人教版小学《三角形的内角和》教学设计教案

合集下载

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)〖人教版数学四年级下册三角形的内角和优秀教案第【1】篇〗《三角形内角和》教学设计教材分析:《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是学生在学习了上册《平行与垂直》中的《角的认识》和本册本单元《三角形的特性》以及《三角形三边关系》、《三角形的分类》等知识之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握“三角形的内角和是 180°”这一规律具有重要意义。

首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。

三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是 180 度。

二是把三个内角折叠在一起,发现也能组成一个平角。

每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于 90 度,钝角三角形里的两个锐角和小于90 度。

本节课的教学重点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

而教学难点则放在对不同探究方法的指导和学生对规律的灵活运用。

学情分析:四年级的学生已初步具备了动手操作的意识和能力,并能够在探究问题的过程中,运用已有的知识和经验,通过交流、比较、评价等寻找解决问题的途径和策略。

“三角形的内角和是 180°”这一结论,大多数学生在四年级上册“角的度量”也有接触,但不一定清楚道理,所以本课的重点不在于了解,而在于验证,让学生在课堂上经历研究问题的全过程。

学生在本课学习前已经认识了三角形的基本特征及分类,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。

小学数学《三角形内角和》教学设计(6篇)

小学数学《三角形内角和》教学设计(6篇)

小学数学《三角形内角和》教学设计(6篇)《三角形的内角和》教学反思篇一新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。

这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。

在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。

让学生“量一量”“剪—拼”贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。

在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;第二,经过操作得到什么结论。

学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。

本节课不足之处:1学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。

就无法复习三角形的有关知识。

2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,指完并让他用黑色水笔画出来。

为验证三角形内是180度做铺垫。

3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。

而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。

4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。

5、练习设计是有分层次,但是学生说的较少,我比较急地去分析,留给学生的时间不足这是我今后要特别注意的一个方面。

本节课我引导学生用测量或剪拼的方法探究三角形的内角和。

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。

出示一些三角形,让学生指出内角和。

师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。

)(板书三角形的内角和是180度。

)师:那我们再看看刚刚汇报的结果。

为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。

现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。

早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。

(1)直角三角形的两个锐角的和是90°。

(2)一个等腰三角形的底角可能是钝角。

(3)三角形的内角和都是180°,与三角形的大小无关。

4、剪一剪。

把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。

七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。

是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。

教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。

教材还安排了“试一试”,“练一练”的内容。

已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。

他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

5.3《三角形的内角和》(教案)2023-2024学年数学四年级下册-人教版

5.3《三角形的内角和》(教案)2023-2024学年数学四年级下册-人教版

5.3《三角形的内角和》教案一、教学目标1. 让学生理解并掌握三角形的内角和是180°。

2. 培养学生通过观察、操作、推理、交流等数学活动,发展空间观念和推理能力。

3. 培养学生合作交流的意识,增强对数学学科的兴趣。

二、教学重点与难点1. 教学重点:让学生理解并掌握三角形的内角和是180°。

2. 教学难点:如何引导学生通过观察、操作、推理、交流等方式,发现并证明三角形的内角和是180°。

三、教学过程1. 导入新课- 利用多媒体展示一些生活中的三角形图片,引导学生观察并说出三角形的特征。

- 提问:同学们,你们知道三角形的内角和是多少吗?今天我们就来学习这个问题。

2. 探究新知- 分组活动:让学生分组用三角板测量三角形的内角和,并记录下来。

- 小组讨论:让学生在小组内交流自己的测量结果,引导学生发现三角形的内角和可能是180°。

- 课件演示:利用多媒体课件演示三角形的内角和测量过程,让学生直观地感受三角形的内角和是180°。

- 总结规律:引导学生总结三角形的内角和是180°。

3. 巩固练习- 出示一些不同类型的三角形,让学生计算内角和,并验证是否为180°。

- 让学生举例说明生活中哪些物体的形状可以近似看作三角形,并计算其内角和。

4. 拓展提高- 让学生思考:除了三角形,还有哪些多边形的内角和是固定的?能否用同样的方法求出四边形的内角和?- 引导学生通过观察、操作、推理、交流等方式,探索多边形的内角和规律。

5. 课堂小结- 让学生回顾本节课所学内容,总结三角形的内角和是180°。

- 强调通过观察、操作、推理、交流等数学活动,发展空间观念和推理能力的重要性。

6. 课后作业- 让学生完成教材P54页的练习题。

- 选做:让学生回家后观察生活中哪些物体的形状可以近似看作三角形,并计算其内角和。

四、教学反思本节课通过观察、操作、推理、交流等数学活动,让学生掌握了三角形的内角和是180°。

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。

⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。

⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

教学重点:检验三角形的内角和是180°。

教学难点:引导学生通过实验探究得出三角形的内角和是180度。

教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。

1、复习三角形分类的知识。

师出示三角形,生快速说出它的名称。

2、什么是三角形的内角?我们通常所说的角就是三角形的内角。

为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。

用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

3、今天这节课啊我们就一起来研究三角形的内角和。

〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。

师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。

是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。

一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。

小学数学《三角形内角和》教学设计(优秀5篇)

小学数学《三角形内角和》教学设计(优秀5篇)

小学数学《三角形内角和》教学设计(优秀5篇)《三角形内角和》数学教案篇一【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。

【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。

【学情分析】:学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。

对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。

另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。

【学习目标】:1、结合具体图形能描述出三角形的内角、内角和的含义。

2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。

3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。

4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

【评价任务设计】:1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。

达成目标1。

2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。

达成目标2。

3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。

达成目标3。

4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

通过“做一做”和习题第9、10、12题达成目标4和目标3。

【重难点】教学重点:探索和发现三角形的内角和是180°。

教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°【教学过程】一、复习准备。

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)下面是我分享的《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案),供大家赏析。

《三角形内角和》数学教案1学习目标:(1) 知识与技能:掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

(2) 过程与方法:通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。

对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。

逐渐由实验过渡到论证。

通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

(3)情感态度与价值观:通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。

使学生主动探索,敢于实验,勇于发现,合作交流。

一.自主预习二.回顾课本1、三角形的内角和是多少度?你是怎样知道的?2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

3、回忆证明一个命题的'步骤①画图②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。

③分析、探究证明方法。

4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?①平角,②两平行线间的同旁内角。

5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。

如何把三个角转化为平角或两平行线间的同旁内角呢?① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。

② 如图1,延长BC,过C作CE∥AB③ 如图2,过A作DE∥AB④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。

三、巩固练习四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)五、达标检测:略六、布置作业《三角形内角和》数学教案2教学内容义务教育课程标准试验教科书《数学》(人教版)四年级下册第85页。

小学数学《三角形内角和》教学设计(通用8篇)

小学数学《三角形内角和》教学设计(通用8篇)

小学数学《三角形内角和》教学设计(通用8篇)下文是我为您精心整理的《小学数学《三角形内角和》教学设计(通用8篇)》,您浏览的《小学数学《三角形内角和》教学设计(通用8篇)》正文如下:小学数学《三角形内角和》教学设计篇1教学目标:1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

3、经历三角形内角和的研究方法,感受数学研究方法。

教学重点:1、探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:表格、课件。

学具准备:各种三角形、剪刀、量角器。

一、创设情境揭示课题。

1、一天两个三角形发生了争执,他们请你们来评评理。

大三角形说:“我的个头大,所以我的内角和一定比你大。

”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。

”谁说得有道理呢?今天让我们来做一回裁判吧。

生1:大三角形大(个子大)生2:小三角形大(有钝角)(教师不做判断,让学生带着问题进入新课)2、什么是三角形的内角和?(板书:内角和)讲解:三角形内两条边所夹的角就叫做这个三角形的内角。

每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:1、你认为谁说得对?你是怎么想的?2、你有什么办法可以比较一下这两个三角形的内角和呢?生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

生3:用折一折的办法把三个角折到一起看它们能不能组成平角(二)探索与发现活动一:量一量(1)①了解活动要求:(屏幕显示)A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。

(测量时要认真,力求准确)B、把测量结果记录在表格中,并计算三角形内角和。

《三角形的内角和》教学设计15篇

《三角形的内角和》教学设计15篇

《三角形的内角和》教学设计15篇《三角形的内角和》教学设计1【教学内容】《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。

2.让学生经历量一量、折一折、拼一拼等动手操作的过程。

通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180 。

3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

【教学重点】使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。

【教学难点】通过多种方法验证三角形的内角和是180 。

【教学准备】课件。

四组教学用三角板。

铅笔。

大帆布兜子。

固体胶。

剪刀。

筷子若干。

【教学过程】一、激趣导入,提炼学习方法1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。

激发学生的好奇心。

然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。

我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。

教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

4.导入新课。

图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)二、动手操作,探索交流新知1.分组活动,探索新知根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

《三角形的内角和》教学设计优秀8篇

《三角形的内角和》教学设计优秀8篇

《三角形的内角和》教学设计优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《三角形的内角和》教学设计优秀8篇作为一名默默奉献的教育工作者,通常会被要求编写教学设计,借助教学设计可以更好地组织教学活动。

四年级《三角形内角和》教学设计8篇

四年级《三角形内角和》教学设计8篇

四年级《三角形内角和》教学设计8篇作为一位不辞辛劳的人民教师,有必要进行细致的教学设计准备工作,教学设计是一个系统化规划教学系统的过程。

优秀的教学设计都具备一些什么特点呢?下面是小编为大家整理的四年级《三角形内角和》教学设计,希望能够帮助到大家。

四年级《三角形内角和》教学设计1教学目标:1、通过测量,撕拼,折叠等方法。

探索和发现三角形三个内角和的度数等于180°。

2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。

3、能运用三角形内角和知识解决一些简单的问题。

教学重点:探索和发现“三角形内角和是180°”。

教学难点:验证“三角形内角和是180°,以及对这一知识的灵活运用。

”教具准备:三角形,多媒体课中。

教学过程设计:一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?二、探究新知:(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。

你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°(二)、拼一拼引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?引导学生得出:三角形内角和等于180°(三)折一折引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。

回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。

三、巩固拓展1、填一填①直角形三角形的两个锐角和是()度。

②直角三角形的一个锐角是45°,另一个锐角是()度。

③钝角三角形的两上内角分别是20°,60°;则第三个角是()2、火眼金晴①钝角三角形的两个钝角和大于90°()。

《三角形内角和》的数学教学设计(最新7篇)

《三角形内角和》的数学教学设计(最新7篇)

《三角形内角和》的数学教学设计(最新7篇)角形内角和教学设计篇一教学内容:教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

重点难点:掌握三角形的内角和是180°。

教学准备:三角形卡片、量角器、直尺。

导学过程一、复习1、什么是平角?平角是多少度?2、计算角的度数。

3、回忆三角形的相关知识。

(出示直角三角形、锐角三角形、钝角三角形)二、新知(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。

同时,培养学生的综合素养)1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)(4)汇报结论(清楚明白的给小组加优秀10分)5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。

)三、知识运用(课件出示练习题,生解答)1、填空(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

三角形内角和教学设计(共6篇)

三角形内角和教学设计(共6篇)

三角形内角和教学设计(共6篇)第1篇:“三角形内角和”教学设计“三角形内角和”教学设计教学内容:义务教育教科书《数学》(人教版) 四年级下册第67页例6。

教学目标:1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。

并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点:学生理解不同探究方法的内涵和对所得结论的灵活运用。

设计思路:三角形的内角和是三角形的一个重要特征,它是在学生已经熟悉长方形、平角等有关知识,并掌握了三角形的特征及分类之后的基础上学习的。

四年级的学生已具备了初步的动手操作能力、主动探究能力以及合作学习的习惯,他们正处于由形象思维向抽象思维过渡的阶段。

《课标》明确指出“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。

因此,这节课我将重点引导学生从“猜测—验证—得出结论”展开学习活动,让学生感受这种重要的思维方式。

并在教学中渗透“从特殊到一般”、“利用旧知解决新知”、“进行转化”等数学思想。

同时借助交互式电子白板的画图、手写、图片处理、屏幕捕获、隐藏、拖拽、链接及较好的交互功能等,让学生通过自主探索、实验、发现、讨论、交流获得知识,形成结论。

教学准备:多媒体课件、三角尺等。

教学过程:一、激趣引入(一)认识三角形内角师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(白板:画弧线,标上∠1、∠2、∠3),我们把三角形里面的这三个角分别叫做三角形的内角。

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)三角形的内角和,即三个内角的和。

三角形内角和定理:三角形三个内角和等于180°。

用数学符号表示为:在△ABC中,△1+△2+△3=180°。

奇文共欣赏,疑义相如析,该页是漂亮的小编给大家收集整理的三角形的内角和数学教学设计【精选4篇】,欢迎借鉴,希望能够帮助到大家。

《三角形内角和》数学教案篇一大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。

领悟转化思想在解决问题中的应用。

六、课前准备1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。

“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的内角和
教学目标:
1、通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。

并运用新知识解决问题。

3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:
探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:
对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:
课件、学生准备不同类型的三角形各一个,量角器,剪刀等。

教学过程:
一、复习导入,引出问题
1、同学们,三角形按角的不同来分类,可以分为哪几类?
锐角三角形、钝角三角形、直角三角形。

2、出示三种三角形争辩哪种三角形的内角和最大,来引出问题(探究哪种三角形的内角和最大)。

3、三兄弟都在说自己的内角和最大,什么是三角形的内角?
三角形里面的三个角都是三角形的内角。

为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

内角和就是三角形三个内角度数的和。

(请学生多说几遍)
4、三角形的内角和到底数多少度呢?你觉得哪种三角形的内角和最大?
5、引出课题。

师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。

(板书课题)
二、探究新知
1、你知道三角形的内角和是多少度吗?
2、你是用怎么知道的?(或你有什么方法证明三角形的内角和是180度吗?)提问学生。

预设:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
我的想法:三角板各个角相加,把长方形或正方形沿着对角线切开分成两个三角形,平行四边形的内角和360°除以2就等于一个三角形的内角和。

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?(提问)
3、操作验证:小组合作。

(1)每组同学都选分别选一个钝角三角形、锐角三角形、直角三角形量出他们的每个角的度数,求出内角和。

(2)选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。


4学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?
师:有没有别的方法验证。

(2)剪拼
a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。

(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重
让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。


(4)数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662) ,法国数学家、物理学家、近代概率论的奠基者。

早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

5、知识巩固
(1)师:你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是多少度?(180°)
(2)解决课前问题,为什么画不出1个含有2个直角的三角形?
1个三角形中有没有2个钝角?
(3)师:我们对三角形的认识已经非常清晰,
出示2个三角形,生分别说出内角和。

把两个小三角形拼在一起,问:大三角形的内角和是多少度。

(180°)
教师:为什么不是360°?
三、解决相关问题
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
(1)看图,求未知角的度数(已知三角形两个角的度数,求另一个角的度数)。

(2)我是等腰三角形,我的两个底角都是70°,求顶角的度数。

(3)求等边三角形的三个角的度数。

(4)已知等边三角形顶角是96°,求底角的度数。

这些题我们都利用了三角形的什么?(三角形的内角和是180°)
四、拓展延伸
1、提问:你是怎么求4边形、5边形内角和的?(小组讨论,可画图或用剪切的方法展示)。

把4边形、5边形选一个顶点,沿对角线分成多个三角形,有几个三角形,他们的内角和也就是几个180°。

2、下课的时间就要到了,我们来一个挑战题。

你们敢接受挑战吗?
如果要求10边形的内角和,你会求吗?你有什么发现?
(我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。


四、总结。

师:这节课你有什么收获?
五、板书设计:
三角形的内角和是180°
∠1+∠2+∠3=180°
度量
剪拼折拼。

相关文档
最新文档