宜昌市2019-2020学年八年级上期末调研考试数学试题及答案.doc
宜昌2018-2019学度初二上年末调研考试数学试题及解析
宜昌2018-2019学度初二上年末调研考试数学试题及解析八年级数学试题【一】选择题:1.如下书写旳四个汉字,是轴对称图形旳有〔 〕个。
A.1B2C.3D.42.与3-2相等旳是〔 〕A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 旳取值范围是〔 〕A.x <2B.x >2C.x ≠2D.x ≥24.以下长度旳各种线段,能够组成三角形旳是〔 〕 A.1,2,3 B.1,5,5 C.3,3,6 D.4,5,65.以下式子一定成立旳是〔 〕A.3232a a a =+ B.632a a a =∙ C. ()623a a = D.326a a a =÷6.一个多边形旳内角和是900°,那么那个多边形旳边数为〔 〕 A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于 2.5微米旳颗粒物,1微米=0.000001米,2.5微米用科学记数法可表示为〔 〕米。
A.2.5×106B.2.5×105C.2.5×10-5D.2.5×10-68.等腰三角形旳一个内角为50°,那么那个等腰三角形旳顶角为〔 〕。
A.50° B.80° C.50°或80° D.40°或65° 9.把多项式x x x +-232分解因式结果正确旳选项是〔 〕A.2)1(-x xB.2)1(+x xC.)2(2x x x - D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含以下哪个因式〔 〕。
A.2x+1B.x 〔x+1〕2C.x 〔x 2-2x 〕 D.x 〔x-1〕11.如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,那么∠PAQ 旳度数是〔 〕A.20°B.40°C.50°D.60°12.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=2.5cm,DE=1.7cm ,那么BE 旳长为〔 〕A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片旳直角,使点C 落在AB 上旳点E 处,BC=24,∠B=30°,那么DE 旳长是〔 〕A.12B.10C.8D.614. 如图,从边长为〔a+4〕cm 旳正方形纸片中剪去一个边长为〔a+1〕cm 旳正方形,剩余部分沿虚线又剪拼成一个矩形〔不重叠无缝隙〕,那么拼成旳矩形旳面积是〔 〕cm 2.A 、a a 522+ B.3a+15 C 、〔6a+9〕 D 、〔6a+15〕15.艳焕集团生产某种周密仪器,原打算20天完成全部任务,假设每天多生产4个,那么15天完成全部旳生产任务还多生产10个。
2019-2020学年湖北省宜昌市西陵区八年级(上)期末数学试卷1解析版
2019-2020学年湖北省宜昌市西陵区八年级(上)期末数学试卷.选择题(3X15)4. (3分)下列各式: —, 13", x- 1, “匕 其中,分式有( a S 2b8. (3分)设三角形的三边之长分别为 4, 8, 2a,则a 的取值范围为()A . 4vav12 B. 1vav3 C. 2<a<3 D. 2<a<63cm C. 5cm D.无法确定9 A . 0.22 X 10 10 B. 2.2X 10 11 C. 22X 108D.0.22X 10C. 50D. 140A . a 10+a 2= a 5B.a 2?a 3=a 6 7C. (a+b) 2=a 2+b 2D. (a+b) (a-b) = a 2- b 2A. 1个B. 2个C. 3个D. 4个5. (3 分)点 M (4, -2)关于y 轴的对称点的坐标是(A . (4, 2)B. (—4, 2)C. (—4, — 2)D. (2, 4)1. (3分)下列古代的吉祥图案中,不是轴对称图形的是(2. (3 分)如图,△ ABC 中,CA=CB, /A=20° ,则三角形的外角/ BCD 的度数是(3. (3分)下列运算正确的是(9.(3分)如图,已知射线OM,以。
为圆心,任意长为半径画弧,与射线长为半径画弧,两弧交于点B,画射线OB,那么/ AOB的度数是A . SAS B. HL C. ASA D. SSS13.(3分)一个多边形的内角和是14400 ,求这个多边形的边数是()A. 7B. 8C. 9D. 1014.(3分)如图,直线MN是四边形MANB的对称轴,点P在MN上.则下列结论错误的是()A . /ANM = /BNM B. / MAP = / MBP C. AM = BM D. AP=BN15.(3分)八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了A .90°B.60°C. 45D.30°10. (3分)要使分式—7有意义,则x的取值不能是()A.0B. - 3C. 3D. 211. (3分)下列多项式中,能分解因式的是(2 2 2 2C. m2 - 4m+4D. m2+mn+n212. (3分)用三角尺可按如图所示的方法画角平分线:已知/ AOB,把一个三角尺的一个顶点放在点直角边放在OB上,过直角顶点C作OB的垂线DC;再用同样的方法作OA的垂线EF, EF与DC射线OP,则OP即为/ AOB的平分线.这样作图的依据是构造两个三角形全等,由作法可知,△的依据是()O处,一条交于点P.作EPO^ACPOOM交于点A,再以点A为圆心,AO20分钟后,其余学生乘汽车出发,结果他们同时到达. 已知汽车的速度是骑车学生速度的 2倍,求骑车学生的速度.设骑车学生的速度是xkm/h,则下面所列方程中正确的是(二.主观题(6+6+7+7+8+8+10+11+12 )216. (6 分)计算:4 (x- 1) - (x+5)?4x.1 w —4支+419. (7分)先化简(1-」不)——m --------- ,然后从1, 2, 0, - 1中选取一个你认为合适的数作为x 的值代入求m I X 2-1代数式的值.20. (8分)如图,在 Rt^ABC 中,点E 在AB 上,把△ ABC 沿CE 折叠后,点 B 恰好与斜边 AC 的中点D 重合.(1)求证:/ ACE 为等腰三角形; (2)若AB = 6,求AE 的长.21. (8分)一块直径为a+b 的圆形纸板(awb )按如下两种方案进行剪裁.1010 2 B. 1010C. 1010 2K—20 D. 10 5L—20=3z+318. (7分)已知△ ABC 与4DEF 关于y 轴对称,点A, B, C 的对称点分别是D, E, F.(1)在图中画出△ DEF ; (2)写出点D, E, F 的坐标;(3)在y 轴上有一点P,且PB+PC 的值最小,画出点 P,并保留作图痕迹.17. (6分)解分式方程:黑“一]j 卜,”工] - j-- -i方案一:如图,剪去直径分别为a, b的两个圆;方案二:如图,剪去直径为红也的两个圆.\2\请你分别计算两种方案中剩余纸板的面积,并比较哪个面积大?22.(10分)某服装店老板在武汉发现一款羽绒服,预测能畅销市场,就用a万元购进了x件.这款羽绒服面市后,果然十分畅销,很快售完.于是老板又在上海购进了同款羽绒服,所购数量比在武汉所购的数量多20%,单价贵20元,总进货款比前一次多23% .(1)请用含a和x的代数式分别表示在武汉以及上海购进的羽绒服的单价(单位:元/件);(2)若服装店老板两次进货共花费17.84万元,在销售这款羽绒服时每件定价都是1200元,第二次销售后期由于天气转暖,服装还剩」没有卖出,老板决定打8折销售,最后全部售完.两次销售,服装店老板共盈利多少元?23.(11分)已知等腰^ ABC中,AB= AC, / ABC的平分线交AC于D ,过点A作AE// BC交BD的延长线于点E, /CAE的平分线交BE于点F.(1)①如图1,若/ BAC = 36° ,求证:BD=EF;②如图,若/ BAC=60° ,求胃的值;(2)如图2,若/ BAC=60° ,过点D作DG // BC,交AB于点G,点N为BC中点,点P, M分别是GD,BG 上的动点,/ MNP = 60° ,求证:AP=PN=MN.24.(12分)在平面直角坐标系中,点A (0, m)和点B ( n, 0)分别在y轴和x轴的正半轴上,满足(m-n) 2+|m+n-8|=0,连接线段AB,点C为AB上一动点.(2)如图,连接OC并延长至点D,使得DC = OC,连接AD.若△ AOC的面积为2,求点D的坐标;(3)如图,BC=OB, / ABO的平分线交线段AO于点E,交线段OC于点F,连接EC.求证:①AACE为等腰直角三角形;② BF — EF=OC.参考答案与试题解析.选择题(3×15 )1.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.2.【解答】解:= CA=CB, ZA=20° ,.・./ B=Z A=20° ,・./ BCD=Z A+Z B=40° ,故选:B.3.【解答】解:A、a10-a2=a8,故此选项错误;B、a2?a3=a5,故此选项错误;C、(a+b)2=a2+2ab+b2,故此选项错误;D、(a+b)(a-b) =a2—b2,正确.故选:D .4.【解答】解:在所列代数式中,分式有:!,空,共2个,故选:B.5.【解答】解:点M (4, -2)关于y轴的对称点的坐标是:(-4, -2).故选:C.6.【解答】解:.「△ ABE^A ACD,BE= CD = 5cm,• .BE- DE=CD- DE = 3cm,即BD = CE= 3cm,故选:B.,一. 107.【解答】解:0.000 000 000 22= 2.2X 10 ,故选:B.8.【解答】解:由题意,得8 — 4<2av 8+4, 即4<2a< 12,解得:2vav6.故选:D .9.【解答】解:连接AB, 根据题意得:OB = OA = AB, ・•.△ AOB是等边三角形,・./ AOB=60° .故选:B.10.【解答】解:要使分式*7有意义,则x-3W0, 1-3解得:x w 3.故选:C.11.【解答】解:A、不能运用公式进行分解因式,故此选项错误;B、不能运用公式进行分解因式,故此选项错误;C、能运用完全平方公式进行分解因式,故此选项正确;D、不能运用公式进行分解因式,故此选项错误;故选:C.12.【解答】解:根据作图过程可知:OP=OP, OE = OC,••• RtAEPO^RtACPO (HL), ・ ./ EOP=/ COP.故选:B.13.【解答】解:设这个多边形的边数是n,根据题意得,(n-2)?180° = 1440° ,解得n= 10.故选:D .14 .【解答】解:二•直线 MN 是四边形AMBN 的对称轴,•••点A 与点B 对应,,AM = BM, AN=BN, / ANM = / BNM ,•・•点P 是直线 MN 上的点,MAP = Z MBP,. .A, B, C 正确,而D 错误,故选:D .15 .【解答】解:设骑车学生的速度是 xkm/h,则汽车的速度是依题意,得:也-二==二.K 3 故选:A.二.主观题(6+6+7+7+8+8+10+11+12 )16 .【解答】解;4 (x- 1) 2- (x+5)?4x =4 (x-2x+1) — (4x2+20) =4x2 - 8x+4 - 4x2 - 20 =—8x — 16 .17 .【解答】解:去分母得:15=x+3x+3,解得:x=3,经检验x=3是分式方程的解.(2)点 D, E, F 的坐标分别为(2, 4), (1, 2), (3, - 2);18.【解答】解:(1)如图所示,△ DEF 即为所求;2xkm/h,(3)如图所示,连接 BF,交y 轴于P,连接PC,则PC=PF,故PB+PC 的最小值等于 BF 的长,・•・点P 即为所求.19 .【解答】解:原式=-;'曰? 1,I (x-2)2K -2.「xw 土 1 且 XW2,x= 0,则原式=-工.2]20 .【解答】(1)证明:由折叠的性质得:/ CDE = /B=90° , CD=CB, DE ••• DE LAC, D 为AC 的中点, AE= CE,ACE 为等腰三角形;(2)解:: AD = CD=CB, D 为AC 的中点,△ ABC 是直角三角形,解得:AE = 4.21 .【解答】解:由图可得,S1 =兀(a+b S2=兀(a+b兀~2ab7T~27T~2BE,.•.CB =—AC, 2sinA =AE AE AE.•.S2>S1,r 2即方案一种剩余纸板的面积是—ab,方案二中剩余纸板的面积是冗(日他、,方案二中剩余纸板的面积大.\2\822•【解答】解:(1)由题意可知:武汉购进羽绒服单件价格为IO。
2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)
2019-2020学年度上学期期末考试试卷八年级 数学本试卷满分100分,考试时间100分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.下列各数是无理数的是( ) A.2 B.38 C.722D.0π 2.点P 的坐标是(-3,4),则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.下列各组数中,能作为直角三角形边长的是( ) A.4,5,6 B.12,16,20 C.5,10,13 D.8,40,414.下列命题是真命题的有( ) ①等边三角形的三个内角都相等; ②如果3325xx -=-,那么x=4; ③两个锐角之和一定是钝角; ④如果x 2>0,那么x>0;A.1个B.2个C.3个D.4个 5.有一组数据:2,5,5,6,7,这组数据的平均数为( ) A.3 B.4 C.5 D.66一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为( )A.⎩⎨⎧++=+=-910101x y y x y xB.⎩⎨⎧++=+=-910101y x x y y xC.⎩⎨⎧++=+=-910101x y y x x yD.⎩⎨⎧++=+=-910101y x x y x y7.如图在△ABC 中,D 是AB 上一点,E 是AC 上一点,BE,CD 相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE 的度数为( )。
A.680B.580C.520D.4808. 两条直线y=kx+b 与y=bx+k(k,b 为常数,且k b≠0)在同一坐标系中的图像可能是( )。
二、填空题(本大题共8小题,每小题3分,共24分) 9绝对值最小的实数是 。
10.若一个正数的两个平方根是x-5和x+1,则x= 。
八年级数学东城区2019-2020学年度第一学期期末教学统一检测 (含答案)
东城区2019-2020学年度第一学期期末教学统一检测初二数学 2020.1一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009m 微间距显示屏就是其中之一.数字0.0009用科学记数法表示应为A.4910-⨯B. 3910-⨯C. 30.910-⨯D. 40.910-⨯ 2. 下列等式中,从左到右的变形是因式分解的是A .()m a b ma mb +=+B .23313(1)1x x x x -+=-+ C .()()23212x x x x ++=++ D .22(2)+4+4a a a +=3.如图是3×3的正方形网格,其中已有2个小方格涂成了黑色.现在要从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是A.①B.②C.③D.④4. 下列各式计算正确的是 A.2133a aa -⋅= B.236()ab ab = C.22(2)4x x -=- D.824623x x x ÷=5. 对于任意的实数x ,总有意义的分式是A.152--x x B.231x x -+ C.x x 812+ D.21x -6.如图,△ABC 中,∠A =40°,AB 的垂直平分线分别交AB ,AC 于点D ,E ,连接BE ,则∠BEC 的大小为A.40°B.50°C.80°D.100°7.若分式2213x x -+的值为正数,则x 需满足的条件是 A. x 为任意实数 B. 12x < C. 12x >D. 12x >- 8. 已知△ABC ,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB ,AC 上,且这组对应边所对的顶点重合于点M ,点M 一定在A.∠A 的平分线上B.AC 边的高上C.BC 边的垂直平分线上D.AB 边的中线上9.如图,已知∠MON 及其边上一点A .以点A 为圆心,AO 长为半径画弧,分别交OM ,ON于点B 和C .再以点C 为圆心,AC 长为半径画弧,恰好经过点B .错误的结论是 A. AOC ABC S S =△△ B. ∠OCB =90° C. ∠MON =30° D. OC =2BC10. 已知OP 平分∠AOB ,点Q 在OP 上,点M 在OA 上,且点Q ,M 均不与点O 重合.在OB 上确定点N ,使QN =QM ,则满足条件的点N 的个数为A.1 个B.2个C.1或2个D.无数个二、填空题(本题共16分,每小题2分) 11. 因式分解:39a a -= _ . 12. 已知 -2是关于x 的分式方程23x kx x -=+的根,则实数k 的值为________ . 13. 如图,BE 与CD 交于点A ,且∠C =∠D .添加一个条件: ,使得△ABC ≌△AED .BA CM第8题图 第9题图14. 如图,将长方形纸片ABCD 折叠,使顶点A ,C 重合,折痕为EF .若∠BAE =28°,则∠AEF 的大小为 °.15. 如图,等边△ABC 中,AD 是BC 边上的中线,且AD =4,E ,P 分别是AC ,AD 上的动点,则C P +EP 的最小值等于 .16. 我国古代数学曾有许多重要的成就,其中“杨辉三角” (如图)就是一例. 这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小顺序排列)的系数规律.例如,第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数.(1)()5a b +展开式中4a b 的系数为 ;(2)()7a b +展开式中各项系数的和为 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:3+23x x x +-. 18.下面是小明设计的“已知两线段及一角作三角形”的尺规作图过程. 已知:线段m ,n 及∠O .求作:△ABC ,使得线段m ,n 及∠O 分别是它的两边和一角. 作法:如图,① 以点O 为圆心,m 长为半径画弧,分别交∠O 的两边于点M ,N ; ② 画一条射线AP ,以点A 为圆心,m 长为半径画弧,交AP 于点B ; ③ 以点B 为圆心,MN 长为半径画弧,与第②步中所画的弧相交于点D ; ④ 画射线AD ;⑤ 以点A 为圆心,n 长为半径画弧,交AD 于点C ; ⑥ 连接BC ,则△ABC 即为所求作的三角形. 请回答:(1)步骤③得到两条线段相等,即 = ; (2)∠A =∠O 的作图依据是 ; (3)小红说小明的作图不全面,原因是 .19.计算:()201π533-⎛⎫- ⎪⎝⎭.20.如图,在△ABC 和△ADE 中,∠BAC =∠DAE ,AD =AE .连接BD ,CE,∠ABD =∠ACE . 求证:AB =AC .21. 计算:2()()()4()2m n m n m n m m n m ⎡⎤+-+---÷⎣⎦.B22. 解方程:2151=24xx x +--- . 23.在三角形纸片ABC 中,∠B =90°,∠A =30°,AC =4,点E 在AC 上,AE =3.将三角形纸片按图1方式折叠,使点A 的对应点A '落在AB 的延长线上,折痕为ED ,A E '交BC 于点F .(1)求∠CFE 的度数;(2)如图2,,继续将纸片沿BF 折叠,点A '的对应点为A '',A F ''交DE 于点G .求线段DG 的长.图1 图224. 如图,△ABC .(1)尺规作图:过点C 作AB 的垂线交AB 于点O .不写作法,保留作图痕迹;(2)分别以直线AB ,OC 为x 轴,y 轴建立平面直角坐标系,使点B ,C 均在正半轴上.若AB=7.5,OC =4.5,∠A =45°,写出点B 关于y 轴的对称点D 的坐标; (3)在(2)的条件下,求△ACD 的面积.25. 先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中a 是满足|3|3a a -=-的最大整数.26. 列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积. (1) 在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.A'F E C A GA'F E C设首届进博会企业平均展览面积为x 平方米,把下表补充完整: 届别总面积(平方米)企业平均展览面积(平方米)首 届 270 000x第二届 330 000(2)根据以上分析,列出方程(不解..方程).27. 在ABC 中,AB >BC ,直线l 垂直平分AC .(1)如图1,作∠ABC 的平分线交直线l 于点D ,连接AD ,CD . ①补全图形;②判断∠BAD 和∠BCD 的数量关系,并证明.(2) 如图2,直线l 与ABC 的外角∠ABE 的平分线交于点D ,连接AD ,CD . 求证:∠BAD =∠BCD .28.对于△ABC 及其边上的点P ,给出如下定义:如果点1M ,2M ,3M ,……,n M 都在 △ABC 的边上,且 123n PM PM PM PM ====L L ,那么称点1M ,2M ,3M ,……,n M 为△ABC 关于点P 的等距点,线段1PM ,2PM ,3PM ,……,n PM 为△ABC 关于点P 的等距线段.(1)如图1,△ABC 中,∠A <90°,AB =AC ,点P 是BC 的中点.①点B ,C △ABC 关于点P 的等距点,线段P A ,PB △ABC 关于点P 的等距线段;(填“是”或“不是”)②△ABC 关于点P 的两个等距点1M ,2M 分别在边AB ,AC 上,当相应的等距线段最短时,在图1中画出线段1PM ,2PM ;(2)△ABC 是边长为4的等边三角形,点P 在BC 上,点C ,D 是△ABC 关于点P 的等距lE D A C B lA B 图1 图2点,且PC =1,求线段DC 的长;(3)如图2,在Rt △ABC 中,∠C =90°,∠B =30°.点P 在BC 上,△ABC 关于点P 的等距点恰好有四个,且其中一个是点C . 若BC a =,直接写出PC 长的取值范围.(用含a 的式子表示)图1 图2东城区2019-2020学年度第一学期期末教学统一检测初二数学参考答案及评分标准 2020.1一、选择题(本题共20分,每小题2分)题号 1 2 3 4 5 6 7 8 9 10 答案ACDABCCADC二、填空题(本题共16分,每小题2分)11.()()33a a a +- 12. 2 13.答案不唯一,但必须是一组对应边,如:AC =AD 14. 59 15. 4 16. 5 ;128三.解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)17. 解: 原式()()()()332=223x x x x x -+++-L L L L 分()()2336423x x x x x -++=+-L L L L 分 ()()26523x x x +=+-L L L L 分 18.(1)BD ,MN ;……………………1分(2)三边对应相等的两个三角形全等;全等三角形的对应角相等;……………………3分 (3)小明没有对已知中的边和角的位置关系分类讨论. ……………………5分19.解:()-201π53⎛⎫- ⎪⎝⎭94=-+……………………4分=……………………5分20.证明:∵∠BAC =∠DAE,∴∠BAC -∠CAD =∠DAE -∠CAD.即∠BAD =∠CAE. ……………………2分 在△BAD 和△CAE 中,,BAD CAE ABD ACE AD AE ∠∠∠∠⎧⎪⎨⎪⎩=,=,=∴△BAD ≌△CAE (AAS ). …………………… 4分 ∴ AB =AC. …………………… 5分2222222()()()4()2(243454)2m (22)2m n m n m n m m n mm n m mn n m mn m mn m m n ⎡⎤+-+---÷⎣⎦=-+-+-+÷=-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯÷=-+⋯⋯⋯⋯⋯⋯⋯21.解:分分分B()()()222124532453112343x x x x x x x x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯++--=++-+==-=-⋯⋯⋯⋯⋯⋯⋯⋯⋯22.解:分分分经检验:13x =-是原方程的解. ∴13x =-.……………………5分23.解:(1)∵∠A =30°,∴∠A '=30°. ……………………1分 ∵∠A BF '=90°, ∴∠A FB '=60°. ……………………2分∵∠CFE =∠A FB ',∴∠CFE =60°. ……………………3分(2)∵点A 与点A '关于直线DE 对称,∴DE ⊥AA '.∵∠A =30°,AE =3, ∴1322DE AE == . ……………………4分 由(1)知,∠CFE =60°,∠C =60°,∴△CFE 是等边三角形.∴EF =CE =AC -AE =1. ……………………5分 同理,△EFG 也是等边三角形, ∴12DG DE EG =-=DG =DE -EG =.……………………6分 24.解:(1)……………………………………………………………………………………2分GA''DA'FECAB图2A'FECA图1(2)D (-3,0); ……………………4分 (3)13927==2228ACD S ⨯⨯△.……………………6分22222221225.[](2)(2)44(1)2[](2)(2)442(2124)4231a a a a a a a a a a a a a a a a a a a a a a a--+=-⋅++---+=-⋅++--+=⋅+-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+解:原式分分分分∵a 是满足|3|3a a -=-的最大整数, ∴30a -≥. ∴3a ≤.∴=3a . ……………………5分 ∴1=15原式.……………………6分……………………………………………………………………………………4分(2)270 000330000+300=(1+12.8%)x x.……………………6分 27. 解:(1)①补全图形;……………………1分② 结论:∠BAD +∠BCD =180°. ……………………2分证明:过点D 作DE ⊥AB 于E ,作DF ⊥BC 交BC 的延长线于F , 则∠AED =∠CFD =90°.∵BD 平分∠ABC ,∴DE =DF . ∵直线l 垂直平分AC ,∴DA =DC. ……………………3分在Rt ADE 和Rt CDF 中, DA DC DE DF =⎧⎨=⎩,,∴Rt ADE ≌Rt CDF . ∴∠BAD =∠FCD.∵∠FCD +∠BCD =180°,∴Rt ADN ≌Rt CDM.∴∠BAD =∠BCD. ……………………7分28.解:(1)①是,不是;……………………2分②……………………3分(2)如图,DC =2,或DC =1; ……………………5分B(3)32a a PC <<.……………………7分。
2019-2020学年湖北省宜昌市五峰县八年级(上)期末数学试卷 及答案解析
2019-2020学年湖北省宜昌市五峰县八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A. B. C. D.2.纳米(nm)是一种非常小的长度单位,1nm=10−9m,如果某花粉的直径为6200nm,那么用科学记数法表示该花粉的直径为()A. 6.2×10−6mB. 62×10−7mC. 0.62×10−5mD. 6.2×103m3.下列条件不能保证两个三角形全等的是()A. 三边对应相等B. 两边一角对应相等C. 两角一边对应相等D. 直角边和一个锐角对应相等4.下列运算中,正确的是()C. (3a2)3=9a6D. a2+a3=a5A. a6⋅a4=a10B. 2a−2=12a25.在下列所给的四根已知长度的细木条中,能与长度为6cm,13cm的两根木条首尾相接钉成一个三角形木架的木条是()A. 6cmB. 7cmC. 13cmD. 20cm6.若分式2x+1有意义,则x的取值范围是()x+3A. x≠0B. x≠3C. x≠−3D. x≠−127.把多项式x2+ax+b分解因式,得(x+1)(x−3),则a,b的值分别是()A. a=2,b=3B. a=−2,b=−3C. a=−2,b=3D. a=2,b=−38.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,点C、D为圆心,大于12连接CD,则下列说法不一定成立的是()A. 射线OE是∠AOB的平分线B.△COD是等腰三角形C. C、D两点关于OE所在直线对称D. O、E两点关于CD所在直线对称9.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. 2+xx−y B. 2yx2C. 2y33x2D. 2y2(x−y)210.如图,在Rt△ABC中,∠ACB=90°,∠BCD=60°,CD是斜边AB上的高,AD=√2cm,则AB的长度是()A. 2√2cmB. 4√2cmC. 2cmD. 4cm二、填空题(本大题共5小题,共15.0分)11.点P(2,−5)关于x轴对称的点的坐标为______ .12.分解因式:x3−xy2=.13.当x=______时,分式x2−9(x−1)(x−3)的值为0.14.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=________15.甲、乙两组学生去距学校4.5千米的敬老院开展慰问活动,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知步行速度是骑自行车速度的13,设步行速度为x千米/时,则根据题意可以列出方程______.三、计算题(本大题共2小题,共15.0分)16.解分式方程:2xx+3+1=72x+617.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)如图2,若AD、BC所在直线互相垂直,GE=3cm,求AB的长.四、解答题(本大题共7小题,共60.0分)18.分解因式:(1)3ax2+6axy+3ay2(2)a2(a−3)−a+3.19.先化简,再求值:求(2x−y)(2x+y)−(2y+x)(2y−x)的值,其中x=2,y=1.20.如图,已知:AB=AD,BC=DE,AC=AE,∠1=42°,求∠3的度数.21.化简求值:(1)已知a−b=−2,ab=−1,求12a3b−a2b2+12ab3的值.(2)已知4x=3y,求代数式(x−2y)2−(x−y)(x+y)−2y2的值.22.某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?23.操作发现:(1)如图①,D是等边三角形ABC的边BA上的一个动点(点D与点B不重合),连结DC,以DC为边在BC上方作等边三角形DCF,连结AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.类比猜想:(2)如图②,当动点D运动至等边三角形ABC的边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立.深入探究:(3)①如图③,当动点D在等边三角形ABC的边BA上运动时(点D与点B不重合),连结DC,以DC为边在DC上方、下方分别作等边三角形DCF和等边三角形DCF′,连结AF,BF′,探究AF,BF′与AB有何数量关系,并证明你探究的结论.②如图④,当动点D在等边三角形ABC的边BA的延长线上运动时,其他作法与图③相同,①中的结论是否仍成立?若不成立,是否有新的结论?并证明你提出的结论.24.如图,平面直角坐标系中,A(0,3)、B(3,0)、C(−3,0).(1)过B作直线MN⊥AB,P为线段OC上的一动点,AP⊥PH交直线M于点H,证明:PA=PH.(2)在(1)的条件下,若在点A处有一个等腰Rt△APQ绕点A旋转,且AP=PQ,∠APQ=90°,连接BQ,点G为BQ的中点,试猜想线段OG与线段PG的数量关系与位置关系,并证明你的结论.-------- 答案与解析 --------1.答案:D解析:考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此判断即可.解:四个汉字中只有“善”字可以看作轴对称图形,故选D.2.答案:A解析:此题主要考查了用科学记数法表示较小的数,属于基础题.绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:∵1nm=10−9m,∴6200nm=6200×10−9m,=6.2×103×10−9m,=6.2×10−6m,故选A.3.答案:B解析:解:A、SSS可以判定全等,故本选项不符合题意;B、若是SSA不可以判定全等,故本选项符合题意;C、AAS或SAS都可以判定全等,故本选项不符合题意;D、AAS或SAS都可以判定全等,故本选项不符合题意.故选:B.根据全等三角形的判定定理即可得出答案.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.答案:A解析:本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键.依据同底数幂的乘法、负整数指数幂的性质、积的乘方、同类项的定义进行判断即可.解:a6⋅a4=a10,故A正确;2a−2=2,故B错误;a2(3a2)3=27a6,故C错误;a2与a3不是同类项,不能合并,故D错误.故选:A.5.答案:C解析:本题主要考查三角形的三边关系,已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和,根据三角形的三边关系可得.解:∵6+13=19cm,13−6=7cm,∴7cm<第三边<19cm,∴只有C中的13cm在7cm到19cm之间.故选C.6.答案:C解析:此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.根据分式有意义的条件可得x+3≠0,再解即可.有意义,解:∵分式2x+1x+3∴x+3≠0.解得:x≠−3.故选:C.7.答案:B解析:本题考查了多项式的乘法,解题的关键是熟练运用运算法则.运用多项式乘以多项式的法则求出(x+ 1)(x−3)的值,对比系数可以得到a,b的值.解:∵(x+1)(x−3)=x⋅x−x⋅3+1⋅x−1×3=x2−3x+x−3=x2−2x−3∴x2+ax+b=x2−2x−3∴a=−2,b=−3.故选B.8.答案:D解析:本题主要考查了作图−基本作图、全等三角形的判定与性质、角平分线的性质、等腰三角形、轴对称的性质的知识点,从作图语句中提取正确信息是解题的关键.连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A 得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解:A.如图,连接CE、DE,根据作图得到OC=OD、CE=DE,∵在△EOC与△EOD中,{OC=OD CE=DE OE=OE,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B.根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C.根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C,D两点关于OE所在直线对称,正确,不符合题意;D.根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O,E两点关于CD所在直线不一定对称,错误,符合题意.故选D.9.答案:D解析:本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是.解:根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A.2+3x3x−3y ≠2+xx−y,错误;B.6y9x2≠2yx2,错误;C.54y327x2≠2y33x2,错误;D.18y29(x−y)2=2y2(x−y)2,正确.故选D.10.答案:B解析:解:∵∠ACB=90°,CD是斜边AB上的高,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B=30°,∴在Rt△ACD中,AC=2AD=2×√2=2√2(cm),在Rt△ABC中,AB=2AC=2×2√2=4√2(cm).故选:B.先求出∠ACD=∠B=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半求出AC,再求出AB即可.本题考查了直角三角形中30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.11.答案:(2,5)解析:解:点P(2,−5)关于x轴对称的点的坐标为:(2,5),故答案为:(2,5).根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.12.答案:x(x+y)(x−y)解析:本题主要考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.先提取公因式x,再对余下的多项式利用平方差公式继续分解.解:原式=x(x2−y2)=x(x+y)(x−y).故答案为x(x+y)(x−y).13.答案:−3解析:解:由题意得:x2−9=0,且(x−1)(x−3)≠0,解得:x=−3,故答案为:−3.根据分式值为零的条件可得x2−9=0,且(x−1)(x−3)≠0,再解即可.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.14.答案:70°解析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°−60°−32°=88°,∴∠5+∠6=180°−88°=92°,∴∠5=180°−∠2−108°①,∠6=180°−90°−∠1=90°−∠1②,∴①+②得,180°−∠2−108°+90°−∠1=92°,即∠1+∠2=70°.故答案为70°.15.答案:4.5x −4.53x=12解析:解:设步行速度为x千米/时,则骑自行车的速度为3x千米/时,依题意,得:4.5x −4.53x=12.故答案为:4.5x −4.53x=12.设步行速度为x千米/时,则骑自行车的速度为3x千米/时,根据时间=路程÷速度结合骑自行车比步行少用半小时,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.16.答案:解:去分母得,4x+2x+6=76x=1,解得x=16,检验:当x=16时,2x+6≠0,x+3≠0,∴方程的解为x=16.解析:本题主要考查了分式方程的解法,熟练掌握它的解题步骤是解题关键.原分式方程先去分母化为整式方程,然后解这个整式方程,最后检验即可.17.答案:(1)证明:∵GF垂直平分DC,∴GD=GC同理,GA=GB,在△ADG和△BCG中,{GD=GC∠AGD=∠BGC GA=GB,∴△ADG≌△BCG(SAS),∴AD=BC;(2)解:∵△ADG≌△BCG,∴∠DAG=∠CBG,∵AH⊥BH,∴∠HAB+∠HBA=90°,即∠CBG+∠GBA+∠HAB=90°,∴∠DAG+∠HAB+∠GBA=90°,∴∠AGB=90°,∵E是AB的中点,∴GE=12AB,∴AB=2GE=6cm.解析:(1)由GF垂直平分DC,可得GD=GC,同理可得,GA=GB,又由∠AGD=∠BGC,即可证得△ADG≌△BCG(SAS),继而证得结论;(2)可证得∠DAG=∠CBG,继而可求得∠AGB的度数,则GE=12AB,可求出AB的长.此题考查了全等三角形的判定与性质,直角三角形的性质以及线段垂直平分线的性质.注意熟练掌握全等三角形的判定方法是解此题的关键.18.答案:(1)解:3ax2+6axy+3ay2,=3a(x2+2xy+y2),=3a(x+y)2(2)原式=(a−3)(a2−1)=(a−3)(a+1)(a−1).解析:(1)先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.(2)原式变形后,提取公因式,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.答案:解:原式=4x2−y2−(4y2−x2)=5x2−5y2,当x=2,y=1时,原式=5×22−5×12=15.解析:原式利用平方差公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.20.答案:解:∵在△ABC和△ADE中,{AB=AD BC=DE AC=AE,∴△ABC≌△ADE,∴∠ADE=∠B,∵∠1+∠B+∠ADB=180°,∠3+∠ADE+∠ADB=180°,∴∠3=∠1=42°.解析:本题考查了全等三角形的判定和全等三角形的性质,三角形内角和定理的有关知识.易证△ABC≌△ADE,可得∠ADE=∠B,可以求得∠3=∠1.21.答案:解:(1)因为a−b=−2,ab=−1,所以12a3b−a2b2+12ab3=12a2⋅ab−(ab)2+12ab⋅b2=−12a2−1−12b2=−12(a2+b2−2ab+2ab)−1=−12(a−b)2−ab−1=−12×(−2)2+1−1。
湖北省宜昌市东部2019-2020学年八年级上学期期中调研考试数学试题(答案图片版)
宜昌市东部2019-2020学年八年级期中考试试题数学试卷本试卷共24小题,卷面满分120分,考试时间120分钟.注意事项:1.本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,答在试题卷上无效.2.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 本大题共15小题,每小题3分,计45分)1.以下平面图形中,不一定是轴对称图形的是(■).A.圆B.等腰三角形C.直角三角形D.等边三角形2.一个三角形的三个内角的度数之比为1:2:3,这个三角形一定是(■).A.直角三角形B.锐角三角形C.钝角三角形D.无法判定3.“三等分角”大约是在公元前五世纪由古希腊人提出来的。
借助如图所示的“三等分角仪”能三等分任一角。
这个三等分角仪由两根有槽的棒OA,OB 组成,两根棒在O 点相连并可绕O转动,C 点固定,OC=CD=DE,点D,E 可在槽中滑动,若∠BDE=75°,则∠CDE 的度数是(■).A.60°B.65°C.75°D.80°4.在下列长度的三条线段中,不能组成三角形的是(■).A.2cm,3cm,4cmB.3cm,6cm,7cmC.2cm,2cm,6cmD.5cm,6cm,7cm5.如图,Rt△ABC 中,∠C=90°,∠B=30°,分别以点A 和点B为圆心,大于1 AB 的长为半径作弧,两弧相交于M、N 两点,作2直线MN,交BC 于点D,连接AD,则∠CAD 的度数是(■).A.20°B.30°C.45°D.60°6.一个正多边形的每个外角都是36°,这个正多边形的边数是(■).A.9B.10C.11D.127.如图,已知点P 是线段AB 上一点,∠ABC=∠ABD,在下面判断中错误的是(■)...A.若添加条件,AC=AD,则△APC≌△APDB.若添加条件,BC=BD,则△APC≌△APDC.若添加条件,∠ACB=∠ADB,则△APC≌△APDD.若添加条件,∠CAB=∠DAB,则△APC≌△APD8.如图,墙上钉着三根木条a,b,c,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是(■).A.5°B.10°C.30°D.70°数学试题卷第1 页(共4 页)9.一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D 和点E,另一边与三角板的两直角边分别交于点F 和点A,且∠CED=50°,那么∠BFA 的大小为(■).A.145°B.140°C.135°D.130°10.如图所示的网格由边长相同的小正方形组成,点A、B、CD、E、F、G 在小正方形的顶点上,则△ABC 的重心是(■)A.点DB.点EC.点FD.点G11.下列命题是假命题的是(■).A.n 边形(n≥3)的外角和是360°B.线段垂直平分线上的点到线段两个端点的距离相等C.相等的角是对顶角D.角是轴对称图形12.等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=50°,则它的特征值k=(■).A. 10或8B.1或10C.8或1D.8或13 13 5 2 13 5 2 5 1013.如图,AD 是△ABC 中∠BAC 的角平分线,DE⊥AB 于点E,S△ABC=7DE=2,AB=4,则AC 长是(■).A.3B.4C.6D.514.在三角形纸片ABC 中,∠A=65°,∠B=75°.将纸片的一角对折,使点C 落在△ABC 内,若∠1=20°,则∠2 的度数为是(■).A.50°B.60°C.70°D.80°15.如图,在△OAB 和△OCD 中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD 交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°③OM 平分∠BOC;④MO 平分∠BMC.其中正确的个数为(■).A.4 个B.3 个C.2 个D.1 个二、解答题:(请将解答过程书写在答题卡上指定的位置.本大题共9小题,计75分)16.(6 分)如图,点A、B、C、D 在一条直线上,CE 与BF 交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.17.(6 分)已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E=∠C.数学试题卷第2 页(共4 页)18.(7 分)已知a,b,c 是三角形的三边长.(1)化简:a b c b c ac a b ;(2)在(1)的条件下,若a 10 ,b 8 ,c 6 ,求这个式子的值.19.(7 分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C 的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC 关于y 轴对称的△A′B′C′;(3)写出点B′的坐标.20.(8 分)如图,等腰直角三角板如图放置.直角顶点C 在直线m 上,分别过点A、B 作AE⊥直线m 于点E,BD⊥直线m 于点D.(1)求证:EC=BD;(2)若设△AEC 三边分别为a、b、c,猜想a、b、c 存在什么关系,并简要说明理由.21.(8 分)如图,在△ABC 中,∠BAC=90°,E 为边BC 上的点,且AB=AE,D 为线段BE 的中点,过点E 作EF⊥AE,过点A 作AF∥BC,且AF、EF 相交于点F.(1)求证:∠C=∠BAD;(2)求证:AC=EF.数学试题卷第3 页(共4 页)22.(10 分)如图1,在△ABC 中,AB=AC,点D 是BC 的中点,点E 在AD 上.(1)求证:BE=CE;(2)如图2,若∠BAC=45°,BE 的延长线交AC 于点F,且BF⊥AC,垂足为F,原题设其它条件不变.求证:△AEF≌△BCF.23.(11 分)如图①,在等边△ABC 中,M 是BC 边上一点(不含端点B,C),N 是△ABC 的外角∠ACH的平分线上一点,且AM=MN..(1)尺规作图:在直线BC 的下方,过点B 作∠CBE=∠CBA,作NC 的延长线,与BE 相交于点E.(2)求证:△BEC 是等边△BEC;(3)求证:∠AMN=60°.24.(12 分)如图,在等边△ABC 中,AB=6cm,动点P 从点A 出发以lcm/s 的速度沿AC 匀速运动(与A、C 不重合).动点Q 同时从点B 出发以同样的速度沿CB 的延长线方向匀速运动,当点P 到达点C 时,点P、Q 同时停止运动(Q 不与B 重合).设运动时间为以t(s).过P 作PE ⊥AB 于E,连接PQ 交AB 于D.(1)PC= cm,QC= cm;(用含t 的代数式表示)(2)当t 为何值时,△CPQ 为直角三角形;(3)点E 沿CB 的延长线的方向平移到F,且EF=BQ.是否存在某一时刻t,使点F 在∠ACB 的平分线上?若存在,求出t 的值,若不存在,请说明理由;(4)在运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长.数学试题卷第4 页(共4 页)。
2019-2020学年北师大版八年级数学第一学期期末测试题(含答案)
2019-2020学年八年级数学第一学期期末测试卷一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.22.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,94.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.86.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣29.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=.12.命题“若a2>b2,则a>b”的逆命题是,该逆命题是(填“真”或“假”)命题.13.计算:(3+)()=.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货吨.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.18.解方程组:19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C (﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是分,九(2)班复赛成绩的众数是分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(),∴∠CDQ=∠β().∴∠β=(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为km/h,放学回家的速度为km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:(1)点C的坐标为;(2)求线段OM的长;(3)求点B的坐标.2019-2020学年八年级数学第一学期期末测试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.2【分析】根据无理数、有理数的定义逐一对每个选择支进行判断.【解答】解:是分数,属于有理数,故选项A正确;﹣,2π,2是无理数.故选:A.【点评】此题主要考查了无理数的定义,注意:带根号的开不尽方的数是无理数,无限不循环小数为无理数,含π的数是无理数.如2π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,3)故选:C.【点评】本题主要考查了点的坐标,解题时注意:位于第二象限的点的横坐标为负,纵坐标为正.3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,9【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.【点评】此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.4.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°【分析】利用三角形的外角的性质即可解决问题;【解答】解:在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°﹣80°=65°,故选:C.【点评】本题考查三角形的外角,解题的关键是熟练掌握基本知识,属于中考常考题型.5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.6.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论.【解答】解:在y=﹣2x﹣1中,∵﹣2<0,﹣1<0,∴此函数的图象经过二、三、四象限,故选:D.【点评】本题考查的是一次函数的图象,熟知当k<0,b>0时,一次函数y=kx+b的图象在一、二、四象限是解答此题的关键.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等),正确;C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补),正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),错误;故选:D.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣2【分析】根据平方根、算术平方根的定义逐一判别可得.【解答】解:A.1的平方根是±1,此选项错误;B.﹣8的立方根是﹣2,此选项正确;C.=2,此选项错误;D.=2,此选项错误;故选:B.【点评】本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.9.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟【分析】根据统筹方法,烧开水时可洗菜和准备面条及佐料,这样可以节省时间,所以小明所用时间最少为(1)、(4)、(5)步时间之和.【解答】解:第一步,洗锅盛水花2分钟;第二步,用锅把水烧开7分钟,同时洗菜3分钟,准备面条及佐料2分钟,总计7分钟;第三步,用烧开的水煮面条和菜要3分钟.总计共用2+7+3=12分钟.故选:C.【点评】解决问题的关键是读懂题意,采用统筹方法是生活中常用的有效节省时间的方法,本题将数学知识与生活相结合,是一道好题.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.【分析】设进2个球的有x人,进3个球的有y人,根据20人共进49个球,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设进2个球的有x人,进3个球的有y人,根据题意得:,即.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=2.【分析】根据二次根式的分母有理化和二次根式的性质分别计算可得.【解答】解:==,|﹣|==2,故答案为:,2.【点评】本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.12.命题“若a2>b2,则a>b”的逆命题是如a>b,则a2>b2,,该逆命题是(填“真”或“假”)假命题.【分析】先写出命题的逆命题,然后在判断逆命题的真假.【解答】解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=﹣2,此时a>b,但a2<b2,即此命题为假命题.故答案为:如a>b,则a2>b2,假.【点评】此题考查了命题与定理的知识,写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.计算:(3+)()=+1.【分析】利用多项式乘法展开,然后合并即可.【解答】解:原式=3﹣6+7﹣2=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货4吨.【分析】设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,由“2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨”,即可得出关于x,y的二元一次方程组,将方程组的两方程相加再除以3,即可求出结论.【解答】解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据题意得:,(①+②)÷3,得:x+y=4.故答案为:4.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是()2012.【分析】先求出直线y =kx +b 的解析式,求出直线与x 轴、y 轴的交点坐标,求出直线与x 轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x 轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到A 3的坐标,进而得出各点的坐标的规律.【解答】解:∵A 1(1,1),A 2(,)在直线y =kx +b 上,∴,解得,∴直线解析式为y =x +;设直线与x 轴、y 轴的交点坐标分别为N 、M ,当x =0时,y =,当y =0时, x +=0,解得x =﹣4,∴点M 、N 的坐标分别为M (0,),N (﹣4,0),∴tan ∠MNO ===,作A 1C 1⊥x 轴与点C 1,A 2C 2⊥x 轴与点C 2,A 3C 3⊥x 轴与点C 3,∵A 1(1,1),A 2(,),∴OB 2=OB 1+B 1B 2=2×1+2×=2+3=5,tan ∠MNO ===,∵△B 2A 3B 3是等腰直角三角形,∴A 3C 3=B 2C 3,∴A 3C 3==()2,同理可求,第四个等腰直角三角形A 4C 4==()3,依此类推,点A n 的纵坐标是()n ﹣1.∴A2013=()2012故答案为:,()2012.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.【分析】先利用二次根式的除法法则和完全平方公式运算,然后把各二次根式化简为最简二次根式后合并即可.【解答】解:原式=8﹣4+1﹣(﹣)=9﹣4﹣2+=9﹣5.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:3x﹣2x+3=8,解得:x=5,把x=5代入①得y=7,则原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.【分析】(1)利用勾股定理求解可得;(2)分别作出点B与点C关于x轴的对称图形,再与点A首尾顺次连接即可得.【解答】解:(1)AC==,故答案为:;(2)所画图形如下所示,其中△DEF即为所求,【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点及勾股定理.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.【分析】设我市去年外来旅游的有x万人,外出旅游的有y万人,根据去年同期外来旅游比外出旅游的人数多20万人及今年外来与外出旅游的人数与去年人数之间的关系,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设我市去年外来旅游的有x万人,外出旅游的有y万人,根据题意得:,解得:.答:我市去年外来旅游的有100万人,外出旅游的有80万人,【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?【分析】(1)利用众数、中位数的定义分别计算即可;(2)利用平均数和方差的公式计算即可;(3)利用方差的意义进行判断.【解答】解:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;故答案为:85,100;(2)九(2)班的选手的得分分别为70,100,100,75,80,所以九(2)班成绩的平均数=(70+100+100+75+80)=85,九(2)班的方差S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160;(3)平均数一样的情况下,九(1)班方差小,所以九(1)班的成绩比较稳定.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了统计图.22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.【分析】(1)根据题意可以写出推理过程,从而可以解答本题;(2)根据三角形外角的性质和三角形的内角和即可得到结论..【解答】解:(1)证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换);故答案为:已知,两直线平行,同位角相等,∠α+∠C,(2)证明:∵∠CFN是△ACF的一个外角(三角形外角的定义),∴∠CFN=∠β+∠C(三角形的一个外角等于和它不相邻的两个内角的和),∵PQ∥MN(已知),∴∠CFN=∠α(两直线平行,同位角相等)∴∠α=∠β+∠C(等量代换).∵∠C=45°(已知),∴∠α=∠β+45°(等量代换).【点评】本题考查了三角形外角的性质,平行线的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为5km/h,放学回家的速度为3km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?【分析】(1)根据题意和图象中的数据可以求得小亮上学的速度和放学回家的速度;(2)根据图象中的数据和题意可以求得线段BC所表示的y与x之间的函数关系;(3)由题意可知,小明从家到超市和从超市到家的时间之和是总的时间减去两次经过超市的时间间隔,从而可以解答本题.【解答】解:(1)由题意可得,小明上学的速度为:3÷0.6=5km/h,放学回家的速度为:3÷(9.6﹣0.6﹣8)=3km/h,故答案为:5,3;(2)设线段BC所表示的y与x之间的函数关系式为y=kx+b,将B(8.6,3)、C(9.6,0)代入y=kx+b,得,得,∴线段BC所表示的y与x之间的函数关系式为y=﹣3x+28.8(8.6≤x≤9.6);(3)设超市离家skm,=9.6﹣8.48,解得:s=2.1.答:超市离家2.1km.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.【分析】(1)在Rt△ABC中,利用互余得到∠BAC=62°,再根据折叠的性质得∠CAE=∠CAB =31°,然后根据互余可计算出∠AEC=59°;(2)①在Rt△ABC中,利用勾股定理即可得到BC的长;②设DE=x,则EB=BC﹣CE=8﹣x,依据勾股定理可得,Rt△BDE中DE2+BD2=BE2,再解方程即可得到DE的长.【解答】解:(1)在Rt△ABC中,∠ABC=90°,∠B=28°,∴∠BAC=90°﹣28°=62°,∵△ACE沿着AE折叠以后C点正好落在点D处,∴∠CAE=∠CAB=×62°=31°,Rt△ACE中,∠ACE=90°∴∠AEC=90°﹣31°=59°.(2)①在Rt△ABC中,AC=6,AB=10,∴BC===8.②∵△ACE沿着AE折叠以后C点正好落在点D处,∴AD=AC=6,CE=DE,∴BD=AB﹣AD=4,设DE=x,则EB=BC﹣CE=8﹣x,∵Rt△BDE中,DE2+BD2=BE2,∴x2+42=(8﹣x)2,解得x=3.即DE的长为3.【点评】本题考查了折叠问题,折叠是一种对称变换,它属于轴对称,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,将△AOC 沿AC 折叠得到△ABC ,请解答下列问题:(1)点C 的坐标为 (5,0) ;(2)求线段OM 的长;(3)求点B 的坐标.【分析】(1)利用勾股定理求出OA 的长即可解决问题;(2)求出直线AC 的解析式,利用待定系数法即可解决问题;(3)只要证明AB =AC =5,AB ∥x 轴,即可解决问题;【解答】解:(1)∵A (﹣3,4),∴OA ==5,∴OA =OC =5,∴C (5,0),故答案为(5,0);(2)设直线AC 的解析式y =kx +b ,函数图象过点A 、C ,得,解得,∴直线AC 的解析式y =﹣x +,当x =0时,y =,即M (0,),∴OM =.(3)∵△AOC沿着AC折叠得到△ABC,∴OA=BA,OC=BC,且∠ACO=∠ACB,又∵OA=OC,∴AB=AC=OC,∴∠BAC=∠ACB,∴∠ACO=∠BAC,∴AB∥x轴,由(1)知,C(5,0),∴OC=5.∵AB=AC=OC,∴AB=5.∵A坐标为(﹣3,4),AB∥x轴,∴B坐标为(2,4).【点评】本题属于三角形综合题,考查了翻折变换,等腰三角形的性质,一次函数的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
北师大版2019—2020学年度八年级(上)期末考数学试卷(含答案)
河南省柘城县2015—2016学年度第一学期期末考试卷八年级数学一、选择题(每题3分,共24分): 1、 2的相反数是( )A 、2B 、-2C 、21-D 、212.下列满足条件的三角形中,不是直角三角形的是( )A.三内角之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:5 3.如果P (m +3,2m +4)在y 轴上,那么点P 的坐标是( )。
A . (—2,0)B .(0,—2)C .(1,0)D .(0,1)4. 已知直线y =kx -4(k <0)与两坐标轴所围成的三角形面积等于4,则直线的表达式为( )A .y =-2x -4B .y =-x -4C .y =-3x +4D .y =-3x -4 5、4的算术平方根是( )A 、2B 、16C 、±2D 、±16 6.方程组43235x y k x y -=⎧⎨+=⎩,的解中x 与y 的值相等,则k 等于( )A.2B.4C.3D.1 7.一组数据6、8、7、8、10、9的中位数和众数分别是( ) A .7和8B .8和7C .8和8D .8和98.如图,已知a ∥b ,0651=∠,则2∠的度数为( ) A. 065 B. 0125 C.0115 D. 025 二、填空题。
(每题3分,共计21分)9.某校六个绿化小组一天植树的棵数如下:10,11,12,13,8,x .若这组数据的平均数是11,则这组数据的众数是 _____ .10.在△ABC 中,AB =13 cm ,AC =20 cm ,BC 边上的高为12 cm ,则△ABC 的面积为____________ ..11.已知a ,b 为两个连续的整数,且a >28>b ,则a +b = _____ .12.设实数x ,y 满足方程组14,31 2.3x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩则x +y = ______ .13.函数2y x =与1y x =+的图象的交点坐标为________.14. 某段时间,小明连续7天测得日最高温度如下表所示,那么这7天的最高温度的平均温度是 ______ ℃. 温度(℃) 26 27 25 天数13315.如图,在△ABC中,∠A =60°,∠B =40°,点D 、E 分别在BC 、AC的延长线上,则∠1= ______ 。
沪教版2019-2020学年第一学期八年级数学上册期末考试复习试卷及答案
沪教版八年级数学上册期末考试复习试卷一.选择题(共15小题)1()A B+C D2.将根号外的因式移到根号内,得()A B.C.D3.实数a、b在数轴上位置如图,则化简||a b+为()A.a-B.3a-C.2b a+D.2b a-4.关于x的方程232ax x ax+=+是一元二次方程,那么()A.0a≠B.1a≠C.2a≠D.3a≠5.若2222440x xy y x-+-+=,那么yx-的值是()A.14B.4-C.14-D.46.过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x名同学,列方程为()A.1(1)3802x x-=B.(1)380x x-=C.2(1)380x x-=D.(1)380x x+=7.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.12(1)45x x-=B.12(1)45x x+=C.(1)45x x-=D.(1)45x x+=8.反比例函数kyx=的图象经过点(1,2)-,1(A x,1)y、2(B x,2)y是图象上另两点,其中12x x<<,那么1y、2y的大小关系是()A.12y y>B.12y y<C.12y y=D.都有可能9.已知函数y kx=中y随x的增大而减小,那么它和函数kyx=在同一直角坐标系内的大致图象可能是()A .B .C .D .10.已知函数(0)ky k x=≠中,在每个象限内,y 随x 的增大而增大,那么它和函数(0)y kx k =-≠在同一直角坐标平面内的大致图象是( )A .B .C .D .11.下列命题中是真命题的是( ) A .反比例函数2y x=,y 随x 的增大而减小B .一个三角形的三个内角的度数之比为1:2:3,则三边长度之比是1:2:3C .直角三角形中,斜边上的中线等于斜边上的高,则该直角三角形是等腰直角三角形D .如果1a =-,那么一定有a l < 12.下列命题的逆命题为假命题的是( )A .如果一元二次方程20(0)ax bx c a ++=≠没有实数根,那么240b ac -<.B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方.13.如图,在ABC ∆中,90C ∠=︒,12BC AB =,BD 平分ABC ∠,2BD =,则以下结论错误的是( )A .点D 在AB 的垂直平分线上 B .点D 到AB 的距离为1C .点A 到BD 的距离为2D .点B 到AC 14.如图,在ABC ∆中,20AB AC cm ==,DE 垂直平分AB ,垂足为E ,交AC 于D ,若DBC ∆的周长为35cm ,则BC 的长为( )A .5cmB .10cmC .15cmD .17.5cm15.如图字母B 所代表的正方形的面积是( )A .12B .13C .144D .194二.填空题(共17小题)161<+的解集是 .17.比较大小:< “”或“= “”或“>” )18= . 19.若224941250x y x y +--+=,则322x y += . 20.已知关于x 的方程221(2)104x m x m +-+-=有两个实数根,那么m 的取值范围是 .21.若关于x 的一元二次方程22(21)10a x a x +-+=有两个实数根,则a 的取值范围是 .22.如果关于x 的方程22(2)10m x m x --+=的两个实数根互为倒数,那么m = . 23.等腰ABC ∆中,8BC =,若AB 、AC 的长是关于x 的方程2100x x m -+=的根,则m 的值等于 .24.如图,在长为32米、宽为20米的长方形绿地内,修筑两条同样宽且分别平行于长方形相邻两边的道路,把绿地分成4块,这4块绿地的总面积为540平方米.如果设道路宽为x 米,由题意所列出关于x 的方程是 .25.某校六年级(1)班同学在“六一”节前夕,每个同学都向其他同学赠送纪念品一件,全班共送出纪念品870件,那么该班共有学生 人. 26.如图,已知两个反比例函数11:C y x =和21:3C y x=在第一象限内的图象,设点P 在1C 上,PC x ⊥轴于点C ,交2C 于点A ,PD y ⊥轴于点D ,交2C 于点B ,则四边形PAOB 的面积为 .27.如图,Rt ABC ∆中,90C ∠=︒,2BD CD =,AD 是BAC ∠的角平分线,CAD ∠= 度.28.如图:在Rt ABC ∆中,90C ∠=︒,AB 的垂直平分线EF 分别交BC 、AB 于点E 、F ,65AEF ∠=︒,那么CAE ∠= .29.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC a =,CE b =,H 是AF 的中点,那么CH 的长是 .(用含a 、b 的代数式表示)30.如图,三角形ABC 三边的长分别为22AB m n =-,2AC mn =,22BC m n =+,其中m 、n 都是正整数.以AB 、AC 、BC 为边分别向外画正方形,面积分别为1S 、2S 、3S ,那么1S 、2S 、3S 之间的数量关系为 .31.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,边AB 的垂直平分线DE 交AC 于D ,若10CD cm =,则AD = cm .32.把命题“等角的补角相等”改写成“如果⋯那么⋯”的形式是 . 三.解答题(共18小题)3303)+-.3426(31)+-+35-36.当t =的值.37.已知x =2623x x x -+-的值.38.解方程:2(3)3(3)0x x x -+-=39.用配方法解方程:212302x x -+=.40.某企业研制的产品今年第一季度的销售数量为300件,第二季度由于市场等因素,销售数量比第一季度减少了4%,从第三季度起,该企业搞了一系列的促销活动,销售数量又有所提升,第四季度的销售量达到了450件,假设第三季度与第四季度销售数量的增长率相同,求这个增长率.41.如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米. (1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽.42.某工地利用一面16米长的墙和简易板材围一个面积为140平方米的长方形临时堆场,已知和墙平行的一边要开一个宽为2米的门,除留作门以外部分的板材总长度为32米,求这个长方形临时堆场的尺寸.43.如图,利用长20米的一段围墙,用篱笆围一个长方形的场地,中间用篱笆分割出2个小长方形,总共用去篱笆36米,为了使这个长方形的ABCD的面积为96平方米,求AB、BC边各为多少米.44.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.45.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?46.已知:如图,点(1,)A m 是正比例函数1y k x =与反比例函数2k y x=的图象在第一象限的交点,AB x ⊥轴,垂足为点B ,ABO ∆的面积是2. (1)求m 的值以及这两个函数的解析式;(2)若点P 在x 轴上,且AOP ∆是以OA 为腰的等腰三角形,求点P 的坐标.47.如图,在平面直角坐标系中,OA OB ⊥,AB x ⊥轴于点C ,点A ,1)在反比例函数ky x=的图象上. (1)求反比例函数ky x=的表达式; (2)求AOB ∆的面积;(3)在坐标轴上是否存在一点P ,使得以O 、B 、P 三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P 的坐标:若不存在,简述你的理由.48.已知:如图,在BCD ∆中,CE BD ⊥于点E ,点A 是边CD 的中点,EF 垂直平分线AB (1)求证:12BE CD =;(2)当AB BC =,25ABD ∠=︒时,求ACB ∠的度数.49.已知:如图,BP 、CP 分别是ABC ∆的外角平分线,PM AB ⊥于点M ,PN AC ⊥于点N .求证:PA 平分MAN ∠.50.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O .求证:点O 到EB 与ED 的距离相等.参考答案一.选择题(共15小题)1( )A B +CD2x y ==+, 故选:C .2.将根号外的因式移到根号内,得( )A B .C .D解:== 故选:B .3.实数a 、b 在数轴上位置如图,则化简||a b +为( )A .a -B .3a -C .2b a +D .2b a -解:0b a <<,且||||b a >, 0a b ∴+<,∴||a b +()a b a a b =----- 3a =-,故选:B .4.关于x 的方程232ax x ax +=+是一元二次方程,那么( ) A .0a ≠B .1a ≠C .2a ≠D .3a ≠解:232ax x ax +=+,2(3)20ax a x +-+=,依题意得:0a ≠. 故选:A .5.若2222440x xy y x -+-+=,那么y x -的值是( ) A .14B .4-C .14-D .4解:2222440x xy y x -+-+=,2222440x xy y x x ∴-++-+=, 22()(2)0x y x ∴-+-=,∴020x y x -=⎧⎨-=⎩, 解得22x y =⎧⎨=⎩.∴原式2124-==. 故选:A .6.过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( )A .1(1)3802x x -=B .(1)380x x -=C .2(1)380x x -=D .(1)380x x +=解:设全班有x 名同学,由题意得: (1)380x x -=,故选:B .7.有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( ) A .12 (1)45x x -= B .12(1)45x x += C .(1)45x x -= D .(1)45x x +=解:有x 支球队参加篮球比赛,每两队之间都比赛一场, ∴共比赛场数为1(1)2x x -, ∴共比赛了45场, ∴1(1)452x x -=, 故选:A . 8.反比例函数ky x=的图象经过点(1,2)-,1(A x ,1)y 、2(B x ,2)y 是图象上另两点,其中120x x <<,那么1y 、2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .都有可能解:反比例函数ky x=的图象经过点(1,2)-, 2k ∴=-,∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,120x x <<,1(A x ∴,1)y 、2(B x ,2)y 两点均位于第二象限,12y y ∴<.故选:B .9.已知函数y kx =中y 随x 的增大而减小,那么它和函数ky x=在同一直角坐标系内的大致图象可能是( )A .B .C .D .解:函数y kx =中y 随x 的增大而减小, 0k ∴<,∴函数y kx =的图象经过二、四象限,故可排除A 、B ;0k <, ∴函数ky x=的图象在二、四象限,故C 错误,D 正确. 故选:D . 10.已知函数(0)ky k x=≠中,在每个象限内,y 随x 的增大而增大,那么它和函数(0)y kx k =-≠在同一直角坐标平面内的大致图象是( )A.B.C.D.解:函数kyx=中,在每个象限内,y随x的增大而增大,k∴<,∴双曲线在第二、四象限,∴函数y kx=-的图象经过第一、三象限,故选:A.11.下列命题中是真命题的是()A.反比例函数2yx=,y随x的增大而减小B.一个三角形的三个内角的度数之比为1:2:3,则三边长度之比是1:2:3C.直角三角形中,斜边上的中线等于斜边上的高,则该直角三角形是等腰直角三角形D.如果1a=-,那么一定有a l<解:A、反比例函数2yx=,在第一、三象限,y随x的增大而减小,本说法是假命题;B、一个三角形的三个内角的度数之比为1:2:3,这三个角的度数分别为30︒、60︒、90︒,则三边长度之比是2,本说法是假命题;C、直角三角形中,斜边上的中线等于斜边上的高,则该直角三角形是等腰直角三角形是真命题;D1a=-,那么一定有a l…,本说法是假命题;故选:C.12.下列命题的逆命题为假命题的是( )A .如果一元二次方程20(0)ax bx c a ++=≠没有实数根,那么240b ac -<.B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方.解:A 、逆命题为:如果一元二次方程20(0)ax bx c a ++=≠中240b ac -<,那么没有实数根,正确,是真命题;B 、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,为真命题;C 、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;D 、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题, 故选:C .13.如图,在ABC ∆中,90C ∠=︒,12BC AB =,BD 平分ABC ∠,2BD =,则以下结论错误的是( )A .点D 在AB 的垂直平分线上 B .点D 到AB 的距离为1C .点A 到BD 的距离为2 D .点B 到AC 解:在ABC ∆中,90C ∠=︒,12BC AB =, 30A ∴∠=︒, 60ABC ∴∠=︒,BD 平分ABC ∠, 30ABD CBD ∴∠=∠=︒,A ABD ∴∠=∠,112CD BD ==, 2AD BD ∴==,∴点D 在AB 的垂直平分线上,过D 作DE AB ⊥于E , 1DE DC ∴==,∴点D 到AB 的距离为1,BC ==∴点B 到AC ,过A 作AF BD ⊥交BD 的延长线于F , 12AF AB BC ∴===,∴点A 到BD ,故选:C .14.如图,在ABC ∆中,20AB AC cm ==,DE 垂直平分AB ,垂足为E ,交AC 于D ,若DBC ∆的周长为35cm ,则BC 的长为( )A .5cmB .10cmC .15cmD .17.5cm解:DBC ∆的周长35BC BD CD cm =++=(已知) 又DE 垂直平分ABAD BD ∴=(线段垂直平分线的性质)故35BC AD CD cm ++= 20AC AD DC =+=(已知) 352015BC cm ∴=-=.故选:C .15.如图字母B 所代表的正方形的面积是( )A .12B .13C .144D .194解:由题可知,在直角三角形中,斜边的平方169=,一直角边的平方25=,根据勾股定理知,另一直角边平方16925144=-=,即字母B 所代表的正方形的面积是144. 故选:C .二.填空题(共17小题)161<+的解集是 x <1<x <x <+故答案为x <+17.比较大小:3< “”或“= “”或“>” )解:23=,23∴-<故答案为:<.184- .解:原式|44=-=-,4.19.若224941250x y x y +--+=,则322x y += 2 . 解:222222494125(441)(9124)(21)(32)0x y x y x x y y x y +--+=-++-+=-+-=, 210x ∴-=且320y -=,解得:12x =,23y =, 则3132221122223x y +=⨯+⨯=+=. 故答案为:220.已知关于x 的方程221(2)104x m x m +-+-=有两个实数根,那么m 的取值范围是2m … .解:关于x 的方程221(2)104x m x m +-+-=有两个实数根,∴△221(2)41(1)4804m m m =--⨯⨯-=-+…,2m ∴….故答案为:2m ….21.若关于x 的一元二次方程22(21)10a x a x +-+=有两个实数根,则a 的取值范围是 14a …且0a ≠ .解:根据题意得20a ≠且△22(21)40a a =--…, 解得14a …且0a ≠. 故答案为14a …且0a ≠. 22.如果关于x 的方程22(2)10m x m x --+=的两个实数根互为倒数,那么m = 1- . 解:方程22(2)10m x m x --+=的两个实数根互为倒数, ∴211m =,解得1m =或1m =-, 当1m =时,方程变形为210x x ++=,△141130=-⨯⨯=-<,方程没有实数解, 所以m 的值为1-. 故答案为:1-.23.等腰ABC ∆中,8BC =,若AB 、AC 的长是关于x 的方程2100x x m -+=的根,则m 的值等于 25或16 .解:当8AB BC ==,把8x =代入方程得64800m -+=,解得16m =, 此时方程为210160x x -+=,解得18x =,22x =;当AB AC =,则10AB AC +=,所以5AB AC ==,则5525m =⨯=.故答案为25或16.24.如图,在长为32米、宽为20米的长方形绿地内,修筑两条同样宽且分别平行于长方形相邻两边的道路,把绿地分成4块,这4块绿地的总面积为540平方米.如果设道路宽为x 米,由题意所列出关于x 的方程是 (20)(32)540x x --= .解:设道路的宽为x 米.依题意得: (32)(20)540x x --=,故答案为:(32)(20)540x x --=.25.某校六年级(1)班同学在“六一”节前夕,每个同学都向其他同学赠送纪念品一件,全班共送出纪念品870件,那么该班共有学生 30 人. 解:设有x 人,则 (1)870x x -=30x =或29x =-(舍去). 全班共有30人. 故答案为:30.26.如图,已知两个反比例函数11:C y x =和21:3C y x=在第一象限内的图象,设点P 在1C 上,PC x ⊥轴于点C ,交2C 于点A ,PD y ⊥轴于点D ,交2C 于点B ,则四边形PAOB 的面积为3.解:PC x ⊥轴,PD y ⊥轴,11111||23236AOC BOD S S ∆∆∴===⨯=,1PCOD S =矩形, ∴四边形PAOB 的面积121263=-⨯=, 故答案为23.27.如图,Rt ABC ∆中,90C ∠=︒,2BD CD =,AD 是BAC ∠的角平分线,CAD ∠= 30 度.解:过点D 作DE AB ⊥于E 点,AD 是BAC ∠的角平分线,DC AC ⊥,DE AB ⊥, DC DE ∴=. 2BD CD =,2BD DE ∴=. 30B ∴∠=︒. 90C ∠=︒, 60CAB ∴∠=︒.160302CAD ∴∠=⨯︒=︒. 故答案为30.28.如图:在Rt ABC ∆中,90C ∠=︒,AB 的垂直平分线EF 分别交BC 、AB 于点E 、F ,65AEF ∠=︒,那么CAE ∠= 40︒ .解:AB 的垂直平分线EF 分别交BC 、AB 于点E 、F ,AF BF ∴=,EF AB ⊥, AE BE ∴=,65BEF AEF ∴∠=∠=︒, 130AEB ∴∠=︒, 90C ∠=︒,40CAE AEB C ∴∠=∠-∠=︒,故答案为:40︒.29.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC a =,CE b =,H 是AF 的中点,那么CH (用含a 、b 的代数式表示)解:连接AC 、CF ,在正方形ABCD 和正方形CEFG 中, 45ACG ∠=︒,45FCG ∠=︒, 90ACF ∴∠=︒, BC a =,CE b =,AC ∴=,CF =,由勾股定理得,AF == 90ACF ∠=︒,H 是AF 的中点,CH ∴=30.如图,三角形ABC 三边的长分别为22AB m n =-,2AC mn =,22BC m n =+,其中m 、n 都是正整数.以AB 、AC 、BC 为边分别向外画正方形,面积分别为1S 、2S 、3S ,那么1S 、2S 、3S 之间的数量关系为 123S S S += .解:22AB m n =-,2AC mn =,22BC m n =+,222AB AC BC ∴+=,ABC ∴∆是直角三角形,设Rt ABC ∆的三边分别为a 、b 、c ,21S c ∴=,22S b =,23S a =,ABC ∆是直角三角形,222b c a ∴+=,即123S S S +=.故答案为:123S S S +=.31.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,边AB 的垂直平分线DE 交AC 于D ,若10CD cm =,则AD = 20 cm .解:DE 是边AB 的垂直平分线,10DE CD cm ∴==,DE AB ⊥,30A ∠=︒,220AD DE cm ∴==,故答案为:20.32.把命题“等角的补角相等”改写成“如果⋯那么⋯”的形式是 如果两个角是等角的补角,那么它们相等 .解:题设为:两个角是等角的补角,结论为:相等,故写成“如果⋯那么⋯”的形式是:如果两个角是等角的补角,那么它们相等. 故答案为:如果两个角是等角的补角,那么它们相等.三.解答题(共18小题)3303)+-.解:原式|3|1=-+3)1=--+31=++4=-3426(31)+-+解:原式311)=+-+42=+-2=+.35-解:原式2=+-2=++.36.当t =的值.解:当t ==|3|t =-|3=-3=-37.已知x =2623x x x -+-的值. 解:x ==3=+ 原式2(3)293x x -+-=-====. 38.解方程:2(3)3(3)0x x x -+-=解:2(3)3(3)0x x x -+-=,(3)(23)0x x ∴-+=,则30x -=或230x +=,解得:13x =,232x =-. 39.用配方法解方程:212302x x -+=. 解:239912()0216162x x -+-+=, 23912()0482x --+=, 2352()48x -= 235()416x -=34x -=x = 40.某企业研制的产品今年第一季度的销售数量为300件,第二季度由于市场等因素,销售数量比第一季度减少了4%,从第三季度起,该企业搞了一系列的促销活动,销售数量又有所提升,第四季度的销售量达到了450件,假设第三季度与第四季度销售数量的增长率相同,求这个增长率.解:设这个增长率是x ,根据题意,得2300(14%)(1)450x -+=, 整理,得225(1)16x +=, 解得10.25x =,2 2.25x =-(不合题意舍去).答:这个增长率是25%.41.如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽.解:(1)由图可知,花圃的面积为(402)(602)a a --;(2)由已知可列式:36040(402)(602)60408a a ⨯---=⨯⨯, 解得:15a =,245a =(舍去).答:所以通道的宽为5米.42.某工地利用一面16米长的墙和简易板材围一个面积为140平方米的长方形临时堆场,已知和墙平行的一边要开一个宽为2米的门,除留作门以外部分的板材总长度为32米,求这个长方形临时堆场的尺寸.解:如图,设这个长方形临时堆场垂直于墙面的一边为x 米,则平行于墙面的一边为(3222)x -+米,根据题意有,(342)140x x -=,解得7x =或10x =,其中7x =时,3422016x -=>,所以10x =.答:这个长方形垂直于墙面的一边为10米,平行于墙面的一边为14米.43.如图,利用长20米的一段围墙,用篱笆围一个长方形的场地,中间用篱笆分割出2个小长方形,总共用去篱笆36米,为了使这个长方形的ABCD的面积为96平方米,求AB、BC边各为多少米.解:设AB为x米,则BC为(363)x-米,(363)96x x-=解得:14x=,28x=当4x=时3632420x-=>(不合题意,舍去)当8x=时36312x-=.答:8AB=米,12BC=米.44.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长 2 千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.解:(1)由题意和图象可得,小强去学校时下坡路为:312-=(千米),故答案为:2;(2)小强下坡的速度为:2(106)0.5÷-=千米/分钟,故答案为:0.5;(3)小强上坡时的速度为:1166÷=千米/分钟, 故小强回家骑车走这段路的时间是:211410.56+=(分钟), 故答案为:14.45.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y (毫克)与时间x (时)成正比例;药物释放结束后,y 与x 成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y 与x 之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?解:(1)药物释放过程中,y 与x 成正比,设(0)y kx k =≠,函数图象经过点(2,1)A ,12k ∴=,即12k =, 12y x ∴=; 当药物释放结束后,y 与x 成反比例,设(0)k y k x ''=≠, 函数图象经过点(2,1)A ,212k '∴=⨯=,2y x∴=;(2)当0.25y =时,代入反比例函数2y x=,可得 8x =, ∴从药物释放开始,至少需要经过8小时,学生才能进入教室.46.已知:如图,点(1,)A m 是正比例函数1y k x =与反比例函数2k y x=的图象在第一象限的交点,AB x ⊥轴,垂足为点B ,ABO ∆的面积是2.(1)求m 的值以及这两个函数的解析式; (2)若点P 在x 轴上,且AOP ∆是以OA 为腰的等腰三角形,求点P 的坐标.解:(1)ABO ∆的面积是2,2224k ∴=⨯=,∴反比例函数的解析式为4y x=. 当1x =时,44m x==, ∴点A 的坐标为(1,4). 又点(1,4)A 在正比例函数1y k x =的图象上,14k ∴=,∴正比例函数的解析式为4y x =.(2)AOP ∆是以OA 为腰的等腰三角形,OA OP ∴=或OA AP =.①当OA OP =时,点A 的坐标为(1,4),OA ∴==,OP ∴=,∴点P 的坐标为(,0)或,0);②当OA AP=时,22OP OB==,∴点P的坐标为(2,0).综上所述:点P的坐标为(,0),0),(2,0).47.如图,在平面直角坐标系中,OA OB⊥,AB x⊥轴于点C,点A,1)在反比例函数kyx=的图象上.(1)求反比例函数kyx=的表达式;(2)求AOB∆的面积;(3)在坐标轴上是否存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P的坐标:若不存在,简述你的理由.解:(1)将A1)代入kyx=,得:1=,解得:k=∴反比例函数的表达式为y=.(2)点A的坐标为,1),AB x⊥轴于点C,OC∴=1AC=,22OA AC∴===,30AOC∴∠=︒.OA OB ⊥,90AOB ∴∠=︒,30B AOC ∴∠=∠=︒,24AB OA ∴==,11422AOB S AB OC ∆∴==⨯= (3)在Rt AOB ∆中,2OA =,90AOB ∠=︒,30ABO ∠=︒,tan 30OA OB ∴==︒. 分三种情况考虑: ①当OP OB =时,如图2所示,2OB =,OP ∴=,∴点P 的坐标为(-0),0),(0,-,(0,; ②当BP BO =时,如图3,过点B 做BD y ⊥轴于点D ,则3OD BC AB AC ==-=, BP BO =,2OP OC ∴==或26OP OD ==,∴点P 的坐标为0),(0,6)-;③当PO PB =时,如图4所示.若点P 在x 轴上,PO PB =,60BOP ∠=︒,BOP ∴∆为等边三角形,OP OB ∴==,∴点P 的坐标为0);若点P 在y 轴上,设OP a =,则3PD a =-,PO PB =,222PB PD BD ∴=+,即222(3)1a a =-+,解得:2a =,∴点P 的坐标为(0,2)-.综上所述:在坐标轴上存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形,点P的坐标为(-,0),0),(0,-,(0,,(0,6)-.-,(0,2)48.已知:如图,在BCD⊥于点E,点A是边CD的中点,EF垂直平分线AB ∆中,CE BD(1)求证:12BE CD =; (2)当AB BC =,25ABD ∠=︒时,求ACB ∠的度数.【解答】(1)证明:连接AE ,CE BD ⊥,点A 是边CD 的中点,12AE AD CD ∴==, EF 垂直平分线AB ,EA EB ∴=,12BE CD ∴=; (2)EA EB =,25EAB ABD ∴∠=∠=︒,50AED EAB ABD ∴∠=∠+∠=︒,EA AD =,50D AED ∴∠=∠=︒,75BAC ABD D ∴∠=∠+∠=︒,AB BC =,75ACB BAC ∴∠=∠=︒.49.已知:如图,BP 、CP 分别是ABC ∆的外角平分线,PM AB ⊥于点M ,PN AC ⊥于点N .求证:PA 平分MAN ∠.【解答】证明:作PD BC ⊥于点D , BP 是ABC ∆的外角平分线,PM AB ⊥,PD BC ⊥, PM PD ∴=,同理,PN PD =,PM PN ∴=,又PM AB ⊥,PN AC ⊥, PA ∴平分MAN ∠.50.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O .求证:点O 到EB 与ED 的距离相等.【解答】证明://AD BC ,180ADC BCD ∴∠+∠=︒, DB 平分ADC ∠,CE 平分BCD ∠, 90ODC OCD ∴∠+∠=︒,90DOC ∴∠=︒,又CE 平分BCD ∠, CB CD ∴=,OB OD ∴=,CE ∴是BD 的垂直平分线,EB ED ∴=,又90DOC ∠=︒, EC ∴平分BED ∠, ∴点O 到EB 与ED 的距离相等.。
2019-2020年八年级数学上学期期末考试试题 北师大版
2019-2020年八年级数学上学期期末考试试题 北师大版 沉着、冷静、快乐地迎接期末考试,相信你能行! 一、单选题:(每小题3分,满分30分。
请将最恰当的序号填在答题卡相应的空格内) 1、下列各式中计算正确的是( )A. B. C. D.2、在给出的一组数0,,,3.14,,中,无理数有( )A .5个B .3个C .1个D .4个3、一个直角三角形的三边分别是6cm 、8cm 、Xcm ,则X=( )cmA .100cmB .10cmC .10cm 或cmD .100cm 或28cm若与是同类项,则( )A.x=1,y=2B.x=3,y=-1,C.x=0,y=2D.x=2,y=-15、设a=a 在两个相邻整数之间,则这两个整数是( )A.1和2B.2和3C.3和4D.4和56、若用a 、b 表示的整数部分和小数部分,则a 、b 可表示为( )A .4和B .3和C .2和D .5和7、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5m ,消防车的云梯底端距地面1m ,云梯的最大伸长为13m ,则云梯可以达到该建筑物的最大高度是( )A.16mB.13mC.14mD.15m点(4,﹣3)关于X 轴对称的点的坐标是 ( )A.(﹣4,3) B .(4,-3) C.(﹣4,-3) D .(4,3)已知函数y=kx 中k>0,则函数y=-kx+k 的图象经过( )象限。
A.一、二、三B.二、三、四C.一、二、四D.一、三、四正方形ABCD 中,在AB 边上有一定点E,AE=3cm,EB=1cm,在AC 上有一动点P,若使得EP+BP 的和最小,则EP+BP 的最短距离为 。
A.5cmB.4 cmC.3cmD.4.8cm填空题:(每小题4分,满分32分。
)11、 的平方根是 。
12、已知点P(5,-2),点Q (3,a+1),且直线PQ 平行于x 轴,则a= 。
13、如果03)4(2=-+-+y x y x ,那么的值为 。
湖北省宜昌市2020版八年级上学期数学期末考试试卷A卷
湖北省宜昌市2020版八年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共17分)1. (2分)在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形,就可以过关,那么一次过关的概率是()A .B .C .D .2. (2分) (2017七下·防城港期中) 在实数范围内,下列判断正确的是()A . 若|m|=|n|,则m=nB . 若a2>b2 ,则a>bC . 若 =() 2 ,则a=bD . 若 = ,则a=b3. (2分) (2017七下·安顺期末) 下列调查适合抽样调查的是()A . 审核书稿中的错别字B . 对某社区的卫生死角进行调查C . 对八名同学的身高情况进行调查D . 对中学生目前的睡眠情况进行调查4. (2分)(2018·定兴模拟) 如图,已知一商场自动扶梯的长l为13米,高度h为5米,自动扶梯与地面所成的夹角为θ,则tanθ的值等于()A .B .C .D .5. (2分)己知AB=6cm,P是到A,B两点距离相等的点,则AP的长为()A . 3cmB . 4cmC . 5cmD . 不能确定6. (2分)如图,△ABC和△A′B′C′关于直线对称,下列结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,正确的有()A . 4个B . 3个C . 2个D . 1个7. (2分) (2016七下·高密开学考) 平面上有3条直线,则交点可能是()A . 1个B . 1个或3个C . 1个或2个或3个D . 0个或1个或2个或3个8. (2分)对于代数式ax2﹣2bx﹣c,当x取﹣1时,代数式的值为2,当x取0时,代数式的值为1,当x 取3时,代数式的值为2,则当x取2时,代数式的值是()A . 1B . 3C . 4D . 59. (1分)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1 ,那么点A的对应点A1的坐标为________.二、填空题 (共9题;共10分)10. (2分) (2017七下·西城期中) =________. =________.11. (1分)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是________ 支.12. (1分) -6+0=________13. (1分)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)14. (1分)(2014·河池) 如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地________千米(结果可保留根号).15. (1分) (2017八上·湛江期中) 如图,△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于点E,且BC=8cm,BD=5cm,则DE=________cm.16. (1分) (2014九上·宁波月考) 复习课中,教师给出关于x的函数y=2kx2-(4k+1)x-k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论,教师作为活动一员,又补充一些结论,并从中选出如下四条:①存在函数,其图象经过(1,0)点;②存在函数,该函数的函数值y始终随x的增大而减小;③函数图象有可能经过两个象限;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.其中正确的结论有________.17. (1分) (2017八下·海安期中) 已知平面内点A的坐标为(m+1,2-3m),无论m取何值,直线y=kx-2都不会经过点A,则k的值是________.18. (1分)如图,在△ABC中,AB=AC=10cm,AB的垂直平分线交AC于点D,且△BCD的周长为17cm,则BC=________ cm.三、解答题 (共10题;共96分)19. (10分) (2017七下·宜春期末) 综合题(1)计算:+-(2)解方程组:20. (5分) (2020八上·赣榆期末) 某学校要对如图所示的一块地进行绿化,已知,,,,,求这块地的面积.21. (8分)(2017·丹东模拟) 2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1) m=________,n=________;(2)在扇形统计图中,D组所占圆心角的度数为________度;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?22. (10分)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值(2)23. (15分) (2016八上·苏州期中) 如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C运动,设点P运动的时间为t秒.(1)当t为何值时,点P与点A的距离为5cm?(2)当t为何值时,△APD是等腰三角形?(3)当t为何值时,(2<t<5),以线段AD、CP、AP的长度为三边长的三角形是直角三角形,且AP是斜边?24. (15分)(2019·宜兴模拟) 如图,在平面直角坐标系中,过A(-2,0),C(0,6)两点的抛物线y=- x2+ax+b与x轴交于另一点B,点D是抛物线的顶点.备用图(1)求a、b的值;(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.随着点P的运动,若以A、P、Q、C为顶点的四边形是平行四边形,请直接写出符合条件的点Q的坐标;(3)在直线AC上是否存在一点M,使△BDM的周长最小,若存在,请找出点M并求出点M的坐标.若不存在,请说明理由。
八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案
八年级数学上册2019-2020学年八年级(上)期末名校校考试卷及答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.243.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.56.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.68.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=4010.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是.12.如图中的5个数据的标准差是.13.若无意义,且分式的值等于零,那么=.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是.17.如果,那么.18.已知关于的分式的解是非负数,则k的取值范围是.19.若,则K=.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了米.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4922.解方程:.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是三角形.(2)若OB=5,OC=3,求OA的长.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.参考答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【考点】R5:中心对称图形.【专题】1:常规题型.【分析】直接利用中心对称图形的性质得出答案.【解答】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.24【考点】K3:三角形的面积;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】由▱ABCD的对角线相交于点O,可得OA=OC,OB=OD,然后根据三角形中线的性质,求得S△COD=S△AOD=S△AOB=3,继而求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△BOC=S△COD=3,同理:S△COD=S△AOD=S△AOB=3,∴S▱ABCD=4S△COD=12.故选:B.3.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°【考点】L3:多边形内角与外角.【专题】55:几何图形.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数【考点】W A:统计量的选择.【专题】1:常规题型.【分析】11人成绩的中位数是第6名的成绩,要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.5【考点】W1:算术平均数;W4:中位数;W5:众数;W7:方差.【专题】1:常规题型;542:统计的应用.【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【解答】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1﹣3)2+(6﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2]=2.8,错误;故选:D.6.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x【考点】44:整式的加减;54:因式分解﹣运用公式法.【专题】1:常规题型.【分析】分①4x2是平方项,②4x2是乘积二倍项,③1是乘积二倍项,然后根据完全平方公式的结构解答.【解答】解:A、4x2+1+2x,无法运用完全平方公式分解因式,故此选项符合题意;B、4x2+1﹣4x=(2x﹣1)2,能运用完全平方公式分解因式,故此选项不符合题意;C、4x4+4x2+1=(2x2+1)2,能运用完全平方公式分解因式,故此选项不符合题意;D、4x2+1+4x=(2x+1)2,能运用完全平方公式分解因式,故此选项不符合题意;故选:A.7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.6【考点】Q3:坐标与图形变化﹣平移.【专题】558:平移、旋转与对称;69:应用意识.【分析】由题意可知平移后横坐标加1,纵坐标减5,由此求出a,b即可解决问题.【解答】解:由题意可知平移后横坐标加1,纵坐标减5,∴a=﹣1,b=1,∴a﹣b=﹣1﹣1=﹣2,故选:C.8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE 【考点】JB:平行线的判定与性质;R2:旋转的性质.【专题】1:常规题型.【分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE =BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选:C.9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=40【考点】B6:由实际问题抽象出分式方程.【专题】1:常规题型.【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【解答】解:小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是﹣=40,故选:C.10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3【考点】KJ:等腰三角形的判定与性质;KX:三角形中位线定理.【专题】17:推理填空题.【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是30%.【考点】W2:加权平均数.【专题】542:统计的应用;61:数感.【分析】根据权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如平日成绩占20%,期中成绩占30%,期末成绩占50%等.【解答】解:根据加权平均数的定义可知:期中成绩的权为30%.故答案为30%.12.如图中的5个数据的标准差是0.【考点】W8:标准差.【专题】543:概率及其应用;65:数据分析观念.【分析】由图知5个数据均为3,从而得出这组数据没有波动,即可得出答案.【解答】解:由图知这5个数据均为3,∴这组数据的标准差为0,故答案为:0.13.若无意义,且分式的值等于零,那么=2.【考点】62:分式有意义的条件;63:分式的值为零的条件.【专题】513:分式;66:运算能力.【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.【解答】解:∵无意义∴a+2=0,a=﹣2∵分式的值等于零,∴|b|﹣1=0,b﹣1≠0,∴b=﹣1,∴==2,故答案为2.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=72°.【考点】L5:平行四边形的性质.【分析】根据已知比例设∠A=2x,∠B=3x,再由两直线平行,同旁内角线补,可求角的度数.【解答】解:依题意设∠A=2x,∠B=3x,由平行四边形的性质,得∠A+∠B=180°,∴2x+3x=180°,解得x=36°,∴∠A=2x=72°,又∵∠A=∠C,∴∠C=72°.故答案为72°.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=3.【考点】KX:三角形中位线定理.【专题】557:梯形;67:推理能力.【分析】连接CF并延长交AB于G,证明△FDC≌△FBG,根据全等三角形的性质得到BG=DC=6,CF=FG,求出AG,根据三角形中位线定理计算,得到答案.【解答】解:连接CF并延长交AB于G,∵AB∥CD,∴∠FDC=∠FBG,在△FDC和△FBG中,,∴△FDC≌△FBG(ASA)∴BG=DC=6,CF=FG,∴AG=AB﹣BG=12﹣6=6,∵CE=EA,CF=FG,∴EF=AG=3,故答案为:3.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是平行四边形.【考点】LN:中点四边形.【专题】555:多边形与平行四边形;67:推理能力.【分析】首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG =AC,EF∥AC,EF=AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.【解答】解:这个图形一定是平行四边形,理由是:根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故答案为:平行四边形.17.如果,那么.【考点】RA:几何变换的类型.【专题】13:作图题;558:平移、旋转与对称;69:应用意识.【分析】观察图象的变化,根据旋转变换的性质轴对称的性质即可解决问题.【解答】解:由题意性质180,可得图形:18.已知关于的分式的解是非负数,则k的取值范围是k≤3且k≠1.【考点】B2:分式方程的解.【专题】522:分式方程及应用;66:运算能力.【分析】求出分式方程的解,根据解是非负数求出k的取值范围.【解答】解:去分母得:1+2(x﹣2)=x﹣k,解得:x=3﹣k,由题意得:3﹣k≥0,且3﹣k≠2,解得:k≤3且k≠1,∴k的取值范围是k≤3且k≠1,故答案为:k≤3且k≠1.19.若,则K=1.【考点】6B:分式的加减法.【专题】17:推理填空题;513:分式;66:运算能力.【分析】根据分式的加减和恒等关系即可求解.【解答】解:原式变形,得=∴3K=3,4K=4,解得K=1.故答案为1.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了180米.【考点】L3:多边形内角与外角.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了15×12=180(米).故答案为:180.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+49【考点】55:提公因式法与公式法的综合运用.【专题】512:整式;66:运算能力.【分析】(1)先提公因式,然后根据平方差公式分解即可;(2)根据完全平方公式和平方差公式分解即可.【解答】解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.22.解方程:.【考点】B3:解分式方程.【专题】11:计算题;16:压轴题.【分析】观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边都同乘以(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,化简,得x+2=3,解得:x=1.检验:把x=1代入(x﹣1)(x+2)=0.∴x=1不是原方程的解,原分式方程无解.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.【考点】6D:分式的化简求值;W6:极差.【专题】1:常规题型.【分析】先算括号内的减法,再把除法变成乘法,最后算乘法,再代入求出即可.【解答】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】16:压轴题.【分析】首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.【解答】解:结论:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(,﹣1).【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】13:作图题;558:平移、旋转与对称.【分析】(1)分别作出点A、B关于点C的对称点,再顺次连接可得;(2)由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对称点,顺次连接可得;(3)连接A1A2、B1B2,交点即为所求.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,点P即为对称中心,其坐标为(,﹣1),故答案为:(,﹣1).26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?【考点】W2:加权平均数;W4:中位数;W5:众数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)根据加权平均数、中位数、众数、方差的定义即可求解;(2)根据方差的结果进行判断即可.【解答】解:(1)7×20%+8×10%+4×10%+5×20%+6×(1﹣20%﹣10%﹣10%﹣20%)=6(千克);(4+5)÷2=4.5(千克);×[5×(6﹣4)2+2(6﹣5)2+2×(9﹣6)2+(12﹣6)2]=7.6(千克).故答案为6、4.5、7.6.(2)因为两家的平均周收入相同,周收入中位数和众数“哈罗单车”都大于“哈罗助力车”,而方差“哈罗单车”小于“哈罗助力车”,比较稳定.答:“哈罗单车”比较抢手.27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.【考点】B7:分式方程的应用.【专题】34:方程思想;522:分式方程及应用;69:应用意识.【分析】设这种篮球的标价为x元,根据数量=总价÷单价结合在B超市购买的数量比在A超市购买的数量多5个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种篮球的标价为x元,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:这种篮球的标价为50元.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是等边三角形.(2)若OB=5,OC=3,求OA的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;R2:旋转的性质.【专题】553:图形的全等;554:等腰三角形与直角三角形;558:平移、旋转与对称;67:推理能力.【分析】(1)由旋转的性质可得CO=CD,AD=BO,∠ACB=∠DCO=60°,可证△COD是等边三角形;(2)由等边三角形的性质可得OD=OC=3,∠CDO=60°,可得∠ADO=90°,由勾股定理可求OA的长.【解答】解:(1)∵将△BOC绕点C顺时针旋转后,得△ADC,∴△BOC≌△ADC,∴CO=CD,AD=BO=5,∠ACB=∠DCO=60°,∠BOC=∠ADC=150°,∴△COD是等边三角形,故答案为:等边;(2)∵△COD是等边三角形,∴OD=OC=3,∠CDO=60°,∴∠ADO=ADC﹣∠ODC=90°,∴AO2=AD2+OD2=9+25=34,∴AO=.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.【考点】KJ:等腰三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.。
2019-2020学年湖北省宜昌市八年级上期末考试数学模拟试卷及答案解析
2019-2020学年湖北省宜昌市八年级上期末考试数学模拟试卷一.选择题(共15小题,满分45分,每小题3分)1.下列卡通动物简笔画图案中,属于轴对称图形的是()A.B.C.D.2.已知等腰三角形顶角的度数是30°,则底角的度数为()A.60°B.65°C.70°D.75°3.在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y24.下列各式,(x+y),,(a+b)2中,分式的个数是()A.0B.1C.2D.35.若点P(2a﹣1,3)关于y轴对称的点为Q(3,b),则点M(a,b)关于x轴对称的点的坐标为()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)6.如图,△ABC≌△ADE,点E在BC边上,∠CAE=20°,则∠AED的度数为()A.60°B.90°C.80°D.20°7.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣6D.2.5×10﹣58.以下列长度的三条线段为边,能构成三角形的是()A.7,8,15B.15,20,4C.7,6,18D.6,7,59.在△ABC中,AC<BC,用尺规作图的方法在BC上确定一点D,使AD+CD=BC.根据作图痕迹判断,符合要求的是()A.B.C.D.10.分式的值不存在,则x的取值是()A.x=3B.x=﹣3C.x=2D.x=﹣211.下列各等式中,从左到右的变形是因式分解的是()A.x•(x﹣y)=x2﹣xy B.x2+3x﹣1=x(x+3)﹣1C.(x﹣y)2﹣y2=x(x﹣2y)D.x2﹣2=x(x﹣)12.小明同学在学习完全等三角形以后,思考怎么用三角板平分一个角,经过研究他得到一种方法:如图,在已知∠AOB的两边上,分别取OM=ON,再分别用三角板过点M,N 作OA,OB的垂线,交点为P,画射线OP,则△OMP≌△ONP,所以OP平分∠AOB.在此画图过程中△OMP≌△ONP的判定依据是()A.SSS B.SAS C.ASA D.HL13.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6B.7C.8D.1014.在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC 关于某条直线对称的格点三角形,最多能画()个.。
人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案
13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P
M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111
湖北省宜昌市2019-2020学年高二上学期期末考试数学试卷 Word版含答案
数学(全卷满分:150分考试用时:120分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线623=++yx在y轴上的截距为b,则=b( )A.3 B.-2 C.2 D.-32.已知椭圆)0(125222>=+mmyx的左焦点为)0,3(1-F,则=m( )A.3 B.4 C.9 D.163.等比数列}{na的前n项和aS nn+=3,则a的值为( )A.3 B.1 C.-3 D.-14.若原点在圆myx=++-22)4()3(的外部,则实数m的取值范围是( )A.m>25 B.m>5 C.0<m<25 D.0<m<55.数列}{na满足11=a,)(12*1Nnaann∈-=+,则=2019a( )A.1 B.2019 C.2020 D.-16.直线243=++yx与圆0222=-+xyx的位置关系是( )A.相离B.相切C.相交D.无法判断7.等差数列}{na中,484=+aa,610=a,则公差=d( )A.1B.2 C.-1 D.-28.过抛物线xy42=焦点的直线l交抛物线于),(11yxP,),(22yxQ两点,若421=+xx,则||PQ=( )A.8B.7 C.6 D.59.数列}{n a 的前n 项和为nS ,若)1(1+=n n a n ,则=5S ( )A .1B .56C .16D .13010.已知抛物线)0(2>=a ax y 的准线与圆07622=--+x y x 相切,则a 的值为( ) A .12 B .1 C .2 D .411.已知数列}{n a 为等差数列,若101011->>a a ,且它们的前n 项和n S 有最小值,则使得0<nS 的最大值n 为( )A .22B .21C .20D .1912.已知双曲线1C :)0,0(12222>>=-b a b y a x 的离心率为2,若抛物线2C :)0(22>=p py x 的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程是( )A .y x 162= B.y x 82=C .y x 3382=D .y x 33162=二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知直线0243:1=-+y x l ,直线022:2=++y x l ,则两条直线的交点坐标为________.14.已知数列}{n a 的通项公式a n =⎩⎪⎨⎪⎧3n +1(n 为奇数)2n -2(n 为偶数),则=+63a a_____.15.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共7升,下面4节的容积共17升,则第5节的容积为_____升.16.已知当抛物线型拱桥的顶点距水面2 m时,量得水面宽8 m,当水面升高1 m后,水面宽度是_____m.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知定点)3,1(-A,)2,4(B,以A、B为直径的端点作圆.(1)求圆的方程;(2)已知该圆与x轴有交点P,求交点P的坐标.18.(本小题满分12分)(1)已知直线472:1=++yxl与直线23:2=-+ymxl平行,求m的值;(2)已知直线1)1()2(:1=--++yaxal与直线2)32()1(:2=+++-yaxal互相垂直,求a的值.19.(本小题满分12分)已知}{na是首项为1的等比数列,数列}{nb满足21=b,52=b,且11+++=nnnnnababa.(1)求数列}{na的通项公式;(2)求数列}{nb的前n项和.20.(本小题满分12分)设1F 、2F 是椭圆E :)10(1222<<=+b b y x 的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点.(1)若椭圆的离心率21=e ,求椭圆的标准方程;(2)若直线l 的斜率为1,2AF 、AB、2BF 成等差数列,求b 的值.21.(本小题满分12分)已知数列}{n a 和}{n b 中,数列}{n a 的前n 项和为n S .若点),(n S n 在函数x x y 42+-=的图象上,点),(n b n 在函数xy 2=的图象上.(1)求数列}{n a 的通项公式; (2)求数列}{n n b a 的前n 项和nT .22.(本小题满分12分)已知抛物线)0(22>=p px y 的焦点为F ,点M 在抛物线上,且点M 的横坐标为4,5=MF .(1)求抛物线的方程;(2)设l 为过点)0,4(的任意一条直线,若l 交抛物线于A 、B 两点,求证:以AB 为直径的圆必过原点.数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20分)13.(-2,2)14.2015.316.三、解答题(本大题共6小题,共70分)17.[详细分析](1)由题意,圆心C 为AB 的中点)25,23(,圆的直径为26)23()41(22=-+--=AB∴圆的半径2262==AB r∴所求圆的方程为:213)25()23(22=-+-y x (或者写为一般方程:025322=+--+y x y x ) ------5分 (2)方法1.213)25()23(22=-+-y x ∴令0=y ,则213)25()23(22=+-x ,化简得:41)23(2=-x ∴2123=-x 或2123-=-x ∴2=x 或1=x ∴交点P 的坐标为(1,0),(2,0). ------10分方法2.025322=+--+y x y x 令0=y ,则0232=+-x x∴2=x 或1=x ∴交点P 的坐标为(1,0),(2,0). ------10分18.[详细分析] (1)由l 1:2x +7y +4=0. l 2:mx +3y -2=0.∵l 1∥l 2,24372-≠=∴m 解得76=m ------6分(2)方法1: l 1¡Íl 2,∴(a +2)(a -1)+(1-a )(2a +3)=0,解得a =±1. 将a =±1代入方程,均满足题意.故当a =1或a =-1时,直线l 1¡Íl 2. ------12分 方法2:由题意,直线l 1¡Íl 2,¢Ù若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0,显然垂直. ¢Ú若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.¢Û若1-a ¡Ù0,且2a +3¡Ù0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3,当l 1¡Íl 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1,所以a =-1.综上可知,当a =1或a =-1时,直线l 1¡Íl 2. ------12分 19.[详细分析](1)把1=n 代入已知等式得:21121a b a b a +=,∴1112123a b a b a a =-=. ------3分 ∴}{n a 是首项为1,公比为3的等比数列即:11331--=⋅=n n n a . ------6分(2)由已知得:311==-++nn n n a a b b ------8分∴}{n b 是首项为2,公差为3的等差数列即:13)1(32-=-+=n n b n ------10分232)132(2)(21nn n n b b n S n n +=-+=+=∴ ------12分20.[详细分析](1)求椭圆定义知:21112=-=b e ,解得:432=b . ------2分 ∴所求椭圆的标准方程为:14322=+y x . ------4分(2)由椭圆定义知|AF 2|+|AB |+|BF 2|=4,又2|AB |=|AF 2|+|BF 2|,得|AB |=43 ------6分设l 的方程式为y =x +c ,其中c =1-b 2,设A (x 1,y 1)、B (x 1,y 1),则A 、B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c x 2+y 2b 2=1,消去y 化简得:(1+b 2)x 2+2cx +1-2b 2=0. 则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b 21+b 2. ------9分因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|,即43=2|x 2-x 1|. ------10分则89=(x 1+x 2)2-4x 1x 2=4(1-b 2)(1+b 2)2-4(1-2b 2)1+b 2=()224b 1b 8+,解得b =22. ------12分 21.[详细分析](1)由已知得S n=-n 2+4n,------1分∵当n ≥2时,a n =S n -S n -1=-2n +5, ------3分又当n =1时,a 1=S 1=3,符合上式. ------4分∴a n=-2n + 5.------5分(2)由已知得b n=2n,a nb n=(-2n +5)·2n .------6分T n =3×21+1×22+(-1)×23+…+(-2n +5)×2n , 2T n =3×22+1×23+…+(-2n +7)×2n +(-2n +5)×2n +1.两式相减得T n =-6+(23+24+ (2)+1)+(-2n +5)×2n+ 1------9分=23(1-2n -1)1-2+(-2n +5)×2n +1-6=(7-2n )·2n +1-14.------12分22.[详细分析](1)由题意|MF |=4+p2=5,得p =2,故抛物线方程为y 2=4x .------4分(2)方法1:由题意,直线l 的斜率一定不为0,故可设其方程为4+=my x . ------6分设A (x 1,y 1)、B (x 2,y 2),由⎩⎨⎧=+=x y my x 442,得01642=--my y∴16,42121-==+y y m y y------9分∴1616161616)(4)4)(4(22212122121=++-=+++=++=m m y y m y y m my my x x -----10分∴x 1x 2+y 1y 2=0.又OA →·OB →=x 1x 2+y 1y 2=0,------11分∴OA⊥OB,∴以AB为直径的圆必过原点. ------12分方法2:当直线l 的斜率不存在时,其方程为x =4. 由⎩⎪⎨⎪⎧x =4y 2=4x ,得y =±4.∴|AB |=8,∴|AB |2=4,∴以AB 为直径的圆过原点. ------6分当直线l 的斜率存在时,设其方程为y =k (x -4)(k ¡Ù0).设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -4)y 2=4x,得k 2x 2-(4+8k 2)x +16k 2=0,∴x 1+x 2=4+8k 2k 2,x 1x 2=16.------9分∴y 1y 2=k 2(x 1-4)(x 2-4)=k 2[x 1x 2-4(x 1+x 2)+16]=k 2[16-4×4+8k 2k2+16=k 2(32-16-32k 2k 2)=-16,------10分∴x 1x 2+y 1y 2=0. 又OA →·OB →=x 1x 2+y 1y 2=0, ∴OA⊥OB,∴以AB为直径的圆必过原点. ------11分综上可知,以AB为直径的圆必过原点. ------12分。
【精选】2019-2020学年八年级数学第二学期期末模拟试卷及答案(九)
2019-2020学年八年级数学第二学期期末模拟试卷及答案(九)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥22.计算的结果是()A.a B.b C.1 D.﹣b3.己知反比例函数y=(k≠0)的图象经过点P(2,﹣3),则这个函数的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.下列根式中,与是同类二次根式的是()A.B. C. D.5.有40个数据,共分成6组,第1﹣4组的频数分别是10,5,7,6,第5组的频率为0.10,则第6组的频率为()A.0.25 B.0.30 C.0.15 D.0.206.如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25 B.20 C.15 D.107.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向红色区域的概率是()A.B.C.D.8.关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1 B.a>﹣1且a≠0 C.a<﹣1 D.a<﹣1且a≠﹣2 9.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E 是BC边上的一动点,M,N分别是AE、PE的中点,则随着点E的运动,线段MN长为()A.B.4C.2D.不确定10.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M,N,延长线段AB交x轴于点C,若OM=MN=NC,S△BNC=2,则k的值为()A.4 B.6 C.8 D.12二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.当x=______时,分式没有意义.12.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性______(选填“大于”“小于”或“等于”)是白球的可能性.13.如果+=0,则+=______.14.已知函数y=和y=3x+n的图象交于点A(﹣2,m),则n m=______.15.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.16.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=______.17.如图,在平面直角坐标系中,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A、B两点.若y1<y2,则x的取值范围是______.18.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为______.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.计算:×﹣+|﹣3|.20.解方程:.21.先化简,再求值:÷(m﹣),其中m=.22.如图,点O 是菱形ABCD 对角线的交点,CE ∥BD ,EB ∥AC ,连接OE .(1)求证:OE=CB ;(2)如果OC :OB=1:2,CD=,则菱形的面积为______.23.某报社为了解苏州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,其中有一个问题是:“您觉得雾霾天气对您哪方面的影响最大?”五个选项分别是;A .身体健康;B .出行;C .情绪不爽;D .工作学习;E .基本无影响,根据调查统计结果,绘制了不完整的三种统计图表.雾霾天气对您哪方面的影响最大百分比 A 、身体健康mB、出行15%C、情绪不爽10%D、工作学习nE、基本无影响5%(1)本次参与调查的市民共有______人,m=______,n=______;(2)请将图1的条形统计图补充完整;(3)图2所示的扇形统计图中A部分扇形所对应的圆心角是______度.24.已知函数y=(k﹣2)x为反比例函数.(1)求k的值;(2)若点A(x1,2)、B(x2﹣1)、C(x3,﹣)是该反比例函数的图象上的三点,则x1、x2、x3的大小关系是______(用“<”号连接);(3)当﹣3≤x≤﹣时,求y的取值范围.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?26.(10分)(2016春•张家港市期末)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.27.(10分)(2016•苏州一模)如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C 点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.28.(10分)(2016春•张家港市期末)如图,直线l1:y=﹣x+b 分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(______,______),B为(______,______);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2﹣x≥0,解得x≤2.故选C.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.计算的结果是()A.a B.b C.1 D.﹣b【考点】约分.【分析】约去分式的分子与分母的公因式ab即可.【解答】解:原式==b.故选:B.【点评】本题考查了约分.约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.3.己知反比例函数y=(k≠0)的图象经过点P(2,﹣3),则这个函数的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【考点】反比例函数的性质.【分析】先根据点的坐标求出k值,再利用反比例函数图象的性质即可求解.【解答】解:∵反比例函数y=(k≠0)的图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6<0,∴该反比例函数经过第二、四象限.故选:B.【点评】本题考查了反比例函数的性质.反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.首先利用待定系数法确定函数的表达式,再根据常数的正负确定函数图象经过的象限.4.下列根式中,与是同类二次根式的是()A.B. C. D.【考点】同类二次根式.【分析】把各选项中式子化为最简二次根式,利用同类二次根式定义判断即可.【解答】解:A、=2,与不是同类二次根式;B、=2,与是同类二次根式;C、与不是同类二次根式;D、与不是同类二次根式,故选B【点评】此题考查了同类二次根式,以及最简二次根式,熟练掌握同类二次根式定义是解本题的关键.5.有40个数据,共分成6组,第1﹣4组的频数分别是10,5,7,6,第5组的频率为0.10,则第6组的频率为()A.0.25 B.0.30 C.0.15 D.0.20【考点】频数与频率.【分析】有40个数据,第5组的频率为0.10;故可以求得第5组的频数,根据各组的频数的和是40,即可求得第6组的频数,利用频数除以频率即可求解.【解答】解:∵第5组的频率为0.10,∴第5组的频数为40×0.1=4,∴第6组的频数为40﹣(10+5+7+6+4)=8,故第6组的频率为=0.2.故本题选D.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系频率=.6.如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25 B.20 C.15 D.10【考点】菱形的性质.【分析】由于四边形ABCD是菱形,AC是对角线,根据菱形对角线性质可求∠BAC=60°,而AB=BC=AC,易证△BAC是等边三角形,结合△ABC的周长是15,从而可求AB=BC=5,那么就可求菱形的周长.【解答】解:∵四边形ABCD是菱形,AC是对角线,∴AB=BC=CD=AD,∠BAC=∠CAD=∠BAD,∴∠BAC=60°,∴△ABC是等边三角形,∵△ABC的周长是15,∴AB=BC=5,∴菱形ABCD的周长是20.故选B.【点评】本题考查了菱形的性质、等边三角形的判定和性质.菱形的对角线平分对角,解题的关键是证明△ABC是等边三角形.7.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向红色区域的概率是()A.B.C.D.【考点】几何概率.【分析】首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向红色区域的概率.【解答】解:∵圆被等分成6份,其中红色部分占3份,∴落在阴影区域的概率=.故选B【点评】此题考查几何概率问题,关键是根据概率=相应的面积与总面积之比解答.8.关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1 B.a>﹣1且a≠0 C.a<﹣1 D.a<﹣1且a≠﹣2 【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.【解答】解:去分母得,2x+a=x﹣1∴x=﹣1﹣a∵方程的解是正数∴﹣1﹣a>0即a<﹣1又因为x﹣1≠0∴a≠﹣2则a的取值范围是a<﹣1且a≠﹣2故选:D.【点评】由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式,另外,解答本题时,易漏掉a≠﹣2,这是因为忽略了x ﹣1≠0这个隐含的条件而造成的,这应引起同学们的足够重视.9.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E 是BC边上的一动点,M,N分别是AE、PE的中点,则随着点E的运动,线段MN长为()A.B.4C.2D.不确定【考点】矩形的性质;三角形中位线定理.【分析】连接AP,根据矩形的性质求出AP的长度,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP,问题得解.【解答】解:连接AP,∵矩形ABCD中,AB=DC=4,P是CD边上的中点,∴DP=2,∴AP==2,连接AP,∵M,N分别是AE、PE的中点,∴MN是△AEP的中位线,∴MN=AP=.故选A.【点评】本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP的值是解题的关键.10.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M,N,延长线段AB交x轴于点C,若OM=MN=NC,S△BNC=2,则k的值为()A.4 B.6 C.8 D.12【考点】反比例函数系数k的几何意义;相似三角形的判定与性质.【分析】由BN∥AM可判断△CNB∽△CMA,根据相似的性质得S:S△CMA=()2=,则S△CMA=8,由于OM=MN=NC,根据三△CNB角形面积公式得到S△AOM=S△AMC=4,然后根据反比例函数k的几何意义得到S△AOM=|k|=4,再去绝对值易得k的值.【解答】解:∵BN∥AM,MN=NC,∴△CNB∽△CMA,∴S△CNB:S△CMA=()2=()2=,而S△BNC=2,∴S△CMA=8,∵OM=MN=NC,∴OM=MC,∴S△AOM=S△AMC=4,∵S△AOM=|k|,∴|k|=4,∴k=8.故选(C)【点评】本题主要考查了反比例函数的比例系数k的几何意义以及相似三角形的判定与性质.从反比例函数y=(k≠0)图象上任意一点向x轴或y轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.当x=3时,分式没有意义.【考点】分式有意义的条件.【分析】根据分式没有意义,分母等于0列式计算即可得解.【解答】解:根据题意得,x﹣3=0,解得x=3.故答案为:3.【点评】本题考查的知识点为:分式无意义,分母为0.12.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.【点评】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.13.如果+=0,则+=.【考点】二次根式的化简求值;非负数的性质:算术平方根.【分析】直接利用二次根式的性质得出a,b的值,进而利用二次根式加减运算法则求出答案.【解答】解:∵ +=0,∴a=2,b=3,则+=+=.故答案为:.【点评】此题主要考查了二次根式的化简求值以及非负数的性质,正确化简二次根式是解题关键.14.已知函数y=和y=3x+n的图象交于点A(﹣2,m),则n m=.【考点】反比例函数与一次函数的交点问题.【分析】根据点A在y=的图象上,求出m的值,代入一次函数解析式求出n的值,计算即可.【解答】解:∵点A(﹣2,m)在y=的图象上,∴m==﹣1,则点A的坐标为(﹣2,﹣1),∴﹣1=3×(﹣2)+n,解得,n=7,则n m=,故答案为:.【点评】本题考查的是反比例函数与一次函数的交点问题、负整数指数幂的性质,掌握函数图象上点的坐标特征是解题的关键.15.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】利用直角三角形斜边上的中线等于斜边的一半,可求出DF 的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长【解答】解:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.【点评】本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.16.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=2.【考点】平行四边形的性质.【分析】根据角平分线的定义可得∠1=∠2,再根据两直线平行,内错角相等可得∠2=∠3,∠1=∠F,然后求出∠1=∠3,∠4=∠F,再根据等角对等边的性质可得AD=DE,CE=CF,根据平行四边形对边相等代入数据计算即可得解.【解答】解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC﹣DE=AB﹣AD=5﹣3=2,∴CF=2.故答案为:2.【点评】本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,平行线的性质,比较简单,熟记性质是解题的关键.17.如图,在平面直角坐标系中,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A、B两点.若y1<y2,则x的取值范围是x <0或1<x<3.【考点】反比例函数与一次函数的交点问题.【分析】观察函数图象,当x<0或1<x<3时,反比例函数图象都在一次函数图象下方.【解答】解:当x<0或1<x<3时,y1<y2.【点评】本题考查了反比例函数与一次函数的交点问题,也考查了观察函数图象的能力.18.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为2﹣2.【考点】角平分线的性质;等腰直角三角形;正方形的性质.【分析】过E作EM⊥AB于M,根据正方形性质得出AO⊥BD,AO=OB=OC=OD,由勾股定理得出2AO2=22,求出AO=OB=,在Rt△BME中,由勾股定理得:2ME2=BE2,求出即可.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AO⊥BD,AO=OB=OC=OD,则由勾股定理得:2AO2=22,AO=OB=,∵EM⊥AB,BO⊥AO,AE平分∠CAB,∴EM=EO,由勾股定理得:AM=AO=,∵正方形ABCD,∴∠MBE=45°=∠MEB,∴BM=ME=OE,在Rt△BME中,由勾股定理得:2ME2=BE2,即2(2﹣)2=BE2,BE=2﹣2,故答案为:2﹣2.【点评】本题考查了角平分线性质和正方形性质,勾股定理的应用,注意:角平分线上的点到线段两个端点的距离相等.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.计算:×﹣+|﹣3|.【考点】实数的运算;零指数幂.【分析】此题涉及零指数幂、绝对值、算术平方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】解:×﹣+|﹣3|=2×﹣1+3=2﹣1+3=4【点评】此题主要考查了实数的综合运算能力,解决此类题目的关键是熟练掌握零指数幂、绝对值、算术平方根的运算.20.解方程:.【考点】解分式方程.【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:x2+x(x+1)=(2x+1)(x+1)(2分)x2+x2+x=2x2+3x+1,解这个整式方程得:,(4分)经检验:把代入x(x+1)≠0.∴原方程的解为.(5分)【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.先化简,再求值:÷(m﹣),其中m=.【考点】分式的化简求值.【分析】先对原式化简,再将m=代入化简后的式子即可解答本题.【解答】解:÷(m﹣)===,当m=时,原式===.【点评】本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.22.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE.(1)求证:OE=CB;(2)如果OC:OB=1:2,CD=,则菱形的面积为4.【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC 中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵四边形ABCD是菱形,∴BC=CD=,由(1)知,AC⊥BD,OC:OB=1:2,∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积=BD•AC=4;故答案为:4.【点评】本题考查了菱形的性质和勾股定理.解题时充分利用了菱形的对角线互相垂直平分、矩形的对角线相等的性质.23.某报社为了解苏州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,其中有一个问题是:“您觉得雾霾天气对您哪方面的影响最大?”五个选项分别是;A.身体健康;B.出行;C.情绪不爽;D.工作学习;E.基本无影响,根据调查统计结果,绘制了不完整的三种统计图表.百分比雾霾天气对您哪方面的影响最大A、身体健康mB、出行15%C、情绪不爽10%D、工作学习nE、基本无影响5%(1)本次参与调查的市民共有200人,m=65%,n=5%;(2)请将图1的条形统计图补充完整;(3)图2所示的扇形统计图中A部分扇形所对应的圆心角是234度.【考点】条形统计图;统计表;扇形统计图.【分析】(1)由等级B的人数除以占的百分比,得出调查总人数即可,进而确定出等级C与等级A的人数,求出A占的百分比,进而求出m与n的值;(2)由A占的百分比,乘以360即可得到结果;(3)根据比例的定义求得A和C类的人数,即可补全统计图.【解答】解:(1)根据题意得:30÷15%=200(人),等级C的人数为200×10%=20(人),则等级A的人数为200﹣(30+20+10+10)=130,占的百分比为×100%=65%,n=1﹣(65%+15%+10%+5%)=5%;故答案为:200;65%;5%;(2)如图所示:(3)根据题意得:360°×65%=234°;故答案为:234.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.已知函数y=(k﹣2)x为反比例函数.(1)求k的值;(2)若点A(x1,2)、B(x2﹣1)、C(x3,﹣)是该反比例函数的图象上的三点,则x1、x2、x3的大小关系是x1<x3<x2(用“<”号连接);(3)当﹣3≤x≤﹣时,求y的取值范围.【考点】反比例函数图象上点的坐标特征;反比例函数的定义;反比例函数的性质.【分析】(1)根据反比例函数的定义可知:k2﹣5=﹣1,且k﹣2≠0,从而可求得k的值.(2)根据反比例合适的性质即可判断.(3)把x=﹣3和x=﹣分别代入解析式求得函数值,即可求得y的取值范围.【解答】解:(1)∵函数y=(k﹣2)x为反比例函数,∴k2﹣5=﹣1,且k﹣2≠0.解得:k=﹣2;(2)∵k=﹣2,∴反比例函数为y=﹣,∴函数在二四象限,y随x的增大而增大,∴A(x1,2)在第二象限,B(x2﹣1)、C(x3,﹣)在第四象限,∴x1<x3<x2.故答案为x1<x3<x2.(3)把x=﹣3代入y=﹣得:y=,把x=﹣代入y=﹣得:y=8,∴y的取值范围是≤y≤8.【点评】本题考查了反比例函数的定义、反比例函数是性质以及反比例函数图象上点的坐标特征,根据定义求得kd的值是解题的关键.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.26.(10分)(2016春•张家港市期末)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.【考点】四边形综合题.【分析】(1)利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;(2)由(1)可得∠FAG=∠BAF,由折叠的性质可得∠EAF=∠DAF,继而可得∠EAG=∠BAD=45°;(2)首先设BG=x,则可得CG=6﹣x,GE=EF+FG=x+3,然后利用勾股定理GE2=CG2+CE2,得方程:(x+3)2=(6﹣x)2+32,解此方程即可求得答案.【解答】(1)证明;在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴∠BAG=∠FAG,∴∠FAG=∠BAF,由折叠的性质可得:∠EAF=∠∠DAE,∴∠EAF=∠DAF,∴∠EAG=∠EAF+∠FAG=(∠DAF+∠BAF)=∠DAB=×90°=45°;(3)∵E是CD的中点,∴DE=CE=CD=×6=3,设BG=x,则CG=6﹣x,GE=EF+FG=x+3,∵GE2=CG2+CE2∴(x+3)2=(6﹣x)2+32,解得x=2,∴BG=2.【点评】此题属于四边形的综合题.考查了正方形的性质、折叠的性质、全等三角形的判定与性质以及勾股定理等知识.注意折叠中的对应关系、注意掌握方程思想的应用是解此题的关键.27.(10分)(2016•苏州一模)如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C 点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得b,进而求得D的坐标,根据D的坐标求得C的坐标,代入反比例函数的解析式即可求得k的值;(2)根据三角形的面积公式求得即可;(3)过点C作BD的平行线,交反比例函数y=(x>0)的图象于P,此时△BDP与△BDC同底等高,所以△BDP与△BDC面积相等,先求得直线BD的解析式,进而求得直线PC的解析式,然后联立方程即可求得P的坐标.【解答】解:(1)∵直线y=2x+b经过点A(﹣1,0),∴0=﹣2+b,解得b=2,∴直线的解析式为y=2x+2,由直线的解析式可知B(0,2),∵OB=OD=2∴D(2,0),把x=2代入y=2x+2得,y=2×2+2=6,∴C(2,6),∵反比例函数y=(x>O)经过点C,∴k=2×6=12;(2)S△BDC=DC×OD=×6×2=6;(3)过点C作BD的平行线,交反比例函数y=(x>0)的图象于P,此时△BDP与△BDC同底等高,所以△BDP与△BDC面积相等,∵B(0,2),D(2,0),∴直线BD的解析式为y=﹣x+2,∴直线CP的解析式为y=﹣x+2+6=﹣x+8,解得或,∴P点坐标为(6,2).【点评】本题考查了待定系数法求直线的解析式和反比例函数的解析式,平移的性质,三角形的面积等,数形结合思想的运用是解题的关键.28.(10分)(2016春•张家港市期末)如图,直线l1:y=﹣x+b 分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(8,0),B为(0,4);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)由点C的坐标利用待定系数法即可求出直线l1的解析式,再分别令直线l1的解析式中x=0、y=0求出对应的y、x值,即可得出点A、B的坐标;(2)由点C的坐标利用待定系数法即可求出直线l2的解析式,结合点E的横坐标即可得出点E、F的坐标,再根据平行四边形的性质即可得出关于m的一元一次方程,解方程即可得出结论;(3)分AB为边和AB为对角线两种情况讨论.当AB为边时,根据菱形的性质找出点P的坐标,结合A、B的坐标即可得出点Q的坐标;当AB为对角线时,根据三角形相似找出点P的坐标,再根据菱形对角线互相平分即可得出点Q的坐标.综上即可得出结论.【解答】解:(1)将点C(4,2)代入y=﹣x+b中,得:2=﹣2+b,解得:b=4,∴直线l1为y=﹣x+4.令y=﹣x+4中x=0,则y=4,∴B(0,4);令y=﹣x+4中y=0,则x=8,。
宜昌市名校2019-2020学年八年级第二学期期末联考数学试题含解析
宜昌市名校2019-2020学年八年级第二学期期末联考数学试题 一、选择题(每题只有一个答案正确)1.下列几个二次根式5,13 ,0.3a ,22x y +,3m 中是最简二次根式的有( ) A .2个 B .3个 C .4个 D .5个2.如图,四边形ABCD 中,//AD BC ,90ABC DCB ∠+∠=︒,且2BC AD =,以AB ,BC ,CD 为边向外作正方形,其面积分别为1S ,2S ,3S .若14S =,264S =,则3S 的值为( )A .8B .12C .24D .603.如图,100BAC ︒∠=,点D 在AB 的垂直平分线上,点E 在AC 的垂直平分线上,则DAE ∠的度数是( ).A .15°B .20°C .25°D .30°4.下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序( ).①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)④一杯越来越凉的水(水温与时间的关系)A .①②④③B .③④②①C .①④②③D .③②④①5.将直线y=-2x 向上平移5个单位,得到的直线的解析式为( )A .y=-2x-5B .y=-2x+5C .y=-2(x-5)D .y=-2(x+5)6.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是( )A .36B .45C .48D .507.在-2,-1,0,1这四个数中,最小的数是( )A .-2B .-1C .0D .18.下列各式的计算中,正确的是( )A .44x x x ÷=B .224a a a ⋅=C .329()a a =D .235a a a +=9.如果35a +有意义,那么( )A .a≥53B .a≤53C .a≥﹣53D .a 53≤- 10.如图,ABC ∆中,AB AC =,40A ∠=,将ABC ∆绕点B 逆时针旋转得到EBD ∆,若点C 的对应点D 落在AB 边上,则旋转角为( )A .140B .80C .70D .40二、填空题11.菱形的面积是16,一条对角线长为4,则另一条对角线的长为______.12.某学生会倡导的“爱心捐款”活动结束后,学生会干部对捐款情况作了抽样调查,并绘制了统计图,图中从左到右各长方形高度之比为3:4:5:8:2,又知此次调查中捐15元和20元的人数共26人.(1)他们一共抽查了______人;(2)抽查的这些学生,总共捐款______元.13.一次函数y =(2m ﹣1)x +1,若y 随x 的增大而增大,则m 的取值范围是_____14.如图,在ABC ∆中,点D 在AB 上,请再添加一个适当的条件,使ADC ∆与ACB ∆相似,那么要添加的条件是__________.(只填一个即可)15.如图,三个正比例函数的图象分别对应表达式:①y=ax ,②y=bx ,③y=cx ,将a ,b ,c 从小到大排列并用“<”连接为_____.16.若一个正比例函数的图象经过A(3,﹣6),B(m ,﹣4)两点,则m 的值为____.17.如果12x x ,是一元二次方程2320x x ++=的两个实数根,那么12x x +的值是____.三、解答题18.如图,已知A 14,2⎛⎫- ⎪⎝⎭,B (-1,2)是一次函数y kx b =+与反比例函数m y x= (0,0m m ≠<)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 坐标.19.(6分)如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,BE 交AC 于点F ,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD 是菱形;(3)在(2)的条件下,试确定E 点的位置,使∠EFD=∠BCD,并说明理由.20.(6分)先化简,再求值:22441(1)33x x x x x ++÷-++ ,其中3x =. 21.(6分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个; (2)求出甲厂的印刷费y 甲与证书数量x 的函数关系式,并求出其证书印刷单价;(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元.22.(8分)如图,点O 是△ABC 内一点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,得到四边形DEFG .(1)求证:四边形DEFG 是平行四边形;(2)若M 为EF 的中点,OM=3,∠OBC 和∠OCB 互余,求DG 的长度.23.(8分)如图1,点O 是正方形ABCD 的中心,点E 是AB 边上一动点,在BC 上截取CF BE =,连结OE ,OF .初步探究:在点E 的运动过程中:(1)猜想线段OE 与OF 的关系,并说明理由.深入探究:(2)如图2,连结EF ,过点O 作EF 的垂线交BC 于点G .交AB 的延长线于点I .延长OE 交CB 的延长线于点H .①直接写出EOG ∠的度数.②若2AB =,请探究BH BI ⋅的值是否为定值,若是,请求出其值;反之,请说明理由24.(10分)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)直接写出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x (h)的函数解析式,并写出相应的x的取值范围;(3)当乙车出发多长时间后,两车恰好相距40km?25.(10分)如图①,已知正方形ABCD的边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连接PQ、DQ、CQ、BQ,设AP=x.(1)BQ+DQ的最小值是_______,此时x的值是_______;(2)如图②,若PQ的延长线交CD边于点E,并且∠CQD=90°.①求证:点E是CD的中点;②求x的值.(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x的值.参考答案 一、选择题(每题只有一个答案正确) 1.A 【解析】【分析】利用最简二次根式定义判断即可. 【详解】31330,0.3,,3310a a m m m === 225,x y +是最简二次根式,则最简二次根式的有2个,故选:A .【点睛】此题考查了最简二次根式,以及二次根式的定义,熟练掌握各自的性质是解本题的关键.2.B【解析】【分析】过A 作//AE CD 交BC 于E ,则AEB DCB ∠=∠,依据四边形AECD 是平行四边形,即可得出CE AD =,AE CD =,再根据勾股定理,即可得到222BE AB AE =+,进而得到3S 的值.【详解】如图,过A 作AE //CD 交BC 于E ,则AEB DCB ∠∠=,AD //BC ,∴四边形AECD 是平行四边形,CE AD ∴=,AE CD =,ABC DCB 90∠∠+=︒,AEB ABC 90∠∠∴+=︒,BAE 90∠∴=︒,222BE AB AE ∴=+,BC 2AD =,BC 2BE ∴=,2221BC AB CD 4∴=+,即31644S 4⨯=+, 3S 12∴=,故选B .【点睛】本题考查了平行四边形的判定与性质,勾股定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.3.B【解析】【分析】根据线段的垂直平分线的性质得到DB=DA ,EC=EA ,根据等腰三角形的性质解答即可.【详解】解:∵AB 的垂直平分线交BC 于点D ,AC 的垂直平分线交BC 于点E ,∴DB=DA ,EC=EA ,∵∠BAC=100°,∴∠B+∠C=80°,∵DB=DA ,EC=EA ,∴∠DAB=∠B ,∠EAC=∠C ,∴∠DAB+∠EAC=80°,∴∠DAE=100°-80°=20°,故选B.【点睛】本题考查了三角形内角和定理,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.4.D【解析】本题考查的是变量关系图象的识别,借助生活经验,弄明白一个量是如何随另一个量的变化而变化是解决问题的关键.①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系),路程是时间的正比例函数,对应第四个图象;②向锥形瓶中匀速注水(水面的高度与注水时间的关系),高度是注水时间的函数,由于锥形瓶中的直径是下大上小,故先慢后快,对应第二个函数的图象;③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系),温度计的读数随时间的增大而增大,由于温度计的温度在放入热水前有个温度,故对应第一个图象;④一杯越来越凉的水(水温与时间的关系),水温随时间的增大而减小,由于水冷却到室温后不变化,故对应第三个图象;综合以上,得到四个图象对应的情形的排序为③②④①.5.B【解析】【分析】直接根据一次函数图象与几何变换的有关结论求解.【详解】y=-2x向上平移5个单位,上加下减,可得到y=-2x+5故答案为:B【点睛】考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k 不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.6.D【解析】【分析】根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.【详解】解:在这组数据50、45、36、48、50中,50出现了2次,出现的次数最多,则这组数据的众数是50,故选D.【点睛】考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.7.A【解析】【分析】根据正数大于0,负数小于0,负数绝对值越大值越小即可求解.【详解】解:在2-、1-、0、1这四个数中,大小顺序为:2101-<-<<,所以最小的数是2-.故选A.【点睛】此题考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题.8.B【解析】【分析】根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 、应为x 4÷x 4=1,故本选项错误;B 、a 2•a 2=a 4,正确;C 、应为(a 3)2=a 6,故本选项错误;D 、a 2与a 3不是同类项,不能合并,故本选项错误.故选:B .【点睛】本题主要考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,很容易混淆,一定要记准法则才能做题.9.C【解析】【分析】被开方数为非负数,列不等式求解即可.【详解】根据题意得:350a +≥,解得53a ≥-.故选:C .【点睛】本题考查二次根式有意义的条件,二次根式的被开方数是非负数.10.C【解析】【分析】先根据等腰三角形的性质求得∠ABC=∠C=70°,继而根据旋转的性质即可求得答案.【详解】∵AB=AC ,∠A=40°,∴∠ABC=∠C=12(180°-∠A)=12×140°=70°, ∵△EBD 是由△ABC 旋转得到,∴旋转角为∠ABC=70°,故选C .【点睛】本题考查了等腰三角形的性质,旋转的性质,熟练掌握相关知识是解题的关键.二、填空题11.8【解析】【分析】根据菱形的面积等于对角线乘积的一半进行计算即可求得.【详解】设另一条对角线的长为x ,则有42x =16, 解得:x=8,故答案为8.【点睛】本题考查了菱形的面积,熟知菱形的面积等于菱形对角线乘积的一半是解题的关键.12.1, 2.【解析】【分析】(1)设捐款5元,10元,15元,20元,30元的人数分别为3x 人,4x 人,5x 人,8x 人,2x 人.构建方程即可解决问题.(2)根据捐款人数以及捐款金额,求出总金额即可.【详解】解:(1)设捐款5元,10元,15元,20元,30元的人数分别为3x 人,4x 人,5x 人,8x 人,2x 人. 由题意:5x+8x=26,解得x=2,∴一共有:6+8+10+16+4=1人,故答案为1.(2)总共捐款额=6×5+8×10+10×15+16×20+4×30=2(元).故答案为:2.【点睛】本题考查频数分布直方图,抽样调查等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 13.m >12【解析】【分析】根据图象的增减性来确定(2m-1)的取值范围,从而求解.【详解】∵一次函数y=(2m-1)x+1,y 随x 的增大而增大,∴2m-1>1,解得,m >12, 故答案是:m >12. 【点睛】本题考查了一次函数的图象与系数的关系.一次函数值y 随x 的增大而减小⇔k <1;函数值y 随x 的增大而增大⇔k >1.14.ACD ABC ∠=∠或ADC ACB ∠=∠【解析】【分析】已知ADC ∆与ACB ∆的公共角相等,根据两角对应相等的两个三角形相似再添加一组对应角相等即可.【详解】解:DAC CAB ∠=∠(公共角)ACD ABC ∠=∠(或ADC ACB ∠=∠)ACD ABC ∴∆∆ (两角对应相等的两个三角形相似)故答案为:ACD ABC ∠=∠或ADC ACB ∠=∠【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.15.a <c <b【解析】【分析】根据直线所过象限可得a <0,b >0,c >0,再根据直线陡的情况可判断出b >c ,进而得到答案.【详解】根据三个函数图象所在象限可得a <0,b >0,c >0,再根据直线越陡,|k|越大,则b >c .则b >c >a ,故答案为a <c <b .16.1【解析】【分析】由点A 的坐标利用待定系数法即可求出正比例函数的解析式,再利用一次函数图象上点的坐标特征可求出m 的值,此题得解.【详解】设正比例函数的解析式为y =kx(k≠0),∵该正比例函数图象经过点A(3,﹣6),∴﹣6=3k ,解得:k =﹣1,∴正比例函数的解析式为y =﹣1x .∵点B(m ,﹣4)在正比例函数y =﹣1x 的图象上,∴﹣4=﹣1m ,解得:m =1.故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y =kx+b 是解题的关键.17.-3【解析】【分析】直接根据一元二次方程根与系数的关系得到1x +2x 的值.【详解】根据题意,12x x +=-3.故答案为:-3.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握方程20ax bx c ++= 的两根为1x ,2x 的关系:1x +2x =b a -,1x 2x =c a. 三、解答题18.(1)当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)一次函数的解析式为y=x+;m=﹣2;(3)P点坐标是(﹣,).【解析】试题分析:(1)根据一次函数图象在反比例函数图象上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式以及m的值;(3)设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA 的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面积相等得,可得答案.试题解析:(1)由图象得一次函数图象在反比例函数图象上方时,﹣4<x<﹣1,所以当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P的坐标为(x,x+)如图,由A、B的坐标可知AC=,OC=4,BD=1,OD=2,易知△PCA的高为x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).考点:反比例函数与一次函数的交点问题19.(1)证明见解析(2)证明见解析(3)当BE⊥CD时,∠EFD=∠BCD【解析】【分析】(1)先判断出△ABC≌△ADC得到∠BAC=∠DAC,再判断出△ABF≌△ADF得出∠AFB=∠AFD,最后进行简单的推算即可;(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.【详解】(1)证明:在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF(SAS),∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)BE⊥CD时,∠BCD=∠EFD;理由如下:∵四边形ABCD是菱形,∴BC=CD ,∠BCF=∠DCF ,∵CF=CF ,∴△BCF ≌△DCF ,∴∠CBF=∠CDF ,∵BE ⊥CD ,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.20.33+ 【解析】【分析】根据分式的运算法则即可进行化简求值.【详解】原式=22443133x x x x x x +++-÷++=()22)3•32x x x x x ++++(=2x x +当=【点睛】 此题主要考查分式的运算,解题的关键是熟知分式的运算法则.21.(1)1;1.5(2)y=0.5x+1(3)选择乙厂节省费用,节省费用500元.【解析】【分析】(1)根据纵轴图象判断即可,用2到6千个时的费用除以证件个数计算即可得解;(2)设甲厂的印刷费y 甲与证书数量x 的函数关系式为y=kx+b ,利用待定系数法解答即可;(3)用待定系数法求出乙厂x >2时的函数解析式,再求出x=8时的函数值,再求出甲厂印制1个的费用,然后求出8千个的费用,比较即可得解.【详解】解:(1)(1)由图可知,甲厂的制版费为1千元; 当x≤2(千个)时,乙厂证书印刷单价是3÷2=1.5元/个;故答案为1;1.5;(2)解:设甲厂的印刷费y 甲与证书数量x 的函数关系式为y=kx+b ,可得: 146b k b =⎧⎨=+⎩,解得: 0.51k b =⎧⎨=⎩,所以甲厂的印刷费y 甲与证书数量x 的函数关系式为:y=0.5x+1;(3)解:设乙厂x >2时的函数解析式为y=k 2x+b 2 ,则 22222364k b k b +=⎧⎨+=⎩,解得 220.252.5k b =⎧⎨=⎩, ∴y=0.25x+2.5, x=8时,y=0.25×8+2.5=4.5千元,甲厂印制1个证件的费用为:(4﹣1)÷6=0.5元,印制8千个的费用为0.5×8+1=4+1=5千元,5﹣4.5=0.5千元=500元,所以,选择乙厂节省费用,节省费用500元.【点睛】本题主要考查了一次函数和一元一次不等式的实际应用,是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.22.(1)证明见解析;(2)1.【解析】【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF ∥BC 且EF=12BC ,DG ∥BC 且DG=12BC ,从而得到DE=EF ,DG ∥EF ,再利用一组对边平行且相等的四边形是平行四边形证明即可; (2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF 即可.【详解】证明:(1)∵D 、G 分别是AB 、AC 的中点,∴DG ∥BC ,DG=12BC , ∵E 、F 分别是OB 、OC 的中点,∴EF ∥BC ,EF=12BC , ∴DE=EF ,DG ∥EF ,∴四边形DEFG 是平行四边形;(2)∵∠OBC 和∠OCB 互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M 为EF 的中点,OM=3,∴EF=2OM=1.由(1)有四边形DEFG是平行四边形,∴DG=EF=1.23.(1)EO⊥FO,EO=FO;理由见解析;(2)①EOG45︒∠=;②BH BI⋅=2【解析】【分析】(1)由正方形的性质可得BO=CO,∠ABO=∠ACB=45°,∠BOC=90°,由“SAS”可证△BEO≌△CFO,可得OE=OF,∠BOE=∠COF,可证EO⊥FO;(2)①由等腰直角三角形的性质可得∠EOG的度数;②由∠EOF=∠ABF=90°,可得点E,点O,点F,点B四点共圆,可得∠EOB=∠BFE,通过证明△BOH∽△BIO,可得BH BOBO BI=,即可得结论.【详解】解:(1)OE=OF,OE⊥OF,连接AC,BD,∵点O是正方形ABCD的中心∴点O是AC,BD的交点∴BO=CO,∠ABO=∠ACB=45°,∠BOC=90°∵CF=BE,∠ABO=∠ACB,BO=CO,∴△BEO≌△CFO(SAS)∴OE=OF,∠BOE=∠COF∵∠COF+∠BOF=90°,∴∠BOE+∠BOF=90°∴∠EOF=90°,∴EO⊥FO.(2)①∵OE=OF,OE⊥OF,∴△EOF是等腰直角三角形,OG⊥EF∴∠EOG=45°②BH•BI的值是定值,理由如下:如图,连接DB,∵AB=BC=CD=2∴2∴2∵∠AOB=∠COB=45°,∠HBE=∠GBI=90°∴∠HBO=∠IBO=135°∵∠EOF=∠ABF=90°∴点E,点O,点F,点B四点共圆∴∠EOB=∠BFE,∵EF⊥OI,AB⊥HF∴∠BEF+∠BFE=90°,∠BEF+∠EIO=90°∴∠BFE=∠BIO,∴∠BOE=∠BIO,且∠HBO=∠IBO∴△BOH∽△BIO∴BH BOBO BI=∴BH•BI=BO2=2【点睛】本题相似综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,证明△BOH∽△BIO是本题的关键.24.(1)m=1,a=2,(2)40(01)40(1 1.5)4020(1.57)x xy xx x≤≤⎧⎪=<≤⎨⎪-<≤⎩;(3)12小时或52小时.【解析】【分析】(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a 的值和m 的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y 与时间x 之间的解析式,由解析式之间的关系建立方程求出其解即可.【详解】(1)由题意,得m=1.5-0.5=1.13÷(3.5-0.5)=2,∴a=2.答:a=2,m=1;(2)当0≤x≤1时设y 与x 之间的函数关系式为y=k 1x ,由题意,得2=k 1,∴y=2x当1<x≤1.5时,y=2;当1.5<x≤7设y 与x 之间的函数关系式为y=k 2x+b ,由题意,得224015120 3.5k b k b =.=+⎧⎨+⎩, 解得:24020k b ⎧⎨-⎩==, ∴y=2x-3.∴40(01)40(1 1.5)4020(1.57)x x y x x x ≤≤⎧⎪=<≤⎨⎪-<≤⎩;(3)设乙车行驶的路程y 与时间x 之间的解析式为y=k 3x+b 3,由题意,得333302120 3.5k b k b +⎧⎨+⎩== 解得:3380160k b ⎧⎨-⎩==, ∴y=80x-4.当2x-3-2=80x-4时,解得:x=52.当2x-3+2=80x-4时,解得:x=92. 52−2=12,92−2=52. 答:乙车行驶12小时或52小时,两车恰好相距2km . 【点睛】本题考出了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.25.(11;(3) ①理由详见解析;②13;(3) 3. 【解析】试题分析:(1)根据两点之间,线段最短可知,点Q 在线段BD 上时BQ +DQ 的值最小,是BD 的长度,利用勾股定理即可求出;再根据△PDQ 是等腰直角三角形求出x 的值;(3) ①由对称可知AB=BQ=BC,因此∠BCQ=∠BQC.根据∠BQE=∠BCE=90°,可知∠EQC=∠ECQ,从而EQ=EC.再根据∠CQD=90°可得∠DQE+∠CQE=90°, ∠QCE+∠QDE=90°,而∠EQC=∠ECQ, 所以∠QDE=∠DQE ,从而EQ=ED.易得点E 是CD 的中点;②在Rt △PDE 中,PE= PQ+QE=x+12,PD=1﹣x ,PQ=x ,根据勾股定理即可求出x 的值.(3) △CDQ 为等腰三角形分两种情况:①CD 为腰,以点C 为圆心,以CD 的长为半径画弧,两弧交点即为使得△CDQ 为等腰三角形的Q 点; ②CD 为底边时,作CD 的垂直平分线,与AC 的交点即为△CDQ 为等腰三角形的Q 点,则共有 3个Q 点,那么也共有3个P 点,作辅助线,利用直角三角形的性质求之即得.试题解析:(1. (3)①证明:在正方形ABCD 中,AB=BC ,∠A=∠BCD=90°.∵Q 点为A 点关于BP 的对称点,∴AB=QB ,∠A=∠PQB=90°,∴QB=BC ,∠BQE=∠BCE ,∴∠BQC=∠BCQ ,∴∠EQC=∠EQB ﹣∠CQB=∠ECB ﹣∠QCB=∠ECQ ,∴EQ=EC .在Rt △QDC 中,∵∠QDE=90°﹣∠QCE ,∠DQE=90°﹣∠EQC ,∴∠QDE=∠DQE ,∴EQ=ED ,∴CE=EQ=ED ,即E 为CD 的中点.②∵AP=x ,AD=1,∴PD=1﹣x ,PQ=x ,CD=1.在Rt △DQC 中,∵E 为CD 的中点,∴DE=QE=CE=12, ∴PE=PQ+QE=x+12, ∴()22211x+=1-x +22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 解得 x=13.(3)△CDQ 为等腰三角形时x 的值为 如图,以点B 为圆心,以AB 的长为半径画弧,以点C 为圆心,以CD 的长为半径画弧,两弧分别交于Q 1,Q 3.此时△CDQ 1,△CDQ 3都为以CD 为腰的等腰三角形.作CD 的垂直平分线交弧AC 于点Q 3,此时△CDQ 3以CD 为底的等腰三形.以下对此Q 1,Q 3,Q 3.分别讨论各自的P 点,并求AP 的值.讨论Q ₁:如图作辅助线,连接BQ 1、CQ 1,作PQ 1⊥BQ 1交AD 于P ,过点Q 1,作EF ⊥AD 于E ,交BC 于F .∵△BCQ 1为等边三角形,正方形ABCD 边长为1,∴1Q F =,1Q E =. 在四边形ABPQ 1中,∵∠ABQ 1=30°,∴∠APQ 1=150°,∴△PEQ 1为含30°的直角三角形,∴1=. ∵AE=12,∴②讨论Q 3,如图作辅助线,连接BQ 3,AQ 3,过点Q 3作PG ⊥BQ 3,交AD 于P ,连接BP ,过点Q 3作EF ⊥CD 于E ,交AB 于F .∵EF 垂直平分CD ,∴EF 垂直平分AB ,∴AQ 3=BQ 3.∵AB=BQ 3,∴△ABQ 3为等边三角形.在四边形ABQP 中,∵∠BAD=∠BQP=90°, ∠ABQ ₂=60°,∴∠APE=130°∴∠EQ 3G=∠DPG=180°-130°=60°,∴2Q E =,∴EG=32,∴,∴PD=1-3,∴ ③对Q3,如图作辅助线,连接BQ 1,CQ 1,BQ 3,CQ 3,过点Q 3作BQ 3⊥PQ 3,交AD 的延长线于P ,连接BP ,过点Q 1,作EF ⊥AD 于E ,此时Q 3在EF 上,不妨记Q 3与F 重合.∵△BCQ 1为等边三角形,△BCQ 3为等边三角形,BC=1,∴12QQ =1Q E =,∴EF =. 在四边形ABQ 3P 中∵∠ABF=∠ABC+∠CBQ 3=150°,∴∠EPF=30°,∴32.∵AE=12,∴+3.综上所述,△CDQ为等腰三角形时x的值为33,考点:⒈四边形综合题; ⒉正方形的性质; ⒊等腰三角形的性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜昌市 2019-2020 学年八年级上期末调研考试数学试题及答案八年级数学试题一、选择题:1. 如下书写的四个汉字,是轴对称图形的有()个。
A.1B2C.3D.42. 与 3-2相等的是()1 1A. B.C.9D.-9993. 当分式 1 有意义时, x 的取值范围是()x 2A.x < 2B.x > 2C.x ≠ 2D.x ≥ 24. 下列长度的各种线段,可以组成三角形的是()A.1 , 2, 3B.1 , 5, 5C.3 ,3, 6D.4 , 5, 65. 下列式子一定成立的是()A. a 2a2 3a3B. a 2 a3 a 6C. a3 2 a 6D.a6 a2 a 36. 一个多边形的内角和是900°,则这个多边形的边数为()A.6B.7C.8D.97. 空气质量检测数据pm2.5 是值环境空气中,直径小于等于 2.5 微米的颗粒物,已知 1 微米=0.000001 米, 2.5 微米用科学记数法可表示为()米。
6B.2.5 ×5C.2.5 ×-5D.2.5 ×-6A.2.5 × 10 10 10 108. 已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()。
A.50 °B.80 °C.50 °或 80°D.40 °或 65°9. 把多项式 x3 2x2 x 分解因式结果正确的是()A. x( x 1) 2B. x(x 1) 2C. x( x 2 2x)D. x(x 1)( x 1)10. 多项式2x( x 2) 2 x 中,一定含下列哪个因式()。
A.2x+1B.x ( x+1)2C.x (x2 -2x )D.x ( x-1 )11.如图,在△ ABC中,∠ BAC=110°, MP和 NQ分别垂直平分 AB 和 AC,则∠ PAQ的度数是()A.20 °B.40 °C.50 °D.60 °12.如图,∠ ACB=90°, AC=BC, BE⊥ CE, AD⊥ CE于 D 点, AD=2.5cm,DE=1.7cm,则 BE 的长为()A.0.8B.1 C .1.5 D.4.213. 如图,折叠直角三角形纸片的直角,使点 C 落在AB 上的点 E 处,已知BC=24,∠B=30°,则 DE的长是()A.12B.10C.8D.614.如图,从边长为( a+4) cm 的正方形纸片中剪去一个边长为(a+1) cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是()cm2.A.2a2 5a B.3a+15 C.( 6a+9)D.( 6a+15)15. 艳焕集团生产某种精密仪器,原计划20 天完成全部任务,若每天多生产 4 个,则 15 天完成全部的生产任务还多生产10 个。
设原计划每天生产x 个,根据题意可列方程为()。
A. 20x 10 15B. 20x 10 15C. 20x 10 15D. 20x 10 15x 4 x 4 x 4 x 4二.解答题:16. 计算: 4( x 1) 2 (2x 5)(2x 5)17. 如图,设图中每个小正方形的边长为1,(1)请画出△ ABC关于 y 轴对称图形△ A’B’C’,其中 ABC的对称点分别为 A ’B’C’) (2) 直接写出 A ’B’C’的坐标: A’B’C’18. 先化简再求值 (m 1 1 )m22m ,其中 m=1。
3 m 3 6m 9 219. 解分式方程:x 3 1 x 1 (x 1)( x 2)20.如图, C 是线段 AB的中点, CD平分∠ ACE, CE平分∠ BCD, CD=CE;(1) 求证:△ ACD≌△ BCE;(2) 若∠ D=50°,求∠ B 的度数。
21. 如图 1,将一个长为4a,宽为 2b 的长方形,沿图中虚线均匀分成 4 个小长方形,然后按图 2 形状拼成一个正方形。
(1)图 2 的空白部分的边长是多少?(用含ab 的式子表示)(2)若2a b 7,且熬吧,求图 2 中的空白正方形的面积。
(3)观察图 2,用等式表示出(2a b)2, ab 和(2a b)2的数量关系。
22. 如图 1,把一张长方形的纸片 ABCD 沿对角线 BD 折叠,点 C 落在 E 处, BE 交 AD 于点 F. (1) 求证: FB=FD;(2) 如图 2,连接 AE ,求证: AE ∥ BD;(3) 如图 3,延长 BA , DE 相交于点 G ,连接 GF 并延长交 BD 于点 H ,求证: GH 垂直平分 BD 。
23. 如图,△ ABC 中, AB=AC, ∠BAC=45°, BD ⊥ AC ,垂足为 D 点, AE 平分∠ BAC ,交 BD 于F ,交 BC 于 E ,点 G 为 AB 的中点,连接 DG ,交 AE 于点 H ,(1)求∠ ACB 的度数; ( 2) HE=1AF2CDEHFAGB24. 陈史李农场年某特产种植园面积为y 亩,总产量为 m 吨,由于工业发展和技术进步,年时终止面积减少了 10%,平均每亩产量增加了 20%,故当年特产的总产量增加了20 吨。
(1)求年这种特产的总产量;(2) 年有 工 a 人。
年 ,由于多种原因 少了 30 人,故 种特 的人均 量比 年增加了 14%,而人均种植面 比年减少了 0.5 。
求年的 工人数 a 与种植面 y 。
年秋季期末调研考试参考答案及评分标准八年级数学命题人:史艳华(八中)李焕(宜昌英杰学校)审题人:陈作民一. ( 3 分× 15=45 分)号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答案CAC BCBDCAABACDA二.解答 (75 分)16.( 6 分)解:原式 =4( x 2+2 x+1)-( 4x 2- 25)⋯⋯⋯⋯⋯⋯ 3 分=4 x 2+8x+4-4x 2+ 25⋯⋯⋯⋯⋯⋯ 5 分 =8x + 29;⋯⋯⋯⋯⋯⋯ 6 分y 17. ( 6 分)AA'解:( 1)如 ⋯⋯⋯⋯⋯⋯ 3 分( 2)A ′( 1, 3 ),B ′( 2, 1),B1 B' xC ′( - 2 ,- 2 );⋯⋯⋯⋯⋯⋯ 6 分-112O-118. ( 7 分)(m - 3)2C' Cm +3m - 3解:原式 =[2m⋯⋯⋯⋯⋯⋯ 3 分(m - 3) (m + 3) +(m - 3) (m +3) ]×2m(m - 3)2=(m -3) ( m + 3) × 2m ⋯⋯⋯⋯⋯⋯ 5 分m - 3= m + 3 .⋯⋯⋯⋯⋯⋯ 6 分当 m= 1 11 52 52,原式 =( 2 - 3)÷( 2 + 3)=- 2 × 7 = - 7 .⋯⋯⋯⋯⋯⋯ 7 分19.( 7 分)解: x( x+ 2)- 3=( x- 1)( x+ 2). ⋯⋯⋯⋯⋯⋯ 3 分x2+ 2x- 3=x2+x- 2. ⋯⋯⋯⋯⋯⋯ 4 分x=1. ⋯⋯⋯⋯⋯⋯ 5 分:当x=1 ,( x- 1)( x+ 2)=0,所以 x=1 不是原分式方程的解. ⋯⋯⋯⋯⋯⋯6 分所以,原分式方程无解. ⋯⋯⋯⋯⋯⋯7 分20.( 8 分)( 1)明:∵ C 是段 AB 的中点,∴ AC=BC,⋯⋯⋯⋯⋯ 1 分 D E∵ CD 平分∠ ACE,∴∠ ACD= ∠DCE ,⋯⋯⋯⋯⋯ 2 分∵CE 平分∠ BCD ,∴∠ BCE= ∠ DCE,∴∠ ACD= ∠BCE,⋯⋯⋯⋯⋯ 3 分在△ ACD 和△ BCE 中,AC=BC,∠ACD=∠ BCE ,DC= EC,∴△ ACD≌△ BCE( SAS),⋯⋯⋯⋯⋯ 5 分A C B(2)∵∠ ACD =∠ BCE=∠ DCE,且∠ ACD +∠ BCE+∠ DCE=180 °,∴∠ BCE=60 °,⋯⋯⋯⋯⋯ 6 分∵△ ACD≌△ BCE,∴∠ E=∠ D=50 °,⋯⋯⋯⋯⋯ 7 分∠ E=180 °- (∠ E+∠ BCE)= 180 °- (50°+ 60° )=70 ° .⋯⋯⋯⋯⋯ 8 分21.( 8 分)(1) 2a- b;⋯⋯⋯⋯⋯⋯ 2 分(2)由 21-2 可知,小正方形的面 =大正方形的面- 4 个小方形的面,∵大正方形的=2a+ b=7,∴大正方形的面 =( 2a+ b)2=49 ,又∵ 4 个小方形的面之和=大方形的面=4a× 2b=8ab=8 × 3=24,∴小正方形的面 =( 2a-b)2==49 - 24=25;⋯⋯⋯⋯⋯⋯ 5 分( 3)( 2a+ b)2-( 2a- b)2 =8ab . ⋯⋯⋯⋯⋯⋯ 8 分22.( 10 分)GE E EA FD AFD A F DH(第 221)(第222)(第223)【方法 I 】明( 1)如∵ 方形ABCD ,∴AB= DC =DE ,∠ BAD =∠ BCD =∠ BED= 90°,⋯⋯⋯⋯⋯ 1 分在△ ABF 和△ DEF 中,∠BAD=∠ BED =90°∠AFB =∠ EFD ,AB= DE ,∴△ ABF ≌△ EDF (AAS ),⋯⋯⋯⋯⋯ 2 分∴BF=DF . ⋯⋯⋯⋯⋯ 3 分( 2)∵△ ABF ≌△ EDF ,∴FA=FE,⋯⋯⋯⋯⋯ 4 分∴∠ FAE=∠ FEA ,⋯⋯⋯⋯⋯ 5 分又∵∠ AFE=∠ BFD ,且 2∠ AEF +∠ AFE =2∠ FBD +∠ BFD =180°,∴∠ AEF=∠ FBD ,∴AE∥ BD ,⋯⋯⋯⋯⋯ 6 分( 3)∵方形 ABCD ,∴AD=BC=BE, AB=CD=DE ,BD=DB,∴△ ABD ≌△ EDB( SSS),⋯⋯⋯⋯⋯ 7 分∴∠ ABD =∠ EDB ,∴GB=GD,⋯⋯⋯⋯⋯ 8 分在△ AFG 和△ EFG 中,∠GAF=∠ GEF= 90°,FA=FE ,FG= FG ,∴△ AFG≌△ EFG (HL ),⋯⋯⋯⋯⋯ 9 分∴∠ AGF=∠ EGF ,∴GH 垂直平分 BD. ⋯⋯⋯⋯⋯ 10 分【方法II 】明( 1)∵△ BCD ≌△ BED ,∴∠DBC=∠ EBD⋯⋯⋯⋯⋯ 1 分又∵ 方形ABCD ,∴AD∥ BC,∴∠ ADB =∠ DBC,⋯⋯⋯⋯⋯ 2 分∴∠ EBD =∠ ADB,∴FB=FD . ⋯⋯⋯⋯⋯ 3 分(2)∵ 方形 ABCD ,∴AD=BC=BE,⋯⋯⋯⋯⋯ 4 分又∵FB=FD ,∴FA=FE,∴∠ FAE=∠ FEA ,⋯⋯⋯⋯⋯ 5 分又∵∠ AFE=∠ BFD ,且 2∠ AEF +∠ AFE =2∠ FBD +∠ BFD =180°,∴∠ AEF=∠ FBD ,∴AE∥ BD ,⋯⋯⋯⋯⋯ 6 分(3)∵ 方形 ABCD ,∴AD=BC=BE, AB=CD=DE ,BD=DB,∴△ ABD ≌△ EDB,⋯⋯⋯⋯⋯ 8 分∴∠ ABD =∠ EDB ,∴GB=GD,⋯⋯⋯⋯⋯ 9 分又∵ FB=FD ,∴GF 是 BD 的垂直平分,即 GH 垂直平分BD. ⋯⋯⋯⋯⋯ 10 分23.( 11 分)明( 1)如,∵ AB=AC,∴∠ ACB=∠ ABC,⋯⋯⋯⋯⋯ 1 分∵∠ BAC=45°,∴∠ ACB=∠ ABC= 11( 180°- 45°) =67.5 °.⋯⋯⋯⋯⋯ 2 分2( 180°-∠ BAC) =2第( 2 )小分建:本小共9 分,可以按以下两个模分(9 分 =6 分+ 3 分):模 1( 6 分) : 通明 Rt△ BDC≌ Rt△ ADF ,得到 BC=AF,可 6 分;1模 2( 3 分) : 通明等腰直角三角形HEB ,得到 HE=2 BC,可 3 分 .( 2) HB ,∵ AB=AC, AE 平分∠ BAC,∴ AE⊥ BC, BE=CE,∴∠ CAE+∠ C=90°,C ∵ BD⊥ AC,∴∠ CBD+∠ C=90°,∴∠ CAE=∠CBD ,⋯⋯⋯⋯⋯ 4 分D ∵ BD⊥ AC, D 垂足,∴∠ DAB +∠ DBA =90°,F E∵∠ DAB=45°,H∴∠ DBA=45°,∴∠ DBA=∠ DAB ,∴ DA=DB,⋯⋯⋯⋯⋯ 6 分在 Rt△ BDC 和 Rt△ ADF 中, AB ∵∠ ADF =∠ BDC =90°,G DA=DB,∠DAF =∠ DBC =67.5 °-45°=22.5 °,∴Rt△ BDC≌ Rt△ ADF (ASA) ,∴BC=AF,⋯⋯⋯⋯⋯ 8 分∵DA=DB,点 G AB 的中点,∴DG 垂直平分 AB,∵点 H 在 DG 上,∴ HA=HB,⋯⋯⋯⋯⋯ 9 分∴∠ HAB=∠ HBA = 12∠ BAC= 22.5 ,°∴∠ BHE=∠ HAB +∠ HBA = 45°,∴∠ HBE=∠ ABC-∠ ABH =67.5 °-22.5 °=45°,∴∠ BHE=∠ HBE ,∴ HE=BE= 1BC ,⋯⋯⋯⋯⋯ 10 分 2∵ AF=BC ,∴ HE= 1AF. ⋯⋯⋯⋯⋯ 11 分 224.( 12 分)解:( 1)依 意得, mm + 20 y ( 1+ 20%) = (1- 10%) y.⋯⋯⋯⋯⋯ 3分解得, m=250.∴ m + 20=270 ⋯⋯⋯⋯⋯ 4 分答:年的 量 270 吨 .270 250 ( 2)依 意得,a -30 = a ( 1+ 14%);① ⋯⋯⋯⋯⋯ 7 分 ( 1- 10%) y = y - 1 . ② ⋯⋯⋯⋯⋯ 10 分a -30a 2解①得 a= 570.:当 a= 570 , a ( a - 30)≠ 0,所以 a= 570 是原分式方程的解,且有 意.答: 年有 工 570 人; ⋯⋯⋯⋯⋯ 11 分 将 a= 570 代入②式得, ( 1-10%) y= y - 1.540570 2解得, y =5700.答:年的种植面5700 .⋯⋯⋯⋯⋯ 12 分(吨)m m + 20种植面 ()y( - )110% y平均 mm ( 1+20%) =m + 20 y( 1- 10%) y(吨 / )y解得 m=250人口数(人)a-30a人均 量250270 = 250 ( 1+ 14%)-a(吨 人)aa 30/解得 a =570人均种植面y( 1-10%) y y1-30= a - 2( / 人)aa解得 y= 5700。