锻造工艺常见缺陷

合集下载

常见锻件缺陷

常见锻件缺陷

锻件的缺陷很多种类,该类缺陷产生的原因也有许多种,有不良锻造工艺造成的,有原材料的原因,有模具设计不合理所致等等。

尤其是少无切削加工的精密锻件,更是难以做到完全控制。

本文介绍几种常见的锻件缺陷。

锻件缺陷1、缩孔:在锻造前期浇注钢铸锭时,由于钢铸锭冷却时金属凝固体积收缩,形成较大的孔洞,常见于钢锭的头部(冒口端)缩孔特征:一般位于横截面中心,且具有较大的体积和轴向延伸长度2、疏松:钢锭凝固钱金属液中气体来不及排除和金属冷却收缩,形成其内部的空穴和不致密性,在锻造时又因锻压比不足,金属组织未柔和而存在于锻件之中。

疏松特征:以钢锭中心及头部出现居多,单个尺寸较小,但往往呈区域性弥散分布。

3、夹杂物:有非金属夹杂物和金属夹杂物之分(1)非金属夹杂物:为钢中脱氧剂,合金元素灯与气体生产之反应物,一般尺寸较小,漂浮于钢锭中最后挤至凝固最晚的钢锭中心区及头部聚积;由冶炼,浇注过程中混入的耐火材料或杂质,尺寸较大,常混杂于钢锭下部。

(2)金属夹杂物:由于冶炼时外加铁合金过多或尺寸较大所致,或者浇注时金属飞溅或异型金属录入铸模未被溶解而形成的缺陷。

4、裂纹:裂纹种类甚多,形成原因不一(1)晶间裂纹,多见于奥氏体钢不锈钢锻件;(2)高合金钢的钢锭中心,裂纹沿晶间分布,呈弯曲线,尺寸大于夹杂物,且有一定的方向性(3)锻造或热处理不当,工件内外温差过大,截面尺寸变化剧烈均会产生热裂纹,常常出现于锻件心部截面变化处;(4)过热和过烧产生的组大组织和脆性开裂,多始于工件表面。

(5)锻造时将钢锭表面氧化皮或凸出部位压入钢中所形成的折叠,也是变形不当形成的裂纹之一;(6)常见合金钢的白点,本质上是由氢脆造成的微裂纹,其单个尺寸较大,分布较广,锻造截面变化大,锻后冷却快易形成白点。

(7)淬火之后若不及时回火或者回火不当,热处理残余应力仍然很大,从而易产生裂纹,严重导致自行炸裂。

锻件的常见缺陷及原因分析

锻件的常见缺陷及原因分析

锻件的常见缺陷及原因分析(2007/07/05 10:58)锻件的缺陷很多,产生的原因也多种多样,有锻造工艺不良造成的,有原材料的原因,有模具设计不合理所致等等。

尤其是少无切削加工的精密锻件,更是难以做到完全控制。

1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。

铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。

2.晶粒不均匀晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。

产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。

耐热钢及高温合金对晶粒不均匀特别敏感。

晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。

3.冷硬现象变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。

这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。

严重的冷硬现象可能引起锻裂。

4.裂纹裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。

裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。

如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在镦粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。

5.龟裂龟裂是在锻件表面呈现较浅的龟状裂纹。

在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。

引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。

②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。

③燃料含硫量过高,有硫渗人钢料表面。

大型锻件中常见的缺陷与对策大全

大型锻件中常见的缺陷与对策大全

大型锻件中常见的缺陷与对策大全摘要:I.引言- 大型锻件的应用背景- 锻造过程中常见缺陷概述II.大型锻件中的常见缺陷- 锻造裂纹- 夹杂物- 疏松- 偏析- 折叠III.大型锻件缺陷的对策- 针对锻造裂纹的对策- 针对夹杂物的对策- 针对疏松的对策- 针对偏析的对策- 针对折叠的对策IV.结论- 总结大型锻件中常见缺陷及对策- 强调质量控制的重要性正文:I.引言大型锻件广泛应用于航空、航天、能源等各个领域,其质量直接影响着设备的运行安全和可靠性。

在锻造过程中,由于各种原因,锻件中常会出现一些缺陷,如锻造裂纹、夹杂物、疏松、偏析和折叠等。

针对这些缺陷,本文将对大型锻件中的常见缺陷及对策进行探讨。

II.大型锻件中的常见缺陷1.锻造裂纹锻造裂纹是锻件中最常见的缺陷之一,主要由于锻造过程中金属的塑性变形不均匀,内部应力过大而产生。

裂纹可能出现在锻件的表面或内部,对锻件的使用性能产生严重影响。

2.夹杂物夹杂物是指在锻造过程中,金属中混入的氧化物、硅酸盐等非金属杂质。

夹杂物会影响锻件的力学性能和耐腐蚀性能,甚至导致锻件在使用过程中断裂。

3.疏松疏松是指锻件中出现的孔洞或疏松区域,通常由于金属在锻造过程中未完全充填模腔而产生。

疏松会降低锻件的强度和韧性,严重影响锻件的使用性能。

4.偏析偏析是指金属中某些元素或化合物在锻件中分布不均匀的现象。

偏析会导致锻件的性能不均匀,可能出现局部脆弱、疲劳裂纹等问题。

5.折叠折叠是指锻件在锻造过程中产生的折叠状缺陷,通常由于金属在流动过程中受阻或变形不充分而产生。

折叠会降低锻件的强度和韧性,影响锻件的使用性能。

III.大型锻件缺陷的对策1.针对锻造裂纹的对策- 优化锻造工艺,降低金属的内部应力- 严格控制锻造温度,避免过热或过冷- 合理设计模具,确保金属塑性变形均匀2.针对夹杂物的对策- 提高金属原料的质量,减少夹杂物的含量- 采用净化熔炼技术,降低金属中的杂质含量- 合理选择锻造工艺,避免金属氧化和硅酸盐形成3.针对疏松的对策- 提高锻造速度和变形程度,使金属充分充填模腔- 优化模具设计,确保金属流动畅通- 严格控制锻造过程中的润滑剂和冷却剂使用4.针对偏析的对策- 优化金属成分,控制元素含量和分布- 采用均匀化热处理工艺,改善金属的分布状态- 严格控制锻造过程中的温度梯度和冷却速度5.针对折叠的对策- 优化锻造工艺,确保金属流动顺畅- 合理设计模具,避免金属受阻和变形不充分- 严格控制锻造过程中的力度和速度IV.结论大型锻件中的常见缺陷及对策是锻造过程中需要关注的重要问题。

锻件产品缺陷分析及防止方法

锻件产品缺陷分析及防止方法

(作者单位:1.沈阳万恒锻造有限公司;2.沈阳市汽车工程学校)锻件产品缺陷分析及防止方法◎高杰1王本昊2为了保证质量,对于金属锻件必须进行质量检验。

对检验出有缺陷的锻件,根据使用要求(检验标准)和缺陷的程度确定其合格、或报废、或经过修补后使用。

一、自由锻件常见缺陷及其原因和防止方法(一)裂纹1.表面裂纹。

(1)表面横向裂纹。

锻造时坯料表面出现横向较浅的裂纹,是由于钢锭皮下气泡暴露于表面不能锻合而形成的,其深度可达10mm 以上;或者操作时送进量过大,在塑性较差的金属坯料上也会出现这种缺陷。

锻造时坯料坯料表面出现横向较深的裂纹,是由于钢锭浇注和脱模后冷却不当等多种原因引起的,严重时由于浇注中断而造成横断成两截,成为无法挽救的废品。

表面横向裂纹往往在第1火次锻造中出现。

一经发现,大型锻件可用火焰吹氧清理去掉,小锻件可用小剁刀剁除,以免裂纹在锻造时继续扩大。

防止方法是控制和保证钢锭的质量,改善钢锭起模后的冷却工艺,并控制操作时坯料的送进量。

(2)表面纵向裂纹。

在第一次加热后鐓拔长或粗时,产生在坯料表面上的纵向裂纹,时由于钢锭模内壁缺陷或浇注操作不当或起模后冷却不当,以及钢锭倒棱时压下量过大,或者钢坯在扎制时就产生有纵向划痕造成的。

锻造时一经发现纵向裂纹应立即消除,以免缺陷继续扩大。

防止的方法是:提高钢锭质量;保证浇注操作的正确性;起模时控制冷却工艺;钢锭倒棱时控制压下量;对钢坯表面划痕较多的禁止使用,等等。

2.内部裂纹。

(1)内部横向裂纹。

这是不能从锻件外表看见的缺陷,只能通过磁力探伤、超声波检查发现。

产生的原因是:冷钢锭在加热过程中,低温区的加热速度过快,或者塑性较差的高碳钢、高合金钢在锻造操作时相对送进量L/D (或L/H )小于0.5。

防止的方法是控制冷钢锭的加热速度,特别是在低温区;还有就是控制锻造操作时的相对送进量。

(2)内部纵向裂纹。

锻件内部可能产生3种纵向裂纹:①在坯料冒口端中心附近因存在残余缩孔或二次缩孔,锻后引起纵向内裂纹。

锻件常见表面缺陷原因及注意事项

锻件常见表面缺陷原因及注意事项
锻件常见表面缺陷原因及注意事项
序号
缺陷种类产生原因防来自措施1折叠1.镦粗时弯曲
2.压下量太大
3.进砧太满
4.砧子圆角太小
1.镦粗时要放正
2.拔长压下量25%
3.砧宽比选择0.5~0.8
4.平砧要有圆角
2
端部凹心
1.坯料未烧透
2.砧宽比太小
1.加热要烧匀烧透
2.注意砧宽比和调整
成形顺序
3
棱角裂纹
1.锻造温度太低
2.进砧太宽太满
1.控制成形温度
2.修棱角时窄进砧
4
表面凹坑
氧化皮清理不及时
及时清理锻件、砧面
和转台上的氧化皮
5
过烧
加热温度太高及
时间太长
不允许超过工艺规定
的温度急烧
6
龟裂
加热温度过高
1.装炉温度不能太高
2.升温速度不能太快
3.不准超过温度上限
7
表面脱碳
加热时间太长
因故障维修等待时间
太长时要降温
8
气割补焊裂纹
1.气割工艺不当
2.焊后冷却太快
1.高碳、合金钢预热割
2.补焊后及时退火
9
表面氢脆开裂
1.锻后冷却太快
2.热处理不及时
1.大锻件不能急冷
2.锻后及时正回火
10
短尺亏肉
1.懒于测量尺寸
2.锻造操作不当
1.及时测量尺寸
2.锻造时精心操作

锻件中的常见缺陷及产生的原因

锻件中的常见缺陷及产生的原因

锻件中的常见缺陷及产生的原因:锻件中的缺陷主要来源于两个方面:一种是由铸锭中缺陷引起的缺陷;另一种是锻造过程及热处理中产生的缺陷。

锻件中常见的缺陷类型有:1.1.1缩孔;1.1.2缩松;1.1.3夹杂物;1.1.4裂纹;1.1.5折叠;1.1.6白点。

锻件中常见缺陷产生的原因及常出现的部位:1.2.1缩孔:它是铸锭冷却收缩时在头部形成的缺陷,锻造时因切头量不足而残留下来,多见于轴类锻件的头部, 具有较大的体积,并位于横截面中心, 在轴向具有较大的延伸长度。

1.2.2缩松:它是在铸造凝固收缩时形成的孔隙和孔穴, 在锻造过程中因变形量不足而未被消除, 缩松缺陷多出现在大型锻件中。

1.2.3夹杂物: 根据其来源或性质夹杂物又可分为: 内在非金属夹杂物、外来非金属夹杂物、金属夹杂物。

内在非金属夹杂物是铸锭中包含的脱氧剂、金属元素等与气体的反产物,尺寸较小,常被熔液漂浮,挤至最后凝固的铸锭中心及头部。

外来非金属夹杂物是冶炼、浇注过程中混入的耐火材料或杂质,故常混杂于铸锭下部,偶然落入的非金属夹杂则无确定位置。

金属夹杂物是冶炼时加入合金较多且尺寸较大,或者浇注时飞溅小粒或异种金属落入后又未被全部熔化而形成的缺陷。

1.2.4裂纹:锻件中裂纹形成的原因很多,按形成的原因,裂纹的种类可大致分为以下几种:1.2.4.1因冶炼缺陷(如缩孔残余)在锻造时扩大形成的裂纹。

1.2.4.2锻件工艺不当(如加热、加热速度过快、变行不均匀、变行过大、冷却速度过快等)而形成的裂纹。

11.2.4.3热处理过程中形成的裂纹:如淬火时加热温度较高,使锻件组织粗大淬火时可能产生裂纹;冷却不当引起的开裂,回火不及时或不当,由锻件内部残余力引起的裂纹。

1.2.5折叠:热金属的凸出部位被压折并嵌入锻件表面形成的缺陷,多发生在锻件的内圆角和尖角处。

折叠表面是氧化层,能使该部位的金属无法连接。

1.2.6白点:锻件中由于氢的存在所产生的小裂纹称为白点。

常见锻造缺陷

常见锻造缺陷

锻造缺陷一、原材料缺陷造成的锻造缺陷1. 层状断口2. 碳化物偏析:含碳量高的合金钢开坯和轧制时共晶碳化物未被打碎造成不均匀偏析。

危害:带状碳化物使工件在淬火时产生较大的变形,并沿着碳化物带状处产生裂纹。

当碳化物级别较高时,对高速钢刀具的使用寿命极为不利,级别>5级是,可造成刀具崩刃或断裂。

3. 缩管残余:钢锭冒口部分切除不净,开坯轧时将夹杂物缩松或偏析残留在钢材内部,淬火时形成裂纹。

二、落料不当造成的锻件缺陷1. 锻件端面与轴线倾斜:剪切时未压紧2. 撕裂:刀片间隙太大3. 毛刺:切料时,部分金属被带入剪刀间隙之间,产生尖锐和毛刺。

后果:造成加热时局部过烧,锻造时产生折叠和开裂。

4. 端部裂纹:剪切大断面坯料时,圆形端面变成椭圆形,材料中产生很大的内应力,引起应力裂纹。

另外,气割落料前,原材料没有预热,产生加工应力导致裂纹5. 凸芯开裂:车床下料时,棒料端面中心留有凸芯,锻造时凸芯冷却快,由于应力集中造成开裂。

三、锻造工艺不当造成的缺陷1. 过热:加热停留时间过长或加热温度过高引起材料晶粒粗大2. 过烧:过烧时,晶粒特别粗大,断口呈石状。

对碳钢,金相组织出现晶界氧化和熔化;工模具钢晶界因为熔化而出现鱼骨状莱氏体;铝合金出现晶界熔化三角区或复熔球。

3. 锻造裂纹1)加热裂纹:尺寸大的坯料快速加热造成内外温差大,热应力大造成开裂。

特征:由中心向四周辐射状扩展,多产生于高合金材料2)心部开裂:常在坯料的头部,开裂深度与加热和锻造有关,有事贯穿整个坯料。

原因:加热时保温不足,坯料未热透,外部温度高,塑性好,变形大,内部温度低变形小,内外产生不均匀变形3)材质缺陷开裂:锻造时在缩孔夹渣碳化物偏析等材料缺陷处形成锻造裂纹4. 脱碳和增碳1)脱碳:钢材表面在高温下,碳被氧化发生脱碳,使表层组织含碳量下降,硬度下降,强度下降,脱碳层的深度与钢的成分、炉内气氛、温度有关。

通常高碳钢易氧化脱碳,氧化性气氛中易脱碳。

锻造工艺常见缺陷

锻造工艺常见缺陷

锻造工艺不当产生的缺陷通常有以下几种:1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。

铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。

2.晶粒不均匀晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。

产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。

耐热钢及高温合金对晶粒不均匀特别敏感。

晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。

3.冷硬现象变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。

这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。

严重的冷硬现象可能引起锻裂。

4.裂纹裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。

裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。

如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。

5.龟裂龟裂是在锻件表面呈现较浅的龟状裂纹。

在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。

引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。

②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。

③燃料含硫量过高,有硫渗人钢料表面。

6.飞边裂纹飞边裂纹是模锻及切边时在分模面处产生的裂纹。

飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。

②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。

锻件常见缺陷裂纹的原因

锻件常见缺陷裂纹的原因

锻件常见缺陷裂纹的原因锻件常见缺陷裂纹的原因有很多,主要包括以下几个方面:1. 锻造前材料的缺陷:锻造前原材料中可能存在着各种缺陷,如夹杂物、气孔、夹渣等。

这些缺陷会在锻造过程中被拉长、扭曲或剪切,最终导致锻件出现裂纹。

2. 异常冷却方式:锻件在冷却过程中,如果冷却速度过快或不均匀,会导致锻件内部产生应力集中,从而引发裂纹。

尤其是在大尺寸、复杂形状的锻件中,由于其冷却速度不均匀,容易出现内部裂纹。

3. 冷、热变形不均匀:锻造过程中,如果材料的冷、热变形不均匀,会导致锻件内部应力分布不均匀,从而引发裂纹的产生。

尤其是在复杂形状、壁厚不一的锻件中,易出现材料贫化、过冷区和高应力区,容易引发裂纹。

4. 锻造温度过低或过高:锻造温度是影响锻件质量的关键因素之一。

如果温度过低,会导致材料的硬化能力不足,易发生塑性变形困难,从而引发裂纹;而温度过高,则会导致材料的焊接性能下降,也容易引发裂纹。

5. 压力不均匀:锻造过程中,如果锻压力不均匀,会使锻件中的应力分布不均匀,从而容易产生应力集中和裂纹。

尤其是在薄壁锻件中,容易出现锻压力不均匀的问题,导致裂纹的发生。

6. 锻件设计不合理:锻件的设计是影响锻件质量的重要因素之一。

如果锻件的形状、结构设计不合理,容易导致应力集中,从而引发裂纹的产生。

尤其是在复杂形状、尺寸大的锻件中,设计不合理会增加裂纹发生的概率。

7. 热处理不当:热处理是锻件制造过程中的关键环节,如果热处理不当,会导致锻件中的应力不释放或释放不充分,从而引发裂纹。

此外,热处理时的温度、时间等参数也需要合适,否则也可能导致裂纹的产生。

这些都是导致锻件常见缺陷裂纹的主要原因。

为了降低或避免裂纹的产生,需要从原材料选用、工艺控制、设备维护等方面做好控制和管理。

同时,制定合理的锻造工艺和热处理工艺,合理设计锻件形状和结构,对裂纹的产生起到有力的控制和避免作用。

还需要加强工作人员的培训和技能提升,提高他们的专业水平和质量意识,从而减少裂纹缺陷的发生,提高锻件的质量。

曲轴常见的锻造缺陷及解析

曲轴常见的锻造缺陷及解析

曲轴常见的锻造缺陷及解析曲轴是一种重要的机械零件,它经常用于内燃机、柴油机、发电机和飞机发动机等的传动装置中。

在曲轴的制造过程中,锻造是一种常用的加工方法。

然而,锻造过程中可能会产生一些缺陷,以下是曲轴常见的锻造缺陷及解析:
1. 晶界氧化物缺陷:这种缺陷是由于锻造过程中钢材表面被氧化而产生的。

这种缺陷通常出现在曲轴的表层,不仅影响曲轴的强度和韧性,而且还会导致曲轴的疲劳寿命缩短。

解决方法是通过增加锻造温度、减少加工速度或采用防氧化剂来减少这种缺陷。

2. 折叠缺陷:这种缺陷是曲轴锻件中最常见的缺陷之一。

折叠缺陷通常是在锤击或挤压中产生的。

这种缺陷会形成各种类型的裂纹,从而降低曲轴的强度和耐久性。

解决方法是通过变换锤击或挤压的方向,以减少折叠的风险。

3. 空洞缺陷:在曲轴的锻造过程中,可能会出现由气体或其他不稳定物质引起的空洞缺陷。

这种缺陷不仅会对曲轴的强度和刚度产生影响,而且还会导致曲轴表面的裂纹。

解决方法包括在制造过程中使用更好的防气体措施,并在生产前进行更彻底的金属质量检查。

4. 脆性缺陷:脆性缺陷产生的原因是当钢材在高温下变形时,钢材中的晶粒晶界会发生断裂。

脆性缺陷会导致曲轴易于断裂和损坏。

解决方法包括在锻造过程中加热和冷却的更准确控制及表面硬度测试的改进。

综上所述,锻造曲轴时需要采取多项措施来避免这些缺陷的发生,其中包括正确控制温度、锤击或挤压方向的变换、使用更好的防气体
措施以及在生产前进行更完善的金属质量检查。

曲轴常见的锻造缺陷及解析

曲轴常见的锻造缺陷及解析

曲轴常见的锻造缺陷及解析
曲轴是发动机的核心零部件之一。

在锻造过程中,曲轴会出现一些常见的缺陷,本文将介绍这些缺陷及解析。

1. 割缝:割缝是曲轴表面的裂缝。

它通常是由于轧制或冷却过程中曲轴表面的应力过大造成的。

割缝对曲轴的强度和耐久性造成严重影响。

2. 裂纹:裂纹是曲轴内部或表面的裂缝。

裂纹通常是由于过高的锻造温度或过快的冷却速度造成的。

裂纹对曲轴的强度和使用寿命造成严重影响。

3. 粗糙表面:粗糙表面是指曲轴表面的不平整。

这通常是由于锻造工艺不完善或锻造温度不合适造成的。

粗糙表面会导致曲轴在运转时产生额外摩擦力,加速磨损。

4. 异物:异物是指曲轴表面或内部的没有完全融入的杂质。

这通常是由于原材料不干净或炉子没有彻底清理造成的。

异物可导致局部应力集中,可能引发裂纹,影响曲轴的强度和使用寿命。

以上是曲轴常见的锻造缺陷及解析。

为了保证曲轴的质量,需要在锻造过程中注意这些缺陷的预防和排除,确保曲轴的稳定性和可靠性。

(完整)引发锻件缺陷的主要原因

(完整)引发锻件缺陷的主要原因

引发锻件缺陷的主要原因一、备料不当产生的缺陷及其对锻件的影响备料不当产生的缺陷有以下几种。

1.切斜切斜是在锯床或冲床上下料时,由于未将棒料压紧,致使坯料端面相对于纵轴线的倾斜量超过了规定的许可值.严重的切斜,可能在锻造过程中形成折叠。

2。

坯料端部弯曲并带毛刺在剪断机或冲床上下料时,由于剪刀片或切断模刃口之间的间隙过大或由于刃口不锐利,使坯料在被切断之前已有弯曲,结果部分金属被挤人刀片或模具的间隙中,形成端部下垂毛刺。

有毛刺的坯料,加热时易引起局部过热、过烧,锻造时易产生折叠和开裂.3.坯料端面凹陷在剪床上下料时,由于剪刀片之间的间隙太小,金属断面上、下裂纹不重合,产生二次剪切,结果部分端部金属被拉掉,端面成凹陷状。

这样的坯料锻造时易产生折叠和开裂.4.端部裂纹在冷态剪切大断面合金钢和高碳钢棒料时,常常在剪切后3~4h发现端部出现裂纹。

主要是由于刀片的单位压力太大,使圆形断面的坯料压扁成椭圆形,这时材料中产生了很大的内应力。

而压扁的端面力求恢复原来的形状,在内应力的作用下则常在切料后的几小时内出现裂纹。

材料硬度过高、硬度不均和材料偏析较严重时也易产生剪切裂纹.有端部裂纹的坯料,锻造时裂纹将进一步扩展.5.气割裂纹气割裂纹一般位于坯料端部,是由于气割前原材料没有预热,气割时产生组织应力和热应力引起的。

有气割裂纹的坯料,锻造时裂纹将进一步扩展。

因此锻前应予以预先清除。

6。

凸芯开裂车床下料时,在棒料端面的中心部位往往留有凸芯.锻造过程中,由于凸芯的断面很小,冷却很快,因而其塑性较低,但坯料基体部分断面大,冷却慢,塑性高.因此,在断面突变交接处成为应力集中的部位,加之两部分塑性差异较大,故在锤击力的作用下,凸芯的周围容易造成开裂。

二、加热工艺不当常产生的缺陷加热不当所产生的缺陷可分为:①由于介质影响使坯料外层组织化学状态变化而引起的缺陷,如氧化、脱碳、增碳和渗硫、渗铜等。

②由内部组织结构的异常变化引起的缺陷,如过热、过烧和未热透等。

锻造缺陷通常有以下几种

锻造缺陷通常有以下几种

锻造缺陷通常有以下几种:1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。

铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。

2.晶粒不均匀晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。

产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落入临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。

耐热钢及高温合金对晶粒不均匀特别敏感。

晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。

3.冷硬现象变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。

这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。

严重的冷硬现象可能引起锻裂。

4.裂纹裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。

裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。

如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。

5.龟裂龟裂是在锻件表面呈现较浅的龟状裂纹。

在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。

引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。

②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。

③燃料含硫量过高,有硫渗人钢料表面。

6.飞边裂纹飞边裂纹是模锻及切边时在分模面处产生的裂纹。

飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。

②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。

锻造常见的缺陷与产生原因

锻造常见的缺陷与产生原因

锻造常见的缺陷与产生原因锻造是一种将金属材料加热至一定温度,然后在受力的作用下使其产生塑性变形的加工过程。

锻造是一种高效且经济的金属加工方法,但在实际加工过程中,锻造件有可能会出现一些缺陷。

这些缺陷主要包括:夹杂、气孔、脱合、表面裂纹等。

一、夹杂夹杂是指金属中出现的异物,这些异物可以是氧化物、硫化物和化合物等。

夹杂会影响锻件的使用性能,尤其是在高温和高压力下容易引起损坏。

因此,在生产过程中应尽量减少夹杂产生的机会。

夹杂的产生原因主要有以下几个方面:1、原材料中的夹杂。

原材料中的夹杂主要来自矿物中的杂质和在熔融状态下未熔化的粒子。

2、熔池中的夹杂。

熔池中的夹杂主要来自熔融过程中的氧化和化学反应等。

3、操作不当。

加工过程中的不当操作也可能造成夹杂的产生。

例如,在操作过程中未能清除材料的表面杂质和附着物等。

二、气孔气孔是指金属内部或表面上的空气或气体集聚。

气孔可以降低金属的强度和韧性,因此在实际生产中要尽量减少气孔的产生。

气孔的产生原因主要有以下几个方面:1、原材料中的气孔。

原材料中的气孔主要来自于矿物中的吸附气体和在熔融状态下的蒸汽等。

2、熔池中的气孔。

熔池中的气孔主要来自于熔融状态下的吸入空气和氧化反应等。

3、操作不当。

加工过程中的操作不当可能导致气孔的产生。

例如,在操作过程中未能及时清除材料表面的杂质,或在锻造过程中未能及时捕捉和清除金属表面的气体等。

三、脱合脱合是指金属加工过程中出现的脱粘或分层现象。

脱合会降低金属材料的强度和韧性,因此在生产过程中要尽量避免脱合现象。

脱合的产生原因主要有以下几个方面:1、金属材料的不均匀变形。

在加工和锻造过程中,金属材料可能会出现不均匀的变形,从而导致脱合现象。

2、材料的微观组织不均。

金属材料的微观组织不均可能会导致脱合现象的发生。

例如,过度冷却或退火不够充分等。

3、操作不当。

加工过程中操作不当也可能导致脱合现象的发生。

例如,加热过程中温度控制不当,以及在锻造过程中对锻造参数的控制不够严格等。

大型锻件中常见的缺陷与对策大全

大型锻件中常见的缺陷与对策大全

大型锻件中常见的缺陷与对策大全(实用版)目录1.大型锻件概述2.大型锻件中常见的缺陷2.1 偏析2.2 疏松2.3 密集性夹杂物2.4 发纹2.5 白点3.缺陷产生的原因3.1 温度变化和分布不均匀3.2 金属塑性流动差别大3.3 钢锭冶金缺陷多4.缺陷的检测方法4.1 无损检测技术4.2 表面检测5.缺陷的对策5.1 优化锻造工艺5.2 改进材料质量5.3 提高设备性能5.4 强化生产管理正文一、大型锻件概述大型锻件是指尺寸大、重量重的锻件,通常用于制造大型机械设备、船舶、电力设备等。

由于其尺寸和重量的特性,大型锻件在制造过程中容易产生各种缺陷,严重影响设备的性能和安全。

因此,研究大型锻件中常见的缺陷及其对策是十分必要的。

二、大型锻件中常见的缺陷1.偏析偏析是指合金中成分分布不均匀的现象,可能导致锻件的力学性能不稳定。

2.疏松疏松是指锻件中存在许多孔隙,容易降低锻件的强度和韧性。

3.密集性夹杂物密集性夹杂物是指锻件中存在的大量微小夹杂物,会影响锻件的性能。

4.发纹发纹是指锻件表面出现的细小纹路,可能引起疲劳裂纹,影响锻件的使用寿命。

5.白点白点是指锻件中出现的白色斑点,通常是由于锻件冷却过快引起的,可能影响锻件的性能。

三、缺陷产生的原因1.温度变化和分布不均匀大型锻件在加热和冷却过程中,由于截面尺寸大、热传导不均匀,导致温度变化和分布不均匀,从而引发缺陷。

2.金属塑性流动差别大在锻造过程中,金属的塑性流动差别大,可能导致部分区域变形不足,产生缺陷。

3.钢锭冶金缺陷多钢锭中的冶金缺陷,如夹杂物、气孔等,在锻造过程中可能被放大,导致锻件缺陷。

四、缺陷的检测方法1.无损检测技术无损检测技术可以检测锻件内部的缺陷,如射线探伤、超声波探伤等。

2.表面检测表面检测可以观察锻件表面的缺陷,如磁粉探伤、渗透探伤等。

五、缺陷的对策1.优化锻造工艺通过调整加热温度、保温时间、锻造顺序等,优化锻造工艺,减少缺陷产生。

模锻在锻造过程中缺陷及预防措施

模锻在锻造过程中缺陷及预防措施

模锻在锻造过程中缺陷及预防措施引言模锻是一种常见的金属锻造工艺,具有高效、高精度的特点。

然而,在模锻过程中,由于各种因素的影响,常常会出现一些缺陷。

本文将详细介绍模锻过程中常见的缺陷及其预防措施,旨在帮助读者更好地理解模锻工艺,提高产品质量。

1. 毛刺毛刺是模锻过程中常见的缺陷之一,主要表现为锻件表面出现不规则的突起。

毛刺的产生主要与模具设计、焊缝准备不当、材料不合理等因素有关。

1.1 模具设计在模锻过程中,模具的设计起着至关重要的作用。

合理的模具设计可以减少毛刺的发生。

首先,要确保模具的表面光洁度,在模具表面涂覆一层光滑的润滑剂,减少锻件与模具的摩擦。

其次,要注意模具的边缘处理,采用倒角或圆弧等设计,减少锻件与模具接触时的边缘压力。

1.2 焊缝准备毛刺的另一个常见原因是焊缝准备不当。

焊缝处存在不均匀的应力分布,这会导致焊缝周围的材料在锻造过程中容易形成毛刺。

为了解决这个问题,我们可以通过提前进行焊缝的减薄和均匀化处理,确保焊缝处的应力分布更加均匀。

1.3 材料选择材料的选择对模锻过程中毛刺的发生起着重要作用。

某些材料在模锻时容易形成毛刺,这主要是因为其表面粗糙度较高或锻造温度过高。

合理选择材料,并严格控制锻造温度,可以有效预防毛刺的产生。

2. 气孔气孔是模锻过程中另一个常见的缺陷,主要由于锻件内部存在气体残留或吸附气体进入而引起。

气孔不仅影响锻件的外观质量,还会降低其力学性能。

2.1 真空处理为了减少气孔的产生,可以在模锻过程中采用真空处理技术。

真空处理可以有效地去除锻件内部的气体,减少气孔的形成。

在真空处理前,应注意确保锻件表面的净度,减少对气孔形成的影响。

2.2 材料处理合理的材料处理也是减少气孔的重要措施。

材料在模锻前,可以通过热处理、脱气等方式减少内部气体的含量。

同时,在材料的选择上,应尽量选择低气孔率的材料,以减少气孔的形成。

2.3 控制锻造参数控制锻造参数是减少气孔形成的关键。

首先,要合理控制锻造温度,确保材料能充分熔化并排出内部的气体。

锻造常见缺陷

锻造常见缺陷

锻造常见缺陷锻造缺陷及分析锻造用的原材料为铸锭、轧材、挤材及锻坯。

而轧材、挤材及锻坯分别是铸锭经轧制、挤压及锻造加工成的半成品。

一般情况下,铸锭的内部缺陷或表面缺陷的出现有时是不可避免的。

再加上在锻造过程中锻造工艺的不当,最终导致锻件中含有缺陷。

以下简单介绍一些锻件中常见的缺陷。

1.由于原材料的缺陷造成的锻件缺陷通常有:表面裂纹表面裂纹多发生在轧制棒材和锻制棒材上,一般呈直线形状,和轧制或锻造的主变形方向一致。

造成这种缺陷的原因很多,例如钢锭内的皮下气泡在轧制时一面沿变形方向伸长,一面暴露到表面上和向内部深处发展。

又如在轧制时,坯料的表面如被划伤,冷却时将造成应力集中,从而可能沿划痕开裂等等。

这种裂纹若在锻造前不去掉,锻造时便可能扩展引起锻件裂纹。

折叠折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,形成和材料表面成一定倾角的折缝。

对钢材,折缝内有氧化铁夹杂,四周有脱碳。

折叠若在锻造前不去掉,可能引起锻件折叠或开裂。

结疤结疤是在轧材表面局部区域的一层可剥落的薄膜。

结疤的形成是由于浇铸时钢液飞溅而凝结在钢锭表面,轧制时被压成薄膜,贴附在轧材的表面,即为结疤。

锻后锻件经酸洗清理,薄膜将会剥落而成为锻件表面缺陷。

层状断口层状断口的特征是其断口或断面与折断了的石板、树皮很相似。

层状断口多发生在合金钢(铬镍钢、铬镍钨钢等),碳钢中也有发现。

这种缺陷的产生是由于钢中存在的非金属夹杂物、枝晶偏析以及气孔疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片层状。

如果杂质过多,锻造就有分层破裂的危险。

层状断口越严重,钢的塑性、韧性越差,尤其是横向力学性能很低,所以钢材如具有明显的层片状缺陷是不合格的亮线(亮区)亮线是在纵向断口上呈现结晶发亮的有反射能力的细条线,多数贯穿整个断口,大多数产生在轴心部分。

亮线主要是由于合金偏析造成的。

轻微的亮线对力学性能影响不大,严重的亮线将明显降低材料的塑性和韧性。

锻造常见缺陷及原因

锻造常见缺陷及原因

锻造常见缺陷及原因锻造是一种常用的金属加工方法,通过加热金属材料使其软化,然后施加压力改变其形状和结构。

然而,在锻造过程中,常常会出现一些缺陷,这些缺陷可能会影响产品的质量和性能。

下面将介绍一些常见的锻造缺陷及其原因。

1.铸造夹杂物:夹杂物是指在锻造过程中由于材料的不纯或杂质的存在而产生的非金属颗粒。

夹杂物可能会损害锻件的力学性能,并在应力作用下起到裂纹的起始点。

夹杂物的常见原因包括原料不纯、金属液处理不当和冶炼技术不合理等。

2.表面皱纹:在锻造过程中,金属材料可能会产生表面皱纹,这些皱纹可能会降低产品的表面质量和耐蚀性。

表面皱纹的原因可能包括锻件的温度不合适、锻造速度过快、模具的设计不合理等因素。

3.裂纹:裂纹是指在锻造过程中产生的金属材料的断裂缺陷。

裂纹可能会导致锻件的断裂和失效。

裂纹的原因可能包括金属材料的内部应力过大、锻造过程中的温度和应变不均匀、模具的设计不合理等。

4.气孔:气孔是指锻件中的气体聚集在一起形成的孔洞。

气孔可能会降低锻件的力学性能并导致金属材料的脆性增加。

气孔的原因可能包括金属液中的气体溶解度高、金属液的排气不彻底、金属材料的氢含量高等。

5.凸缘:凸缘是指锻件表面的凹陷,通常是由于模具的设计不合理或者锻造过程中的卡位不良而引起的。

凸缘会降低锻造件的密封性和耐蚀性。

6.尺寸偏差:尺寸偏差是指锻造件的实际尺寸与设计尺寸之间的差异。

尺寸偏差可能会影响锻件的装配和使用,降低产品的功能性。

尺寸偏差的原因可能包括模具的磨损、材料的收缩率不均匀、锻造机床的精度不高等。

以上是一些常见的锻造缺陷及其原因。

为了避免这些缺陷的出现,可以通过优化锻造过程,提高金属材料的质量,改进模具设计和锻造工艺等手段来减少缺陷的发生。

同时,对于已经出现的缺陷,可以通过修复和加工的方法来消除或者修复。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锻造工艺不当产生的缺陷通常有以下几种:
1.大晶粒
大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。

铝合金变形程度过大,形成织构;高温合金变形温度过低,形成混合变形组织时也可能引起粗大晶粒,晶粒粗大将使锻件的塑性和韧性降低,疲劳性能明显下降。

2.晶粒不均匀
晶粒不均匀是指锻件某些部位的晶粒特别粗大,某些部位却较小。

产生晶粒不均匀的主要原因是坯料各处的变形不均匀使晶粒破碎程度不一,或局部区域的变形程度落人临界变形区,或高温合金局部加工硬化,或淬火加热时局部晶粒粗大。

耐热钢及高温合金对晶粒不均匀特别敏感。

晶粒不均匀将使锻件的持久性能、疲劳性能明显下降。

3.冷硬现象
变形时由于温度偏低或变形速度太快,以及锻后冷却过快,均可能使再结晶引起的软化跟不上变形引起的强化(硬化),从而使热锻后锻件内部仍部分保留冷变形组织。

这种组织的存在提高了锻件的强度和硬度,但降低了塑性和韧性。

严重的冷硬现象可能引起锻裂。

4.裂纹
裂纹通常是锻造时存在较大的拉应力、切应力或附加拉应力引起的。

裂纹发生的部位通常是在坯料应力最大、厚度最薄的部位。

如果坯料表面和内部有微裂纹、或坯料内存在组织缺陷,或热加工温度不当使材料塑性降低,或变形速度过快、变形程度过大,超过材料允
许的塑性指针等,则在撤粗、拔长、冲孔、扩孔、弯曲和挤压等工序中都可能产生裂纹。

5.龟裂
龟裂是在锻件表面呈现较浅的龟状裂纹。

在锻件成形中受拉应力的表面(例如,未充满的凸出部分或受弯曲的部分)最容易产生这种缺陷。

引起龟裂的内因可能是多方面的:①原材料合Cu、Sn等易熔元素过多。

②高温长时间加热时,钢料表面有铜析出、表面晶粒粗大、脱碳、或经过多次加热的表面。

③燃料含硫量过高,有硫渗人钢料表面。

6.飞边裂纹
飞边裂纹是模锻及切边时在分模面处产生的裂纹。

飞边裂纹产生的原因可能是:①在模锻操作中由于重击使金属强烈流动产生穿筋现象。

②镁合金模锻件切边温度过低;铜合金模锻件切边温度过高。

7.分模面裂纹
分模面裂纹是指沿锻件分模面产生的裂纹。

原材料非金属夹杂多,模锻时向分模面流动与集中或缩管残余在模锻时挤人飞边后常形成分模面裂纹。

8.折叠
折叠是金属变形过程中已氧化过的表层金属汇合到一起而形成的。

它可以是由两股(或多股)金属对流汇合而形成;也可以是由一股金属的急速大量流动将邻近部分的表层金属带着流动,两者汇合而形成的;也可以是由于变形金属发生弯曲、回流而形成;还可以是部
分金属局部变形,被压人另一部分金属内而形成。

折叠与原材料和坯料的形状、模具的设计、成形工序的安排、润滑情况及锻造的实际操作有关。

折叠不仅减少了零件的承载面积,而且工作时由于此处的应力集中往往成为疲劳源。

9.穿流
穿流是流线分布不当的一种形式。

在穿流区,原先成一定角度分布的流线汇合在一起形成穿流,并可能使穿流区内、外的晶粒大小相差较为悬殊。

穿流产生的原因与折叠相似,是由两股金属或一股金属带着另一股金属汇流而形成的,但穿流部分的金属仍是一整体,穿流使锻件的力学性能降低,尤其当穿流带两侧晶粒相差较悬殊时,性能降低较明显。

10.锻件流线分布不顺
锻件流线分布不顺是指在锻件低倍上发生流线切断、回流、涡流等流线紊乱现象。

如果模具设计不当或锻造方法选择不合理,预制毛坯流线紊乱;工人操作不当及模具磨损而使金属产生不均匀流动,都可以使锻件流线分布不顺。

流线不顺会使各种力学性能降低,因此对于重要锻件,都有流线分布的要求。

11.铸造组织残留
铸造组织残留主要出现在用铸锭作坯料的锻件中。

铸态组织主要残留在锻件的困难变形区。

锻造比不够和锻造方法不当是铸造组织残留产生的主要原因。

铸造组织残留会使锻件的性能下降,尤其是冲击韧度和疲劳性能。

12.碳化物偏析级别不符要求
碳化物偏析级别不符要求主要出现于莱氏体工模具钢中。

主要是锻件中的碳化物分布不均匀,呈大块状集中分布或呈网状分布。

造成这种缺陷的主要原因是原材料碳化物偏析级别差,加之改锻时锻比不够或锻造方法不当,具有这种缺陷的锻件,热处理淬火时容易局部过热和淬裂,制成的刃具和模具使用时易崩刃。

13.带状组织
带状组织是铁素体和珠光体、铁素体和奥氏体、铁素体和贝氏体以及铁素体和马氏体在锻件中呈带状分布的一种组织,它们多出现在亚共折钢、奥氏体钢和半马氏体钢中。

这种组织,是在两相共存的情况下锻造变形时产生的带状组织能降低材料的横向塑性指针,特别是冲击韧性。

在锻造或零件工作时常易沿铁素体带或两相的交界处开裂。

14.局部充填不足
局部充填不足主要发生在筋肋、凸角、转角、圆角部位,尺寸不符合图样要求。

产生的原因可能是:①锻造温度低,金属流动性差;
②设备吨位不够或锤击力不足;③制坯模设计不合理,坯料体积或截面尺寸不合格;④模膛中堆积氧化皮或焊合变形金属。

15.欠压
欠压指垂直于分模面方向的尺寸普遍增大,产生的原因可能是:
①锻造温度低。

②设备吨位不足,锤击力不足或锤击次数不足。

16.错移
错移是锻件沿分模面的上半部相对于下半部产生位移。

产生的原因可能是:①滑块(锤头)与导轨之间的间隙过大;②锻模设计不合理,缺少消除错移力的锁口或导柱;③模具安装不良。

相关文档
最新文档