算法学习:图论之二分图的最优匹配(KM算法)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二分图的最优匹配(KM算法)
KM算法用来解决最大权匹配问题:在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接XiYj有权wij,求一种匹配使得所有wij的和最大。
基本原理
该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。
KM算法的正确性基于以下定理:
若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。
首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是
Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。
这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。
初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。
我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:
1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。
2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。
3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。
4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。(针对之后例子中x1->y4这条边)
现在的问题就是求d值了。为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于:
Min{A[i]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。
改进
以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A[ i ]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y 顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有的不在交错树中的Y顶点的slack值都减去d(因为:d的定义为 min{ (x,y)| Lx(x)+ Ly(y)- W(x,y), x∈ S, y∉ T }
(关键,关键),此时属于S的X均已经减去d了,所以不属于T的y也要减去d,防止下次循环更改出错)。
Kuhn-Munkras算法流程:
(1)初始化可行顶标的值
(2)用匈牙利算法寻找完备匹配
(3)若未找到完备匹配则修改可行顶标的值
(4)重复(2)(3)直到找到相等子图的完备匹配为止
例
已知K5,5的权矩阵为
y1 y2 y3 y4 y5
x1 3 5 5 4 1
x2 2 2 0 2 2
x3 2 4 4 1 0
x4 0 1 1 0 0
x5 1 2 1 3 3
求最佳匹配,其中K5,5的顶划分为X={xi},Y={yi},i=1,2,3,4,5.
解:
(1)取可行顶标l(v)为 l(yi)=0,i=1,2,3,4,5;
l(x1)=max{3,5,5,4,1}=5,l(x2)=max{2,2,0,2,2}=2,l(x3)=max(2,4,4,1,0}=4,l(x4)=max{0,1,1,0,0} =1,l(x5)=max{1,2,1,3,3}=3.
(2) Gl及其上之匹配见图7.12。
这个图中ο(G-x2)=3,由Tutte定理知无完备匹配。需要修改顶标。
(3) u=x4,得S={x4,x3,x1},T={y3,y2},N(S)=T,于是
al=min(l(x)+l(y)-w(xy)}=1. (x∈S,y∈T)
x1,x2,x3,x4,x5的顶标分别修改成4,2,3,0,3;y1,y2,y3,y4,y5的顶标分别修改成0,1,1,0,0。
(4) 用修改后的顶标l得Gl及其上面的一个完备匹配如图7.13。图中粗实线给出了一个最佳匹配,其最大权是2+4+1+4+3=14。
我们看出:al>0;修改后的顶标仍是可行顶标;Gl中仍含Gl中的匹配M;Gl中至少会出现不属于M的一条边,所以会造成M的逐渐增广。
得到可行顶标后求最大匹配:
书上这部分没讲,实际上是这样的,对于上面这个例子来说,通过Kuhn-Munkres得到了顶标l(x)= {4,2,3,0,3},l(y)={0,1,1,0,0},那么,对于所有的l(xi)+l(yj) = w(i,j),在二分图G设置存在边
w(i,j)。再用匈牙利算法求出最大匹配,再把匹配中的每一边的权值加起来就是最后的结果了。