知函数()|1|2||,0f x x x a a =+-->.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围参考答案一.选择题(1)A(2)D (3)C (4)A (5)A (6)B (7)A(8)D (9)C (10)C (11)B (12)D 二.填空题(13)1 (14)22325()24x y -+= (15)3 (16)三.解答题(17)解:(Ⅰ)由2243n n n a a S +=+,可知2111243n n n a a S ++++=+可得221112()4n n n n n a a a a a +++-+-=,即2211112()()()n n n n n n n n a a a a a a a a +++++=-=+-由于0n a >,可得12n n a a +-=又2111243a a a +=+,解得11a =-(舍去),13a =所以{}n a 是首项为3,公差为2的等差数列,通项公式为21n a n =+…………………6分 (Ⅱ)由21n a n =+可知111111()(21)(23)22123n n n b a a n n n n +===-++++ 设数列{}n b 的前n 项和为n T ,则12...n n T b b b =+++1111111[()()...()]235572123n n =-+-++-++ 3(23)n n =+…………………………………………………………………………12分 (18)解:(Ⅰ)连结BD ,设BD AC G ⋂=,连结,,EG FG EF在菱形ABCD 中,不妨设1GB =,由120ABC ∠=o ,可得3AG GC == 由BE ⊥平面ABCD ,AB BC =,可知AE EC =,又AE EC ⊥,所以3EG =,且EG AC ⊥在Rt EBG V 中,可得2BE =,故22DF =在Rt FDG V 中,可得6FG =, 在直角梯形BDFE 中,由22,2,BD BE DF ===,可得32EF = 从而222EG FG EF +=,所以EG FG ⊥又AC FG G ⋂=,可得EG ⊥平面AFC因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC …………………………6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB uuu r 为单位长,建立空间直角坐标系G xyz -,由(Ⅰ)可得(0,3,0)A -,(1,0,2)E ,2(1,0,)2F -,(0,3,0)C ,所以2(1,3,2),(1,3,)2AE CF ==--u u u r u u u r …………………………………10分 故3cos ,||||AE CF AE CF AE CF <>==-u u u r u u u r u u u r u u u r g u u u r u u u r 所以直线AE 与直线CF 所成角的余弦值为3…………………………12分 (19)解:(Ⅰ)由散点图可以判断,y c =+适宜作为年销售量y 关于年宣传费x 的回归方程类型………………2分(Ⅱ)令w =y 关于w 的线性回归方程,由于8^1821()()108.8681.6()i ii ii w w y y d w w ==--===-∑∑ ^^56368 6.8100.6c y d w =-=-⨯=所以y 关于w 的线性回归方程为^100.668y w =+,因此y 关于x的线性回归方程^100.6y =+6分(Ⅲ)(ⅰ)由(Ⅱ)知,当49x =时,年销售量y 的预报值^100.6576.6y =+=年利润z 的预报值 ^576.60.24966.32z =⨯-=…………………………………9分(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值^0.2(100.620.12z x x =+-=-+13.6 6.82==,即46.24x =时,^z 取得最大值, 故年宣传费为46.24千元时,年利润的预报值最大……………12分(20)解:(Ⅰ)由题设可得),()M a N a -,或(),)M a N a - 又2x y '=,故24x y =在x =C在点)a 处的切线方程为y a x -=-0y a --=24x y =在x =处的导数值为,C在点()a -处的切线方程为y a x -=+0y a ++=0y a --=0y a ++=…………………5分(Ⅱ)存在符合题意的点,证明如下:设(0,)P b 为符合题意的点,1122(,),(,)M x y N x y ,直线,PM PN 的斜率分别为12,k k 将y kx a =+代入C 的方程得2440x kx a --=故12124,4x x k x x a +==- 从而121212y b y b k k x x --+=+ 1212122()()kx x a b x x x x +-+= ()k a b a+= 当b a =-时,有120k k +=,则直线PM 的倾角与直线PN 的倾角互补,故OPM OPN ∠=∠,所以点(0,)P a -符合题意…………………………12分(21)解:(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则00()0,()0f x f x '==,即3002010,430.x ax x a ⎧++=⎪⎨⎪+=⎩ 解得013,24x a ==- 因此,当34a =-时,x 轴为曲线()y f x =的切线…………………………5分 (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<,故()h x 在(1,)+∞无零点当1x =时,若54a ≥-,则5(1)0,(1)min{(1),(1)}(1)04f a h fg g =+≥===,故1x =是()h x 的零点;若54a <-,则(1)0,(1)min{(1),(1)}(1)0f h f g f =<==<,故1x =不是()h x 的零点。

相关文档
最新文档