高考物理生活中的圆周运动(一)解题方法和技巧及练习题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理生活中的圆周运动(一)解题方法和技巧及练习题含解析

一、高中物理精讲专题测试生活中的圆周运动

1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离

【答案】(1)160N (2)2 【解析】 【详解】

(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =

1

2

mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:

2B

v N mg m R

-=

联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N

由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:

2D

v mg m R

=

可得:v D =2m/s

设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,

2R =

12

gt 2

解得:x =0.8m

则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x =

=

2.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹

簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:

(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;

(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】

(1)根据机械能守恒定律 E p =211m ?2

v ① v 12Ep

m

=7m/s ② (2)由动能定理得-mg ·2R -W f =

22

211122

mv mv - ③ 小球恰能通过最高点,故22

v mg m R

= ④ 由②③④得W f =24 J

(3)根据动能定理:

2

2122

k mg R E mv =-

解得:25k E J =

故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】

(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;

(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小

3.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道

写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:

(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;

(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】

(1)物块从A 到B 运动过程中,根据动能定理得:22101122

B mgL mv mv μ-=- 解得:11/B v m s =

(2)物块从B 到C 运动过程中,根据机械能守恒得:22

11·222

B C mv mv mg R =+ 解得:9/C v m s =

(3)物块从B 到D 运动过程中,根据动能定理得:2

2102

B mgL mv μ-=- 解得:230.25L m =

对整个过程,由能量守恒定律有:2

0102

Q mv =- 解得:Q=72J 【点睛】

选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.

4.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为0

45的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为

1m kg =,210/g m s =,求:

(1)小球在斜面上的相碰点C与B点的水平距离;

(2)小球通过管道上B点时对管道的压力大小和方向.

【答案】(1)0.9m;(2)1N

【解析】

【分析】

(1)根据平抛运动时间求得在C点竖直分速度,然后由速度方向求得v,即可根据平抛运动水平方向为匀速运动求得水平距离;

(2)对小球在B点应用牛顿第二定律求得支持力N B的大小和方向.

【详解】

(1)根据平抛运动的规律,小球在C点竖直方向的分速度

v y=gt=10m/s

水平分速度v x=v y tan450=10m/s

则B点与C点的水平距离为:x=v x t=10m

(2)根据牛顿运动定律,在B点

N B+mg=m

2 v R

解得 N B=50N

根据牛顿第三定律得小球对轨道的作用力大小N, =N B=50N

方向竖直向上

【点睛】

该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.

5.如图所示,一质量为m=1kg的小球从A点沿光滑斜面轨道由静止滑下,不计通过B点时的能量损失,然后依次滑入两个相同的圆形轨道内侧,其轨道半径R=10cm,小球恰能通过第二个圆形轨道的最高点,小球离开圆形轨道后可继续向E点运动,E点右侧有一壕沟,E、F两点的竖直高度d=0.8m,水平距离x=1.2m,水平轨道CD长为L1=1m,DE长为L2=3m.轨道除CD和DE部分粗糙外,其余均光滑,小球与CD和DE间的动摩擦因数

μ=0.2,重力加速度g=10m/s2.求:

相关文档
最新文档