智能循迹小车分析方案

合集下载

智能循迹小车___设计报告

智能循迹小车___设计报告

智能循迹小车___设计报告设计报告:智能循迹小车一、设计背景智能循迹小车是一种能够通过感知地面上的线条进行导航的小型机器人。

循迹小车可以应用于许多领域,如仓库管理、物流配送、家庭服务等。

本设计旨在开发一款功能强大、性能稳定的智能循迹小车,以满足不同领域的需求。

二、设计目标1.实现循迹功能:小车能够准确地识别地面上的线条,并按照线条进行导航。

2.提供远程控制功能:用户可以通过无线遥控器对小车进行控制,包括前进、后退、转向等操作。

3.具备避障功能:小车能够识别和避开遇到的障碍物,确保行驶安全。

4.具备环境感知功能:小车能够感知周围环境,包括温度、湿度、光照等参数,并将数据传输给用户端。

5.高稳定性和可靠性:设计小车的硬件和软件应具备较高的稳定性和可靠性,以保证长时间的工作和使用。

三、设计方案1.硬件设计:(1) 采用Arduino控制器作为主控制单元,与传感器、驱动器等硬件模块进行连接和交互。

(2)使用红外传感器作为循迹传感器,通过检测地面上的线条来实现循迹功能。

(3)使用超声波传感器来检测小车前方的障碍物,以实现避障功能。

(4)添加温湿度传感器和光照传感器,以提供环境感知功能。

(5)将无线模块与控制器连接,以实现远程控制功能。

2.软件设计:(1) 使用Arduino编程语言进行程序设计,编写循迹、避障和远程控制的算法。

(2)设计用户界面,通过无线模块将控制信号发送给小车,实现远程控制。

(3)编写数据传输和处理的程序,将环境感知数据发送到用户端进行显示和分析。

四、实施计划1.硬件搭建:按照设计方案中的硬件模块需求,选购所需元件并进行搭建。

2.软件开发:根据设计方案中的软件设计需求,编写相应的程序并进行测试。

3.功能调试:对小车的循迹、避障、远程控制和环境感知功能进行调试和优化。

4.性能测试:使用不同场景和材料的线条进行测试,验证小车的循迹性能。

5.用户界面开发:设计用户端的界面,并完成与小车的远程控制功能的对接。

毕业设计基于单片机的智能循迹小车分析

毕业设计基于单片机的智能循迹小车分析

毕业设计基于单片机的智能循迹小车分析第1章绪论目前,在企业生产技术不断提高、对自动化技术要求不断加深的环境下,智能车辆以及在智能车辆基础上开发出来的产品已成为自动化物流运输、柔性生产组织等系统的关键设备。

世界上许多国家都在积极进行智能车辆的研究和开发设计。

移动机器人是机器人学中的一个重要分支,出现于20世纪06年代。

当时斯坦福研究院(SRI)的Nils Nilssen和charles Rosen等人,在1966年至1972年中研制出了取名shakey的自主式移动机器人,目的是将人工智能技术应用在复杂环境下,完成机器人系统的自主推理、规划和控制。

从此,移动机器人从无到有,数量不断增多,智能车辆作为移动机器人的一个重要分支也得到越来越多的关注。

智能小车,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它集中地运用了计算机、传感、信息、通信、导航及白动控制等技术,是典型的高新技术综合体。

智能车辆也叫无人车辆,是一个集环境感知、规划决策和多等级辅助驾驶等功能于一体的综合系统。

它具有道路障碍自动识别、自动报警、自动制动、自动保持安全距离、车速和巡航控制等功能。

智能车辆的主要特点是在复杂的道路情况下,能自动地操纵和驾驶车辆绕开障碍物并沿着预定的道路(轨迹)行进。

智能车辆在原有车辆系统的基础上增加了一些智能化技术设备:(1)计算机处理系统,主要完成对来自摄像机所获取的图像的预处理、增强、分析、识别等工作;(2)摄像机,用来获得道路图像信息;(3)传感器设备,车速传感器用来获得当前车速,障碍物传感器用来获得前方、侧方、后方障碍物等信息。

智能车辆技术按功能可分为三层,即智能感知/预警系统、车辆驾驶系统和全自动操作系统团。

上一层技术是下一层技术的基础。

三个层次具体如下:(1)智能感知系统,利用各种传感器来获得车辆自身、车辆行驶的周围环境及驾驶员本身的状态信息,必要时发出预警信息。

主要包括碰撞预警系统和驾驶员状态监控系统。

智能循迹避障小车设计分析解析

智能循迹避障小车设计分析解析

毕业设计(论文)课题名称智能循迹避障小车设计学生姓名XXX学号00000000000000系、年级专业XXXXXXXXXXXXXXXXXXX指导教师XXX职称讲师2016年5月18日摘要自从首个工业智能设施诞生以来,智能设施的发展已经扩展到了包括机器、刻板、电子、冶金、交通、宇航、国防等产业领域。

近年来智能设施水平迅速上升,大大的改变了大多数人类的生活方式。

在人类的智能化技术不断飞速进步的过程中,能够取代手动的机器人在更加人性化的同时也越来越智能化。

本文主要讨论了基于单片机的智能循迹避障小车的设计。

智能自动循迹制导系统在驱动电路的基础上,实现自动跟踪汽车导线,而智能避障是使用红外传感器测距系统来实现功能来规避障碍。

智能寻光避障小车是一种采用了多种传感器,以单片机为核心,电力马达驱动和自动控制为技术,根据程序预先确定的模式,而不是人工管理来实现避障导航的自动跟踪高新技术。

这项技术已广泛应用于智能无人驾驶、智能机器人、全自动工厂等许多领域。

这个设计使用STC89C52单片机[1]作为小车的智能核心,使用红外传感器对智能小车跟踪模块识别引导线跟踪,收集模拟信号并将信号转换成为数字信号,使用C 语言编写程序,设计的电路结构简单,易于实现,时效性高。

关键词:智能化;单片机最小系统;传感器;驱动电路ABSTRACTFrom the first level of industrial intelligent facilities since birth, the development of intelligent facilities has been broadened to include machinery, electronics, metallurgy, transportation, aerospace, defense and other fields. Intelligent facilities level rising in recent years, and rapidly, significantly changed the way people live. People in the process of thinking, improvement, learning and intelligence of replace the manual machine is more and more.This paper mainly discusses the intelligent tracking based on single chip microcomputer control process of the obstacle avoidance car. Intelligent automatic tracking is based on the driving circuit of the guidance system, to achieve automatic tracking car line; obstacle avoidance is the use of infrared sensor ranging system to realize the function to evade obstacles. Intelligent tracking obstacle avoidance car is a use different sensor , motor drive for power and automatic control technology to realize according to the procedures predetermined mode, not by artificial management can realize the automatic tracking of obstacle avoidance navigation of high and new technology. The technology has been widely used in unmanned intelligent unmanned line, intelligent robot and so on many fields.Using infrared sensors for car tracking module to identify the guide line tracking, collecting analog signal and converts the signal into digital signal; Using C language to write the program, the design of the circuit structure is simple, easy to implement,timeliness is high.Keywords: Intelligent; Single chip microcomputer minimum system; The Sensor; Driver circuit目录第1章绪论 (1)1.1智能小车的发展近况与趋势 (1)1.2课题研究的目的及意义 (1)1.3课题研究的主要内容 (2)第2章方案设计 (3)2.1系统概述 (3)2.2硬件模块方案 (3)2.3软件模块方案 (5)第3章硬件设计 (6)3.1电源模块 (6)3.2核心控制模块 (6)3.3循迹模块 (7)3.4避障模块 (8)3.5无线遥控模块 (9)3.6电机驱动模块 (10)3.7拓展模块 (13)第4章软件模块 (15)4.1循迹程序模块 (15)4.2避障程序模块 (16)4.3无线遥控程序模块 (17)4.4寻光拓展程序模块 (18)4.5驱动电机程序模块 (19)第5章系统测试与分析 (20)5.1硬件调试 (20)5.2软件调试 (21)总结 (22)参考文献: (23)附录 (24)致谢 (25)第1章绪论1.1智能小车的发展近况与趋势1.1.1智能小车的发展近况现阶段智能汽车的发展十分的迅速,从智能玩具到其他各行各业都有实质性的结果[1]。

循迹小车全面软硬件分析报告

循迹小车全面软硬件分析报告

循迹小车全面软硬件分析报告一、引言循迹小车是一种基于传感器技术的智能挪移装置,它能够根据预设的轨迹或者外部环境信号进行导航和挪移。

本报告旨在对循迹小车的软硬件进行全面分析,包括其设计原理、硬件组成、软件系统等方面的内容。

二、设计原理循迹小车的设计原理基于光电传感器技术和控制算法。

通过光电传感器感知地面上的黑线,然后根据传感器信号控制机电的转动,使小车能够沿着黑线行驶。

循迹小车通常采用PID控制算法来实现精确的轨迹跟踪,通过不断调整机电的转速和转向角度,使小车能够保持在预设的轨迹上。

三、硬件组成循迹小车的硬件组成主要包括以下几个部份:1. 微控制器单元:循迹小车通常采用单片机或者嵌入式系统作为控制核心,用于接收传感器信号、进行数据处理和控制机电运动。

2. 光电传感器:光电传感器用于感知地面上的黑线,常见的传感器有红外线传感器和光敏电阻传感器。

3. 机电驱动模块:机电驱动模块用于控制机电的转速和转向,常见的驱动模块有H桥驱动器和直流机电驱动器。

4. 电源模块:电源模块为循迹小车提供电力供应,通常采用电池或者直流电源。

5. 机械结构:机械结构包括底盘、车轮和支架等部份,用于支撑和保护循迹小车的各个组件。

四、软件系统循迹小车的软件系统主要包括以下几个模块:1. 传感器数据采集模块:该模块负责采集光电传感器的信号,并将信号转化为数字信号,以便后续的数据处理。

2. 数据处理模块:数据处理模块对传感器采集到的信号进行处理和分析,通过算法判断小车当前位置和行驶方向。

3. 控制算法模块:控制算法模块根据数据处理模块提供的位置和方向信息,计算出机电的转速和转向角度,并将控制信号发送给机电驱动模块。

4. 用户界面模块:用户界面模块提供了与循迹小车交互的界面,可以通过该界面设置小车的运行参数和监控其运行状态。

五、性能评估为了评估循迹小车的性能,我们进行了一系列实验,并得出以下结果:1. 精确性:循迹小车在实际运行中能够准确地沿着预设的轨迹行驶,偏差范围在1毫米以内。

智能循迹小车市场分析报告

智能循迹小车市场分析报告

市场需求:随着科技的发展,智能循迹 小车的应用场景不断拓展,市场需求持 续增长。
03
竞争激烈:智能循迹小车市场竞争激烈, 需要企业不断创新,提高产品质量和品 牌影响力。
技术创新:智能循迹小车的技术不断创 新,提高了产品的性能和功能,为市场 提供了更多的机会。
02
法规政策:政府对智能循迹小车行业的 政策支持,为企业提供了更多的发展机 会。同时,法规政策的变化也会给企业 带来挑战。
市场竞争加剧:随着 市场的扩大,越来越 多的企业进入智能循 迹小车行业,市场竞 争加剧,企业需要不 断创新和优化产品, 提高竞争力。
04
政策支持:政府对智 能循迹小车行业的支 持力度加大,有利于 行业的发展。
01
家庭娱乐:满足家庭娱乐需求,如亲子互动、 家庭聚会等
03
商业应用:应用于商场、超市、酒店等商业场 所,提供导航、导视等服务
智能循迹小车的发展趋 势包括提高识别精度、 降低成本、提高智能化
程度等。
01
家庭娱乐:智能循 迹小车可以作为家 庭娱乐设备,提供 趣味性和互动性。
02
教育领域:智能循 迹小车可以作为教 学工具,帮助学生 学习编程、机器人 等知识。
03
商业应用:智能循 迹小车可以用于商 场、酒店等场所, 提供导航、导览等 服务。
加强知识产 权保护,提 高自主创新 能力
关注市场需 求,开发适 应市场需求 的产品
提高产品质 量,增强市 场竞争力
建立品牌形象:通过广告、
公关等手段,提高品牌知 1
名度和美誉度
提高产品质量:通过技术
创新、工艺改进等手段, 2
提高产品质量和性能
优化产品结构:通过市场
调研,了解消费者需求, 3

智能循迹小车 毕业论文

智能循迹小车 毕业论文

智能循迹小车毕业论文一、前言随着科技的发展,智能机器人已经成为人们关注的热门话题。

智能机器人的出现和应用,不仅可以提高生产效率,减少劳动强度,并且可以创造出很多新的应用领域。

其中,智能循迹小车作为一种基于仿生学和机器人学的新型机器人,已经逐渐应用到许多领域,如环境监测、病毒检测等。

本文着重介绍智能循迹小车的设计和实现,以期为相关研究提供参考。

二、智能循迹小车的需求分析智能循迹小车主要用于环境监测和物品巡检。

为了保证循迹小车的运转效果,需要进行以下需求分析:1.循迹精度高:循迹小车的自主导航是基于视觉和控制系统完成的,因此需要保证循迹精度高,以便更准确地定位目标位置。

2.交通状况适应性强:循迹小车需适用于不同的路况和环境,如转向直接性、弯道安全性、山地路段行驶性等。

3.控制系统稳定性高:为了确保循迹小车的运转稳定,控制系统需稳定、耐用。

4.多功能性:循迹小车需具备多种传感器和设备,以实现环境监测和物品巡检等多项功能。

三、智能循迹小车的设计方案1.硬件设计智能循迹小车由四个电动轮驱动,需要具备以下硬件配置:1) 微型处理器:采用单片机实现控制、通信等功能。

2) 直流电机:用于驱动小车前进和后退。

3) 舵机:控制小车方向。

4) 金属质量传感器:检测循迹目标的位置,并对小车进行控制。

5) 视觉传感器:采集路面图像,并进行图像处理。

6) 电源模块:提供小车稳定的电力来源。

2.软件设计1) 系统设计:采用嵌入式系统,将设备的物理特性和功能与程序环境相结合,实现对小车的控制和行为规划。

2) 控制算法设计:采用视觉处理和运动控制算法实现对小车的控制,并对其交通状况和循迹精度进行优化。

3) 通信协议设计:采用串口通信协议实现与上位机的数据传输。

四、智能循迹小车的实现演示智能循迹小车的实现演示中,需要注意以下几点:1. 使用电源模块为小车提供稳定的电力来源。

2. 通过视觉传感器采集并处理路面的图像信息。

3. 通过金属质量传感器检测循迹目标的位置。

循迹避障智能小车设计

循迹避障智能小车设计

循迹避障智能小车设计一、硬件设计1、车体结构智能小车的车体结构通常采用四轮驱动或两轮驱动的方式。

四轮驱动能够提供更好的稳定性和动力,但结构相对复杂;两轮驱动则较为简单,但在稳定性方面可能稍逊一筹。

在选择车体结构时,需要根据实际应用场景和需求进行权衡。

为了保证小车的灵活性和适应性,车架材料一般选择轻质且坚固的铝合金或塑料。

同时,合理设计车轮的布局和尺寸,以确保小车能够在不同的地形上顺利行驶。

2、传感器模块(1)循迹传感器循迹传感器是实现小车循迹功能的关键部件。

常见的循迹传感器有光电传感器和红外传感器。

光电传感器通过检测反射光的强度来判断黑线的位置;红外传感器则利用红外线的反射特性来实现循迹。

在实际应用中,可以根据小车的运行速度和精度要求选择合适的传感器。

为了提高循迹的准确性,通常会在小车的底部安装多个传感器,形成传感器阵列。

通过对传感器信号的综合处理,可以更加精确地判断小车的位置和行驶方向。

(2)避障传感器避障传感器主要用于检测小车前方的障碍物。

常用的避障传感器有超声波传感器、激光传感器和红外测距传感器。

超声波传感器通过发射和接收超声波来测量距离;激光传感器则利用激光的反射来计算距离;红外测距传感器则是根据红外线的传播时间来确定距离。

在选择避障传感器时,需要考虑其测量范围、精度、响应速度等因素。

一般来说,超声波传感器测量范围较大,但精度相对较低;激光传感器精度高,但成本较高;红外测距传感器则介于两者之间。

3、控制模块控制模块是智能小车的核心部分,负责处理传感器数据、控制电机驱动和实现各种逻辑功能。

常见的控制模块有单片机(如 Arduino、STM32 等)和微控制器(如 PIC、AVR 等)。

单片机具有开发简单、资源丰富等优点,适合初学者使用;微控制器则在性能和稳定性方面表现更优,适用于对系统要求较高的场合。

在实际设计中,可以根据需求和个人技术水平选择合适的控制模块。

4、电机驱动模块电机驱动模块用于控制小车的电机运转,实现前进、后退、转弯等动作。

循迹小车电路分析

循迹小车电路分析

循迹小车电路分析循迹小车是一种能够根据预定路径行驶的智能小车,通常使用红外传感器对车辆周围环境进行检测和判断,以实现自动导航。

下面将对循迹小车的电路进行分析。

1.电源电路:循迹小车的电源电路提供电源供电,通常使用锂电池或干电池。

电源电路还包括电源开关、电源指示灯和电压降压电路,用于保护电路和提供稳定的工作电压。

2.传感器电路:循迹小车主要使用红外传感器进行循迹。

传感器电路的主要作用是接收传感器输出信号,并进行信号放大和滤波处理,以提供可靠的循迹信号给控制电路。

传感器电路还包括调节电位器,用于校准传感器的感应距离和灵敏度。

3.控制电路:控制电路是循迹小车的核心部分,它接收传感器电路输出的循迹信号,并根据设定的算法进行信号处理和逻辑判断。

控制电路一般采用微控制器或单片机作为控制核心,通过编程实现对小车的控制和导航功能。

控制电路还包括继电器、电平转换电路和数字信号处理电路等。

4.驱动电路:驱动电路是将控制电路的输出信号转化为驱动电机和舵机的电流信号,从而控制小车的运动。

驱动电路通常采用H桥电路,通过控制H桥电路的开关状态,实现对电机的正反转和速度调节。

驱动电路还包括电机驱动模块、电机调速器和电机保护电路等。

在循迹小车电路中,各个电路之间通过电缆连接,形成完整的电路系统,以实现循迹小车的功能。

除了以上所述的电路,循迹小车还可以添加其他辅助电路和功能模块,如红外避障模块、声音检测模块、蓝牙通信模块等,以扩展循迹小车的功能和应用范围。

总之,循迹小车的电路设计涉及电源电路、传感器电路、控制电路和驱动电路等多个部分,其中控制电路是核心,通过传感器检测信号、控制逻辑判断和驱动电机等,实现循迹小车的自动导航和运动控制。

不同的循迹小车电路设计可能会有所不同,但总体上都需要考虑电路的稳定性、可靠性和功能扩展性,以提供高效的循迹性能和功能。

智能循迹小车设计方案

智能循迹小车设计方案

智能循迹小车设计方案一、设计目标:1.实现智能循迹功能,能够沿着预定轨迹自动行驶。

2.具备避障功能,能够识别前方的障碍物并及时避开。

3.具备远程遥控功能,方便用户进行操作和控制。

4.具备数据上报功能,能够实时反馈运行状态和数据。

二、硬件设计:1.主控模块:使用单片机或者开发板作为主控模块,负责控制整个小车的运行和数据处理。

2.传感器模块:-光电循迹传感器:用于检测小车当前位置,根据光线的反射情况确定移动方向。

-超声波传感器:用于检测前方是否有障碍物,通过测量障碍物距离来判断是否需要避开。

3.驱动模块:-电机和轮子:用于实现小车的运动,可选用直流电机或者步进电机,轮子要具备良好的抓地力和摩擦力。

-舵机:用于实现小车的转向,根据循迹传感器的信号来控制舵机的角度。

4.通信模块:-Wi-Fi模块:用于实现远程遥控功能,将小车与遥控设备连接在同一个无线网络中,通过网络通信进行控制。

-数据传输模块:用于实现数据上报功能,将小车的运行状态和数据通过无线通信传输到指定的接收端。

三、软件设计:1.循迹算法:根据光电循迹传感器的反馈信号,确定小车的行进方向。

为了提高循迹的精度和稳定性,可以采用PID控制算法进行修正。

2.避障算法:通过超声波传感器检测前方障碍物的距离,当距离过近时,触发避障算法,通过调整小车的行进方向来避开障碍物。

3.遥控功能:通过Wi-Fi模块与遥控设备建立连接,接收遥控指令并解析,根据指令调整小车的运动状态。

4.数据上报功能:定时采集小车的各项运行数据,并通过数据传输模块将数据发送到指定的接收端,供用户进行实时监测和分析。

四、系统实现:1.硬件组装:根据设计要求进行硬件的组装和连接,确保各个模块之间的正常通信。

2.软件编程:根据功能要求,进行主控模块的编程,实现循迹、避障、遥控和数据上报等功能。

3.调试测试:对整个系统进行调试和测试,确保各项功能正常运行,并进行性能和稳定性的优化。

4.用户界面设计:设计一个用户友好的界面,实现对小车的远程控制和数据监测,提供良好的用户体验。

智能循迹小车实验报告

智能循迹小车实验报告

智能循迹小车实验报告一、实验目的本次实验旨在设计并实现一款能够自主循迹的智能小车,通过传感器检测路径信息,控制小车的运动方向,使其能够沿着预定的轨迹行驶。

通过本次实验,深入了解自动控制、传感器技术和单片机编程等方面的知识,提高实际动手能力和问题解决能力。

二、实验原理1、传感器检测本实验采用红外传感器来检测小车下方的黑线轨迹。

红外传感器由红外发射管和接收管组成,当发射管发出的红外线照射到黑色轨迹时,反射光较弱,接收管接收到的信号较弱;当照射到白色区域时,反射光较强,接收管接收到的信号较强。

通过比较接收管的信号强度,即可判断小车是否偏离轨迹。

2、控制算法根据传感器检测到的轨迹信息,采用 PID 控制算法(比例积分微分控制算法)来计算小车的转向控制量。

PID 算法通过对误差(即小车偏离轨迹的程度)进行比例、积分和微分运算,得到一个合适的控制输出,使小车能够快速、准确地回到轨迹上。

3、电机驱动小车的动力由直流电机提供,通过电机驱动芯片(如 L298N)来控制电机的正反转和转速。

根据控制算法计算出的转向控制量,调整左右电机的转速,实现小车的转向和前进。

三、实验器材1、硬件部分单片机开发板(如 STM32 系列)红外传感器模块直流电机及驱动模块电源模块小车底盘及车轮杜邦线、面包板等2、软件部分Keil 等单片机编程软件串口调试助手四、实验步骤1、硬件搭建将红外传感器模块安装在小车底盘下方,使其能够检测到黑线轨迹。

将直流电机与驱动模块连接,并安装在小车底盘上。

将单片机开发板、传感器模块、驱动模块和电源模块通过杜邦线连接起来,搭建好实验电路。

2、软件编程使用单片机编程软件,编写传感器检测程序、控制算法程序和电机驱动程序。

通过串口调试助手,将编写好的程序下载到单片机开发板中。

3、调试与优化启动小车,观察其在轨迹上的行驶情况。

根据小车的实际行驶情况,调整 PID 控制算法的参数,优化小车的循迹性能。

不断测试和改进,直到小车能够稳定、准确地沿着轨迹行驶。

智能循迹小车

智能循迹小车

智能循迹小车随着科技的飞速发展,无人驾驶技术逐渐成为现代交通领域的重要组成部分。

其中,智能循迹小车作为一种先进的无人驾驶车辆,具有广泛的应用前景。

本文将介绍智能循迹小车的基本原理、系统构成、设计方法以及应用场景。

智能循迹小车通过传感器感知周围环境,包括道路标志、其他车辆、行人等信息,再通过控制系统对感知到的信息进行处理和分析,制定出相应的行驶策略,最终控制车辆的行驶。

其中,循迹小车通过特定的传感器识别道路标志,并沿着标志所指示的路径行驶,实现自动循迹。

传感器系统:用于感知周围环境,包括道路标志、其他车辆、行人等信息。

常见的传感器包括激光雷达、摄像头、超声波等。

控制系统:对传感器感知到的信息进行处理和分析,制定出相应的行驶策略,并控制车辆的行驶。

常用的控制系统包括基于规则的控制、模糊控制、神经网络等。

执行机构:根据控制系统的指令,控制车辆的行驶速度、方向等。

常见的执行机构包括电机、舵机等。

电源系统:提供电力支持,保证小车的正常运行。

常用的电源包括锂电池、超级电容器等。

硬件设计:根据需求选择合适的传感器、控制系统、执行机构和电源等硬件设备,并对其进行集成设计,保证各个设备之间的兼容性和稳定性。

软件设计:编写控制系统的程序,实现对车辆的控制。

常用的编程语言包括C++、Python等。

在软件设计中需要考虑如何处理传感器感知到的信息,如何制定行驶策略,以及如何控制执行机构等方面的问题。

调试与优化:通过实验测试小车的性能,发现问题并进行优化。

常见的调试和优化方法包括调整控制系统的参数、更换硬件设备等。

智能循迹小车具有广泛的应用前景,主要包括以下几个方面:交通管理:用于交通巡逻、交通管制等,提高交通管理效率。

应急救援:在灾难现场进行物资运输、人员疏散等任务,提高应急救援效率。

自动驾驶:作为无人驾驶车辆的样机进行研究和发展,推动自动驾驶技术的进步。

教育科研:用于高校和研究机构的科研项目,以及学生的实践和创新项目。

智能循迹小车设计报告(总17页)

智能循迹小车设计报告(总17页)

智能循迹小车设计报告(总17页)一、设计目的本项目旨在设计一款运用机器视觉技术的智能循迹小车,能够自主寻找指定路径并行驶,可用于实现自动化物流等应用场景。

二、设计方案2.1 系统概述本系统基于STM32F103C8T6单片机和PiCamera进行设计。

STM32F103C8T6单片机负责循迹小车的控制和编码器的反馈信息处理,PiCamera则用于实现图像识别和路径规划,两者之间通过串口进行通讯。

2.2 硬件设计2.2.1 循迹模块循迹模块采用红外传感器对黑线进行探测,通过检测黑线与白底的反差判断小车的行驶方向。

本设计采用5个红外传感器,每个传感器分别对应小车行驶时的不同位置,通过对这5个传感器的读取,可以获取小车所在的实际位置和前进方向。

电机驱动模块采用L298N电机驱动模块,通过PWM信号来控制电机的转速和方向。

左右两侧的电机分别接到L298N模块的IN1~IN4引脚,电机转向由模块内部的电路通过PWM 信号控制。

2.2.4 Raspberry PiRaspberry Pi用于图像处理和路径规划。

本设计使用PiCamera进行图像采集,在RPi 上运行OpenCV进行图像处理,识别道路上的黑线,并通过路径规划算法计算出循迹小车当前应该行驶的方向,然后将该方向通过串口传输给STM32单片机进行控制。

本设计的系统结构分为三个层次:传感器驱动层、控制层、应用层。

其中,传感器驱动层实现对循迹小车上的传感器的读取和解析,生成对应的控制指令;控制层对控制指令进行解析和执行,控制小车的运动;应用层实现图像处理和路径规划,将路径信息传输给控制层进行控制。

在应用层,本设计采用基于灰度阈值的图像处理算法,通过寻找图像中的黑色线条,将黑色线条和白色背景分离出来,以便进行路径规划。

路径规划采用最短路径算法,计算出循迹小车当前应该行驶的方向,然后将该方向发送给控制层进行控制。

2.4 可行性分析本设计的硬件设计采用常见的模块化设计,采用Arduino Mega作为基础模块,通过模块之间的串口通信实现对整个系统的控制,扩展性和可维护性良好。

循迹避障智能小车设计

循迹避障智能小车设计

循迹避障智能小车设计一、设计背景随着自动化技术和人工智能的不断发展,智能小车在工业生产、物流运输、家庭服务等领域的应用越来越广泛。

循迹避障智能小车作为其中的一种,能够在预设的轨道上自主行驶,并避开途中的障碍物,具有很高的实用价值。

例如,在工厂的自动化生产线中,它可以完成物料的搬运工作;在家庭中,它可以作为智能清洁机器人,自动清扫房间。

二、硬件设计1、控制器控制器是智能小车的核心部件,负责整个系统的运算和控制。

我们选用了 STM32 系列单片机,它具有高性能、低功耗、丰富的外设接口等优点,能够满足智能小车的控制需求。

2、传感器(1)循迹传感器为了实现小车的循迹功能,我们选用了红外对管传感器。

将多个红外对管传感器安装在小车底部,通过检测地面反射的红外线强度来判断小车是否偏离轨道。

(2)避障传感器超声波传感器是实现避障功能的常用选择。

它通过发射和接收超声波来测量与障碍物之间的距离,当距离小于设定的阈值时,小车会采取相应的避障措施。

3、电机驱动模块电机驱动模块用于控制小车的电机运转。

我们选用了 L298N 电机驱动芯片,它能够提供较大的电流驱动能力,保证小车的动力充足。

4、电源模块电源模块为整个系统提供稳定的电源。

考虑到小车的工作环境和功耗要求,我们选用了可充电锂电池作为电源,并通过降压模块将电压转换为各个模块所需的工作电压。

三、电路设计1、控制器电路STM32 单片机的最小系统电路包括时钟电路、复位电路、电源电路等。

此外,还需要连接外部的下载调试接口,以便对程序进行烧写和调试。

2、传感器电路红外对管传感器和超声波传感器的电路设计相对简单,主要包括信号调理电路和接口电路。

信号调理电路用于将传感器输出的模拟信号转换为数字信号,以便单片机进行处理。

3、电机驱动电路L298N 电机驱动芯片的电路连接需要注意电机的正反转控制和电流限制。

同时,为了提高电路的稳定性,还需要添加滤波电容和续流二极管等元件。

四、软件编程1、编程语言我们使用 C 语言进行编程,它具有语法简洁、可移植性强等优点,适合于单片机的开发。

智能循迹小车设计方案

智能循迹小车设计方案

智能循迹小车设计方案摘要本文介绍了智能循迹小车的设计方案。

智能循迹小车是一种能够根据预设的路径自动行驶的小车。

它可以通过传感器感知周围环境,并根据预设的路径进行行驶。

在本文中,我们将讨论智能循迹小车的系统设计、硬件实现以及软件算法。

1. 引言智能循迹小车是近年来智能交通领域的一个热门研究方向。

它可以应用于无人驾驶、物流配送等领域,具有广阔的应用前景。

本文将介绍智能循迹小车的设计方案,以供相关研究人员参考。

2. 系统设计智能循迹小车的系统设计由硬件和软件两部分组成。

2.1 硬件设计智能循迹小车的硬件设计主要包括以下几个方面:•电机驱动:智能循迹小车需要有强大的驱动力来行驶。

通常采用直流电机作为驱动装置,并配备电机驱动器。

•路径感知:智能循迹小车需要能够感知预设的路径。

通常使用红外线传感器或摄像头进行路径感知。

•避障功能:智能循迹小车还需要具备避障功能,以避免与障碍物发生碰撞。

通常使用超声波传感器或红外线传感器进行障碍物的检测。

•控制系统:智能循迹小车的控制系统通常采用微控制器或单片机进行控制。

它可以根据传感器的反馈信息,控制电机驱动器的转动。

2.2 软件设计智能循迹小车的软件设计主要包括以下几个方面:•路径规划算法:智能循迹小车需要能够根据预设的路径进行行驶。

路径规划算法会根据传感器感知到的环境信息,计算出最优的行驶路径。

•控制算法:智能循迹小车的控制算法会根据路径规划算法的结果,控制电机驱动器的转动。

它可以实现小车沿着路径稳定行驶,并及时调整行驶方向。

•避障算法:智能循迹小车的避障算法会根据传感器感知到的障碍物信息,判断是否需要进行避障操作。

它可以实时监测障碍物,并及时采取措施进行避让。

3. 硬件实现智能循迹小车的硬件实现通常需要进行电路设计和机械结构设计。

电路设计主要包括电机驱动电路、传感器接口电路以及控制系统电路的设计。

可以使用电路设计软件进行模拟和调试,确保电路的性能和稳定性。

机械结构设计主要包括车身设计、电机安装以及传感器安装等。

智能寻迹小车设计方案

智能寻迹小车设计方案

智能寻迹小车设计方案智能寻迹小车设计方案一、项目概述智能寻迹小车是一种能够自主行走并根据黑线路径进行导航的小型机器人。

本设计方案旨在实现小车的自主控制和路径识别功能,为用户提供一个可以根据预定路径行走的智能小车。

二、技术原理智能寻迹小车的核心技术包括光电传感器模块、控制模块和驱动模块。

光电传感器模块用于感知黑线路径,控制模块用于辨识路径信号并控制小车的行走方向,驱动模块用于控制小车的轮子转动。

小车通过光电传感器模块获取黑线路径的信号,经过控制模块的处理后,驱动模块控制轮子的转动实现小车的行走。

三、硬件配置1. 光电传感器:用于感知黑线路径,采用多个红外线光电二极管和光敏二极管进行测量。

2. 控制模块:采用单片机作为控制核心,用于接收和处理光电传感器的信号,并根据信号控制车轮转动。

3. 驱动模块:采用直流电机作为驱动装置,驱动车轮的转动。

四、软件架构1. 信号处理算法:根据光电传感器模块的输出信号,设计信号处理算法,将感知到的黑线路径转化成可识别的控制信号。

2. 路径识别算法:分析感知到的黑线路径信号,识别出黑线的走向,并根据识别结果控制小车的行走方向。

3. 控制算法:根据路径识别算法的结果,控制驱动模块产生适当的电压,实现小车轮子的转动。

五、功能实现1. 自主行走功能:小车能够根据识别的黑线路径自主地行走,避免碰撞障碍物或偏离路径。

2. 路径识别功能:小车能够准确地识别黑线路径,并根据路径进行相应的控制。

3. 远程控制功能:用户可以通过无线遥控器对小车进行远程控制,包括行走方向和速度的控制。

六、性能指标1. 导航准确性:小车在正确识别黑线路径的情况下完成整个行程,保持在路径上的偏离范围小于5mm。

2. 响应速度:小车对路径信号的处理和控制反应时间小于100ms。

3. 可靠性:小车在连续行走1小时内不发生故障,并能正常完成指定的行走任务。

七、安全性考虑1. 碰撞检测:小车装配超声波传感器,能够检测前方的障碍物并自动停止行走,避免碰撞事故的发生。

智能巡线小车的设计方案

智能巡线小车的设计方案
表3.1 一些寄存器的复位状态
寄存器
复位状态
寄存器
复位状态
PC
0000H
TCON
00H
ACC
00H
TL0
00H
PSW
00H
TH0
00H
SP
07H
TL1
00H
DPTR
0000H
TH1
00H
P0-P3
FFH
SCON
00H
IP
XX000000B
SBUF
不定
IE
0X000000B
PCON
0XXX0000B
TMOD
为了能够较好的满足系统的要求,我们选择了方案2。
2.5
方案1:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整.此方案的优点是电路较为简单,缺点是继电器的响应时间慢,易损坏,寿命较短,可靠性不高。
方案2:采用电阻网络或数字电位器调节电动机的分压,从而达到分压的目的。但电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般的电动机电阻很小,但电流很大,分压不仅回降低效率,而且实现很困难。
方案2:选用51系列的单片机,AT89S52单片机算术运算功能强,软件编程灵活、自由度大,功耗低、体积小、技术成熟,成本也比ARM低。
根据自己的知识能力,实验室现有条件,选用STC89C52RC单片机作为本次毕业设计的主控芯片,而且此芯片烧程序也不需要专用的下载器,另一方面节省了成本,只要安装USB转串口驱动,在普通的计算机上就可以烧写程序,很方便。
2.7 本章小结
经过积极论证,最后采用以STC89C52单片机为控制核心,黑白线信号经过TCRT5000输出高低电压信号,再经过LM324电压比较器输出给单片机标准TTL电平信号,而单片机根据输入口高低电平的变化来执行相对应指令,使小车达到稳定的行驶。

智能循迹小车设计方案 智能循迹小车方案

智能循迹小车设计方案 智能循迹小车方案

智能循迹小车设计方案智能循迹小车方案自动化06--2班2009年6月5日自动寻迹小车摘要本寻迹小车是以PCB电路板为车架,AT89S51单片机为控制核心,加以直流电机、光电传感器和电源电路以及其他电路构成。

系统由AT89S51通过IO口控制小车的前进后退以及转向。

寻迹由RPR2…各省主要风电塔架制造厂名单序号123456789101112131415161718192021222324 公司名称甘肃玉门锦辉长城甘肃科耀电力有限公司北车集团兰州金牛轨道交通装备有限公司河北强盛风电设备有限公司保定天威电气设备结构有限公司…学习“七.一”讲话精神,深入剖析“四种危险” 胡锦涛在党庆90年大会上,总结了建党以来的“三件大事”和“两大成果”,提出了往后“两个宏伟目标”,指出中共面临“四种考验”和存在“四种危险”。

整篇讲话与时俱进,有新意,有不少新提法,是一篇回顾历史、总结经…自动化06--2班2009年6月5日自动寻迹小车摘要本寻迹小车是以PCB电路板为车架,AT89S51单片机为控制核心,加以直流电机、光电传感器和电源电路以及其他电路构成。

系统由AT89S51通过IO口控制小车的前进后退以及转向。

寻迹由RPR220型光电对管完成。

关键词:AT89S51 直流电机光电传感器自动寻迹电动车AbstractThe smart car is aluminum alloy for the chassis, AT89S51 MCU as its core, including motor and servo, plus photoelectric sensors, as well as other flame sensor and power circuit. MCU controls the car turning back forward or running on the white line. RPR220 reflective photo sensor seeks the trace. Far infrared flame sensor tracks the flame. In addition, the SCM system with Sunplus for voice broadcast can remind current status. The system transmits information through DF module. The car’s status will be transmitted to the Remote Console. OCMJ4X8C LCDdisplay and 2 keys for start control.Keywords: AT89S51 Motor Servo Photo sensor Electrical fire engines一、系统设计1、设计要求(1)寻线跑(2)显示小车当前的速度(3)显示时间并记录行驶距离(4)自动避开障碍物(5)其他2、小车循迹的原理这里的循迹是指小车在地板白纸上循黑线行走,通常采取的方法是红外探测法。

智能小车循迹设计方案

智能小车循迹设计方案

智能小车循迹设计方案智能小车循迹设计方案智能小车循迹是指通过对循迹线路的感知和判断,自动调整车辆行驶的轨迹,实现自动化导航的功能。

下面是一个智能小车循迹设计方案的简要介绍。

硬件设计方案:1. 传感器选择:将红外传感器作为循迹小车的传感器,红外传感器具有较高的探测精度和稳定性,在光线变化时也能稳定工作。

2. 微控制器选择:选择一款性能出色、功能强大的微控制器,如Arduino、Raspberry Pi等,作为智能小车的控制中心,负责循迹算法的实现和控制指令的下发。

3. 电机控制:选用直流电机作为小车的驱动源,通过PWM方式控制电机的转速和方向,使小车能够实现前进、后退和转弯等动作。

4. 电源选择:选择适宜的电源供电,保证小车能够长时间稳定工作,同时考虑到重量和体积的限制。

软件设计方案:1. 循迹算法:编写适用于红外传感器的循迹算法,通过传感器感知循迹线路的变化,根据相应的判断逻辑,控制车轮的转动方向,使小车保持在循迹线上行驶。

2. 硬件控制:驱动电机实现小车的移动,通过控制电机的转速和方向,使小车顺利前进、后退和转弯。

3. 用户交互:通过编写用户交互界面,实现对小车循迹功能的设置和控制,方便用户进行配置和操作。

4. 循迹环境优化:通过对循迹环境进行优化,如对循迹线进行加密处理、使用特殊材料制作循迹线等,提高循迹的准确性和稳定性。

5. 故障处理:对于传感器故障、电机故障等情况,做好相应的异常处理,提高小车的稳定性和可靠性。

总结:智能小车循迹设计方案包括硬件部分和软件部分,硬件部分主要包括传感器、微控制器、电机控制和电源选择等;软件部分主要包括循迹算法、硬件控制、用户交互、循迹环境优化和故障处理等。

通过精心设计和实施,可以实现小车循迹的自动导航功能。

智能循迹小车设计方案

智能循迹小车设计方案

智能循迹小车设计方案智能循迹小车设计方案智能循迹小车是一种能够根据预设路径自主行驶的无人驾驶车辆。

本设计方案旨在实现一辆智能循迹小车的设计与制作。

一、方案需求:1. 路径规划与控制:根据预设的路径,小车能够准确、迅速地在指定道路上行驶,并能随时调整方向和速度。

2. 传感器控制与反馈:小车具备多种传感器,能够实时感知周围环境和道路状况,如通过红外线传感器检测道路上的障碍物。

3. 自主导航与避障能力:小车能够自主判断并决策前进、转弯或避让,确保安全行驶。

当感知到障碍物时,能及时做出反应避开障碍。

二、方案设计:1. 硬件设计:a. 小车平台:选择合适的小车底盘,具备稳定性和承重能力,大小和外观可以根据实际需求进行设计。

b. 传感器系统:包括红外线传感器、超声波传感器和摄像头等,用于感应周围环境和道路状况。

c. 控制系统:采用单片机或嵌入式控制器,以实现传感器数据的处理、决策和控制小车运动。

2. 软件设计:a. 路径规划与控制算法:通过编程实现路径规划算法,将预设路径转换为小车可以理解的指令,控制小车的运动和转向。

b. 感知与决策算法:根据传感器获取的数据,实时判断周围环境和道路状况,做出相应的决策,例如避开障碍物或调整行驶速度。

c. 系统界面设计:为方便操作和监测,设计一个人机交互界面,显示小车的状态信息和传感器数据。

三、方案实施:1. 硬件实施:根据设计要求选择合适的硬件部件,并将它们组装在一起,搭建小车平台和安装传感器。

确保传感器按照预期工作稳定。

2. 软件实施:使用合适的编程语言开发控制程序。

编写路径规划、感知与决策算法,并将其与硬件系统绑定在一起。

通过测试和调试确保程序的正常运行。

3. 功能测试:对小车进行现场测试,包括路径规划、感知与决策的功能、反应时间和精度等方面的测试。

根据测试结果进行优化和调整。

四、方案展望:1. 增加智能化功能:进一步发展智能循迹小车的功能,添加更多的传感器和算法,实现更高级的自主导航和避障能力。

智能循迹小车分析方案

智能循迹小车分析方案

智能循迹小车设计专业:自动化班级:0804班姓名:指导老师:2018年8月——2018年10月摘要:本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

小车系统以 AT89S52 单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。

此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。

引言当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。

现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。

作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车<特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。

无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛<ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。

但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能循迹小车设计专业:自动化班级:0804班姓名:指导老师:2018年8月——2018年10月摘要:本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

小车系统以 AT89S52 单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。

此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。

引言当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。

现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。

作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车<特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。

无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛<ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。

但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。

为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得工程整体设计的能力,并掌握多通道多样化传感器综合控制的方法。

所以立“智能循迹小车”一题作为尝试。

此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

一、实验目的:通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。

进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。

二、设计方案:该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车姿态的控制。

三、报告内容安排:本技术报告主要分为三个部分。

第一部分是对整个系统实现方法的一个概要说明,主要内容是对整个技术原理的概述;第二部分是对硬件电路设计的说明,主要介绍系统传感器的设计及其他硬件电路的设计原理等;第三部分是对系统软件设计部分的说明,主要内容是智能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。

技术方案概要说明本模型车的电路系统包括电源管理模块、单片机模块、传感器模块、电机驱动模块。

工作原理:➢利用红外采集模块中的红外发射接收对管检测路面上的轨迹➢将轨迹信息送到单片机➢单片机采用模糊推理求出转向的角度和行走速度,然后去控制行走部分➢最终完成智能小车可以按照路面上的轨迹运行。

硬件电路的设计1、最小系统:小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。

主要包括:时钟电路、电源电路、复位电路。

其中各个部分的功能如下:1、时钟电路:给单片机提供一个外接的16MHz的石英晶振。

2、电源电路:给单片机提供5V电源。

3、复位电路:在电压达到正常值时给单片机一个复位信号。

图1 单片机最小系统原理图2、电源电路设计:模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。

在本设计中,51单片机使用5V电源,电机及舵机使用6V电源。

考虑到电源为充电电池组,额定电压为7.2V,实际充满电后电压则为6.5-6.8V,所以单片机及传感器模块采用7805稳压后的5V电源供电,舵机及电机直接由电池供电。

3、传感器电路:光电寻线方案一般由多对红外收发管组成,通过检测接收到的反射光强,判断黑白线。

原理图由红外对管和电压比较器两部分组成,红外对管输出的模拟电压通过电压比较器转换成数字电平输出到单片机。

图2赛道检测原理图:4、电机驱动电路:电机驱动芯片L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。

是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。

其引脚排列如图1中U4所示,1脚和15脚可单独引出连接电流采样电阻器,形成电流传感信号。

L298可驱动2个电机,OUT1、OUT2和OUT3、OUT4之间分别接2个电动机。

5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。

也利用单片机产生PWM信号接到ENA,ENB端子,对电机的转速进行调节。

L298N的逻辑功能:表1 SHARP GP2D12实物图外形及封装:软件系统的实现小车循迹规则:若小车偏左的时候,车轮将向右偏转;若小车偏右,车轮将向左偏转;若没有偏移,小车将继续向前;若小车完全偏离黑色轨迹,小车后退以寻找黑色轨迹。

小车程序:#include "reg52.h"#define det_Dist 2.55 //单个脉冲对应的小车行走距离,其值为车轮周长/4#define RD 9 //小车对角轴长度#define PI 3.1415926#define ANG_90 90#define ANG_90_T 102#define ANG_180 189/*============================全局变量定义区============================*/sbit P10=P1^0。

//控制继电器的开闭sbit P11=P1^1。

//控制金属接近开关sbit P12=P1^2。

//控制颜色传感器的开闭sbit P07=P0^7。

//控制声光信号的开启sbit P26=P2^6。

//接收颜色传感器的信号,白为0,黑为1sbit P24=P2^4。

//左sbit P25=P2^5。

//右接收左右光传感器的信号,有光为0unsigned char mType=0。

//设置运动的方式,0 向前 1 向左 2 向后 3 向右unsigned char Direction=0。

//小车的即时朝向 0 朝上 1 朝左 2 朝下 3 朝右unsigned sX=50。

unsigned char sY=0。

//小车的相对右下角的坐标 CM<sX,sY)unsigned char StartTask=0。

//获得铁片后开始执行返回卸货任务,StartTask置一unsigned char Inter_EX0=0。

// 完成一个完整的任务期间只能有一次外部中断// Inter_EX0记录外部中断0的中断状态// 0 动作最近的前一次未中断过,// 1 动作最近的前一次中断过unsigned char cntIorn=0。

//铁片数unsigned char bkAim=2。

//回程目的地,0为A仓库,1为B仓库,2为停车场,//(在MAIN中接受铁片颜色判断传感器的信号来赋值>unsigned char Light_Flag=0。

//进入光引导区的标志(1>unsigned int cntTime_5Min=0。

//时间周期数,用于 T0 精确定时unsigned int cntTime_Plues=0。

//霍尔开关产生的脉冲数/*============================全局变量定义区============================*//*------------------------------------------------*//*-----------------通用延迟程序-------------------*//*------------------------------------------------*/void delay(unsigned int time> // time*0.5ms延时{unsigned int i,j。

for(j=0。

j<time。

j++>{for(i=0。

i<60。

i++>{。

}}}/*-----------------------------------------------*//*-------------------显示控制模块----------------*//*-----------------------------------------------*//*数码管显示,显示铁片的数目(设接在P0,共阴>*/void Display(unsigned char n>{char Numb[12]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x37,0x77}。

P0=Numb[n]。

}/*-----------------------------------------------*//*-------------------传感器模块------------------*//*-----------------------------------------------*//*光源检测程序: *//*用于纠正小车运行路线的正确性*/unsigned char LightSeek(>{ void Display(unsigned char>。

bit l,r。

l=P24。

r=P25。

if(l==0&&r==1>{//Display(1>。

return (3>。

//偏左,向右开}if(r==0&&l==1>{//Display(3>。

return(1>。

//偏右,向左开}if((l==1&&r==1>||(l==0&&r==0>>{//Display(9>。

相关文档
最新文档