七年级数学上册 有理数 数轴教案浙教版

合集下载

浙教版七年级数学上册课本教案

浙教版七年级数学上册课本教案

浙教版七年级数学上册课本教案课本简介本教案针对浙江教育出版社出版的《浙教版七年级数学上册》进行教学设计。

《浙教版七年级数学上册》是按照新课标标准编写的,分为9个章节,共计155页,适用于初中七年级的数学教学。

教案内容第一章有理数第一节有理数的初步认识课时1 有理数的概念•教学目标学生能够初步了解有理数的概念,了解有理数的分类,能够辨析正数、负数和零。

•教学重点有理数的概念和有理数的分类。

•教学难点正数、负数、零的比较和辨析。

•教学过程1.导入新课环节,引导学生了解数的分类,带入有理数的概念,并讲解有理数的定义。

2.通过数轴和实例,让学生掌握有理数的表示方法和分类。

3.帮助学生掌握正数、负数和零的概念,并通过课堂练习让学生了解正数和负数之间的大小关系。

4.结合实际问题,让学生了解有理数的应用。

•教学反思本节课难度适中,学生易于理解并能够理清有理数的概念和分类。

但是,在掌握正负数之间的比较和辨析时,需要进行数轴的练习和多个实例操练才能够巩固知识。

第二章整式的加减法第二节同类项的加减法课时1 同类项的概念及分类•教学目标学生能够了解同类项的概念及分类,掌握同类项的加减法原理。

•教学重点同类项的概念及分类,同类项的加减法原理。

•教学难点同类项的分类和加减法的应用。

•教学过程1.导入新课环节,引出同类项的概念,通过实例让学生了解同类项的分类。

2.授予同类项的加减法原理,让学生了解同类项的加减法步骤,并通过练习题让学生巩固掌握。

3.通过实际问题让学生了解同类项的应用。

•教学反思本节课难度适中,学生易于理解同类项的概念和分类。

但在掌握同类项加减法的应用时,学生需要多练习才能够掌握。

因此,教师需要根据学生不同的水平分组,提供不同难度的练习题,帮助学生掌握同类项加减法的应用。

教学方法本教案采用教师授课和学生学习相结合的教学方法,通过课堂讲解、实例操练和练习题等方式,让学生掌握知识,提高自身能力,同时激发学生学习数学的兴趣。

浙教版七年级上数学第一章全套教案

浙教版七年级上数学第一章全套教案

教育精品资料浙教版七年级上第一章《从自然数到有理数》全章教案1.1从自然数到分数一、教学目标:1 .回顾小学中关于“数”的知识;2 .理解自然数、分数的产生和发展的实际背景和必然性;3 .体验自然数与分数的意义和在计数、测量、排序、编号等方面的应用。

二、教学重点和难点重点:认识数的发展过程,感受由于生活与生产实践的需要,数还需从自然数和分数作进一步的扩展。

难点:本节的“合作学习”中的第2题学生不易理解。

三、教学手段:现代课堂教学手段四、教学方法:启发式教学五、教学过程(一)自然数的由来和作用。

请阅读下面这段报道:世界上最长的跨海大桥——杭州湾跨海大桥于2003年6月8日奠基,计划在5年后建成通车,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,将是中国大陆的第一座跨海大桥。

你在这段报道中看到了哪些数?它们都属于哪一类数?在小学里我们已经学过自然数0,1,3,4,5…自然数是人类历史上最早出现的数。

自然数在计数和测量中有着广泛的应用,如5年后建成通车,日通车量为8万辆,全长36千米等。

人们还常常用自然数来给事物标号和排序,如城市的公共汽车路线,门牌号码,邮政编码,上述报道中的2003年,第一座跨海大桥等。

计数简单的理解,可以看成用来统计的结果的自然数。

而测量的结果的自然数是用工具测量。

让学生举出一些实际生活的例子,并说明这些自然数起的作用。

练习,并有学生回答,及时校对。

做一做:下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?(1)2002年全国共有高等学校2003所;(2)小明哥哥乘1425次列车从北京到天津;(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼。

练一练:(二)讲解分数的由来及应用。

在小学里,我们还学习了分数和小数,它们是由于测量和分配等实际需要而产生的。

在解答下列问题时,你会选用哪一类数?为什么?(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?分数可以看作两个整数相除,例如,«Skip Record If...»=3/5=0.6,«Skip Record If...»=0.3,1.31=«Skip Record If...»,0.0062=«Skip Record If...»=«Skip Record If...»。

浙教版七年级上册第一章有理数章节复习教案+同步课堂练习+课后作业

浙教版七年级上册第一章有理数章节复习教案+同步课堂练习+课后作业

有理数复习教案(七上)一、知识能力聚焦1.有理数例1:回顾我们小学阶段学过的所有数的种类: 整数、自然数、小数、分数、偶数、奇数、质数、合数、无限循环小数、无限不循环小数。

自然数回顾:1、定义:0,1,2,3,......叫做自然数2、分类: 0; 1; 质数(也叫素数,是只能被1和它本身整除的自然数);合数(除1和它本身外,还能被其他非零的自然数整除的数)3、作用:计数:一般地,用数数的方法得到的数据具有“计数”的含义。

例如:51枚金牌,是自然数最初的作用;测量:一般地,借助工具得到的数据具有“测量”的含义,测量的本质是比较。

例如:小明身高是168厘米;排序:为了表示某一种顺序的数据具有“排序”的含义,如年份、月份、名次等。

例如:2016年;标号:像门牌号、学号、座位号、车牌号、邮政编码、汽车路线等具有“标号”的含义。

例如:全班第10既不是正数也不是负数。

2.数轴和相反数 数轴:规定了原点、单位长度和正方向的直线叫做数轴。

相反数:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数。

0的相反数是0。

若a ,b 互为相反数,则有⎩⎨⎧=+=--=0,b a b a b a例2:相反数性质的运用。

(1)-2的相反数是,a 的相反数是,a-b 的相反数是。

(2)若a ,b 互为相反数,则3a+3b+2=;若c ,d 互为倒数,=222d c 。

(3)若a ,b 互为相反数,c ,d 互为倒数,计算:=++cd b a 122;=++dc c bc ac 22。

例3:0的相反数是0。

若b 12+-与a 互为相反数,那么a+b=。

3.绝对值绝对值:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

在数轴上,表示互为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离相等,绝对值相等。

任何数的绝对值都为非负数:0≥a⎩⎨⎧<-≥=)0()0(a a a a a ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数例4:去绝对值符号(1)=<a a 那么若,0,=-a ;=->b a b a 那么若,, =-a b ;=+<<b a b a 那么若,0,0, =--b a ;=-<>b a b a 那么若,0,0, =-a b , =ab ;(2)有理数在数轴上表示的点如下图所示,则的大小关系是 ,化简: b a b a -++= ,b a b a --+= 。

(最新)浙教版七年级数学上册《数轴》教案

(最新)浙教版七年级数学上册《数轴》教案

《数轴》教案一、教学目标1、知识与能力:通过与温度计的类比,认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数的概念,知道互为相反的一对数在数轴上的位置关系;会求一个有理数的相反数;能利用数轴比较有理数的大小。

2、过程与方法:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。

3、情感态度与价值观:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;通过分组动手操作实践,体会数学充满探索性,并在学习活动中学会合作、学会发现知识,找到获取知识的方法,使学生体验到成功的乐趣,数学知识的应用价值。

二、教学重点:数轴和相反数的概念及用数轴上的点表示有理数三、教学难点:数轴的概念和相反数反映在数轴上的性质四、教学设计(一)创设情境,引出课题教师出示一只温度计,首先让学生说说温度计在日常生活中的应用,然出提问:(1)温度计上的刻度是怎样表示温度的?(2)把温度计横放(零上温度向右),你觉得它像什么?(3)你能把温度计的刻度画在纸上吗?引出新课:“数轴”。

(借助于温度计,用类比的数学思想方法,使学生易于接受数轴。

感受到数学是真实的、亲切的。

这些问题的创设有利于唤起学生的好奇心,激发学生的求知欲,调动学生的思维积极性,学生很自然地投入到学习活动中去。

)(二)合作讨论,探究新知1、动手操作:师生一起画一条数轴。

[讲清数轴的画法:一画(直线);二定(定原定);三选(选正方向);四统一(单位长度要统一)。

]2、观察数轴有什么特征?(让学生讨论)(如:数轴的三要素——原点、正方向、单位长度,类比温度计三者缺一不可,正数都在原点的右边,负数都在原点的左边等等。

)3、考考你:下面图形是数轴的是( )(A ) (B )(C ) (D )(通过判断,加深对数轴概念的理解,掌握正确的画法。

)4、问题:类似温度计的刻度,任何有理数都能用数轴上的点表示吗?(引导学生独立思考得出:正数用原点右边的点表示,负数用原点左边的点表示,零用原点表示,任何一个有理数都可以用数轴上的点来表示。

《数轴》教案1(浙教版数学七年级上)

《数轴》教案1(浙教版数学七年级上)

1.3 数轴教学目标知识与技能目标:通过温度计的类比认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数的概念,知道互为相反数的一对数在数轴上的位置关系;会求一个有理数的相反数.过程与方法目标:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念.情感与态度目标:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;体会数学充满探索性.教学重点与难点教学重点.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数.教学难点:了解数形结合与转化的思想.教学过程一) 创设情景,引入新课师:教师用幻灯机展示一个温度计(课件)上面标着同一天悉尼、莫斯科、北京三个城市的气温.问:有没有哪位同学可以为大家播报一下今天这三座城市的气温?学生通过观察温度计便可以很快读出这三个城市的气温.师:那你能说出这三个城市中哪个温度最高,哪个温度最低?温度计上的刻度可以让学生直观地判断温度的高低,让学生感受到温度计的便利性和直观性.问:如何直观的描绘有理数呢?这就是本节课我们要讨论的一种数形相结合的工具——数轴(导题)二)师生互动,讲授新课师:那何为数轴呢?我们不妨以常见的实际生活中的温度计进行探索.问:温度计为什么能表示温度呢?(引导学生仔细观察温度计)原因在:1)它有表示零的刻度线2)规定了零上为正,也就是说规定了方向3)有间隔相等的刻度线,也就是说给定了单位长度师:由此说明我们可以用直线上的点表示有理数,那么怎么表示呢?其方法步骤为(边板画示范边说明)1)画一直线(一般画成水平)在直线上取一点O为原点表示02)规定直线的一个方向(一般取从左向右的方向)为正方向(用箭头表示)3)再取适当的长度为单位长度问:由此,用直线上的点表示有理数应具备哪些要素?生:原点(origin)、单位长度(uint length)、正方向(positive direction)师:对,我们数学上就把具备这三要素的直线叫数轴(number line).强调:一画(直线),二定(原点),三选(正方向),四统一(单位长度).考一考:下列哪一个表示数轴?AB-11-2CD通过判断,加深对数轴概念理解,掌握正确的画法.例1 如图,数轴上点A,B,C,D分别表示什么数?CA D由数轴的直观性,学生可以很快地读出A,B,C,D四点所表示的数.读出数轴上的点所表示的数是“形”→“数”的过程.例2 在数轴上表示下列各数:(1) 0.5,-5∕2,0,-4,5∕2,-0.5,1,4;(2)200,-150,-50,100,-100;分析例题注意:1.要让学生感受到任何一个有理数都可以用数轴上的点表示.2.要根据题意来选择单位长度的大小.3.教师要引导学生观察数轴,从而引出相反数的概念及位置关系.将已知数在数轴上表示出来是“数”→“形”的过程,例1、例2从两个侧面体现了数形结合思想.师:-4与4有什么相同与不同之处?从数的表现形式来看:只是符号不同,其他都相同.从而引出相反数的概念:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数(opposite number),也称这两个数互为相反数.因为零不带任何符号,所以零的相反数还是零.那么,-5∕2的相反数是5∕2,4是-4的相反数.然后再引导学生去观察这些互为相反数的数在数轴上的位置关系,于是可以概括出:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且到原点的距离相等.这里要让学生感受到数形结合的巧妙,例如,表示-100和100的点分别位于原点的左侧和右侧,到原点的距离都是100个单位长度.三)练习反馈,巩固新知1.在下表的空格中填入适当的数,并把这些数都表示在数轴上:2.如图,数轴上的点A,B,C,D,E分别表示什么数?其中哪些数是互为相反数?B C D E四)梳理知识,总结收获本节课我们学习了数轴,知道了任意有理数都可以在数轴上表示出来,其次我们还学习了相反数的概念,并且知道了互为相反数的两个数在数轴上的位置关系,体现了数形结合的思想,这些应有学生自己去总结,谈出本节课的所学.五)布置作业,知识拓展作业:P13A组 B组教学反思本节课通过类比温度计引出数轴,让学生认识到数学来源于生活.在教学时为了让生更好的理解数轴这个抽象过程较高的数形相结合的概念,师要多设计问题让学生合作交流,以达到真正感悟.为今后更进一步的学习作铺垫.。

《数轴》七年级数学教案(精选6篇)

《数轴》七年级数学教案(精选6篇)

《数轴》七年级数学教案(精选6篇)《数轴》七年级数学教案1教学目标1.了解数轴的概念和数轴的画法,掌握数轴的三要素;2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议一、重点、难点分析本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。

难点是正确理解有理数与数轴上点的对应关系。

数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。

另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础二、知识结构有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的。

重要思想方法,本课知识要点如下表:定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫数轴原点正方向单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

《数轴》七年级数学教案2教学目标:1、正确理解数轴的意义,理解数轴的三要素。

2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。

3、理解相反数的意义及求法。

4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。

重点难点:1、正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。

2、有理数和数轴上的的点的对应关系。

教学方法:合作探究交流学法指导:观察归纳概括教学过程:一、情景引入:(1)你会读温度计吗?完成课本43页最上面的读温度计的问题。

浙教版七年级数学上册课本教案

浙教版七年级数学上册课本教案

浙教版七年级数学上册课本教案浙教版七年级数学上册课本教案第一章有理数1.1正数和负数第1课时正数和负数教学目标:1.了解正数与负数是实际生活的需要.2.会判断一个数是正数还是负数.3.会用正负数表示互为相反意义的量.教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.教学难点:负数的引入.教与学互动设计:(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.(三)应用迁移,巩固提高例1举出几对具有相反意义的量,并分别用正、负数表示.提示具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.例2在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?例3某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.45点拨读懂题意是解决本题的关键.7:45与10:00相差135分钟.(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):星期日一二三四五六(元)+16+5.0-1.2-2.1-0.9+10-2.6(1)本周小张一共用掉了多少钱?存进了多少钱?(2)储蓄罐中的钱与原来相比是多了还是少了?(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.(五)课堂跟踪反馈夯实基础1.填空题:(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4年,那么8年前记作年.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.(六)课时小结1.与以前相比,0的意义又多了哪些内容?2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)第2课时正数和负数的应用教学目标:1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.教学重点:深化对正负数概念的理解.教学难点:正确理解和表示向指定方向变化的量.教与学互动设计:(一)知识回顾和理解通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.[问题1]:“零”为什么既不是正数也不是负数呢?学生思考讨论,借助举例说明.参考例子:用正数、负数和零表示零上温度、零下温度和零度.思考“0”在实际问题中有什么意义?归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.如:水位不升不降时的水位变化,记作:0m.[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?(二)深化理解,解决问题[问题3]:(课本P3例题)例1(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;例2(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.巩固练习1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.2.让学生再举出一些常见的具有相反意义的量.3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:中国减少866,印度增长72,韩国减少130,新西兰增长434,泰国减少3247,孟加拉减少88.(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;(2)如何表示森林面积减少量,所得结果与增长量有什么关系?(3)哪个国家森林面积减少最多?(4)通过对这些数据的分析,你想到了什么?阅读与思考(课本P6)用正数和负数表示加工允许误差.问题:1.直径为30.032mm和直径为29.97mm的零件是否合格?2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.(三)应用迁移,巩固提高1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是.2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:星期一二三四增减-5+7-3+4根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?类比例题,要求学生注意书写格式,体会正负数的应用.(四)课时小结(师生共同完成)1.2有理数第1课时有理数教学目标:1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.教学重点:会把所给的各数填入它所在的数集图里.教学难点:掌握有理数的两种分类.教与学互动设计:(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究3,5.7,-7,-9,-10,0,,,-3,-7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.说明我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数数的集合把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1把下列各数填入相应的集合内:,3.1416,0,2004,-,-0.23456,10%,10.1,0.67,-89例2以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?有理数有理数(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?(五)课堂跟踪反馈夯实基础1.把下列各数填入相应的大括号内:-7,0.125,,-3,3,0,50%,-0.3(1)整数集合{};(2)分数集合{};(3)负分数集合{};(4)非负数集合{};(5)有理数集合{}.2.下列说法中正确的是()A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数,而不是正数提升能力3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?第2课时数轴教学目标:1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.教学重点:数轴的概念.教学难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计:(一)创设情境,导入新课课件展示课本P7的“问题”(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.点拨(1)引导学生学会画数轴.第一步:画直线,定原点.第二步:规定从原点向右的方向为正(左边为负方向).第三步:选择适当的长度为单位长度(据情况而定).第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?小结整数在数轴上都能找到点表示吗?分数呢?可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.(三)应用迁移,巩固提高例1下列所画数轴对不对?如果不对,指出错在哪里?例2试一试:用你画的数轴上的点表示4,1.5,-3,-,0.例3下列语句:①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个例4在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.例5数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有()A.1998个或1999个B.1999个或2000个C.2000个或2001个D.2001个或2002个(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.(五)课堂跟踪反馈夯实基础1.规定了、、的直线叫做数轴,所有的有理数都可从用上的点来表示.2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P 点所表示的数是.3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()A.7B.-3C.7或-3D.不能确定4.在数轴上,原点及原点左边的点所表示的数是()A.正数B.负数C.不是负数D.不是正数5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.提升能力6.与原点距离为3.5个单位长度的点有2个,它们分别是和.7.画出一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3.开放探究8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.9.下列四个数中,在-2到0之间的数是()A.-1B.1C.-3D.3第3课时相反数教学目标:1.借助数轴了解相反数的概念,知道互为相反数的位置关系.2.给一个数,能求出它的相反数.教学重点:理解相反数的意义.教学难点:理解和掌握双重符号简化的规律.教与学互动设计:(一)创设情境,导入新课活动请一个学生到讲台前面对大家,向前走5步,向后走5步.交流如果向前走为正,那向前走5步与向后走5步分别记作什么?(二)合作交流,解读探究1.观察下列数:6和-6,2和-2,7和-7,和-,并把它们在数轴上标出.想一想(1)上述各对数有什么特点?(2)表示这四对数的点在数轴上有什么特点?(3)你能够写出具有上述特点的n组数吗?观察像这样只有符号不同的两个数叫相反数.互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.总结在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.(三)应用迁移,巩固提高例1填空(1)-5.8是的相反数,的相反数是-(+3),a的相反数是;a-b的相反数是,0的相反数是.(2)正数的相反数是,负数的相反数是,的相反数是它本身.例2下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个例3化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)}…}(共n个负号).归纳化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.例4数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?(四)总结反思,拓展升华归纳(1)相反数的概念及表示方法.(2)相反数的代数意义和几何意义.(3)符号的化简.(五)课堂跟踪反馈夯实基础1.判断题(1)-3是相反数.()(2)-7和7是相反数.()(3)-a的相反数是a,它们互为相反数.()(4)符号不同的两个数互为相反数.()2.分别写出下列各数的相反数,并把它们在数轴上表示出来.1,-2,0,4.5,-2.5,33.若一个数的相反数不是正数,则这个数一定是()A.正数B.正数或0C.负数D.负数或04.一个数比它的相反数小,这个数是()A.正数B.负数C.非负数D.非正数5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.提升能力6.若a与a-2互为相反数,则a的相反数是.7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来.。

七年级数学《数轴》教案三篇

七年级数学《数轴》教案三篇

七年级数学《数轴》教案三篇规定了原点,正方向和单位长度的直线叫数轴。

其中,原点、正方向和单位长度称为数轴的三要素。

下面就是我给大家带来的七年级数学《数轴》教案三篇,希望能帮助到大家!七年级数学教案1一、教学目标【知识与技能】了解数轴的概念,能用数轴上的点准确地表示有理数。

【过程与方法】通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点【教学重点】数轴的三要素,用数轴上的点表示有理数。

【教学难点】数形结合的思想方法。

三、教学过程(一)引入新课提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。

我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习如图,写出数轴上点A,B,C,D,E表示的数。

(四)小结作业提问:今天有什么收获?引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:课后练习题第二题;思考:到原点距离相等的两个点有什么特点?七年级数学教案2一、教学内容分析1.2有理数1.2.2数轴。

2.6有理数的混合运算-浙教版七年级数学上册教案

2.6有理数的混合运算-浙教版七年级数学上册教案

2.6 有理数的混合运算-浙教版七年级数学上册教案
一、教学目标
1.掌握有理数的混合运算的基本概念和方法。

2.理解混合运算中加减乘除的优先级顺序。

3.能够熟练进行有理数混合运算,并正确解释计算过程。

二、教学内容
1.有理数的混合运算
2.加减乘除的优先级
三、教学重难点
1.理解混合运算中加减乘除的优先级顺序。

2.能够熟练进行有理数混合运算,并正确解释计算过程。

四、教学过程
1.导入(2分钟)
1.介绍有理数的混合运算的基本概念,引导学生了解有理数和混合运算的基本概念。

2.讲解主要内容(15分钟)
1.讲解加减乘除的优先级,强调要按照次序来计算。

2.讲解有理数的混合运算,并通过例题帮助学生掌握混合运算的方法。

3.例题练习(30分钟)
1.给学生展示几道例题,让学生自己尝试解题,并在过程中引导学生注意计算过程,理解混合运算的计算顺序。

2.老师解答并讲解例题,解释计算过程和思路。

4.课堂小结(3分钟)
1.通过讲解和练习,学生已经了解了有理数的混合运算和加减乘除的优先级。

2.通过练习,学生已熟练掌握混合运算的方法和正确的计算顺序。

5.课后作业(5分钟)
1.布置有理数的混合运算相关的作业,要求学生理解题意,熟练掌握计算方法。

五、教学评价
1.学生能够准确理解有理数混合运算和加减乘除的优先级,掌握正确的计算方法和顺序。

2.学生能够独立完成相关的混合运算练习,表现出较好的学习态度和能力。

七年级数学上册第一章 有理数 ——数轴、相反数

七年级数学上册第一章 有理数 ——数轴、相反数

第一章有理数第三课时数轴教学目标1.掌握数轴三要素,能正确画出数轴.2. 能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,知道有理数都可以用数轴上的点表示.教学重点初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.教学难点正确理解有理数与数轴上点的对应关系.教学过程(一)创设情境,导入新课在一条东西方向的马路上,有一个学校,学校东50m和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:定义:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-7/2,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度;表示-a的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结整数能在数轴上都找到点吗?分数呢?可见,所有的______都可以用数轴上的点表示______都在原点的左边,______都在原点的右边.(三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.【答案】①错.没有原点②错.没有正方向③正确④错.没有单位长度⑤错.单位长度不统一⑥正确⑦错.正方向标错例2 试一试:把下面各小题的数分别表示在三条数轴上:(1)2,-1,0,3 2/3 ,+3.5(2)―5,0,+5,15,20;例3 如果a是一个正数,则数轴上表示数a的点在原点的什么位置上?•表示-a的点在原点的什么位置上呢?【提示】由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)A.1个B.2个C.3个D.4个例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和 -2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是 +3 .例6 在数轴上表示-2 1/2和1 2/3,并根据数轴指出所有大于-2 1/2而小于1 2/3的整数.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000 C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.备选例题(2004²新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.(四)总结反思,拓展升华1.数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。

浙教版七年级数学上册教案及反思教案

浙教版七年级数学上册教案及反思教案

教学目标:1.回顾小学学过的关于“数”的知识,进一步理解自然数,分数的产生和发展的实际背景,2.通过学生身边的例子体验自然数,分数的意义和在计数、测量、排序、编号等方面的应用。

教学重点:初步了解自然数的各种应用,从自然数到分数是来源于生活实践。

教学难点:自然数、分数的各种应用,教学过程:引入宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁等各个方面,无处不有数学的重大贡献。

一、创设情境出示材料:(多媒体显示)请阅读下面这段报道:2008年8月8日到8月24日,第29届奥运会在北京召开,我国体育代表团以51枚金牌,21枚银牌,28枚铜牌,获得奖牌榜的第一名,为国家争得了荣誉。

我国金牌数约占总金牌数的61。

牙买加飞人博尔特以一己之力,将人类速度的极限改写。

男子100米、200米和4×100米接力3项世界纪录全部被刻上“牙买加制造”的标签,男子百米“飞人”大战,博尔特以9秒69第一个冲过终点线。

男子100米世界纪录历史性地首次被“浓缩”到了9秒70以内。

提问:你在这篇报道中看到了哪些数?请你把它们写下来,并指出它们分别属于哪一类数?如果将9秒69写成秒,又属于什么数?(由北京奥运会有关报道引入,既合时事形势,又具有爱国主义教育,并使学生体验到生活中处处有数学)提出课题:今天我们复习自然数、分数和小数及它们的应用 [板书课题]第1节从自然数到分数二、提问复习问题1:先请同学们回忆小学里学过的自然数,哪一些数属于自然数?你了解自然数最初是怎样出现的吗?注意:自然数从0开始。

问题2:你知道自然数有哪些作用?(让学生思考、讨论后来回答,教师提示补充)自然数的作用:①计数 如:51枚金牌,是自然数最初的作用;②测量 如:小明身高是168厘米;③标号和排序 如:2008年,金牌榜第一。

注意:基数和序数的区别。

(因为自然数在小学里已经非常熟悉,因此教师以提问的形式,帮助学生回忆有关知识)三、做一做(多媒体显示,学生独立思考完成后,请学生回答)下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?(1)、 2002年全国共有高等学校2003所;(2)、小明哥哥乘1425次列车从北京到天津;(3)、香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼;(4)、信封上的邮政编码321407;(5)、今天的最高气温是35℃(补充2小题,加强巩固自然数的作用)四、小组讨论问题1:我们知道小学里先学自然数再学分数,但你了解分数是怎样产生的吗?你能用自然数表示四人均分一个西瓜,每人可得多少西瓜吗?(用分配等实际问题说明自然数还不能满足实际需要,使学生了解分数产生的必要性和必然性)问题2:在解答下列问题时,你会选用分数和小数中的哪一类数?为什么?⑴小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?⑵小明的身高是168厘米,如果改用米作单位,应怎样表示?(让学生说说为什么,使学生理解什么时候用分数,什么时候用小数,关键是怎样方便简单)五、巩固提升见书本P4课内练习1、2、3,其中第2题,让同桌两位同学先各自估计,然后一起测量,培养同学们的合作与交流能力。

浙教版数学七年级上《数轴》精品教案

浙教版数学七年级上《数轴》精品教案

一、教学目标1.知识与技能:掌握数轴的概念和表示方法,会在数轴上表示数、求取数的相反数和绝对值;2.过程与方法:培养学生观察分析、归纳总结和运算的能力;3.情感态度和价值观:通过数轴的学习,引导学生培养正确的数学学习态度和方法,提高思维能力和解决实际问题的能力。

二、教学重难点1.重点:理解数轴的概念和表示方法,掌握在数轴上表示数的方法。

2.难点:求取数的相反数和绝对值。

三、教学过程Step 1:导入新课1.教师出示一张打印好的数轴,让学生观察,并回顾数轴的概念。

2.通过提问,引导学生归纳总结数轴的特点和主要元素。

Step 2:引入练习1.教师出示一些数字,让学生在数轴上表示这些数。

2.学生完成后,互换答案,进行比较和讨论。

Step 3:探究练习1.在数轴上表示正数、负数、0,并进行比较和讨论。

2.引导学生观察正数和负数在数轴上的位置关系,并总结规律。

3.引导学生探究正数的相反数和负数的相反数在数轴上的位置关系,并总结规律。

4.引导学生观察正数、负数和0的绝对值,并总结规律。

Step 4:知识拓展1.学习利用数轴求取数的相反数和绝对值。

2.教师出示练习题,进行例题讲解和学生的思维引导。

Step 5:巩固练习1.学生分组完成练习题,然后互相交流答案。

2.教师进行讲解和解答疑惑。

Step 6:拓展练习教师出示一些拓展练习题,让学生运用所学的知识,解决实际问题。

四、教学反思本节课通过引入观察数轴的特点,探究了在数轴上表示数、求取数的相反数和绝对值的方法。

在探究过程中,教师起到引导学生思考的作用,加深学生对数轴的认识和运用能力。

同时,在巩固练习和拓展练习环节,教师注重引导学生合作完成任务,培养学生的团队意识和沟通能力。

通过这样的教学方式,学生能够更好地掌握数轴的相关知识,并运用到实际生活中去。

浙教版七年级数学上册数轴课件

浙教版七年级数学上册数轴课件

感悟新知
总结
知2-讲
1.数轴的两个最基本的应用:
一是知点读数,二是知数画点,
知数画点
即:数
点(形),它是最直观的数形结合体.
知点读数
2.数轴上的点与有理数的关系:
数轴上的每一个点都表示一个数,所有的有理数都可以用数
轴上的点来表示,但数轴上还有一部分点表示的不是有理数,因
此数轴上的点与有理数之间不是一一对应的关系,比如π这样的
知1-练
感悟新知
总结
知1-讲
辨认数轴,要紧扣数轴的定义,环绕数轴 的原点、正方向、单位长度三要素进行判断, 三者缺一不可.
感悟新知
1.下图所画数轴正确的是( D )
知1-练
2.画一条以50为单位长度的数轴. 解:如图.
感悟新知
3.下列各图中,所画数轴正确的是( D )
A
B
C
D
知1-练
感悟新知
(1)每对点在原点的同侧还是异侧? (2)每对点与原点的距离具有什么关系?
容易看出:表示4和-4的点位于原点两侧,并 且到原点的距离相等,都是4个单位长度.表示2. 5和 -2. 5的点,也具有上述特点.
知3-导
感悟新知 总结
数轴上的点的距离是一个非负数.
知3-讲
感悟新知
例4 如下图,数轴上有三个点A,B,C.
感悟新知
知2-练
1. 画出数轴,并在数轴上标出表示下列各数的点. -100,-50,0,200,50,325.
解:如图.
感悟新知
1 2.在数轴上表示-2,0,6.3,5
边的点有( C )
知2-练
的点中,在原点右
A.0个
B.1个
C.2个

浙教版(2024)数学七年级上册《有理数的大小比较》教案及反思

浙教版(2024)数学七年级上册《有理数的大小比较》教案及反思

浙教版(2024)数学七年级上册《有理数的大小比较》教案及反思一、教学目标:【知识与技能目标】:1.掌握有理数大小比较的方法,会比较两个有理数的大小。

2.能利用数轴比较有理数的大小,体会数形结合的思想。

【过程与方法目标】:1.经历有理数大小比较的探索过程,培养学生的观察、分析、归纳能力。

2.通过小组合作交流,培养学生的合作意识和表达能力。

【情感价值观目标】:1.让学生在自主探索、合作交流中感受数学的乐趣,增强学习数学的信心。

2.体会数学知识的实用性,培养学生应用数学的意识。

二、教材分析:《有理数的大小比较》是浙教版(2024)数学七年级上册的内容。

主要是在学生学习了有理数的概念、数轴等知识的基础上进行的。

有理数的大小比较是有理数运算的重要基础,也是后续学习实数大小比较的基础,具有承上启下的作用。

教材通过数轴上的点表示有理数,引导学生观察数轴上有理数的位置关系,从而得出有理数大小比较的方法。

同时介绍了利用绝对值比较有理数大小的方法,进一步加深学生对有理数大小比较的理解。

二、学情分析:七年级学生已经掌握了有理数的概念和数轴的知识,为学习有理数的大小比较奠定了基础。

也具有一定的观察、分析、归纳能力,但思维还不够严密,需要教师引导。

学生对数学学习有一定的兴趣,但在学习过程中可能会遇到困难,需要教师及时鼓励和引导。

四、教学重难点:【教学重点】:1.掌握有理数大小比较的方法。

2.利用数轴和绝对值比较有理数的大小。

【教学难点】:1.利用绝对值比较两个负数的大小。

2.理解有理数大小比较的方法与数轴、绝对值的关系。

五、教学方法和策略:【教学方法】:1.讲授法:讲解有理数大小比较的方法和原理。

2.演示法:通过数轴演示有理数的大小比较,帮助学生理解。

3.讨论法:组织学生小组讨论,交流比较有理数大小的方法。

4.练习法:通过练习巩固有理数大小比较的方法。

【教学策略】:1.创设情境:通过实际问题引入有理数的大小比较,激发学生的学习兴趣。

浙教版数学七年级上册1.3《数轴》教学设计

浙教版数学七年级上册1.3《数轴》教学设计

浙教版数学七年级上册1.3《数轴》教学设计一. 教材分析《数轴》是浙教版数学七年级上册第1章第3节的内容,本节内容是在学生已经掌握了有理数的概念和运算法则的基础上进行学习的。

数轴是数学中的一种重要工具,它可以帮助我们更好地理解实数的大小关系,解决不等式、方程等问题。

本节内容对于学生来说是比较抽象的,需要通过大量的实例和练习来理解和掌握。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,但对于数轴这一概念还是相对陌生。

因此,在教学过程中,需要通过具体的实例和实际操作来帮助学生理解和掌握数轴的概念和运用。

三. 教学目标1.知识与技能:使学生理解数轴的概念,学会在数轴上表示实数,能运用数轴来解决一些实际问题。

2.过程与方法:通过实际操作和小组合作,培养学生的观察能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。

四. 教学重难点1.数轴的概念及其表示方法。

2.运用数轴解决实际问题。

五. 教学方法1.情境教学法:通过具体的实例和实际操作,让学生在情境中理解和掌握数轴的概念。

2.小组合作学习:让学生在小组合作中探讨和发现数轴的性质,培养学生的团队协作能力。

3.练习法:通过大量的练习,让学生在实践中巩固和提高数轴的知识。

六. 教学准备1.教具:数轴模型、黑板、粉笔。

2.学具:每人一份数轴练习纸。

七. 教学过程导入(5分钟)教师通过一个实际问题引入数轴的概念,如:“小明从家出发,向正北方向走了3公里,然后向正西方向走了5公里,请问小明现在离家有多远?”让学生思考并讨论如何解决这个问题。

呈现(10分钟)教师通过数轴模型向学生展示数轴的概念,解释数轴的三个要素:原点、正方向、单位长度。

然后让学生在练习纸上画出一个数轴,并在数轴上表示出3和5。

操练(15分钟)教师给出一些具体的数,让学生在数轴上表示出来,如:-2,0,7,-4等。

同时,让学生尝试解决一些实际问题,如:“小华有2元钱,他买了一支铅笔花了0.5元,请问他还剩下多少钱?”巩固(10分钟)教师让学生进行小组合作,探讨数轴上的一些性质,如:数轴上两个数的距离如何计算?同号数和异号数在数轴上的位置关系等。

七年级数学上册 有理数 数轴作业设计 浙教版

七年级数学上册  有理数 数轴作业设计 浙教版

1.2 数轴一、选择题1.−3的相反数是( )A.3B.−3C.31D.31- 2.实数5的相反数是( ) A.1 B.-51 C.-5 D.5 3.-2的相反数是( )A.−2B.2C.21-D.21 4.四位同学画数轴如下图所示,你认为正确的是( )5.在1,0,35,-3这四个数中,最大的数是( ) A.1 B.0 C.35 D.-3 6.如图,若A 是实数a 在数轴上对应的点,则关于a,−a,1的大小关系表示正确的是( )A.a<1<−aB.a<−a<1C.1<−a<aD.−a<a<1 7.2014相反数的是() A.2014 B.−2014 C.-20141 D.20141 8.在−2,1,5,0这四个数中,最大的数是( )A.−2B.1C.5D.0二、填空题9.如果一个数的相反数是0,那么这个数是 ,−5的相反数是 ,相反数是72的数是 10.如果−3<□<2,那么□内可以填写的有理数是 (写出3个).11.−2的相反数是 .12.在原点右边1个单位长度的点表示的数是 ,在原点左边2.5个单位长度的点表示的数是 .13.数轴上离原点3个单位长度的点表示的数是 .14.一把标有0至10的直尺,如图所示放在数轴上,且直尺上的刻度0,1,2,3,4和数轴上的−1,−2,−3,−4,−5分别对应.现把直尺向右平移5.4个单位长度,平移后数轴上的数与刻度尺上的读数相同,则这个数是.三、解答题:15.在数轴上,把表示−1的点先向右移动1个单位长度,再向左移动2个单位长度,这时它表示的数是多少?16.根据如图数轴上标出的数值,写出点A和点B之间的点所表示的所有整数.17.如图,数轴上的点A,B,C,D,E分别表示什么数?其中哪些数互为相反数?18.A,B,C三个村庄的位置如图所示,已知村庄A到村庄B,C的距离分别为1200米和2400米.(1)如果以村庄A为原点,向右为正方向画数轴,1个单位长度代表1米,那么村庄B,C在数轴上表示的数分别是多少?(2)如果以村庄B为原点,那么村庄A,C所表示的数分别是多少? 它们互为相反数吗?19.在数轴上表示数0,1,2.5,−3及它们的相反数.20.如图,数轴的单位长度为1.(1)如果点A表示的数既不是正数也不是负数,那么点C,E表示的数分别是什么?(2)如果点A,B表示的数是互为相反数,那么点D表示的数是什么?如图六个点中还有表示互为相反数的点吗?找找看.(3)如果点C,E表示的数是互为相反数,那么如图六个点表示的数中有几个负数?这六个点中哪一点与原点的距离最大?它表示的数是什么?参考答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 数轴
一、教学目标
1、理解数轴的概念,会读出数轴上点表示的数,会画数轴,会在数轴上表示有理数.
2、理解相反数的概念,会在数轴上表示两个相反数,知道互为相反数在数轴上的位置关系,会求一个数的相反数,能利用数轴比较有理数的大小.
3、经历数轴的发生和应用,体验数形结合等数学思想.
二、教学重点:数轴和相反数的概念及用数轴上的 点表示有理数
三、教学难点:数轴的概念和相反数反映在数轴上的性质
四、教学设计
(一)创设情境,引出课题
(1)老师展示温度计:
①请观察温度计,读出现在的室内温度.
②请观察下列图形,读出温度计上的温度.
③温度计刻度的正、负是怎样规定的?
以什么为基准?基准刻度线表示多少摄氏度?
④每摄氏度的两条刻度线之间的距离有什么特点?
(2)把温度计横放(零上温度向右),你觉得它像什么?
(3)你能把温度计的刻度画在纸上吗?
引出新课:“数轴”.
(二)合作讨论,探究新知
1、动手操作:师生一起画一条数轴.
[讲清数轴的画法:一画(直线);二定(定原点);三选(选正方向);四统一(单位长度要统一).]
2、观察数轴有什么特征?(让学生讨论)
(如:数轴的三要素——原点、正方向、单位长度,类比温度计三者缺一不可,正数都在原点的右边,负数都在原点的左边等等.)
3、考考你:下面图形是数轴的是( )
(A )

B (C

D (E
(通过判断,加深对数轴概念的理解,掌握正确的画法.)
(三)解释应用,体验成功
1、例题教学
-2 -1 0 1 2
例1 指出数轴上A 、B 、C 、D 各点表示什么数?
(学生合作交流,获取正确答案)
(指出数轴上已知点所表示的数,是由“形”到“数”的过程.)
例2 在数轴上表示下列各数:
1.(1)0.5,-25 ,0,-4,25 ,-0.5,1,4;
(2)200,-150,-50,100,-100.
(学生动手操作,体验数学活动充满探索.)
(把给定的数用数轴上的点表示,是“数”到“形”的思维过程.)
2. 观察例2中画好的数轴,-4与4,它们在数轴上的位置有什么关系?-25与25
,-0.5与0.5呢?
教师引导学生得出结论:
①如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数是互为相反数,特别地,0的相反数是0.
②在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等. ③任何一个有理数都可以用数轴上的一个点来表示.
3、考考你:
(1)下面两个数是互为相反数的是( )
A 、-12 与0.2
B 、13
与-0.3 C 、-2.25与214
D 、π与-3.14 (2)写出三对非零相反数,在数轴上将它们表示出来,并比较其中三个负数的大小.
(四)拓展创新,巩固概念
(1)问题:数轴上的两个点,右边的点表示的数与左边的点表示的数有怎样的大小关系?你能举例说明吗?
(分组讨论、合作交流、获得数学的猜想.)
(2)在数轴上距原点2个单位长度的点表示什么数?它们有什么关系?距原点5个单位呢?a 个单位呢?(a>0)
(学生回答,并相互补充,培养学生发散思维的能力;知道若a 为有理数,则它的相反数为-a.)
(五)课堂小结(通过本节课的学习,你有什么收获?)
1、数轴的定义和画法
2、能说出数轴上已知点所表示的有理数,能将已知数在数轴上表示出来.
所有的有理数都可用数轴
上的点来表示,但是反过来不成立,即数轴上的各点,并不是都表示有理数.
3、有理数是数,而数轴上的点是几何图形.今天这节课上,我们把数和几何图形有机的结合在了一起,这就是一种在数学上非常重要的方法——数形结合.
(六)随堂练习。

相关文档
最新文档