三角恒等变换---最全的总结·-学生版

合集下载

三角函数的三角恒等式总结

三角函数的三角恒等式总结

三角函数的三角恒等式总结三角函数是数学中重要的概念之一,广泛应用于几何、物理学等领域。

三角恒等式是指一类等式,其中包含三角函数的关系,它们在解决三角函数相关问题中起到重要的作用。

本文旨在对常见的三角恒等式进行总结,以帮助读者更好地理解和应用三角函数。

一、正弦函数的三角恒等式1. 反正弦函数的三角恒等式:arcsin(x) + arccos(x) = π/22. 正弦函数的平方和的三角恒等式:sin²(x) + cos²(x) = 13. 正弦函数的和差角三角恒等式:sin(x + y) = sin(x)cos(y) + cos(x)sin(y)sin(x - y) = sin(x)cos(y) - cos(x)sin(y)二、余弦函数的三角恒等式1. 反余弦函数的三角恒等式:arccos(x) + arcsin(x) = π/22. 余弦函数的平方和的三角恒等式:cos²(x) + sin²(x) = 13. 余弦函数的和差角三角恒等式:cos(x + y) = cos(x)cos(y) - sin(x)sin(y)cos(x - y) = cos(x)cos(y) + sin(x)sin(y)三、正切函数的三角恒等式1. 反正切函数的三角恒等式:arctan(1/x) + arctan(x) = π/22. 正切函数的平方和的三角恒等式:tan²(x) + 1 = sec²(x)3. 正切函数的和差角三角恒等式:tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x)tan(y))tan(x - y) = (tan(x) - tan(y)) / (1 + tan(x)tan(y))四、其他三角恒等式1. 余切函数和正切函数的恒等式:csc²(x) = 1 + cot²(x)2. 正割函数和余割函数的恒等式:sec²(x) = 1 + tan²(x)综上所述,三角函数的三角恒等式是解决三角函数相关问题的有力工具。

三角函数恒等变换知识点总结

三角函数恒等变换知识点总结
三角函数恒等变换知识点总结
———————————————————————————————— 作者:
———————————————————————————————— 日期:
三角函数 三角恒等变换知识点总结
一、角的概念和弧度制:
(1)在直角坐标系内讨论角:
角的顶点在原点,始边在 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
2.图像
3、图像的平移
对函数y=Asin(ωx+)+k(A>0,ω>0,≠0,k≠0),其图象的基本变换有:
(1)振幅变换(纵向伸缩变换):是由A的变化引起的.A>1,伸长;A<1,缩短.
(2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长.
(3)相位变换(横向平移变换):是由φ的变化引起的.>0,左移;<0,右移.
(3)同角三角函数的关系与诱导公式的运用:
①已知某角的一个三角函数值,求它的其余各三角函数值。
注意:用平方关系,有两个结果,一般可通过已知角所在的象限加以取舍,或分象限加以讨论。
②求任意角的三角函数值。
步骤:
③已知三角函数值求角:注意:所得的解不是唯一的,而是有无数多个.
步骤:①确定角 所在的象限;
如:角 的终边上一点 ,则 。注意r>0
(2)在图中画出角 的正弦线、余弦线、正切线;
比较 , , , 的大小关系:。
(3)特殊角的三角函数值:

sin
cos
三、同角三角函数的关系与诱导公式:
(1)同角三角函数的关系
作用:已知某角的一个三角函数值,求它的其余各三角函数值。

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是数学中一个非常重要的概念,它涉及到三角函数之间的相互关系。

在三角恒等变换中,通过对三角函数的特性、性质和运算进行分析和推导,可以得到一系列具有等价关系的三角函数等式。

这些等式在解决各种三角函数问题时起到了重要的作用。

1.互余关系:在一个直角三角形中,正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数之间存在互余关系。

例如,正弦函数和余弦函数之间的互余关系可以表示为:sin(x) = cos(π/2 - x),cos(x) = sin(π/2- x)。

通过这种互余关系,可以将一个三角函数的计算问题转化为另一个三角函数的计算问题,从而更加方便地求解。

2.双替换关系:在三角恒等变换中,有些等式可以通过同时替换角度的正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数进行变换。

例如,sin(x) = cos(π/2 - x),cos(x) = sin(π/2 - x)就是一个双替换关系。

通过双替换关系,可以将三角函数等式从一个角度扩展到整个角度范围内。

3.平方和差关系:三角恒等变换中的平方和差关系利用了三角函数的平方和差公式。

根据平方和差公式,可以将一个三角函数的平方表示为其他三个三角函数的和或差。

例如,sin²(x) + cos²(x) = 1就是一个平方和关系。

通过平方和差关系,可以将一个三角函数的计算问题转化为其他三角函数的计算问题,从而更加方便地求解。

4.倍角关系:在三角恒等变换中,倍角关系是指利用三角函数的倍角公式将一个三角函数的角度扩展为原来的两倍。

例如,sin(2x) = 2sin(x)cos(x),cos(2x) = cos²(x) - sin²(x)。

通过倍角关系,可以将一个角度的问题扩展为两倍角度的问题,从而更加方便地求解。

5.三角和差关系:三角恒等变换中的三角和差关系利用了三角函数的和差公式。

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。

在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。

本文将对三角恒等变换中的关键知识点进行总结。

一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。

通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。

2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。

3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。

二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。

1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。

三角恒等变换知识点总结

三角恒等变换知识点总结

三角恒等变换专题一、知识点总结1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-. 3、⇒(后两个不用判断符号,更加好用)4、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。

()sin cos αααϕA +B =+,其中tan ϕB =A. 5.(1)积化和差公式 sin α·cos β=21[sin(α+β)+sin(α-β)] cos α·sin β=21[sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)] sin α·sin β= -21[cos(α+β)-cos(α-β)] (2)和差化积公式sin α+sin β= 2cos 2sin 2βαβα-+ sin α-sin β=2sin 2cos 2βαβα-+ααααααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos :+-±=-±=+±=2tan 12tan 1 cos ;2tan 12tan 2 sin :222αααααα万能公式+-=+=cos α+cos β=2cos 2cos 2βαβα-+ cos α-cos β= -2sin 2sin 2βαβα-+ tan α+ cot α=ααα2sin 2cos sin 1=⋅ tan α- cot α= -2cot2α 1+cos α=2cos22α 1-cos α=2sin 22α 1±sin α=(2cos 2sin αα±)2 6。

初中数学知识归纳三角恒等变换

初中数学知识归纳三角恒等变换

初中数学知识归纳三角恒等变换初中数学知识归纳——三角恒等变换三角恒等变换是初中数学中的重要内容之一,它是解决三角函数相关题目的基础。

在数学学习中,了解并熟练掌握三角恒等变换对于提高解题效率、拓宽思维方式、加深对三角函数的理解都具有重要作用。

本文将对三角恒等变换进行归纳总结,帮助读者更好地理解和应用。

一、基本概念在开始具体介绍三角恒等变换之前,我们首先需要了解一些基本概念。

三角恒等变换是指通过等式变换的方式,将一个三角函数表达式转化为相等的另一个三角函数表达式。

在这个过程中,我们需要用到一些基本的三角函数关系,如正弦函数、余弦函数、正切函数等。

二、常见恒等变换下面我们将重点介绍一些常见的三角恒等变换,对于初中数学学习而言,这些恒等变换是必须要熟练掌握的。

这些恒等变换可以帮助我们简化计算、拓宽解题思路、提高解题速度。

1. 余弦函数的恒等变换(1)余弦函数和正弦函数之间的关系:cos^2θ + sin^2θ = 1(2)余弦函数的偶性:cos(-θ) = cosθ(3)余弦函数的倒数:1/cosθ = secθ2. 正弦函数的恒等变换(1)正弦函数和余弦函数之间的关系:sin^2θ + cos^2θ = 1(2)正弦函数的奇性:sin(-θ) = -sinθ(3)正弦函数的倒数:1/sinθ = cscθ3. 正切函数的恒等变换(1)正切函数和余切函数之间的关系:tanθ = sinθ/cosθ(2)正切函数的奇性:tan(-θ) = -tanθ(3)正切函数的倒数:1/ta nθ = cotθ4. 其他特殊变换(1)和差角公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinB(2)倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)三、应用举例为了更好地理解和应用三角恒等变换,我们可以通过一些具体的例子来加深印象。

三角恒等变换---最全的总结_-学生版

三角恒等变换---最全的总结_-学生版

三角恒等变换---完整版三角函数 —— 三角恒等变换公式:升幂公式- 21+cos = 2 cos —21-cos =2 sin 221 ± sin =( sin—22cos — )22 21=sin + cossin =2 sincos22降幂公式.21 cos 2cos 21 cos 2sin 22+ cos=1sin221 .sin cos = —sin 22考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。

“互补两角正弦相等,余弦互为相反数。

互余两角的正余弦相等。

”(2) 二倍角公式的灵活应用,特别是降幕、和升幕公式的两角和与差的三角函数关系sin( 1 )=sin cos cos sincos()=cos cos sin sin■丄 .、 tantantan( )’1 tan tan倍角公式sin2 =2sin cos 22cos2 =cos-sin=2cos 2 -1=1-2sin 2tan 22ta n 1 tan 2sin — 2 i1 cos1 cos\ 2 ,c °s2 : 2tan — 21 cos _ 1 cos sin \ 1 cos sin 1 cos:cosGi HJ"I"UffTI!! I I ! I ■— —«■应用。

(3)结合同角三角函数,化为二次函数求最值一求二(7)辅助角公式逆向应用 (4)角的整体代换(5)弦切互化 (6 )知半角公式平方关系2 2sin + cos =1 ,商数关糸sin -------- =ta n(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。

互余两 角的正余弦相等。

”快速进行逻辑判断。

注意构造两角和差因子9、(构造两角和差因子 +两边平方)【2015高考四川,理12】sin15 10、(逆向套用公式)tan 23 ° + tan 37 °+ ■. 3tan 23 °an 37。

第18讲 三角恒等变换(学生版) 备战2025年高考数学一轮复习考点帮(天津专用)

第18讲 三角恒等变换(学生版) 备战2025年高考数学一轮复习考点帮(天津专用)

第18讲三角恒等变换(4类核心考点精讲精练)1.5年真题考点分布【命题规律】本节内容是天津高考卷的必考内容,设题稳定,难度中档,分值为14分【备考策略】1.理解、掌握三角函数的两角和差公式,能够根据知识点灵活选择公式2.能掌握凑角求值的解题技巧3.具备数形结合的思想意识,会借助正弦型函数的图像,解决三角函数的求值与化简问题4.会解三角函数的含参问题。

【命题预测】本节内容是天津高考卷的必考内容,一般给与正余弦定理结合,在解三角形中灵活运用两角和差。

知识点.两角和与差二倍角公式1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin βcos(α+β)=cos αcos β-sin αsin βsin(α-β)=sin αcos β-cos αsin βsin(α+β)=sin αcos β+cos αsin βtan(α-β)=tan α-tan β1+tan αtan βtan(α+β)=tan α+tan β1-tan αtan β2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α.3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中tan φ=ba.4.三角函数公式的关系5.升幂与降幂公式(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式的常用变形:tan α±tan β=tan(α±β)(1∓tan αtan β),1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin1.(2024·黑龙江哈尔滨·模拟预测)已知sinLin =cosLin,则tan 2=()A.2−3B.−2−3C.2+3D.−2+32.(2024·浙江·三模)若sin −+cos −=22sin sin ,则()A.tan−=−1B.tan−=1C.tan+=−1D.tan+=11.(2023·全国·高考真题)已知为锐角,cos=sin2=().2.(2024·青海海西·模拟预测)已知cos cos2的值为()A.13B.23C.−15D.−133.(2024·全国·高考真题)已知cos(+p=s tanMan=2,则cos(−p=()A.−3B.−3C.3D.34.(2024·江西九江·三模)若2sin+=cos tan−=()A.−4−3B.−4+3C.4−3D.4+31.(2024·安徽六安·模拟预测)2cos65°cos15°tan15°cos10°+sin10°的值为()B.12D.32sin2+50∘=()2.(2024·陕西安康·模拟预测)若sin−20∘=A.18B.−18C.−78D.781.(2024·全国·模拟预测)sin80°+cos50°−=()2.(2024·山东泰安·模拟预测)若1+tan(Kπ4)1−tan(Kπ4)=12,则sin2的值为()A.−35B.35C.−45D.453.(2024·广东·二模)tan7.5°−tan82.5°+2tan15°=()A.−2B.−4C.−23D.−434.(2024·河北承德·二模)已知tan=13,则sin cos3cos2+sin cos2cos=.5.(2024·河北邯郸·二模)正五角星是一个非常优美的几何图形,其与黄金分割有着密切的联系,在如图所示的五角星中,以s s s s为顶点的多边形为正边边形,设∠B=,则cos+cos2+cos3+ cos4=,cos cos2cos3cos4=.1.(2024·辽宁·模拟预测)已知sin+1,则sin2+.2.(23-24高三上·天津宁河·期末)已知cos−=13,则sin−2=.1.(2024·吉林长春·模拟预测)已知cos2=−55,sin+=−∈0,∈−π2,0,则−=()A.π4B.3π4C.5π4D.π4或3π2.(2024·山西·三模)若sin2=−=且∈π,∈π则cos+=()3.(2024高三·全国·专题练习)已知tan−=12,tan=−17,且,∈(0,p,则2−=()A.−34B.4C.34D.−44.(2024·山东·模拟预测)已知cos−−cos=45,则sin2=()A.725B.−725C.2425D.−24255.(2024·湖南衡阳·模拟预测)已知cos−=13,则sin2=()A.7B.−7D.−1.(23-24高三下·云南·阶段练习)已知函数=2sin+cos在0处取得最大值,则cos0=()A.25B.25C.5D.52.(2024·陕西铜川·三模)已知函数=sin2−cos2,则下列说法中不正确的是()A.的最小正周期为πB.的最大值为2C.在区间−π4π4D.−π8=−π81.(2024·湖北·二模)函数=3cos−4sin,当取得最大值时,sin=()A.45B.−45C.35D.−35对称,则=2.(2024·四川成都·模拟预测)函数op=Lin+cos的图象关于直线=−π63.(2024·河南新乡·三模)已知函数op=sin B−3cos B(>0),若存在1∈[0,π],使得o1)=−2,则的最小值为.4.(2024·全国·模拟预测)已知=4sin sin−3cos+1相邻的两个零点分别为1,2,则cos1−2=.5.(2024·浙江宁波·模拟预测)已知函数op=2cos2B+sin2B−1(>0)1=2=21−2的最小值为2π3,则=()A.12B.1C.2D.31.(22-23高三上·天津滨海新·期中)若是第三象限角,且sin+cos−sin cos+=−513,则tan等于()A.−5B.−512C.512D.52.(23-24高三上·云南昆明·开学考试)已知tan(−π4)=4,则sin2=()A.2B.−2C.1517D.−15173.(23-24高三上·天津南开·期中)已知sin−=sin+tan=.4.(23-24高三上·天津河东·阶段练习)△B中,已知cos2=45,则sin=.5.(22-23高三上·天津滨海新·期中)已知角的终边经过点−2,1,则tan=,cos2K2sin2cos2=.(23-24高三上·陕西西安·阶段练习)已知tan=13,tan=−17,且s∈0,π,则2−=.6.7.(23-24高三上·天津滨海新·阶段练习)已知2sin+cos=0.(1)求tan−(3)当是第四象限角时,求cos+1.(23-24高三上·天津河西·阶段练习)已知tan+=−3)A.23B.0C.−2D.22.(23-24高三上·天津和平·阶段练习)函数=sin+3cos在区间0上的最小值为()A.3B.2C.1D.23.(23-24高三上·天津南开·阶段练习)锐角,满足+2=2π3,tan2tan=2−3,则和中的较小角等于.4.(23-24高三上·宁夏银川·阶段练习)若tan=−cos3+sin,则sin2=.5.(23-24高三上·天津河东·阶段练习)已知函数=sin+sin+cos+的最大值为1,(1)求常数的值;(2)求函数的单调递减区间;6.(23-24高三上·天津·期中)已知函数=2cos2sin−+>0,图象的两条相邻对称轴之间的距离为π2.(1)求的单调递减区间;(2)若o2)=−35,且∈[−π6,5π6],求sin(−5π6)的值.7.(23-24高三上·天津河北·期中)已知函数op=sin(2−π6)−cos2,∈R.(1)求函数的最小正周期;(2)求函数的对称轴方程;(3)求函数在[0,π2]上的单调区间.1.(2024·全国·高考真题)已知coscos K sin=3,则tan+=()A.23+1B.23−1D.1−32.(2022·全国·高考真题)若sin(+p+cos(+p=22cos sin,则()A.tan(−p=1B.tan(+p=1C.tan(−p=−1D.tan(+p=−13.(2023·全国·高考真题)已知sin−=13,cosLin=16,则cos2+2=().A.79B.19C.−19D.−794.(2024·全国·高考真题)已知为第一象限角,为第三象限角,tan+tan=4,tanMan=2+1,则sin(+p=.。

考点01 三角函数及三角恒等变换(学生版)

考点01  三角函数及三角恒等变换(学生版)

考点01 三角函数及三角恒等变换三角函数及三角恒等变换,是近几年高考的高频考点,无论是全国卷(包括新高考)还是自主命题省份,都有考查。

例如:2020年山东高考[28],2020年浙江高考[18],2021年天津高考[16],2021年浙江高考[18],2022年天津高考[16],2022年北京高考[16],2022年全国乙卷(文)[17]等都对三角函数的图像与性质及三角恒等变换进行了考查。

〔1〕二倍角公式:αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;ααα2tan 1tan 22tan -=。

由二倍角公式,经过推导,我们还可以得到:2)cos (sin 2sin 1ααα+=+;2)cos (sin 2sin 1ααα-=-。

〔2〕半角公式:2cos 12sinαα-±=;2cos 12cos αα+±=; αααααααsin cos 1cos 1sin cos 1cos 12tan-=+=+-±=。

〔3〕三倍角公式:ααα3sin 4sin 33sin -=;αααcos 3cos 43cos 3-=;αααα23tan 31tan tan 33tan --=。

〔4〕万能公式:2tan 12tan2sin 2ααα+=;2tan 12tan 1cos 22ααα+-=;2tan 12tan2tan 2ααα-=;(其中ππα+≠k 2,且2ππα+≠k ,Z k ∈)〔5〕辅助角公式:)sin()sin cos cos (sin cos sin 2222ϕϕϕ++=++=+=x b a x x b a x b x a y ;(其中角ϕ的终边所在的象限由a ,b 的符号确定,角ϕ的值由ab=ϕtan 来求);常见的辅助角公式有:)4sin(2cos sin π±=±x x x ;)4cos(2sin cos πx x x =±;)3sin(2cos 3sin π±=±x x x ;)3cos(2sin 3cos π x x x =±;)6sin(2cos sin 3π±=±x x x ;)6cos(2sin cos 3πx x x =±。

专题 三角恒等变换(学生版)

专题  三角恒等变换(学生版)

专题 三角恒等变换1.(2023·河南开封·统考三模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P (-4,3),则sin 3π2+2α =()A.-2425B.-725C.725D.24252.(2023·河南·襄城高中校联考三模)已知π<α<3π2,sin2α1+sin β +1-cos2α cos β=0,则sin α+βcos α=()A.-2B.-1C.12D.13.(2023·广东深圳·校考二模)已知tan α2=2,则1+cos αsin α的值是()A.22B.2C.2D.124.(2023·宁夏石嘴山·平罗中学校考模拟预测)若tan α+π4=15,则tan α=()A.-23B.23C.-13D.135.(2023·福建厦门·统考模拟预测)已知sin α+sin α+2π3 =sin π3-α ,则sin α=()A.0B.±217C.±22D.±326.(2023·吉林延边·统考二模)下列化简不正确的是()A.cos82°sin52°+sin82°cos128°=-12B.sin15°sin30°sin75°=18C.cos 215°-sin 215°=32D.tan48°+tan72°1-tan48°tan72°=37.(2023·江西上饶·统考二模)已知α∈0,π2,tan α=3,则cos α-π4 =()A.55B.255C.31010D.-558.(2023·湖南长沙·雅礼中学校考模拟预测)已知tan α+tan β=3,sin α+β =2sin αsin β,则tan α+β =()A.4B.6C.-32D.-69.(多选题)(2023·广东广州·广州六中校考三模)若函数f (x )=sin 4x +cos 4x ,则()A.函数f (x )的一条对称轴为x =π4B.函数f (x )的一个对称中心为π4,0 C.函数f (x )的最小正周期为π2D.若函数g (x )=8f (x )-34,则g (x )的最大值为210.(多选题)(2023·全国·模拟预测)若tan α=34,α∈(0,π),则()A.sin α>cos αB.0<αtan α<1C.tan α2=13D.cos 2α+π4 =-1725011.(多选题)(2023·安徽黄山·统考二模)若sin θ⋅cos2θsin θ+cos θ=-35,则tan k π2+θk ∈Z 的值可能是()A.12 B.13C.2D.312.(多选题)(2023·湖南邵阳·统考二模)若函数f x =2cos ωx cos ωx -sin ωx -1ω>0 的最小正周期为π,则()A.f -π24 =-62B.f x 在π2,3π4上单调递增C.f x 在0,5π2内有5个零点D.f x 在-π4,π4上的值域为-1,1 13.(2021•全国)函数y =cos 2x +sin x cos x 图像的对称轴是()A.x =k π2+π8(k ∈Z ) B.x =k π2-π8(k ∈Z )C.x =k π+π4(k ∈Z )D.x =k π-π4(k ∈Z )14.(2021•甲卷)若α∈0,π2 ,tan2α=cos α2-sin α,则tan α=()A.1515B.55C.53 D.15315.(2021•乙卷)cos 2π12-cos 25π12=()A.12B.33C.22D.3216.(2020•新课标Ⅲ)已知2tan θ-tan θ+π4=7,则tan θ=()A.-2B.-1C.1D.217.(2020•新课标Ⅲ)已知sin θ+sin θ+π3 =1,则sin θ+π6=()A.12B.33C.23D.2218.(2020•新课标Ⅰ)已知α∈(0,π),且3cos2α-8cos α=5,则sin α=() A.53B.23C.13D.5919.(2022•浙江)若3sin α-sin β=10,α+β=π2,则sin α=,cos2β=.20.(2022•北京)若函数f (x )=A sin x -3cos x 的一个零点为π3,则A =;f π12=.21.(2020•江苏)已知sin 2π4+α=23,则sin2α的值是.22.(2020•浙江)已知tan θ=2,则cos2θ=,tan θ-π4=.23.(2023·海南海口·海南华侨中学校考模拟预测)已知tan π4-α=13,则2sin2α-cos 2α=.24.(2023·河南·襄城高中校联考三模)若sinα2+cos α22+3cos α=52,则sin α+π3=.25.(2023·河南·襄城高中校联考三模)若sinα2+cos α22+3cos α=52,则cos 2α+2π3=.26.(2023·安徽合肥·合肥一中校考模拟预测)已知a ,b 都是锐角,tan (α+β)=-1,则cos β-α -sin (α+β)cos αcos β=.27.(2023·天津滨海新·统考三模)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,b =27,c =2,B =π3.(1)求a 的值;(2)求sin A 的值;(3)求sin B -2A 的值.28.(2023·天津和平·耀华中学校考一模)已知α∈0,π4,tanα+π4= 2cos2α.(1)求α的大小;(2)设函数f x =sin x+2α,x∈0,π,求f x 的单调区间及值域.29.(2023·北京海淀·统考二模)已知函数f(x)=a sin x cos x+cos2x+π6,且f π4 =12.(1)求a的值和f(x)的最小正周期;(2)求f(x)在[0,π]上的单调递增区间.30.(2021•浙江)设函数f (x )=sin x +cos x (x ∈R ).(1)求函数y =f x +π22的最小正周期;(2)求函数y =f (x )f x -π4 在0,π2上的最大值.。

专题18 三角恒等变换 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题18 三角恒等变换 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】高中数学53个题型归纳与方法技巧总结篇专题18三角恒等变换知识点一.两角和与差的正余弦与正切①sin()sin cos cos sin αβαβαβ±=±;②cos()cos cos sin sin αβαβαβ±= ;③tan tan tan()1tan tan αβαβαβ±±=;知识点二.二倍角公式①sin 22sin cos ααα=;②2222cos 2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-;知识点三:降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===知识点四:半角公式sin22αα==sin 1cos tan.21cos sin aαααα-==+知识点五.辅助角公式)sin(cos sin 22ϕααα++=+b a b a (其中abb a a b a b =+=+=ϕϕϕtan cos sin 2222,,).【方法技巧与总结】1.两角和与差正切公式变形)tan tan 1)(tan(tan tan βαβαβα ±=±;1)tan(tan tan )tan(tan tan 1tan tan ---=++-=⋅βαβαβαβαβα.2.降幂公式与升幂公式ααααααα2sin 21cos sin 22cos 1cos 22cos 1sin 22=+=-=;;;2222)cos (sin 2sin 1)cos (sin 2sin 1sin 22cos 1cos 22cos 1αααααααααα-=-+=+=-=+;;;.3.其他常用变式αααααααααααααααααααsin cos 1cos 1sin 2tan tan 1tan 1cos sin sin cos 2cos tan 1tan 2cos sin cos sin 22sin 222222222-=+=+-=+-=+=+=;;.3.拆分角问题:①=22αα⋅;=(+)ααββ-;②()αββα=--;③1[()()]2ααβαβ=++-;④1[()()]2βαβαβ=+--;⑤()424πππαα+=--.注意特殊的角也看成已知角,如()44ππαα=--.【题型归纳目录】题型一:两角和与差公式的证明题型二:给式求值题型三:给值求值题型四:给值求角题型五:正切恒等式及求非特殊角【典例例题】题型一:两角和与差公式的证明例1.(2022·山西省长治市第二中学校高一期末)(1)试证明差角的余弦公式()C αβ-:cos()cos cos sin sin αβαβαβ-=+;(2)利用公式()C αβ-推导:①和角的余弦公式()C αβ+,正弦公式()S αβ+,正切公式()T αβ+;②倍角公式(2)S α,(2)C α,(2)T α.例2.(2022·云南·昭通市第一中学高三开学考试(文))已知以下四个式子的值都等于同一个常数22sin 26cos 3426cos34+ ;22sin 39cos 2139cos 21+ ;()()22sin 52cos 11252cos112-+- ;22sin 30cos 3030cos30+ .(1)试从上述四个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,推广为三角恒等式,并证明你的结论.例3.(2022·陕西省商丹高新学校模拟预测(理))如图带有坐标系的单位圆O 中,设AOx α∠=,BOx β∠=,AOB αβ∠=-,(1)利用单位圆、向量知识证明:cos()cos cos sin sin αβαβαβ-=+(2)若π,π2α⎛⎫∈ ⎪⎝⎭,π0,2β⎛⎫∈ ⎪⎝⎭,4cos()5αβ-=-,5tan 12α=-,求cos β的值例4.(2022·全国·高三专题练习)如图,考虑点(1,0)A ,1(cos ,sin )P αα,2(cos ,sin )P ββ-,(cos(),sin())P αβαβ++,从这个图出发.(1)推导公式:cos()cos cos sin sin αβαβαβ+=-;(2)利用(1)的结果证明:1cos cos [cos()cos()]2αβαβαβ=++-,并计算sin 37.5cos37.5︒︒⋅的值.【方法技巧与总结】推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路.题型二:给式求值例5.(2022·全国·高三专题练习)已知sin α=()cos αβ-=且304πα<<,304πβ<<,则sin β=()ABCD例6.(2020·四川·乐山外国语学校高三期中(文))已知sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,则()sin 60α︒+的值为()A .13B .13-C .23D .23-例7.(2020·全国·高三专题练习)若7cos(2)38x π-=-,则sin()3x π+的值为().A .14B .78C .14±D .78±(多选题)例8.(2022·全国·高三专题练习)设sin()sin 6πββ++=sin()3πβ-=()AB .12C .12-D.例9.(2022·全国·模拟预测(文))已知,0,2παβ⎛⎫∈ ⎪⎝⎭,3cos 25β=,()4cos 5αβ+=,则cos α=___________.例10.(2022·上海静安·模拟预测)已知sin 4πα⎛⎫+= ⎪⎝⎭sin 2α的值为_____________.例11.(2022·江苏泰州·模拟预测)若0θθ=时,()2sin 2cos f θθθ=-取得最大值,则0sin 24πθ⎛⎫+= ⎪⎝⎭______.【方法技巧与总结】给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.题型三:给值求值例12.(2022·福建省福州第一中学三模)若3sin 5α=-,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα-=+()A .12B .12-C .2D .-2例13.(2022·湖北武汉·模拟预测)已知1sin 64x π⎛⎫-= ⎪⎝⎭,则cos 23x π⎛⎫-= ⎪⎝⎭()A .78-B .78C .D 例14.(2022·湖北·模拟预测)已知,22ππα⎛⎫∈- ⎪⎝⎭,且1cos 42πα⎛⎫-= ⎪⎝⎭,则cos2α=()A .B .C .12D 例15.(2022·全国·模拟预测)已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭()A .2325B .2325-C D .例16.(2022·黑龙江·哈师大附中三模(文))已知()3sin 455α︒+=,45135α︒<<︒,则cos 2=α()A .2425B .2425-C .725D .725-例17.(2022·广东茂名·模拟预测)已知1sin 62πθ⎛⎫-= ⎪⎝⎭,则cos 3πθ⎛⎫+= ⎪⎝⎭()A .B .12-C .12D(多选题)例18.(2022·江苏·高三专题练习)已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()αβ+=则()A .cos α=B .sin cos αα-=C .34πβα-=D .cos cos αβ=【方法技巧与总结】给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.题型四:给值求角例19.(2022·全国·模拟预测)已知263ππα<<,sin 4sin cos tan 15315315πππππαα⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭则α=______.例20.(2022·河南·南阳中学高三阶段练习(文))已知3sin 44ππαβ⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭3,,0,444πππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,求αβ-的值为_____.例21.(2022·河北石家庄·一模)已知角π0,2α⎛⎫∈ ⎪⎝⎭,πsin sinπ12tan π12cos cos 12αα-=+,则α=______.例22.(2022·上海市大同中学高三开学考试)若()0,απ∈,且cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则α的值为___________.例23.(2022·全国·高三专题练习)若sin 2α=()sin βα-=且ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是______.例24.(2022·吉林·延边州教育学院一模(理))若sin 2α=,()sin βα-=且π,π4α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+=()A .7π4B .π4C .4π3D .5π3例25.(2022·上海交大附中高三开学考试)已知α、β都是锐角,且223sin 2sin 1αβ+=,3sin 22sin 20αβ-=,那么α、β之间的关系是()A .4παβ+=B .4αβ-=πC .24παβ+=D .22παβ+=例26.(2022·江苏省江阴高级中学高三开学考试)已知11tan ,tan ,37αβ==-且,(0,)αβπ∈,则2αβ-=()A .4πB .4π-C .34π-D .34π-或4π【方法技巧与总结】给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角.题型五:正切恒等式及求非特殊角例27.(2022·湖北·襄阳四中模拟预测)若角α的终边经过点()sin 70,cos70P ︒︒,且tan tan 2tan tan 2m αααα++⋅=,则实数m 的值为()A.B.CD例28.(2021·重庆八中高三阶段练习)sin10︒︒=()A .14B C .12D例29.(2020·=()A .1BC D .例30.(2022·全国·高三专题练习)()tan 30tan 70sin10︒+︒︒=___________.例31.(2022·江苏南通·高三期末)若11sin α=,则α的一个可能角度值为__________.例32.(2022·江苏扬州·模拟预测)1tan 751tan 75-︒=+︒___________.例33.(2022·贵州黔东南·一模(文))若()1tan 3αβ+=,()1tan 6a β-=,则tan 2α=___________.例34.(2022·山东·青岛二中高三开学考试)tan10tan 35tan10tan 35︒+︒+︒︒=______.【方法技巧与总结】正切恒等式:当A B C k π++=时,tan tan tan tan tan tan A B C A B C ++=⋅⋅.证明:因为tan tan tan()1tan tan A BA B A B++=-,tan tan ()C A B =-+,所以tan tan tan (1tan tan )A B C A B +=--故C B A C B A tan tan tan tan tan tan ⋅⋅=++.【过关测试】一、单选题1.(2022·四川省泸县第二中学模拟预测(文))已知角α与角β的顶点均与原点O 重合,始边均与x 轴的非负半轴重合,它们的终边关于x 轴对称.若3cos 5α=,则()()cos cos αβαβ+-=()A .725-B .15C .15-D .7252.(2022·全国·模拟预测(理))已知sin cos 1αβ+=,cos sin αβ+=,则cos()αβ-=()A .0B .12C D .13.(2022·青海·大通回族土族自治县教学研究室三模(文))已知πtan 34α⎛⎫+= ⎪⎝⎭,()1tan 3αβ+=,则tan β=()A .17-B .17C .1D .2或64.(2022·湖北·黄冈中学模拟预测)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为2sin18m =︒,若24m n +=,=()A .-4B .-2C .2D .45.(2022·山东烟台·三模)若21π2cos cos 23αα⎛⎫-=+ ⎪⎝⎭,则tan 2α的值为()A .BC .D 6.(2022·全国·模拟预测(文))设角α,β的终边均不在坐标轴上,且()tan tan tan αββα-+=,则下列结论正确的是()A .()sin 0αβ+=B .()cos 1αβ-=C .22sin sin 1αβ+=D .22sin cos 1αβ+=7.(2022·河南·通许县第一高级中学模拟预测(文))已知15αβ+= ,则1tan tan tan tan 1tan tan tan tan αβαβαβαβ++-=---()A .BC .1D8.(2022·全国·高三专题练习)若10,0,cos ,cos 224342ππππβαβα⎛⎫⎛⎫<<-<<+=-= ⎪ ⎪⎝⎭⎝⎭cos 2βα⎛⎫+=⎪⎝⎭()A B .C D .二、多选题9.(2022·海南海口·二模)已知(),2αππ∈,tan sin tan 22αβα==,则()A .tan α=B .1cos 2α=C .tan β=D .1cos 7β=10.(2022·河北邯郸·二模)下列各式的值为12的是().A .sin17π6B .sinπ12cos π12C .22cossin 121π2-πD .2πtan 8π1tan 8-11.(2022·重庆·西南大学附中模拟预测)已知α,β,0,2πγ⎛⎫∈ ⎪⎝⎭,且2παβγ++=,则()A.若sin cos αα+=,则tan 1α=B .若tan 2α=,则sin()βγ+=C .tan α,tan β可能是方程2670x x -+=的两根D .tan tan tan tan tan tan 1αββγβα++=12.(2022·重庆巴蜀中学高三阶段练习)已知()4cos cos 25αβα+==-,其中,αβ为锐角,则以下命题正确的是()A .3sin 25α=B .()cos αβ-=C.cos cos αβ=D .1tan tan 3αβ=三、填空题13.(2022·浙江·高考真题)若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.14.(2022·山东师范大学附中模拟预测)已知ππ0sin 24αα⎛⎫<<-= ⎪⎝⎭sin 1tan αα=+________.15.(2022·3cos()cos()12παπα-++=-,则cos(23α2π-=_____________.16.(2022·陕西·宝鸡中学模拟预测)()()()sin 75cos 4515θθθ++++=__________.四、解答题17.(2022·江苏南京·模拟预测)已知02πα<<,1cos 43πα⎛⎫+= ⎪⎝⎭.(1)求sin α的值;(2)若02πβ-<<,cos 24βπ⎛⎫-= ⎪⎝⎭αβ-的值.18.(2022·江西·高一期中)已知角α为锐角,2πβαπ<-<,且满足1tan23=α,()sin βα-=(1)证明:04πα<<;(2)求β.19.(2022·河南·唐河县第一高级中学高一阶段练习)(1)已知tan 2θ=-,求sin (1sin 2)sin cos θθθθ++的值;(2)已知1tan()2αβ-=,1tan 7β=-,且α,(0,)βπ∈,求2αβ-.20.(2022·江西·高一阶段练习)在①4tan 23α=,②sin α补充到下面的问题中,并解答.已知角α是第一象限角,且.(1)求tan α的值;(2)求()π3πsin 2cos πcos 22ααα⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭的值.注:如果选择两个条件分别解答,按第一个解答计分.21.(2022·北京市第九中学高一期中)已知1tan 2α=,π0,2α⎛⎫∈ ⎪⎝⎭,π,π2β⎛⎫∈ ⎪⎝⎭,求(1)求sin α的值;(2)求()()()2212sin πcos 2π5πsin sin 2αααα+---⎛⎫--- ⎪⎝⎭的值;(3)若()sin αβ+cos β的值.22.(2019·黑龙江·哈尔滨三中高三阶段练习(文))()1的值;()2已知30,,,242ππαβπ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,()1tan 2αβ-=,17tan β=-,求2αβ-的值.23.(2020·全国·高三专题练习)在ABC ∆中,满足222sin cos sin cos A B A B C -=-.(1)求C ;(2)设()()2cos cos cos cos cos A B A B ααα++=,tan α的值.。

(完整版)三角恒等变换知识总结及基础训练

(完整版)三角恒等变换知识总结及基础训练

第四讲 三角恒等变形一、三角恒等变形知识点总结1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos(μ=±;tan tan tan()1tan tan αβαβαβ±±=m 。

2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。

3.三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。

(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。

(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos 2αα+=。

(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

三角恒等变换知识点总结

三角恒等变换知识点总结

第三章 三角恒等变换一、知识点总结1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).2、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-. 3、⇒(后两个不用判断符号,更加好用)4、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。

()sin cos αααϕA +B =+,其中tan ϕB=A. 5.(1)积化和差公式sin α·cos β=21[sin(α+β)+sin(α-β)] cos α·sin β=21[sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)] sin α·sin β= -21[cos(α+β)-cos(α-β)](2)和差化积公式 sin α+sin β=2cos2sin2βαβα-+sin α-sin β=2sin2cos2βαβα-+ααααααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos :+-±=-±=+±=2tan 12tan 1 cos ;2tan 12tan2sin :222αααααα万能公式+-=+=cos α+cos β=2cos2cos2βαβα-+ cos α-cos β= -2sin2sin2βαβα-+tan α+ cot α=ααα2sin 2cos sin 1=⋅ tan α- cot α= -2cot2α 1+cos α=2cos 22α 1-cos α=2sin22α1±sin α=(2cos2sinαα±)26。

三角恒等变换知识点总结

三角恒等变换知识点总结

)sin(cos sin 22ϕωωω++=+=x x b x a y b a ;的取值范围为;其中22-tan πϕπϕϕ≤≤=a b 一、知识点总结1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=- ⑶22tan tan 21tan ααα=-. 3、辅助角公式:把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 bx a y ++=)sin(ϕω形式。

4、 5、(1)升幂公式 1+cos α=2cos 22α1-cos α=2sin 22α1±sin α=(2cos 2sin αα±)21=sin 2α+ cos 2α sin α=2cos 2sin2αα (2)降幂公式sin 2α22cos 1α-= cos 2α22cos 1α+= sin 2α+ cos 2α=1 sin α·cos α=α2sin 21 7、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的差, 倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍; ②ββαα-+=)(;④)4(24αππαπ--=+; ③)4()4()()(2απαπβαβαα--+=-++=;2tan 12tan 1 cos ;2tan 12tan 2 sin :222αααααα万能公式+-=+=必修4:第三章 三角恒等变换知识点总结⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。

三角恒等变换知识点总结

三角恒等变换知识点总结

三角恒等变换专题一、知识点总结1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-. 3、⇒(后两个不用判断符号,更加好用)4、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。

()sin cos αααϕA +B =+,其中tan ϕB =A. 5.(1)积化和差公式 sin α·cos β=21[sin(α+β)+sin(α-β)] cos α·sin β=21[sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)] sin α·sin β= -21[cos(α+β)-cos(α-β)] (2)和差化积公式sin α+sin β= 2cos 2sin 2βαβα-+ sin α-sin β=2sin 2cos 2βαβα-+ααααααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos :+-±=-±=+±=2tan 12tan 1 cos ;2tan 12tan 2 sin :222αααααα万能公式+-=+=cos α+cos β=2cos 2cos 2βαβα-+ cos α-cos β= -2sin 2sin 2βαβα-+ tan α+ cot α=ααα2sin 2cos sin 1=⋅ tan α- cot α= -2cot2α 1+cos α=2cos22α 1-cos α=2sin 22α 1±sin α=(2cos 2sin αα±)2 6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角恒等变换---完整版三角函数------三角恒等变换公式:考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。

“互补两角正弦相等,余弦互为相反数。

互余两角的正余弦相等。

”(2)二倍角公式的灵活应用,特别是降幂、和升幂公式的应用。

(3)结合同角三角函数,化为二次函数求最值(4)角的整体代换 (5)弦切互化 (6)知一求二 (7)辅助角公式逆向应用(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。

互余两角的正余弦相等。

”快速进行逻辑判断。

注意构造两角和差因子 1、(二倍角公式)(2007重庆文)下列各式中,值为32的是( ) A .2sin15cos15ooB .22cos 15sin 15-ooC .22sin 151-oD .22sin 15cos 15+o o2、(二倍角公式+平方差公式)(2008六校联考)(sin 75sin15)(cos15cos 75)-+oooo的值是A.1B.12C.22D.323、(两角和差公式+诱导公式)(2009四校联考)οοοο84cos 54sin 6cos 36sin -等于A .-12B .12C .-32D .324.(两角和差公式)下列各式中值为的是( ).A . s in45°cos15°+cos45°sin15°B . sin45°cos15°﹣cos45°sin15°C . cos75°cos30°+sin75°sin30°D .5、(拆角+两角和差公式)( 佛山一中2014届高三10月段考数学(理)试题)化简三角式=-οοο5cos 5sin 355cos 2( )A .23 B .1 C .2D .36、(补全公式)(2013六校联考回归课本题)cos20°·cos40°·cos60°·cos80°=( ) A .14 B .18 C .116 D .132常见变式:计算sin 10°sin 30°sin 50°sin 70°的=__.7、(构造两角和差因子+两式平方后相加)若sin α-sin β=32,cos α-cos β=12,则cos(α-β)的值为( )A.12 B.32 C.34D .18.(诱导公式)【2015广东东莞高一期末】sin163°sin223°+sin253°sin313°等于 B A .-12 B. 12C 339、(构造两角和差因子+两边平方)【2015高考四川,理12】=+οο75sin 15sin .. 10、(逆向套用公式)tan 23°+tan 37°+3tan 23°tan 37°的值是________.11.(特殊值化特殊角处理)化简1+tan 105°1-tan 105°的值为________12. (特殊值化特殊角处理)1-tan 75°1+tan 75°=_______13、(tan 45°=tan(20°+25°)+多项式展开)若α=20°,β=25°,则(1+tan α)(1+tan β)的值为_______ 14、(合理组合,多项式乘法展开)(1+tan 21°)(1+tan 22°)(1+tan 23°)(1+tan 24°)的值为_______ 15、(逆向套用公式)tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°=__ __.答案:BDBCB CAB 9、610、3 11、-33 12、-33 13、2 14、3 15、1(2)角的整体变换题:主要方法是拿题目给出的整体角加一加,或者减一减,观察是否互补、互余、或者是两角和差、倍角关系等,从而运用诱导公式、和差公式化简求值。

例如:22αα=⋅,1[()()]2ααβαβ=++-, ()424πππαα+=-- ()βαβα=+-,)(αβαβ+-= ⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=+βαβαβα222 1、(角的整体相减)(2011汕头期末)已知)4tan(,41)4tan(,52)tan(παπββα+=-=+则等于( ) A .1823 B .223 C .2213 D .1832、(两角互补).【山西大学附中2014-2015年高三月考】若31)6sin(=+απ,则)3cos(απ-的值为( )A .12-B .12C .13- D .133.(诱导公式)【湛江一中14年期末考试】如果31)sin(-=-απ,那么)23cos(απ-的值为( ). 31.A 31-.B 322.C 322-.D 4. (两角相减)【江西省九江外国语学校2013-2014学年高一下学期第一次月考数学试题】已知1sin(75)2α︒+=,则cos(15)α︒-=( ) A.32 B.32- C.12 D.12-5、(两角相加).【2013-2014学年陕西省咸阳市高一(下)期末数学试卷】若3)tan(=+βα,5)tan(=-βα,则α2tan =( ) A .74 B. 74-C.21D. 21-6.(特殊角三角函数值)【浙江省桐乡一中学等四校2015届高三上学期期中联考,理14】已知1sin 3α=,cos()1αβ+=-,则sin(2)αβ+= ..7、(两角整体相减)【江苏省泰兴市2015届高三(上)期中,理2】若π1sin +123α=(),则7πcos +12α=()_____. 8、(互余两角正余弦互换) 【四川雅安中学2014-2015学年上期9月试题,理11】若=+=-)6cos(,41)3sin(απαπ则_______. 9、(互补两角余弦互为相反数)33)6cos(=+θπ,则=-)65cos(θπ___________ 10.(两角整体相减)若54)6sin(=+πx ,则=-)3cos(πx .11、(两角整体相减)【2015重庆高一期末】若,135)6sin(-=+πα且),2(ππα∈,则=+)32sin(πα ;12.(两角整体相减)【2015江苏高考,8】已知tan 2α=-,()1tan 7αβ+=,则tan β的值为______13、(两角整体相减)(中山市2014届高三上学期期末考试)已知20πα<<,=+)6cos(πα53,则=αcos14、(两角相减)【2015湖南浏阳高一期末】已知113cos ,cos(),07142πααββα=-=<<<且,则β= 。

答案:BDACB 6、13- 7、13-8、9、-10、11、1312-12、3 13433+ 14、3π(3)弦切互化:1)、分子分母同时除以cos α 2) 注意分母还原sin 2α+ cos 2α=1,然后分子分母同时除以cos 2α,即可化为正切 3)注意期间学会使用解方程的思想 4)遇到部分A sinα + Bcos α 之类求正切的,注意先两边平方后再进行相切互化1.(诱导公式+同时除以cos α )(2007韶关一模文)已知2tan =θ,=-----+)sin()2sin()cos()2sin(θπθπθπθπ(A)2 (B)-2 (C)0 (D)32 2、(同角三角函数弦化切)(2013肇庆统考)已知α为锐角,sin α=35,则tan (α-π4)等于A 、17B 、7C 、-17D 、-73、(简单弦化切)(2011福建文3)若tan α=3,则2sin 2cos a α的值等于A .2B .3C .4D .64. (分子分母同时除以cos α) (2012高考江西文4)若sin cos 1sin cos 2αααα+=-,则tan2α=A. -34B. 34C. -43D. 435、(分母还原1+同时除以cos 2α)(2009辽宁卷文)已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(A )43-(B )54(C )34-(D )456. (分母还原1+同时除以cos 2α)【淄博实验中学2015届高三,理5】已知tan 2α=,则2sin sin cos ααα-的值是( ) A .25 B .25- C .2- D .27.(移项后两边平方在弦切互化)(唐山市2014-2015学年度高三年级第一次模拟考试7).已知2sin 21cos2αα=+,则tan 2α=( )A .43-B .43C .43-或0 D .43或08、(两边平方在弦切互化)【成都七中2015届数学阶段性测试,理8】已知,2sin cos 2a R αα∈-=,则tan(2)4πα-=( )A .43 B .7- C .34- D .17 9、(解方程组+同角三角函数的快速弦切互化)【2015安徽滁州高一期末】已知)tan(,cos )sin(),2(,53sin βααβαπβπβ+=+<<=则且=( )A .1B .2C .-2D .25810、(两边平方在弦切互化)(洛阳市2014届高三12月统考)已知2sin α+cos α=102,则tan2α= AA .34 B .43 C .-34 D .-4311、(两边平方在弦切互化)(省实验中学2014届高三上学期期中考试)已知()sin cos 2,0,αααπ-=∈,则tan α等于( ) A .2 B .2-C .1-D .112、(解方程组再弦切互化)【2015福建晋江高一期末】若()()11sin ,sin 23αβαβ+=-=,则tan tan αβ为 A 、5 B 、-1 C 、6 D 、1613、 (分母还原1+同时除以cos 2α)已知()tan 2θπ-=,则22sin sin cos 2cos 3θθθθ+-+的值为14、(二倍角+分母还原1+同时除以cos 2α)若4cos 5θ=-,θ是第三象限的角,则1tan21tan 2θθ-+=_________.答案:BCDBD ADBCA CA 13、 14、-2(4):结合完全平方公式和平方差公式的作用。

最经典的莫过于sin cos αα+,sin cos αα-,sin 2α三者知一求二:;2sin 1)cos (sin 2ααα±=±在不同的范围三角函数值大小的比较(如下图),往往用于更加精确象限,常见于“知一求二”的符号问题。

相关文档
最新文档